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a b s t r a c t

Peak load demand forecasting is important in building unit sectors, as climate change, technological
development, and energy policies are causing an increase in peak demand. Thus, accurate peak load
forecasting is a critical role in preventing a blackout or loss of energy. This paper presents a study
forecasting peak load demand for an institutional building in Seoul. The dataset were collected from
campus area consisting of 23 buildings. ARIMA models, ARIMA-GARCH models, multiple seasonal
exponential smoothing, and ANN models are used. We find an optimal model with moving window
simulations and step-ahead forecasts. Also, including weather and holiday variables is crucial to predict
peak load demand. The ANN model with external variables (NARX) worked best for 1-h to 1-d ahead
forecasting.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Peak load demand forecasting is a critical issue at the national
scale for smaller-scale building units (residential, commercial,
and industrial) (Yao et al., 2003; Kavousian et al., 2013). As na-
tions face the onslaughts of rapid climate change, record-breaking
high temperatures have resulted in hotter summers. On the other
hand, extreme cold temperatures have led to colder winters.
Therefore, the number of buildings that use air-conditioners and
heating appliances as necessities are bound to increase every
year, and the frequency of their use is also set to rise. As these
energy-intensive devices are responsible for a large portion of
peak load demand, this demand continues to set new records
every year. Therefore, simulation studies on the energy consump-
tion of buildings are being actively conducted as a result of
climate change (Santamouris et al., 2001).

Certain appliances have been commercialized within the span
of a few decades. The invention of the electric vehicle (EV) is one
such example; it is expected that EVs will become a necessity
for each household as they replace vehicles run on fossil fuels
in the near future. Thus, charging stations for EV have already
been installed in some commercial or industrial buildings. It is
thus predicted that the increasing number of EVs is likely to add
to the already huge peak load demand in the building sector.
Some researchers have shown this incremental trend in peak
load demand as the EV market continues to grow, suggesting the
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importance of load demand forecasting for buildings (Habib et al.,
2015).

In addition, energy policies are being discussed to replace nu-
clear power, which used to provide a large proportion of power,
with renewable energy (RE) (Renn and Marshall, 1950). Nuclear
power is inexpensive to produce and generates high power out-
put, but it suffers from disadvantages in that it is sensitive to
management practices and even a single accident can have a
severe negative impact on the environment. Thus, the future
role of RE in satisfying peak load demand is bound to become
stronger due to the controversies over nuclear power genera-
tion. Therefore, accurate peak load demand forecasting should be
based on the national energy supply policy, which should focus
on determining RE supply.

The energy relative prices and power rates can be set on the
results of peak load demand forecasting in the near term. Besides,
it was reported that the government of Korea made a decision
in 8th basic Plan for Power Supply and Demand to reduce coal-
fired and nuclear plant capacity and replace with RE and LNG,
based on the results of the predicted demand, that is expected
to decrease from a long-term point of view (Ministry of Trade,
2017). This not only affects a country’s policies and economy, but
also environmental conventions such as reducing fine dust and
carbon dioxide emissions worldwide.

Due to technological advances, such as those witnessed for
the smart grid and information and communications technolo-
gies (ICT), the subject of forecasting electric power demand is
not limited to energy suppliers or energy policy legislators, but
extends to building owners or managers of commercial, indus-
trial, and residential buildings. The smart grid technology has

https://doi.org/10.1016/j.egyr.2019.08.086
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increased the efficiency of power demand and supply by ex-
changing information between power suppliers and end-users
with smart meters. Before the smart grid was invented, a top-
down approach, which was governed by economic considerations
of the government with regard to the supply side, was imple-
mented using aggregated data. However, currently, the top-down
approach is not ideal for forecasting. Instead, the bottom-up
approach, which involves engineering, considers the end-users’
requirements, and concerns demand side management, has be-
come popular with the advent of smart grid technology (Reyna
and Chester, 2017). Thus, in the past, the top-down approach was
suitable for short-term forecasting (Dahl et al., 2018), whereas
today, the bottom-up approach has become widely applicable for
the same task (Ghedamsi et al., 2016). Also, as information is
provided in real time to consumers and suppliers, the demand re-
sponse policy has ushered in a new paradigm of energy efficiency
and forecasting (Rahimi and Ipakchi, 2010). Accurate STLF helps
utilities and providers address the tasks caused by renewable
penetration and electricity market development with complex
pricing strategies in future smart grid markets.

Thus, climate change, technological development, and prevail-
ing energy policies are likely to cause a sudden increase in peak
demand, and demand forecasts need to be undertaken at the
consumers’ end. Accurate load forecasting is important to prevent
possible loss of energy, because forecast underestimation can
cause a blackout, whereas overestimation would result in energy
wastage.

Forecasting methods are classified in various ways depending
on the research objectives and methodology used. Forecasting
can be categorized as short-, medium-, and long-term forecasting
based on the time horizon. Depending on the concerned building
sector, forecasts can be categorized as those for the residential,
commercial, or industrial sector. Lastly, the methodology used to
make the forecast can be classified as a traditional statistical or
non-statistical method (Amjady, 2001).

Also, for the institutional building (see Section 4), this study
demonstrates an optimal model for certain k time units with
moving window simulations through 1 to 24 step-ahead fore-
casts.

After a review of the variable prediction studies, we com-
pared the effectiveness of forecasting peak load demand for an
institutional building using statistical and artificial intelligence
(AI)-based models under various scenarios including exogenous
variables. The contributions of this paper are presented as follows.

