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a b s t r a c t

The predictability of wind information in a given location is essential for the evaluation of a wind
power project. Predicting wind speed accurately improves the planning of wind power generation,
reducing costs and improving the use of resources. This paper seeks to predict the mean hourly
wind speed in anemometric towers (at a height of 50 m) at two locations: a coastal region and one
with complex terrain characteristics. To this end, the Holt–Winters (HW), Artificial Neural Networks
(ANN) and Hybrid time-series models were used. Observational data evaluated by the Modern-Era
Retrospective analysis for Research and Applications-Version 2 (MERRA-2) reanalysis at the same
height of the towers. The results show that the hybrid model had a better performance in relation
to the others, including when compared to the evaluation with MERRA-2. As such, the hybrid models
are a good method to forecast wind speed data for wind generation.

© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In recent years researches from several nations have warmed
of the possible consequences of global warming across the planet,
encouraging the use of font’s renewable energy resources, for
examples wind energy, is one of the strategies used to mitigate
greenhouse gases from human activities in the atmosphere (Fon-
toura et al., 2015; Crate and Nuttall, 2016). The wind energy
capacity installed at the end of 2016 in Brazil was approximately
of 11 GW, with estimate for 2020 will have around 18 GW
of installed wind energy capacity, which will contribute to the
country’s energy security (Camelo et al., 2018b).

Most research in the field of wind is being applied to wind
power (conversion of kinetic energy into electrical energy) for
the planning and development of wind farms (set of wind tur-
bines) (Emeis, 2013). Wind power is a renewable and clean source
of energy, available with variable behavior in each part of the
world because of the different climatic and geographical charac-
teristics of each region (Emeis, 2013). Wind is caused by solar
energy hitting the earth’s surface and atmosphere, which to-
gether with the planetary rotation results in an uneven heating
of the atmosphere and, consequently, differentials in atmospheric
pressures (Pinto, 2013).

The predictability of wind information at a particular location
is essential for the assessment of a wind energy exploitation
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project. In this context, accurately predicting the wind speed
means improving the planning of wind power generating facil-
ities, thus reducing mistakes and economic costs (Emeis, 2013).

The development of Artificial Intelligence (AI) with various
methods for forecast wind speed was also created. The meth-
ods were: Artificial Neural Network (ANN); adaptive neuro-fuzzy
inference system (ANFIS); fuzz logic methods; support vector
machine (SVM), υ–support vector machine (υ −SVM) and neuro-
fuzzy network. Accurate forecasts of short-term wind speed and
generation of energy are essential for the effective operation
of a wind farm. The short-term forecast of wind speed is also
critical to the operation of wind turbines so that dynamic con-
trols can be accomplished to increase the energy conversion
efficiency (Pinto, 2013). Chang et al. (2017) proposed a method
using improved radial basis function neural network-based model
with an error feedback scheme (IRBFNN-EF) for forecasting short-
term wind speed and power of a wind farm. Results showed
that the proposed model IRBFNN-EF leads to better accuracy for
forecasting wind speed and wind power, compared with those
obtained by four other artificial neural network-based forecasting
methods. Camelo et al. (2018a) compared the performances of au-
toregressive integrated moving average (ARIMA), Auto-Regressive
Integrated Moving Average with Exogenous (ARIMAX), ANN and
hybrids (ARIMA+ANN and ARIMAX+ANN) models in wind speed
predictions in the Brazilian Northeast region (Fortaleza, Natal
and Paraiba). The hybrid model proposed in this study was ef-
ficient in reducing statistical errors, especially when compared
to traditional models (ARIMA, ARIMAX and ANN), with lowest
percentage error between the observed and the adjusted series,
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of only about 8%. The literature appears to agree that wind
speed short-term forecasts to a few hours of prediction horizon
for which data-driven statistical models are known to be more
effective than the physics-based numerical weather prediction
models (Ezzat et al., 2018; Pourhabib et al., 2016).

Some recent studies have been developed about the short-
term predictability of wind speeds with the use of dynamic,
mathematical and statistical tools using Numerical Weather Pre-
diction (NWP) (Cheng et al., 2017; Martinez-Arellano and Nolle,
2013), stochastic (Monteiro and Souza, 2013) and hybrid (Camelo
et al., 2018b,a; Krishnaveny et al., 2017) models. Ramos et al.
(2013) investigated the prediction of hourly wind speeds at 30
m above ground with the atmospheric model WRF (Weather
Research Forecasting) for the State of Alagoas-Brazil. The difficul-
ties encountered in this study included: (i) forecasting extreme
values; (ii) minimums and maximums and (iii) forecasts in rainy
periods. In the study, the same difficulties were also found for
the forecast of wind speed for wind power generation through
the outputs of mesoscale weather models in the Northeast Region
of Brazil (NEB). Other feasible wind speed studies can be found
in Ferreira et al. (2017), which proposed methods to fill gaps
in wind speed data – located in Rio Grande do Norte (Brazilian
Northeast region) – reducing the propagation of residuals in
the results. Monteiro and Souza (2013) studied and developed
forecasting models, of short-term wind speed. The methods of
exponential smoothing, in particular the method Holt–Winters
(stochastic model) and its variations, are suitable in this con-
text because of its high adaptability and robustness for apply
the methodology in the wind speed data anemometric tower in
city of São João do Cariri (State of Paraíba-Brazil), which will
be compared with models: persistence and neuro-fuzz (ANFIS).
Results showed that the proposed Holt–Winters additive model
were satisfactory, compared with those obtained by two tested
models (persistence and neuro-fuzzy) in the same wind speed
time-series for short-term forecasting. Hu et al. (2015) proposed
a hybrid model that consists of the EWT (Empirical Wavelet
Transform), CSA (Coupled Simulated Annealing) and LSSVM (Least
Square Support Vector Machine) for enhancing the accuracy of
short-term wind speed forecasting. Results suggest that the de-
veloped forecasting method better compared with those other
models, which indicates that the hybrid model exhibits stronger
forecasting ability.