(1) To the best of the authors’ knowledge, there was no paper
comparing and analyzing multiple statistical models and
AI-based models in comprehensive ways. The results may
provide different insights into which models are optimal
with and without additional input data, not concluding that
models with external variables are regarded as absolute
truth in all models.

(2) Various scenarios over prediction horizons are carries out
through an hour to a day ahead forecasting. The results pro-
pose forecasting framework according to their forecasting
horizons for robust and universal criterion.

The remainder of this paper is organized as follows. Section 2
provides a literature review of the types of models used for
forecasting energy demand. Section 3 introduces the models used
in this study. Section 4 illustrates the data and variables. Sec-
tion 5 applies the data to the models described in Section 3,
and Section 6 presents the performance evaluations of the same.
Section 7 concludes the paper.

2. Literature review

While no standard time horizon period exists, it is common
to set a period of a week or less for short-term forecasts (STLF),
a week to months for a medium-term forecast (MTLF), and a
year or more for a long-term forecast (LTLF) (Hong and Fan,
2016). Research on STLF has been conducted actively but re-
quires a bottom-up approach. Boroojeni et al. (2017) analyzed
STLF for different cycles of seasonality using hourly metered
load data. Amjady (2001) suggested a solution for identifying
the daily peak load by differentiating the dataset in terms of
daily characteristics. MTLF plays an important role in planning
and operating power generation systems. Dehghanzadeh et al.
(2018) proposed a MTLF method to deal with weekly nonindus-
trial load. LTLF is commonly used as a top-down approach for
planning by power generation facilities and transmission sys-
tems or addressing energy policy and legislation (Hong and Fan,
2016). Hyndman (Hyndman and Fan, 2010) proposed a density
forecasting methodology to estimate probability distributions of
peak load demand in order to overcome uncertainties in LTLF.
Ekonomou (2010) described using an artificial neural network
(ANN) model to forecast long-term national energy consumption
in Greece.

Many sectoral studies exist as well as the end-users for each
sector have different characteristics with regard to peak demand.
In particular, as bottom-up approaches are preferred, appropriate
modeling techniques should be applied so as to match each
energy sector’s specific characteristics. First, studies on the res-
idential sector should consider various geographical and envi-
ronmental factors, including the main appliances used by end-
users and their living patterns, which would affect the peak
load demand. Also, as the household penetration rate for the
smart meter increases, it would become easier to access real-
time measurements for short-term forecasting for the residential
sector. Ghofrani et al. (2011a) examined a short-term forecasting
method for residential customers using the smart grid via Kalman
filtering. They considered different sampling periods and time
horizons. Fan et al. (2017) modeled residential peak demand
in Sydney using smart grid data including housing information
from surveys. Kavousian et al. (2013) suggested relevant factors
to consider residential load forecasting using factor analysis. It
was shown that high-energy consumption appliances such as
air-conditioners easily influence peak load demand. Thus, they
noted that climate-related effects should be considered in the
model. Pielow et al. (2012) predicted energy consumption in the
industrial sector using an ANN model and inputs of yearly values
from the industrial, residential, agricultural, and transportation
sectors.

As stated previously, forecasting techniques can be classified
into two major types: traditional statistical models and AI-based
models. Classic models use mathematical combinations of his-
torical data, and the estimates of parameters in such models
can be easily interpreted. Examples include the Auto Regressive
Integrated Moving Average (ARIMA) model (Amjady, 2001; La-
zos et al., 2014; Jung and Kim, 2014), the Regression Seasonal
ARIMA Generalized Autoregressive Conditional Heteroskedastic
(Reg-SARIMA-GARCH) model (Sigauke and Chikobvu, 2011), ex-
ponential smoothing methods (Taylor, 2010, 2012), time se-
ries model for series exhibiting multiple complex seasonalities
(TBATS) (Dang-Ha et al., 2017), regression models (Amber et al.,
2015; Capozzoli et al., 2015; Kaytez et al., 2015), Support Vector
Machine (SVM) models (Kaytez et al., 2015; Zhang et al., 2016;
Jain et al., 2014), fuzzy models (Azadeh et al., 2010; Pereira et al.,
2015), gray prediction models (Yao et al., 2003; Hamzacebi and
Avni Es, 2014; Xu et al., 2017), and Kalman filters (Ghofrani et al.,
2011b).
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On the other hand, AI-based techniques are known to be
generally adaptive and robust to non-stationary data and provide
high accuracy, because the function is nonlinear and nonparamet-
ric. Many researchers have showed that neural network models
are superior to classical models in terms of accuracy (Jovanović
et al., 2015; Chae et al., 2016; Deb et al., 2016). However, there are
several arguments for applying neural network models widely for
any data, although AI-based techniques may be powerful. Accord-
ing to these studies, it is necessary to consider various techniques
and select the best/relevant one, because AI-based techniques are
not always adaptive, especially to linear data (Taskaya-Temizel
and Casey, 2005).

Also, various studies of forecasting load demand in school
buildings are widely conducted in recent studies. Lindberg et al.
(2019) predicts aggregated hourly energy consumption in 114
non-residential buildings including school buildings by fitting
regression models with outdoor temperature, time of day, and
type of day as input values. Ribeiro et al. (2018) proposed a com-
parison results from using multiple machine learning methods to
daily load demand in schools. Wang et al. (2019) applied long
short-term memory (LSTM) networks, ANN, and SVR to predict
multi-building energy use.

Although a lot of reviews for comparing conventional statis-
tical models and AI-based methods are summarized in the past
work (Daut et al., 2017; Li et al., 2019), it has not been conducted
trying multiple relative time series forecasting methods and AI-
based methods yet. The focus of this study is to examine the
effectiveness of forecasting peak load demand for an institutional
building using different statistical and artificial intelligence (AI)-
based models under various scenarios. Section 3 introduces these
models.

3. Models

The ARIMA, Reg-ARIMA, ARIMA-GARCH, Reg-ARIMA-GARCH,
Holt–Winters’ double seasonal exponential smoothing, Taylor’s
double seasonal exponential smoothing, TBATS, and neural net-
work models are presented in this section.

3.1. The ARIMA model

The ARIMA model has undergone various developments over
the years and used to be a benchmark model for time series
analysis and forecasting (Box et al., 2008). Once the stationary
assumption of the data is confirmed, various time series data are
explained with different non-seasonal (p,q) orders and seasonal
(P,Q) orders of ARIMA. When series {yt | t = 1, 2, . . . , T } follows
ARIMA (p,d,q)(P,D,Q) with a mean of µ, the time series takes the
form

φp(l)ΦP
(
ls
)
(1 − l)d

(
1 − ls

)D yt = θq (l)ΘQ
(
ls
)
εt

where yt represents the actual value of peak demand (in kilo-
watts) observed at time t (t = 1, 2, . . . , T ) and εt represents
the random errors assumed to be white noise during t, with a
mean of zero and a constant variance of σ 2. p, d, and q are
integers and orders of the model. φp(l) = 1 − φ1l − · · · − φplp,
where p denotes the degree of the non-seasonal autoregressive
polynomial. θq (l) = 1 − θ1l − · · · − θqlq, where q is the degree
of the non-seasonal moving average polynomial. Moreover, for
the seasonal operators, ΦP (ls) = 1 − Φ1ls − · · · − ΦP lPs, where
P denotes the degree of the seasonal autoregressive polynomial.
ΘQ (ls) = 1 −Θ1ls − · · · −ΘQ lQs, where Q denotes the degree of
the seasonal moving average polynomial. (1 − l)d and (1 − ls)D

are the non-seasonal and seasonal difference operators of order
d and D respectively. s is a seasonal cycle.

3.2. The Reg-ARIMA model

Many factors affect electricity load demand, including holi-
days, temperature, and socio-economic variables. Typically, re-
searchers regard climate-related variables as important factors
imposing high demand on electronic appliances such as heating
systems in winter and air-conditioning in summer. In this study,
temperature, weekend and holiday indices are included as an
explanatory variable in the Reg-ARIMA model.

The Reg-ARIMA model (Bell and Hillmer, 1983) is a regression
ARIMA model with error terms. When the series {yt |
t = 1, 2, . . . , T } follows the Reg-ARIMA model with k number of
predictors, the time series takes the form

φp(l)ΦP
(
ls
)
(1 − l)d

(
1 − ls

)D (yt −

k∑
i=1

βiχti

)
= θq (l)ΘQ

(
ls
)
εt

where βi is the coefficient of predictors χti, and the other com-
ponents are the same as those in ARIMA model.

3.3. The ARIMA-GARCH model

The ARIMA models can be specifically used when the assump-
tion of constant variance. To adjust the fluctuations of the time
series, Engle (Robert, 1982) proposed the autoregressive con-
ditional heteroskedasticity (ARCH) model, and Bollerslev (1986)
extended it as General ARCH (GARCH) model, whose main fea-
ture is that it can handle the data with heavier-tailed error
distributions. The ARIMA-GARCH model is defined as

φp (l)ΦP
(
ls
)
(1 − l)d

(
1 − ls

)D yt = c + θq (l)ΘQ
(
ls
)
εt

εt = ztσt , zt ∼ i.i.d. with E (zt) = 0, Var (zt) = 1

σ 2
t = a0 +

q∑
i=1

aiσ 2
t−i +

p∑
j=1

bjσ 2
t−j

where yt and polynomial components represent those as defined
in Model 3.1. p is the order of GARCH process, q is the order of
ARCH process. a0, ai and bj are constants, εt is the error term, σ 2

t
is the conditional variance of εt , zt is a standardized error term.

3.4. The Reg-ARIMA-GARCH model

The Reg-ARIMA-GARCH model is a regression ARIMA model
with error terms following a GARCH process. When the se-
ries {ψt |t = 1, 2, . . . , T } follows the stationary Reg-ARIMA model
with k number of predictors, and the model can be written as
follows

φp (l)ΦP
(
ls
)
ψt = c + θq (l)ΘQ

(
ls
)
εt

εt = ztσt , zt ∼ i.i.d. with E (zt) = 0, Var (zt) = 1

σ 2
t = γωt ,

where

γ =
(
α0, α1, . . . , αq, β1, . . . , βp

)
,

ωt = (1, ε2t−1, . . . , ε
2
t−q, σ

2
t−1, . . . , σ

2
t−p)

ψt = (1 − l)d
(
1 − ls

)D yt −

k∑
i=1

βi (1 − l)d
(
1 − ls

)D xti

where yt is the original series before differencing, γ is a matrix of
constants, ωt is a matrix of error terms and conditional variance,
βi is the coefficient of predictors χti, and the other components
are the same as those in Reg-ARIMA model and ARIMA-GARCH
model.
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3.5. Holt–Winters’ double seasonal exponential smoothing model

It is widely known that the exponential smoothing method
(Winters, 1960) is simple to use and can be easily applied to time
series data for the purposes of prediction. The advantage of this
method is that it can be easily applied to seasonal patterns. Since
the conventional Holt–Winters method was designed for a single
seasonal cycle, the model has been extended to address multiple
seasonal cycles. This model assumes that the process of white
noise is correlated.