The spatial and temporal variability of the wind is difficult
to simulate with precision. This is a result of the heterogeneity
of regions regarding such factors as: surface roughness, vegeta-
tion variability and soil use and occupation (Brower, 2012). In
addition, several meteorological and climatic phenomena may
influence the atmospheric dynamics of the NEB region (Santos
et al., 2016). Systematic errors occur with a certain frequency in
the simulations of dynamic models, which means models with
greater accuracy need to be developed for the short-term wind
speed forecasting of a particular site (Operador Nacional do Sis-
tema Elétrico (ONS), 2017). Zhao et al. (2012) presented a system
consists of a numerical weather prediction model and ANN of
a novel day-ahead wind power forecasting in China, in addition
Kalman filter integrated to reduce the systematic errors in wind
speed from WRF and enhance the forecasting accuracy. Results
showed the Normalized Root Mean Square Error (NRMSE) has
a month average value of 16.47%, which is an acceptable error
margin. To reduce these systematic errors in the outputs of an
NWP, lots of approaches have been derived from model output
statistics (MOS) based on statistical methods (Zhao et al., 2012).
This type of statistical relationship could be modeled by various
methods for wind speed variable, including the ANNs (Chang
et al., 2017; Crate and Nuttall, 2016; Souza, 2014), Kalman fil-
ter (Zhao et al., 2012), ARIMA (Camelo et al., 2018a) and hybrid

method (Krishnaveny et al., 2017; Hu et al., 2015; Jiang et al.,
2017; Tatinati and Veluvolu, 2013).

Wind energy is considered to be technically feasible when its
power density is greater than or equal to 500 W/m2, for a height
equal to or exceeding 50 m above the ground, which requires a
minimum wind speed between 7–8 m/s. Only 13% of the earth’s
surface has average wind speeds greater than or equal to 7 m/s
at the height of 50 m above ground (Agência Nacional de Energia
Elétrica (Org), 2005; Wu and Hong, 2007).

In this context, this study seeks to present different method-
ologies that may assist in this regard, while at the same time
proposing a model that has less error in relation to the dynamic
models (more systematic errors) in the short term wind speed
forecasts at a height of 50 m above ground in two localities
with different geographic and climatic characteristics in the NEB
region. One of these locations can be found in the heartland of the
continent with a complex terrain (Anemometric Tower 1 - TA01)
and the other is located in the coastal region with a flat terrain
(Anemometric Tower 2 - TA02). The objective of this study is to
present mathematical and statistical models as suitable tools for
the forecasting of wind speed variability during the diurnal cycle
(24 h), which could be used as an early warning system for wind
power generation in the same time scale.

The content of this paper is organized as follows: Section 1
reviews the current status of wind speed variable for short-term
forecasting with applicability in wind power; Section 2 describes
the regions of study, dataset and theory of the Holt–Winters
method (stochastic process), ANN, hybrid model and its working
principles; Section 3 analyzes the errors of the short-term pre-
dicted results; Section 4 description of discussion to explore the
significance of the study; Section 5 the conclusions of the study.

2. Proposed forecasting approach methodology

In this section we comment on the data of the regions of study,
as well as on the forecasting models. The measurement data is
used to identify the accuracy of the forecast calculated by the
mathematical models, by comparing the output of each model to
the time series observed. All the calculations produced in this pa-
per as well as the graphical part were executed with the software
R (The R Project for statistical computing, available online: https:
//www.r-project.org/ and accessed on 10 August 2017). R is an
open source programming language and software environment,
commonly used in statistical computing and graphics. R is free
and open source, unlike its rivals such as SAS or Matlab. This is
extremely beneficial for statistical programming languages and
environments.

2.1. Region of study and dataset

The measured wind data were obtained from the TA-01 and
TA-02 towers, the first located in Belo Jardim — state of Pernam-
buco, and the second in Camocim — state of Ceará, all located in
the Northeast of Brazil, as shown Fig. 1. The Belo Jardim data were
obtained through the Sistema de Organização Nacional de dados
Ambientais (System for the National Organization of Environmen-
tal Data, SONDA, Available online: http://sonda.ccst.inpe.br/ and
accessed on 22 January 2018) and the Camocim data through
the Infrastructure department of the state of Ceará (SEINFRA/CE,
Available: www.seinfra.ce.gov.br/ and accessed on 16 February
2016).

The anemometric sensors were installed at heights of 25 and
50 m from the ground, taking measurements every 10 min, within
the period from October 01 to December 31, 2004, selected for
this study in both locations. The wind speed and direction sensor
of the TA-01 tower is the Wind Monitor-MA model 05106 (R. M.
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Young Company) - it takes measurements of horizontal speeds
between 0 to 60 m/s and resists gusts of up to 100 m/s. For
the TA-02 tower, the data was recorded with a computerized
anemometer; model NRG 9200Plus, manufactured by NRG Sys-
tems Inc. The temporal series were integrated in an interval of 1 h
at a height of 50 m above ground level — agl (TA-01 and TA-02)
to validate the models evaluated in this study, without miss-
ing values or inconsistencies in database. The anemometric data
obtained by the SONDA-INPE and SEINFRA-CE networks were
submitted to a quality control, which criteria follow international
standards of The Meteorological Resource Center (WebMET) and
National Renewable Energy Laboratory (NREL). Table 1 presents
the criteria used to qualify wind speed data in this study.

Table 2 presents the local characteristics and the geographical
coordinates of the used wind towers.

2.2. Methods

The forecasts for 24 h were made with the Holt–Winters,
Artificial Neural Networks (ANN) and hybrid models, applying
them to the temporal series of the TA-01 and TA-02 towers with
the use of the R software. The forecasting methodology consisted
in making a division in the series in three steps: (i) the first step
used 30 days of data observed in the period from October 01
to 30, 2004, to predict the daily wind speed cycle for the day
of October 31, 2004; (ii) The second step used 60 days of data
observed in the period from October 01 to November 29, 2004, to
predict the day of November 30, 2004; and (iii) the third and last
step used 90 days of data observed in the period from October
01 to December 29, 2004, to forecast the day of December 30,
2004. According to the period of days applied for the time series
training of each short-term wind speed forecasts model, previous
studies confirmed that using a long-term time series of wind
speed measurements is not necessarily useful, as apparent by the
low time lag order used in the time series models (Pourhabib
et al., 2016).

There are numerous techniques to forecast wind speeds, such
as the NWP methods, statistical methods, ANN and hybrid ap-
proaches. The NWP methods may be the most accurate technique
for forecasting in the short term. In general, however, statistical
methods, ANNs or hybrid approaches have smaller errors in short
term forecasts (Tatinati and Veluvolu, 2013).

2.2.1. Holt-Winters model
In the year of 1957, Holt expanded the simple exponential

smoothing model to deal with the data that showed a linear
tendency, thus making predictions that were more accurate than
those performed (Holt, 1957). In year 1960, Winters extended
the Holt model, which included a new equation that predicts
the behavior of the data’s seasonal component, transforming at
Holt–Winters model (Camelo et al., 2018b; Winters, 1960).

Holt–Winters is one of the most used methods for the predic-
tion of meteorological variables due to its simplicity, low oper-
ating costs, good accuracy and ability to make automatic adjust-
ments and quick changes to the temporal series. This model has
the following smoothing coefficients: level, linear trend, seasonal
factor and an unpredictable residual element called random error.
The exponential adjustment method, also called ‘‘exponential
smoothing’’, is used for the estimation of these factors. The name
‘‘smoothing’’ comes from the fact that after its reduction to struc-
tural components, a series will have a smaller number of abrupt
variations, revealing a smoother behavior. The term ‘‘exponential’’
is used because the smoothing processes involve the weighted
arithmetic mean, where the weights decrease exponentially as
you progress into the past (Monteiro and Souza, 2013).

The prediction equations are allocated in two ways: additively
or multiplicatively, according to the nature of the series. To cal-
culate the forecasts of future values of a series, the level and the
trend of the series in the current period have to be estimated, just
as the seasonal factor values corresponding to the last period of
seasonality. These estimates are performed through the following
equations:

Additive Seasonality – The equation referring to the expo-
nential smoothing method with seasonality and linear tendency,
with seasonal component being treated in an additive way, is
represented as follows:

yt+h = (at + h.bt ) + s(t−p+1+1(h−1)mod p) (1)

where: at is level of the series, whose unit in this particular work
is of m/s, shows how the expected time series evolves over time;
bt is tendency, unit here is m/s, this relates to the fact that the
predicted time series can have increasing or decreasing motions
in different time intervals; st is seasonal component, represented
here by m/s, which is related to the fact that the expected time
series has cyclical patterns of variation that repeat at relatively
constant time intervals, h is forecast for period and p is seasonal
period with h = 1,2,3,. . . ,n (horizontal forecast).
where at , bt and st are given by:

at = α
(
yt − st−p

)
+ (1 − α)(at−1 + bt−1) (2)

bt = β (at − at−1) + (1 − β)bt−1 (3)

st = γ (yt − at) + (1 − γ )st−p (4)

Multiplicative Seasonality: – Is similar to the Holt–Winters
additive. Holt–Winters Multiplicative method also calculates ex-
ponentially smoothed values for level, trend, and seasonal adjust-
ment to the forecast. This method is best for data with trend and
with seasonality that increases over time. It results in a curved
forecast that reproduces the seasonal changes in the data. The
multiplicative Holt–Winters prediction function is:

yt+h = (at + h.bt )s(t−p+1+1(h−1)mod p) (5)

where at , bt and st are given by:

at = α

(
yt
st−p

)
+ (1 − α)(at−1 + bt−1) (6)

bt = β (at − at−1) + (1 − β)bt−1 (7)

st = γ

(
yt
at

)
+ (1 − γ )st−p (8)

where α, β and γ are damping constants. At the end of each
period t , the estimate of the ‘‘step’’ (trend) and the seasonal com-
ponent are given by bt and st , respectively. The level component,
on the other hand, is denoted by at .

The additive Holt–Winters model was used in the Camocim/CE
data for the temporal series of 30, 60 and 90 days and the Belo
Jardim/PE data for the series of 30 and 60 days. For the Belo
Jardim dataset with 90 days, therefore, the multiplicative Holt–
Winters model was used, since the additive prediction produced
negative values.
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Fig. 1. Location of each anemometric tower (TA) used in the presented study in Northeast Brazil.