The traditional Holt–Winters method incorporates a single
seasonal cycle as follows.

Lt = α (yt − St−s)+ (1 − α) (Lt−1 + Tt−1)

Tt = β (Lt − Lt−1)+ (1 − β)Tt−1

St = γ (yt − Lt)+ (1 − γ ) St−s

Ft+h = Lt + Tt × h + St+h−s

where yt represents the actual value of peak demand, St rep-
resents the seasonal component observed over time t (t =

1, 2, . . . , T ), and s is the seasonal cycle. The components Lt and
Tt are the level and trend components of the series at time t,
respectively. The coefficients α, β, γ are smoothing parameters.
Ft+h is the predicting value of h ahead from time t.

The Holt–Winters’ double seasonal method can be written as
below.

Lt = α
(
yt − St−s1 − Dt−s2

)
+ (1 − α) (Lt−1 + Tt−1)

Tt = β (Lt − Lt−1)+ (1 − β)Tt−1

St = γ
(
yt − Lt − Dt−s2

)
+ (1 − γ ) St−s1

Dt = δ
(
yt − Lt − St−s1

)
+ (1 − δ)Dt−s2

Ft+h = Lt + Tt × h + St+h−s1 + Dt+h−s2

where s1, s2 are double seasonal cycles, and St ,Dt are seasonal
components. The initial values are calculated as follows.

Ls1 =
1
s1

s1∑
t=1

yt , Ls2 =
1
s2

s2∑
t=1

yt

Ts1 =
1
s12

⎛⎝ 2s1∑
t=s1+1

yt −

s1∑
t=1

yt

⎞⎠ , Ts2 =
1
s22

⎛⎝ 2s2∑
t=s2+1

yt −

s2∑
t=1

yt

⎞⎠
S1 = y1 − Ls1 , . . . , Ss1 = ys1 − Ls1
D1 = y1 − Ls2 , . . . , Ss2 = ys2 − Ls2

3.6. Taylor’s double seasonal exponential smoothing model

Taylor (2010) introduced the extended version of Holt–Winters
double seasonal method to address multiple seasonality. This
model also assumes that the process of white noise is correlated.
The Ft+h formula is expressed as follows

Ft+h = Lt + Tt × h + St+h−s1 + Dt+h−s2

+ φh
[yt − Lt−1 − Tt−1 − St−s1 − Dt−s2 ]

where φ represents the adjusted first-order coefficient, and the
smoothing parameters are given by α, β, γ , δ, and φ. Moreover,
s1, s2 are double seasonal cycles.

3.7. The TBATS model

TBATS refers to Trigonometrical transformation, Box–Cox
transformation (Box and Cox, 1964), ARMA errors, and Trends
and Seasonal components. De Livera et al. (2011) proposed mod-
ified state space models for exponential smoothing to avoid

problems related to a wider seasonal pattern variety and to
handle correlated errors. With regard to the nonlinearity issue,
the model is restricted to linear homoscedasticity, but the Box–
Cox transformation (Box and Cox, 1964) is used for some types
of non-linearity. This class of model is named BATS (Box–Cox
transformation, ARMA errors, Trend and Seasonal components)
and is defined as follows.

y(ω)t =

⎧⎨⎩
yωt − 1
ω

, ω ̸= 0

log (yt) , ω = 0

⎫⎬⎭
y(ω)t = lt−1 + φbt−1 +

T∑
i=1

S(i)t−m1
+ dt

lt = lt−1 + φbt−1 + αdt
bt = (1 − φ) b + φbt−1 + βdt
S(i)t = S(i)t−mi

+ γidt

dt =

p∑
i=1

ϕidt−i +

q∑
i=1

θiεt−i + εt

where y(ω)t is the Box–Cox transformed observation for parameter
ω at time t. lt represents the local level data, b is the long-term
trend, and bt is the short-term trend within time period t. Rather
than converging on zero, the value of bt finally converges on b.
φ is a damping parameter for the trend. dt is a series of ARMA
models with orders (p,q) and εt is the white noise process with a
mean of zero and a constant variance of σ 2. mi is the ith seasonal
cycle. α, β , and γi are the smoothing parameters for i = 1, . . . , T .

To accommodate non-integer seasonality, the trigonometric
seasonal approach is incorporated into the model so that the
estimation time (which increases with the number of param-
eters) can be reduced. The final TBATS model with arguments
(ω, φ, p, q, {m1, k1} , {m2, k2} , . . . , {mT , kT }) is explained with
some additional equations as seen below.