Table 1
Criteria applied to wind speed for anemometric towers data.
Number Criteria/Values (m.s−1) Description

1 Minimum (V) > 0 Inferior limit
2 Maximum (V) < 25 Upper limit
3 Maximum [V (∆3)] − Minimum [V (∆3)] > 0.1 Variability in 3 h
4 Maximum [V (∆24)] − Minimum [V (∆24)] > 0.5 Variability in 24 h
5 V (∆1) < 5.0 Variability in 1 h
6 0 < σ < 3 Standard deviation between 0 and 3 m.s−1

7 offset < Average (V) < 25 Average offset and 25 m.s−1

Table 2
Local characteristics and geographical location of the wind towers.
City/State Altitude (m) Terrain Vegetation Geographic coordinates

Belo Jardim/PE 718 Plateau Caatinga 8◦22’S/36◦25’W
Camocim/CE 8 Lowland Caatinga 2◦51’56,7◦S/40◦53’09,2◦W

2.2.2. Artificial neural network model
Artificial Neural Networks (ANNs) are computational models

based on the neural structure of intelligent organisms (Camelo
et al., 2018a). Their behavior emerges from the interactions be-
tween processing units, which compute certain mathematical
(usually non-linear) functions. These processing neurons can be
distributed in one or more layers and are linked by a large
number of connections, which store the knowledge in the model
and weigh each input received over the network.

An ANN can be thought of as a network of ‘‘neurons’’ organized
in layers. The predictors (or inputs) form the bottom layer, and
the forecasts (or outputs) form the top layer. There may be inter-
mediate layers that contain ‘‘hidden neurons’’. The predictors (or

inputs yt+i) form the lower layer, and the predictions (or outputs
yt+h) form the upper layer. There may be intermediate layers
containing hidden neurons (Camelo et al., 2018a). Fig. 2 shows an
example of an ANN structure with 4 inputs and 1 hidden layer.
The coefficients related to the predictors are called ‘‘weights’’ and
commonly represented by wi. The weights are selected through a
"learning algorithm’’. This study used the backpropagation algo-
rithm, which is based on the backpropagation of errors to adjust
the weights of the intermediate layers, which minimizes the error
between the predicted and observed temporal series (Brower,
2012).

In terms of use of the ANN by software R, the forecast package
also allows for this possibility through the use of the function
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Fig. 2. Example of an ANN structure with 4 inputs layers, 1 hidden layer and 1 output layer.

nnetar() (Holt, 1957). This study used R’s forecast package based
on the nnetar() function, which in turn is symbolized by notation
NNAR(p, P, k)m, where p represents lagged inputs (the quantity
of inputs), for example, yt−1, yt−2, yt−3, . . . , yt−p, yt−m, yt−2 m,
yt−Pm, refers to seasonal data, k represents the number of neurons
in the hidden layer and P refers to seasonal data. This function
NNAR(p, P, k)m model based on observed wind speed data, if
the values of p and P are not specified, they are automatically
selected (Camelo et al., 2018b).

The number of network to fit with different random starting
weights was equivalent to 20 and is based on the backpropaga-
tion learning algorithm for dynamic processing. These are then
averaged when producing forecasts. For example, NNAR(9,1,4)24
model has inputs yt−1, yt−2, yt−3, . . . , and yt−24, and four neurons
in the hidden layer.

2.2.3. Hybrid model
The hybrid model used the hybridModel(yt ,models) function

of R’s forecastHybrid package, with multiple adjustments of the
individual models to generate ensemble forecasts. Where yt is a
numeric vector or time series (this work was wind speed time se-
ries) and models (k it is a combination of model types) by default,
the models forecasts generated are from the auto.arima(), ets(),
thetam(), nnetar(), stlm(), and tbats() functions, can be combined
with equal weights, weights based on in-sample errors (Winters,
1960). Cross validation for time series data and user-supplied
models and forecasting functions is also supported to evaluate
model accuracy.

The default setting of this package, which works well in most
cases, allows for the combination of two to five models through
the following arguments:

• n.args: adjusts a univariate neural network model using
the nnetar() function by forecast package (Khandakar and
Hyndman, 2008);

• a.args: fit best ARIMA model to univariate time series using
the auto.arima() function by forecast package. The function
conducts a search over possible model within the order
constraints provided (Khandakar and Hyndman, 2008).

• s.args: is based on the stlm model, which combines the
forecast with the adjusted seasonal decomposition in the
series. The stlm() function takes a time series y, applies an
STL decomposition, and models the seasonally adjusted data

using the model passed or specified using method. It re-
turns an object that includes the original STL decomposition
and a time series model fitted to the seasonally adjusted
data (Khandakar and Hyndman, 2008).;

• t.args: the tbats() function couples the exponential smooth-
ing model with the Box–Cox transformation, ARMA (Au-
toregressive Moving Average) and the seasonal and trend
components (Shaub and Ellis, 2018).

• e.args: Exponential smoothing state space model. Based on
the classification of methods as described in Hyndman et al.
(2008). The only required argument for ets() is the time se-
ries (Khandakar and Hyndman, 2008). The model is chosen
automatically if not specified.

In this work, three ‘‘nst ’’ models were adjusted for wind speed
forecasting short-term, which were coupled with the arguments:
n.args, s.args and t.args. After adjustment of the models by hybrid-
Model() function used the forecast() function with h (horizontal
forecast) equal to 24 (24 h) for short-term forecast of wind speed
at each time series proposed in this study.

2.2.4. Modern-era retrospective analysis for research and
applications-version 2 reanalysis dataset

The MERRA-2 reanalysis is generated by combining the data
assimilation techniques of the models that use dynamic numer-
ical prediction models with the data observed by the global me-
teorological observation network. The MERRA-2 reanalysis was
introduced in the study to evaluate its results in relation to the
data observed by the wind towers and predicted by the statistical
and mathematical models proposed in this study. The MERRA-2
reanalysis is a freely-available product through the MDISC (Mod-
eling and Assimilation Data and Information Services Center)
portal and it is an update to the MERRA project (Global Modeling
and Assimilation Office (GMAO), 2016).

The wind speed data at 50 m agl of MERRA-2 were obtained
for the period from October 01 to December 31, 2004 to compare
with predicted data from the mathematical and statistical models
and observed data (TA-01 and TA-02).

2.3. Evaluation of the models

The evaluation of the performance of the forecasting tech-
niques was done through the Pearson correlation coefficient (r),
the Mean Absolute Error (MAE) and the Root Mean Square Error
(RMSE) (Wilks, 2011).
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Table 3
Statistical description of wind speed for the 3 months sampling period of the available data of Belo Jardim(TA-01).
Possible
data points

Valid
data points

Recovery
rate (%)

Mean
(m/s)

Median
(m/s)

Minimum
(m/s)

Maximum
(m/s)

Standard
deviation

13.249 13.249 100 5.780 5.730 0.250 11.650 1.725

Table 4
Statistical description of wind speed for the 3 months sampling period of the available data of Camocim (TA-02).
Possible
data points

Valid
data points

Recovery
rate (%)

Mean
(m/s)

Median
(m/s)

Minimum
(m/s)

Maximum
(m/s)

Standard
deviation

13.249 13.249 100 7.771 7.747 1.789 14.579 2.773

2.3.1. Pearson correlation coefficient
The Pearson Correlation Coefficient is calculated mathemati-

cally thus:

r =

∑n
i=1 (yi − y) (xi − x)(√∑n

i=1 yi − y
)(√∑n

i=1 xi − x
) (9)

where

• r represents the linear correlation coefficient for a sample;
• n is number of paired values considered;
• yi is prediction value (wind speed - m/s);
• y is mean of prediction value;
• xi is observed value (wind speed – m/s);
• x is mean of observed value.

The magnitude of the Pearson correlation coefficient ranges
between the values of −1 and 1. This magnitude measures the
‘‘intensity’’ of the relationship between two variables. As such,
a coefficient equal to 0.6 has a greater degree of linear depen-
dence than one equal to 0.3. A coefficient with the value of zero
indicates the total absence of a linear relationship between the
variables and coefficients with the values 1 and -1 suggest a
perfect linear dependence. It is therefore used to measure the
correlation between the observed and modeled data in order to
obtain the degree of linear relationship between both.

2.3.2. Mean absolute error
To evaluate the degree of dispersion between modeled (yi)

and observed (xi) values, they are used as indexes that provide
the performance of the model in relation to the observation.
The closer the value is to zero, the greater the accuracy of the
model and, consequently, the lower its error. The mean absolute
error is a measure of the forecasting skill between the observed
and predicted series. It is given as a module and is represented
mathematically by:

MAE =
1
n

n∑
i=1

|yi − xi| (10)

2.3.3. Root mean square error
The RMSE was another error index used. It represents the

difference between the prediction (yi) and the observed value (xi),
presenting error values in the same dimensions as the analyzed
variable (which in this case is m/s). It can be mathematically
defined by:

RMSE =

√∑n
i=1 (yi − xi)2

n
(11)

3. Case study and results

3.1. Available observational data

These placed of study have anemometric towers in Camocim-
Ceará and Belo Jardim-Pernambuco, located in Brazil. Fig. 1 shows

Table 5
Residues of the models and the reanalysis with the observations (TA-01) for 30
days of forecasting, in m/s.

Holt–Winters ANN Hybrid MERRA-2

RMSE 1.14 1.73 0.74 2.07
MAE 0.90 1.35 0.62 1.53
r 0.73 0.46 0.81 0.07

the topography of Camocim (coastal region) and Belo Jardim
(complex topography) and the location of the study site. The
dataset used in paper was collected form an anemometer tower,
which measuring height is 50 m agl. The available data are from
00:00, 2004-10-01 to 23:50, 2004-12-31, with a time interval of
10 min (Figs. 3 and 5). Tables 3 and 4 presented the basic statis-
tical description of the available data. Figs. 4 and 6 displays the
frequencies distributions of the available data and the probability
distribution function by the two-parameter Weibull distribution
k and c , where are of shape and scale parameters, respectively.
Applying the maximum likelihood method (ML), the shape and
scale parameters are 3.702/6.406 m/s and 3.096/11.337 m/s for
TA-01 (Belo Jardim) and TA-02 (Camocim), respectively.

3.2. Quantitative and qualitative analysis of the 24-hour forecast

3.2.1. Based on 30 days of data
Figs. 7 and 8 present the forecast for the day 31/10/2004

using 30 days of observations (01/10/2004 to 30/10/2004) for
the locations of the TA-01 and TA-02 towers, respectively. The
Holt–Winters, Artificial Neural Network and Hybrid models and
the MERRA-2 reanalysis are shown in Figs. 3 and 4 along with the
observations.

For the TA-01 tower (Fig. 7), it is possible to identify that the
models follow the diurnal behavior of the observations, but they
do not adequately capture the extreme values for minimum vari-
ation at certain times, showing a smoother pattern. The MERRA-2
reanalysis overestimates the observations between the 2 h to 19
h range and at other times it fits with the observations. The ANN
model underestimates the first hours and overestimates results
from 5 h to 19 h. The Holt–Winters model approximates the
observed data after 7 h. The hybrid model was the one with the
best fit with the observations in the whole series, satisfactorily
capturing the wind speed variability during the diurnal cycle.

Table 5 shows the forecast skills between the models and
reanalysis with observations for TA-01. The best results, according
to the errors indexes, are presented by the hybrid model.