S(i)t =

ki∑
j=1

S(i)j,t

S(i)j,t = S(i)j,t−1cosλ
(i)
j + S∗(i)

j,t−1sinλ
(i)
j + γ

(i)
1 dt

S∗(i)
j,t = −Sj,t−1sinλ

(i)
j + S∗(i)

j,t−1cosλ
(i)
j + γ

(i)
2 dt

where ki is the number of harmonics for S(i)t , which is a seasonal
component. γ (i)1 and γ (i)2 are the smoothing parameters and λ(i)j =

2π j
mi

. S(i)j,t is the stochastic level of the ith seasonal component by
S(i)j,t , and S∗(i)

j,t is stochastic growth of the ith seasonal component.

3.8. Artificial neural network model

ANN models are forecasting methods introduced by McCul-
loch and Pitts (1943), based on an algorithm of threshold logic.
They are most widely used in machine learning models. The
basic concept of these models is similar to manner in which
the human brain works. The brain consists of neurons that link
data processing and recollection processing, and these neurons
are connected by synaptic weights. ANN models are estimated
by calculating the weights as training inputs and outputs from
past records. Therefore, they are advantageous in that they can
explain nonlinear relationships between inputs and outputs. The
nonlinear autoregressive network with exogenous inputs (NARX)
is the ANN-based model with additional input variables. Fig. 1
shows the structure of ANN model.
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Fig. 1. Artificial neural network structure.

4. Data

The data considered in this paper were obtained from Chung-
ang University, Seoul, Korea. They were collected at every 1-h
interval during the period from January 1st to December 31th,
2017. The total number of data points collected over 1 year is
8760.

Institutional buildings may be considered as being similar to
commercial buildings, but the former can take on complex forms
consisting of classrooms, administrative offices, and dormitories.
Therefore, in order to understand the demand pattern of the
students, calendar effects such as weekends and public holidays
should be reflected in the model as factors. Moreover, tempera-
ture was considered as a factor because the circumstances related
to the weather are highly related to users’ behavior with regard
to the use of air-conditioning or heating appliances. Some studies
have suggested deriving considering heating and cooling degree
days (HDD and CDD, respectively) instead of temperature (Jung
and Kim, 2014). Since the data covers a year, HDD and CDD
indices can provide more accurate relationship between people’s
behaviors and the amount of energy consumption. Also, to ac-
complish the main object of this study to compare the various
models for the STLF, we decided to use real-time hourly weather
information from Korea Meteorological Administration as predic-
tor values in Reg-ARIMA models and NARX model. The HDD and
CDD formulas shown as below.

HDD =

{
18 − Tt , if Tt ≤ 18

0 , else

CDD =

{
Tt − 24 , if Tt ≥ 24

0 , else

Fig. 3. Average daily load demand plot.

Fig. 2 shows a general time series profile of the demand data.
The demand shows clear patterns of daily and weekly seasonality.
Fig. 3 plots the average daily demand by hour, and it can be
seen higher demand occurs on weekdays, and lower demand, on
weekends. Monday through Friday were grouped into weekdays,
and the others into weekends in a weekend dummy variable.
Also, we can see a higher fluctuation of the demand in summer
and winter seasons, while demands in spring and fall seasons
fluctuate lower. During national holiday seasons in January and
October, there is a continuous decline pattern going on for a
week.

Fig. 4 shows the temperature profile and data obtained from
Korea Meteorological Administration website. Daily seasonal ef-
fects can be observed, and temperature is the hottest in summer
and the coldest in winter. There are two reference lines for
converting temperature to HDD and CDD at 18 ◦C and 24 ◦C, re-
spectively. Fig. 5 shows a scatter plot, which indicates a quadratic
relationship between peak load demand and temperature. It pro-
vides a background for converting temperature into two new
indicators (HDD, CDD).

5. Application of the models

The peak load demand data considered in this study comprise
a total of 8760 observations over 1 year. They are fitted to the
models described in Section 3. Then, 7296 observations made
over a period of 10 months are used for the training, and the
rest for the validation set. In this study, an automatic model
selection approach for optimizing each model is considered to
help identify the optimal model in a real-life situation such as
the one presented here. The moving window is a calculation that

Fig. 2. Hourly load demand plot.
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Fig. 4. Hourly temperature plot.

Fig. 5. Load–temperature scatterplot.

uses the fixed period of the training set, and the parameters
of the models are estimated at each step using the minimum
Akaike Information Criterion (AIC). Since the model estimations
are updated at each k step, we obtain k number of different results
for a single model.

The best-fit models were chosen according to the minimum
AIC, and the identification of best ARIMA models and Reg-ARIMA
models is demonstrated in Tables 1–2. The Ljung–Box Q-statistics
from the ARIMA model (p = 0.3558) and Reg-ARIMA model
(p = 0.921) on standardized residuals carried out insignificant
indicating that there is no autocorrelation left. However, the
Ljung–Box Q-statistics from the ARIMA model (p<0.0001) and
Reg-ARIMA model (p<0.0001) on squared standardized residuals
showed significant indicating that there is heteroskedasticity. The
Engle’s LM tests were conducted, and it proved that there is
GARCH effects in the model. We expanded the ARIMA model and
Reg-ARIMA model by fitting volatility with GARCH model.