For the TA-02 tower (Fig. 8), one can see that the models can
represent the behavior of the observations, unlike the MERRA-2
reanalysis. The models still have difficulty capturing the extreme
values (minimum and maximum), except for the ANN and hybrid
models, but, in general, the diurnal variability is well represented.
The Holt–Winters model underestimates most observations, ap-
proaching them in the first hours and also near 6:00 and 18:00
h. The ANN model is able to identify extreme variability in the
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Fig. 3. Time series of wind speed (interval of 10 min) measurements by the anemometer at a height of 50 m agl of TA-01 (Belo Jardim) for the period from
01/10/2004 to 31/12/2004.

Fig. 4. Histogram derived from the estimate Weibull probability density function (PDF) by maximum likelihood method compared with the histogram of the wind
speed data (bar diagram) for the period of 3 months at wind site Belo Jardim (TA-01). Applying the ML method, the shape and scale parameters are k = 3.702 and
c = 6.406 m/s.

range of 6:00 and 9:00am. In the remaining time, the ANN model
can track the variability of the wind for the period of one day.
The hybrid model fits the observations properly, capturing the
extreme value signals in the predicted range of 6 h to 9 h.

Table 6 shows the forecast skills between the models and
the MERRA-2 reanalysis data with the observations. The Pearson
correlation coefficient reveals that the values had excellent corre-
lations (0.96). The MERRA-2 data had a low correlation coefficient
(−0.10). The residuals were reasonable, with the result of the
hybrid model having the lowest errors. The MERRA-2 reanalysis,
with low correlation, obtained larger errors (RMSE: 3.9 /s and
MAE: 3.25 m/s).

3.2.2. Based on 60 days of data
Figs. 9 and 10 present the forecast for the day 31/11/2004

using 60 days of the temporal series (01/10/2004 to 29/11/2004)
for the measurements of the TA-01 and TA-02 towers, respec-
tively.

Table 6
Residuals of the models and the reanalysis with the observations (TA-02) for 30
days of forecasting, in m/s.

Holt–Winters ANN Hybrid MERRA-2

RMSE 1.06 1.07 1.00 3.90
MAE 0.88 0.90 0.84 3.25
r 0.96 0.96 0.96 −0.10

For the TA-02 tower, the ANN model can be seen to follow the
variability of the observed wind speed data for up to 8 predicted
hours. The model is unable to capture the small wind speed
variations that occur during the day, smoothing its results. The
stochastic Holt–Winters model overestimates after 11 predicted
hours, but it follows the trends of the observations until 18
predicted hours, capturing the variability of wind. The hybrid
model, therefore, showed a smoothed pattern of the predicted
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Fig. 5. Time series of wind speed (interval of 10 min) measurements by the anemometer at a height of 50 m agl of TA-02 (Camocim) for the period from 01/10/2004
to 31/12/2004.

Fig. 6. Histogram derived from the estimate Weibull probability density function (PDF) by maximum likelihood method compared with the histogram of the wind
speed data (bar diagram) for the period of 3 months at wind site Camocim (TA-02). Applying the ML method, the shape and scale parameters are k = 3.096 and
c = 11.337 m/s.

wind speed with respect to the observations, and even so it
underestimated results most of the time. MERRA-2 overestimates
results in relation to the observed data in the temporal series,
representing the behavior only in the first hours (until 6am) and
last hours (after 21pm) predicted for the day 30/11/2004.

Table 7 shows the forecast skills of the models and the reanal-
ysis with the observations. The lowest values can be found in the
hybrid model, whose RMSE and MAE were 0.91 and 0.80 m/s. The
largest results were found in the Holt–Winters model (RMSE: 2.09
and MAE: 1.68 m/s). The correlation coefficient was also high in
the hybrid model and low in the MERRA-2 reanalysis.

For the TA-02 tower (Fig. 10), one can see that the models
follow the observed diurnal wind speed data, but they under-
estimate and overestimate them at certain specific times. The
ANN model underestimates the first hours and overestimates
the predicted wind speeds from 11:00am to 18:00pm. The Holt–
Winters model underestimates most of the period and follows a

Table 7
Residuals of the models and the reanalysis with the observations (TA-01) for 60
days of forecasting, in m/s.

Holt–Winters ANN Hybrid MERRA-2

RMSE 2.09 1.39 0.91 1.75
MAE 1.68 1.19 0.80 1.41
r 0.47 0.66 0.80 0.23

behavior consistent with the observed data between 8:00am and
20:00pm. The hybrid model approximates the observed data most
of the time, mainly between 5:00am and 8:00am.

Table 8 shows the forecast skills of the models and the MERRA-
2 reanalysis with the wind speed observations. The lowest values
can be found in the hybrid model, whose RMSE and MAE were
1.12 and 0.81 m/s. The highest values were found in the MERRA-2



1180 M. Ferreira, A. Santos and P. Lucio / Energy Reports 5 (2019) 1172–1184

Fig. 7. Comparison between the observed series, those predicted by the models and the MERRA-2 reanalysis for the TA-01 tower on 31/10/2004.

Fig. 8. Comparison between the observed series, those predicted by the models and the MERRA-2 reanalysis for the TA-02 tower on 31/10/2004.

Fig. 9. Comparison between the observed series, those predicted by the models and the MERRA-2 reanalysis for the TA-01 tower on 31/11/2004.
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Table 8
Residuals of the models and the reanalysis with the observations (TA-02) for 60
days of forecasting, in m/s.

Holt–Winters ANN Hybrid MERRA-2

RMSE 1.61 1.41 1.12 3.60
MAE 1.25 1.22 0.81 2.92
r 0.95 0.94 0.95 0.89

Table 9
Residuals of the models and the reanalysis with the observations (TA-01) for 90
days of data, in m/s.