Tables 3–9 show the parameters estimated in the training set.
Table 4 represents all the coefficients of the dummy variables that
the peak demand decreases on weekends and holidays, on the
other hand, it increases when the temperature is above 24 ◦C or
below 18 ◦C. It proves that the use of air-conditioners and heating
appliances have impact on the demand rising. For the ANN model,
38 non-seasonal input neurons and 1 seasonal input neuron with
20 nodes in the hidden layer were generated and represented as

Table 1
Identification of best ARIMA models.
(p, d, q, P,D,Q )s=24 AIC

(1,0,1,1,1,1) 90780.6
(1,0,1,0,1,1) 90962.4
(3,0,2,2,1,0) 91280.7
(1,0,2,2,1,0) 91545.3
(3,0,1,0,1,0) 92804.5

Table 2
Identification of best Reg-ARIMA models.
(p, d, q, P,D,Q )s=24 AIC

(1,0,1,1,1,1) 90719.4
(1,0,1,0,1,1) 90902.6
(3,0,2,2,1,0) 91215.7
(2,0,2,2,1,0) 91222.7
(1.0.2.2.1.0) 91504.3

Table 3
Parameter estimations of the ARIMA (1, 0, 1) (1, 1, 1)s=24 model.
Parameter Estimate (S.E.)

φ1 0.9634 (0.0032)
θ1 0.3226 (0.0093)
Φ1 0.1798 (0.0133)
Θ1 −0.8993 (0.0056)

Fig. 6. Forecast performance evaluations in terms of RMSE.

(38-1-20) with daily seasonality (s = 24). For the ANN model
with external variables of weekends, HDD, CDD and holidays, one
more hidden layer was used, and it is represented as (38-1-22)
with daily seasonality.
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Fig. 7. Forecast performance evaluations in terms of MAPE.

Table 4
Parameter estimations of the Reg − ARIMA (1, 0, 1) (1, 0, 1)s=24 model.
Parameter Estimate

φ1 0.9611
θ1 0.3201
Φ1 0.1805
Θ1 −0.9022
βweekend −41.2886
βholiday −22.9817
βCDD 19.1334
βHDD 22.5082

Table 5
Parameter estimations of the ARIMA (2, 0, 3) (0, 1, 0)s=24 − GARCH(1, 1) model.
Parameter Estimate

c −25.3066
φ1 1.6808
φ2 −0.7149
θ1 −1.5059
θ2 0.5571
θ3 −0.0513
a0 1316.4546
a1 0.1285
b1 0.8200

6. Performance evaluations

In this section, the models presented in this work are com-
pared by using root-mean-square error (RMSE) and mean abso-
lute percentage error (MAPE). These methods are generally used
in short-term load forecasting to present error.

The RMSE is defined as

RMSE =

√1
n

n∑
t=1

(ŷt − yt )2

where yt is the actual value and ŷt is the forecasted demand at
time t, respectively. Also, the equation of mean absolute percent-
age error (MAPE) is given by

MAPE =
100
n

n∑
t=1

⏐⏐⏐⏐yt − ŷt
yt

⏐⏐⏐⏐
where the explanation of the components matches that of for-
mula of RMSE.

Fig. 8. Graphical plots of 1 step-ahead forecasting results.

Fig. 9. Graphical plots of 24 step-ahead forecasting results.
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Table 10 presents the results of accuracy tests in the fixed
period of training set from January 1st to October 31th, 2017.
It showed that the ANN model with external variables (NARX)
present the lowest RMSE and MAPE.

The RMSEs and MAPEs of k step-ahead forecasts in out of
sample period from November 1st to December 31th 2017 are
presented in Tables 11 and 12, respectively. Each step shows k
step-ahead performances in every hour for 24 steps. Table 11
shows that the NARX model present the lowest RMSE through
the whole steps. Table 12 provides a comparison of the models
with regard to the MAPE for k step-ahead forecasting. Here,
the NARX model shows the best performance, except for steps
7–10, whereas the ARIMA-GARCH model shows slightly higher
prediction accuracy.

Figs. 6 and 7 show graphical plots for Tables 11 and 12.
In general, the performances of the models in 1 step ahead
forecasting show similar patterns to the training set. GARCH-
based models stay stable until 9 step-ahead although the models
produced lower accurate results in 1 step-ahead, while the accu-
racies of the other models diminish rapidly. However, the RMSEs
and MAPEs of the GARCH-based models increase exponentially
through the steps. Meanwhile, the other models result in robust
after 9 step-ahead forecasting.

Let us take a close look at each model. The Reg-ARIMA model
provides slightly better accuracy than the ARIMA model, despite
the significant coefficients of the external variables. Plus, against
expectations, it is shown that it is not helpful using the inputs in
the ARIMA-GARCH models. By contrast, the NARX model provides
much higher accuracy than the ANN model, that is, the external
variables work well in ANN model better than the ARIMA model.
Similar to various other studies that proved weather and holiday
effects in forecasting, our work showed that applying accurate
external variables to the model is crucial for electricity demand
forecasting with the ANNmodel. However, it is demonstrated that
using exogenous variables would not universally help in forecast-
ing accuracy improvement even though the real-time values are
used as inputs. It is advisable to check if it is beneficial adding
extra input datasets because sometimes this task might lead to
be complex and time consuming but not as good as we expect
the results to be.

We also compare three smoothing methods. The results indi-
cate that using the TBATS model can provide the best fit, and the
Holt–Winters’ model show lower accuracy than TBATS or Taylor’s
model. It indicates that adjusting the autoregressive smooth-
ing parameter φ in Taylor’s models leads to a better perfor-
mance than Holt–Winters’ model. In 1 step-ahead forecasting,
the Taylor’s models are superior to the TBATS models. How-
ever, outperformance of the TBATS model may indicates that (1)
the assumption that the error terms that are distributed white
noise process not be met. (2) the Box–Cox transformation worked
well with the nonlinearity of the series. Using the TBATS model
is worth considering in case that extra input datasets are not
available.

Figs. 8 and 9 are comparison plots of actual values and pre-
dicted values on a randomly selected weekday, weekend and
Christmas from three representing outperformed models (ARIMA-
GARCH, TBATS, NARX models) in 1 step-ahead and 24 step-ahead,
respectively. Fig. 8 indicates that three models have good results
in on weekday, but high fluctuated predicted values estimated
from ARIMA-GARCH model on weekend and holiday. In Fig. 9,
also well fitted lines are shown on weekday from all models,
however, the ARIMA-GARCH model tends to underestimate or
overestimate the values on weekend and holiday. The graphs
show that the NARX model and TBATS model can provide a good
fit in general. To sum up the whole results above, we find that
the NARX model gives the lowest error and shows robustness in
view of both RMSE and MAPE.

Table 6
Parameter estimations of the Reg − ARIMA (4, 0, 2) (0, 1, 0)s=24 − GARCH(1, 1)
model.
Parameter Estimate

c −25.3069
φ1 1.2150
φ2 −1.0280
φ3 0.1195
φ4 0.1451
θ1 −0.9864
θ2 0.9887
βweekend −1.6578
βholiday 55.3015
βCDD 6.9378
βHDD 1.5125
a0 1174.1081
a1 0.1027
b1 0.8480

Table 7
Parameter estimations of the Holt–Winters double seasonal exponential
smoothing model.
Parameter Estimate

α (level) 0.8323
β (trend) 0.0001
γ (seasonal 1) 0.9900
δ (seasonal 2) 0.3494

Table 8
Parameter estimations of Taylor’s adjusted double seasonal exponential
smoothing model.
Parameter Estimate

α (level) 0.5987
β (trend) 0.0059
γ (seasonal 1) 0.2625
δ (seasonal 2) 0.3804
φ 0.4463

Table 9
Parameter estimations of the TBATS model.
Parameter Estimate

ω 0.3804
α 0.5987
β 0.0059
γ 0.2625
φ 0.4463
γ
(1)
1 0.0007
γ
(2)
1 <0.0001
γ
(1)
2 −0.0009
γ
(2)
2 0.0006
ϕ1 1.0850
ϕ2 0.3670
ϕ3 −0.5620
θ1 −0.2341
θ2 −0.5023
θ3 0.1252
θ4 −0.1114
θ5 −0.0031

7. Conclusion

Accurate energy demand forecasting is a very important issue
for decision makers and power generation companies in terms
of policy creation and power generation planning, respectively.
Thus, many attempts have been made to improve the perfor-
mance of peak load forecasting. This paper adds to the literature
in this area by investigating relevant time series and AI models
for 1-h interval peak load demand forecasting in an institutional
building in Seoul, Korea.
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Table 10
Forecast performance evaluations in training set.
Models RMSE MAPE

ARIMA 123.73 2.44
Reg-ARIMA 123.14 2.43
ARIMA-GARCH 146.76 2.72
Reg-ARIMA-GARCH 147.25 2.83
Holt–Winters’ 115.86 2.37
Taylor’s 105.16 2.11
TBATS 134.43 2.67
ANN 92.82 1.85
NARX 85.44 1.69

ARIMA models, GARCH-based models, multiple seasonal ex-
ponential smoothing methods, and ANN models were used and
validated to achieve this objective. The results showed that the
ANN model with external variables (NARX) demonstrates the

best prediction accuracy and provides robust and s table results
compared to other traditional time series models.

Many past works have shown that using HDD, CDD and holi-
day variables is crucial to predict peak load demand. In this study,
the NARX model provided the lowest MAPE from 1-h (k = 1)
to 1-d (k = 24) ahead forecasting. This proves that the weather
and holiday features play a considerable role in load demand
in the studied institutional building. However, the ARIMA model
with external variables did not show high accuracy for lead times
from 1-h to 1-d ahead forecasting. Nonetheless, the coefficients
of the external variables offer some insights into which factor
might have influenced load demand more. We believe that as
external variables were added to the ARIMA model, the com-
plexity of the model increased, leading to over-fitting problems.
Also, even though the ARIMA-GARCH model was the best fitted
model for the period of 7 to 10-h ahead forecasting, it tends to
estimate too much volatility in weekend and holidays. Contrary
to other results from the Reg-ARIMA models and NARX models,

Table 11
Forecast performance evaluations in terms of RMSE.
k ARIMA Reg-ARIMA ARIMA-GARCH Reg-ARIMA-GARCH Holt–Winters’ Taylor’s TBATS ANN NARX

1 138.69 138.11 331.56 331.68 167.37 128.29 143.51 123.49 114.93
2 226.12 224.15 331.79 332.20 263.69 220.20 201.39 185.98 162.61
3 312.75 308.98 331.84 332.60 349.69 300.19 255.91 252.52 205.55
4 387.50 381.93 332.58 333.33 420.35 366.90 300.28 315.03 241.67
5 454.93 447.60 333.25 334.56 479.18 417.78 334.60 374.03 275.44
6 515.28 506.28 334.75 335.95 523.59 460.22 365.82 431.79 304.84
7 564.40 553.53 336.22 337.92 557.77 499.69 384.49 479.55 321.96
8 607.99 595.49 338.71 340.73 583.11 525.48 397.37 518.71 330.10
9 645.69 631.64 341.77 344.54 601.33 540.88 402.80 552.25 335.82