Holt–Winters ANN Hybrid MERRA-2

RMSE 1.76 1.70 1.52 1.90
MAE 1.45 1.48 1.13 1.57
r 0.51 −0.31 0.27 0.13

Table 10
Residuals of the models and the reanalysis with the observations (TA-02) for 90
days of data, in m/s.

Holt–Winters ANN Hybrid MERRA-2

RMSE 2.14 4.36 2.27 3.87
MAE 1.62 3.21 1.84 3.03
r 0.93 0.71 0.93 0.48

reanalysis, with RMSE and MAE values of 3.60 and 2.92 m/s. The
correlation coefficients were higher for all models in this period.

3.2.3. Based on 90 days of data
Figs. 11 and 12 present the forecast for the day 31/12/2004

using 90 days of observations (01/10/2004 to 29/12/2004) for
the locations of the TA-01 and TA-02 towers, respectively.

For the TA-01 tower (Fig. 11), the hybrid model underesti-
mates the data observed in the early hours and comes close to
the observations between 11:00am and 14:00pm. The ANNmodel
overestimates the observations between the predicted hours of
7:00am and 20:00pm. The Holt–Winters model underestimates
the observed data until 15:00pm, coinciding with the original
series between 16:00pm and 19:00pm, after which it underes-
timates results again. The MERRA-2 reanalysis overestimates the
original data in most of the time series.

Table 9 shows the residuals of the models and the reanalysis
with the observed data. The lowest errors can be found in the
hybrid model and the largest in the MERRA-2 reanalysis. The
Holt–Winters model showed a large error in this assessment.

For the TA-02 tower, the Holt–Winters model overestimates
the observed data at all times, but it follows the behavior of
the observations. Between the predicted hours of 23:00pm and
24:00pm, the model coincides with the observed data. The hybrid
and RNA models underestimate the observed data during most
of the time series and do not follow the behavior as well as the
Holt–Winters model (Fig. 12).

Table 10 shows the residuals of the models and the reanalysis
with the observations. The smallest forecast skills are of the Holt–
Winters model, with a RMSE and MAE of 2.14 and 1.62 m/s,
followed by the hybrid model with 2.27 and 1.84 m/s, respec-
tively. The highest correlations are found in the Holt–Winters and
hybrid models.

4. Discussion

4.1. Comparison with literature results

It is important to verify that these results of the errors in
wind speed prediction this paper are in agreement with the
values found in similar literature studies. Camelo et al. (2018b)
presented a study involving the modeling of the monthly and

hourly wind speed averages at a height of 10 m in the coastal
Northeast region of Brazil for the prediction of wind speed for
power generation with the additive Holt–Winters model. Ac-
cording to the authors, when compared to the observed data,
this model showed a good fit with errors of RMSE and MAE
of 0.50/0.57 m/s and 0.40/0.45 m/s for monthly average wind
speed forecasting, 1.38/1.55 m/s and 1.03/1.19 m/s for hourly
average wind speed forecasting, respectively. However, in studies
like these applied to wind power generation, the positioning of
the measuring equipment must be installed at the top of the
station (upper anemometer) at a height from the ground equal
to the axes of the wind park turbines and at least 50 m from
the ground, in accordance with the technical standards (EPE-
Empresa, 2016). MEASNET indicate the measurement level of the
primary wind speed measurement, which is mainly relevant for
determining the hub height wind conditions, shall be at least
2/3 of the planned hub height. Currently the wind turbines in
Brazil are being implanted at over 100 m height. Monteiro and
Souza (2013) utilized the method of exponential smoothing, in
particular the methods Holt–Winters additive and multiplicative
for 6 h wind speed prediction at a height 50 m agl in the city
São João Cariri (Paraíba-Brazil) in order to apply the methodology.
According author, the additive Holt–Winters model presented
better result than the multiplicative Holt–Winters model for 6 h
prediction in the same series and data period of wind speed with
errors of RMSE 2.0365 and 2.6197 m/s.

Camelo et al. (2018a) compare the performance of the ARIMA,
ARIMAX and ANN models in an attempt to forecast monthly wind
speed averages at 3 locality’s in the coastal Northeast region of
Brazil (Fortaleza, Natal and Paraíba). According to the authors, the
ARIMAX model presented greater sensitivity to the wind speed
adjustment and prediction, the RMSE and MAE values found were
0.48 (Fortaleza)/0.45 (Natal)/0.71 (Paraíba) m/s and 0.37 (Fort-
aleza)/0.37 (Natal)/0.54 (Paraíba) m/s, respectively. The authors
proposed that, likely, with the increase in the number of training
vectors for the ANN model, its performance will improve and its
statistical errors. Chang et al. (2017) proposed an improved radial
basis function neural network with an error feedback scheme to
forecast short-term wind speed and wind power, with parameter
initialization method and the inclusion of the shape parameter in
the Gaussian basis function of each hidden neuron, used to search
better initial center and standard deviation values. Results show
that the forecast accuracy by proposed model is better compared
to the other neural network-based models. Fadare (2010) used
wind speed monthly average data at 10 m agl of 28 meteoro-
logical stations operated by the Nigeria Meteorological Services
(NIMET) where were used as training (18 stations) and testing
(10 stations) in the ANN model. The ANN model consisted of 3-
layered, feed-forward, back-propagation network with different
configurations. The proposed is used ANN model in the predict-
ing of wind speed monthly average. The results indicate high
accuracy in the predicting of wind speed, with the correlation
coefficient between the predicted and the observed of 0.938,
which shows the effectiveness of this model.