10 677.01 661.26 346.63 350.02 616.26 553.01 403.76 585.46 342.53
11 701.95 684.63 353.01 357.70 628.42 557.69 405.83 612.40 347.66
12 720.33 701.84 362.32 367.94 638.56 559.58 409.10 630.15 352.84
13 733.24 713.56 374.37 381.38 646.86 562.48 412.99 644.31 359.50
14 741.68 720.58 390.63 398.73 656.91 565.99 413.38 655.62 368.11
15 746.70 724.32 411.03 420.61 658.71 571.15 415.00 661.48 375.44
16 749.43 726.06 436.58 447.35 659.40 570.30 418.27 662.33 381.98
17 750.94 726.83 466.20 479.05 659.21 575.02 417.39 658.47 383.81
18 752.20 727.68 500.17 514.89 655.25 571.99 417.63 652.16 383.09
19 753.35 728.65 536.62 553.90 652.36 570.52 417.57 645.65 383.69
20 754.59 729.73 575.20 594.83 647.20 570.84 417.02 640.05 385.21
21 755.98 730.86 613.21 635.52 635.67 566.70 418.47 639.05 382.86
22 757.03 731.73 649.77 673.78 622.94 573.79 422.04 642.62 379.70
23 758.55 732.91 681.79 707.82 612.09 579.96 423.12 650.39 376.97
24 760.42 734.30 706.55 733.57 612.81 592.87 423.53 660.69 377.74

Table 12
Forecast performance evaluations in terms of MAPE.
k ARIMA Reg-ARIMA ARIMA-GARCH Reg-ARIMA-GARCH Holt–Winters’ Taylor’s TBATS ANN NARX

1 2.28 2.27 4.13 4.27 2.75 2.16 2.42 2.00 1.87
2 3.66 3.63 4.14 4.29 4.26 3.59 3.55 2.98 2.66
3 4.98 4.91 4.21 4.36 5.61 4.81 4.50 3.90 3.32
4 6.11 5.99 4.34 4.47 6.78 5.85 5.26 4.81 3.84
5 7.20 7.04 4.46 4.57 7.76 6.69 5.87 5.61 4.28
6 8.21 8.02 4.61 4.73 8.51 7.41 6.39 6.32 4.61
7 9.03 8.75 4.74 4.88 9.16 8.13 6.68 6.89 4.83
8 9.76 9.41 4.90 5.05 9.67 8.70 6.78 7.35 4.97
9 10.31 9.94 5.05 5.26 10.14 9.05 6.79 7.74 5.12

10 10.76 10.35 5.20 5.46 10.59 9.42 6.75 8.17 5.26
11 11.11 10.63 5.39 5.70 10.89 9.68 6.80 8.55 5.36
12 11.42 10.93 5.59 5.93 11.08 9.79 6.79 8.83 5.41
13 11.64 11.13 5.81 6.22 11.07 9.88 6.82 9.05 5.51
14 11.80 11.30 6.07 6.55 11.09 9.91 6.83 9.26 5.63
15 11.90 11.38 6.35 6.91 11.03 9.90 6.88 9.40 5.67
16 11.91 11.39 6.68 7.30 10.96 9.80 6.95 9.47 5.75
17 11.93 11.40 7.02 7.71 10.95 9.69 6.96 9.52 5.80
18 11.95 11.40 7.42 8.15 10.91 9.45 6.99 9.57 5.81
19 11.95 11.41 7.82 8.59 10.72 9.19 7.00 9.65 5.88
20 11.94 11.40 8.19 9.02 10.49 8.92 6.99 9.69 5.94
21 11.93 11.43 8.54 9.45 10.05 8.65 7.03 9.80 6.02
22 11.94 11.44 8.87 9.83 9.68 8.42 7.06 9.93 6.06
23 11.97 11.48 9.18 10.22 9.47 8.34 7.13 10.14 6.11
24 12.01 11.51 9.44 10.56 9.58 8.42 7.18 10.36 6.16
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it is demonstrated that the exogenous variables did not improve
forecasting accuracy in the ARIMA-GARCH models. Therefore, it is
a point to be considered that whether the external variables are
helpful factors and if so, balancing the trade-off between accuracy
and model simplicity.

In this study, we mainly focus on comparing performances of
the ARIMA-based models, exponential smoothing methods, and
AI-based models. However, different adaptations of the models,
such as SVM models, fuzzy models, gray prediction models, and
Kalman Filters will be discussed in the future study, because those
models and issues can be interesting papers to be analyzed.

Future studies should focus on fitting the same models using
data from different institutional buildings, the goal being to build
an optimal, customized model for each single unit/building ac-
cording to building size, construction years and types of external
wall. Moreover, the same trial will be conducted with daily peak
load demand with other relevant variables such as the amount
of internet traffic and the number of students from the entry log
from electronic records systems.

Demand-side management has replaced the top-down policy
in the world energy market. The next generation of energy poli-
cies thus needs to track and plan for load demand of relatively
small areas as well. The data we presented in this study had
strong seasonal patterns because of the characteristics of the
institution’s routine. In order to increase the scientific valid-
ity of our results, the same procedure will be applied to other
(i.e., non-institutional) organizations’ peak load data in future
studies.
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