In Operador Nacional do Sistema Elétrico (ONS) (2017) devel-
oped a methodology for the short-term forecasting of wind power
generation (in megawatts) with the modified ARIMAX model,
which is based on the Box–Jenkins methodology, through which
an adjustment of models is obtained for the time series of obser-
vations so that the residuals are around zero. The predicted and
observed wind data as well as the actual wind power data were
used as inputs of the dynamic models. No satisfactory result was
found among the models used, and this has made the (Operador
Nacional do Sistema Elétrico (ONS), 2017) develop more research
on wind forecasting geared to wind power generation.

In the study (Tatinati and Veluvolu, 2013), the authors pro-
posed a hybrid modeling method for the short-term wind speed
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Fig. 10. Comparison between the observed series, those predicted by the models and the MERRA-2 reanalysis for the TA-02 tower on 31/11/2004.

Fig. 11. Comparison between the series observed by TA-01, those predicted by the models and the MERRA-2 reanalysis for the day 30/12/2004.

Fig. 12. Comparison between the observed series, those predicted by the models and the MERRA-2 reanalysis for the TA-02 tower on 30/12/2004.
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forecast for wind power generation, using data collected from an
anemometric tower at a height of 20 m of (which also does not
follow the standard) located in Beloit (Kansas/USA) in the period
from 2003 to 2004. The results showed that the hybrid modeling
method for this variable provides better predictions when com-
pared to other methods, resulting in a MAE (m/s) ranging from
0.016 to 0.52 in this study. In our study, the hybrid method-
ology also produced satisfactory results. Camelo et al. (2018b)
presented a combined hybrid model of the ARIMAX–ANN and
Holt–Winters-ANN models to predict the wind speed in terms
of hourly means, being efficient in the producing adjustments to
the observed data of the studied regions. The authors showed the
quality of the proposed hybrid model is the low statistical analy-
sis of errors values, for example, the RMSE and MAE of 0.46/0.41
m/s and 0.35/0.32 m/s (locality: Fortaleza/Natal), especially when
compared to the ARIMAX, ANN and Holt–Winters models with
errors values high for the RMSE e MAE. In Jiang et al. (2017)
proposed a hybrid short-term wind speed forecasting model at
two cases studies. The results from two cases show that the
proposed hybrid model offers greater accuracy which relationship
to the other compared models (Persistent and ARIMA) in short-
term wind speed forecasting. The hybrid model (G−[υ −SVM]−

CS (cuckoo search))showed the lowest values of error statistics,
for example, for the MAE it was possible to find values of 0.5132
m/s, versus that of 0.582 m/s and 0.5242 m/s, for the models of
Persistent and ARIMA, respectively. Hu et al. (2015) proposed a
hybrid forecasting approach involving the statistics techniques
EWT-CSA-LSSVM for short-term wind speed prediction from a
windmill farm located in northwestern China. The hybrid model
showed results suggest that the developed for wind speed fore-
casting method yields better predictions compared with those of
other models with the lower RMSE and MAE of 0.58 and 0.57 m/s
errors.

Ezzat et al. (2018) presented a study involving hybrid model
ASYM (Asymmetric non-separable model) with SVM to achieve
a further accuracy in short-term wind speed forecast, showing
the additional benefit by the spatio-temporal models. The results
showed that local wind speed is strongly asymmetric at the
fine scale spatio-temporal resolutions and perform well in the
short-term forecasts. The errors computed showed hybrid model
improves of 22.5% in RMSE and 24.3% in MAE, RMSE: 19.5% and
MAE: 19.0% over Persistence model and RMSE: 21.2% and MAE:
24.5% over ARMA model. This results found in study showed
that the proposed model overcomes the commonly used short-
term forecast methods based on Persistence, time series, machine
learning and separable spatio-temporal models.

5. Conclusions

Most research with wind data in Brazil is done through data
bases with little coverage, especially with wind towers. Most of
these studies are done by private companies and are not publicly
available for research. On the other hand, the monitoring via
meteorological stations features a series of errors. These facts
contributed to make the development of this study difficult, since
there are no long wind speed time series available observed at 50
m in height.

Given the difficulty of obtaining good temporal series and
likely good results in the studies, this article eventually became
a mechanism for discovery and the exploration of alternative
methods. As for the modeling of the diurnal wind variability,
the MERRA-2 reanalysis, which is the most recent version, did
not capture this variability well. The Holt–Winters model, which
models the seasonality and trend components, showed a good
fit, but time series of several years are needed to better capture
these parameters and thus provide more satisfactory results. Fi-
nally, the best fits for the forecast were found using the hybrid

Table A.1
Main characteristics of ANNs and hybrid (nnetar-stlm-tbats functions) models
produced in R software.
Belo Jardim — Hour

Based on 30 days of data

p P Size(k) m Weights Average of Network

1 1 2 24 9 20

Based on 60 days of data

p P Size(K) m Weights Average of Network

27 1 14 24 407 20

Based on 90 days of data

p P Size(K) m Weights Average of Network

27 1 14 24 407 20

Camocim — Hour

Based on 30 days of data

p P Size(k) m Weights Average of Network

11 1 6 24 85 20

Based on 60 days of data

p P Size(k) m Weights Average of Network

27 1 14 24 407 20

Based on 90 days of data

p P Size(k) m Weights Average of Network

27 1 14 24 407 20

methodology. The results in Tables 5–8 indicated that the hybrid
model presented smaller errors in relation to the other models
proposed in this study.

This method can be applied for the planning of operations,
maintenance and deployment of wind turbines, since accurate
predictions minimize technical and financial risks.
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