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a b s t r a c t

The Indonesian archipelago has several suitable areas for building wind farms. In the site selection
process, apart from wind intensity, there are other factors related to geographical and structural
technicality that need to be considered. This research presents a hierarchical fuzzy data envelopment
analysis model for identifying suitable locations for the construction of wind farms. The proposed
hierarchy consists of two levels that are defined based on the 165 districts and 33 provinces in
Indonesia based on data provided by different government organizations. Opinions from experts in
different areas were collected and represented by the hesitant fuzzy linguistic term sets, which
were converted to optimistic and pessimistic preferences by using linguistic aggregation and, later,
integrated to the data envelopment analysis model. Principal component analysis by IBM SPSS was
used to verify the importance of the factors that can reduce ineffective indicators from the analysis. The
results show that the South Sumatra province has the highest potential for construction of wind farms,
especially in the district of Palembang. The West Papua, Papua, and Maluku provinces have descending
priority based on good infrastructure accessibility, high wind velocity, and lesser susceptibility to
natural disasters.

© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Natural energy resources such as wind energy is renewable
and freely available, which could lead to sustainable energy us-
age. It can reduce greenhouse gas emissions with ecologically
safe electricity generation. Selecting the most suitable sites that
have the required optimal wind energy resource is a complicated
decision-making process. Based on existing literatures, there are
different approaches that have been used for wind power plant
site selection. For instance, Haydar et al. (2004) used the an-
alytical hierarchy process approach to define the suitable area
for a station of wind observation in a university area. Bhatnagar
and Sohal (2005) used the location factor as a criterion for the
establishment of gas stations and power plants. Afshartous et al.
(2009) developed an improved optimization model to determine
the location of the coast guard air station. Gamboa and Munda
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(2007) utilized the social framework as a multi-criterion method
for determining wind plant site selection. Choudhary and Shankar
(2012) determined thermal power plant site selection using a
fuzzy data envelopment analysis.

At present, Indonesia has six main types of power plants
that uses gas, steam turbines, combined cycle, geothermal, diesel
engine, and hydro-power where fossil fuels are the major com-
ponent for energy generation (Dutu, 2016). Within this decade,
96% of the electricity generation in Indonesia is based on fossil
fuels and only 4% uses renewable energy. Hence, the government
policy targets a portion of renewable energy resources to be
increased up to 17% by 2025 (Hasan et al., 2012). The declining
fossil fuel resources and growing environmental concerns are
challenging the viewpoints in Indonesia’s energy policy, which
led to an attempt to increase the usage of renewable energy to
increase energy efficiency (Mujiyanto and Tiess, 2013).

As is evident from the previous studies, the site selection is
of prime concern for establishing a wind power plant. It requires
the consideration of multiple factors, making the decision difficult

https://doi.org/10.1016/j.egyr.2019.08.002
2352-4847/© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and requiring complex modeling. Relevant data collection and
observation are from the early of July 2017 up to the end of
March 2018. Data sources are from Indonesian Statistics, Inter-
nal Ministry of Indonesia, Indonesian Agency for Meteorology,
Climatology, and Geophysics, Ministry of Public Work and Pub-
lic Housing Indonesia, and National Land Agency of Indonesia.
In Indonesia there are 33 provinces where 5 suitable districts
were selected in each province. This results in 165 districts.
The majority of data collection are based on data provided by
the government. The accessibility to each region was evaluated
based on the available types of roads which were collected by
using Arcgis maps of Indonesia, where the roads are divided into
national road, provincial road, and district road. In this study,
the method based on the hierarchical fuzzy data envelopment
analysis (DEA) approach with multivariate factors is utilized for
determining wind power plant sites in Indonesia. Opinions from
experts in different areas were collected and represented by the
hesitant fuzzy linguistic term sets (HFLTS), which were converted
to optimistic and pessimistic preferences by using linguistic ag-
gregation and, later, integrated to the DEA model. The advantages
of this proposed study can, hopefully, be used as an alternative
approach for site selection, especially for wind power plant. The
validation of the significant criteria can be evaluated based on the
principal component analysis (PCA).

The remainder of the paper is organized in five main sections.
Section 2 presents the literature review related to various multi-
criteria approaches. The criteria and the hierarchical fuzzy DEA
are presented in Section 3. Section 4 provides the results and
discussion. The conclusion is drawn in Section 5.

2. Literature review

DEA is a quantitative method for analyzing the performance
efficiency of the comparable units called decision-making units
(DMUs). Generally, every DMU performs the same function and
the efficiency can be evaluated by computing the ratio between
input and output criteria (Azadeh et al., 2011). The examples of
studies that have applied DEA for site selection are described
as follows: Ertek et al. (2012) determined the efficiency of on-
shore wind turbines by using data-centric analysis. Sağlam (2016)
applied a multi-criterion method based on the DEA to evaluate
the quantitative efficiencies of wind power performance from 39
states. Wu et al. (2016) developed a two-stage DEA to assess
the efficiency of wind power plants in China. The study iden-
tifies factors that can improve the performance of wind farms.
Sueyoshi and Goto (2010) proposed an enhancement of the DEA
called a Range Adjusted Measure (RAM). This approach provides a
performance improvement over the traditional DEA. Seiford and
Zhu (2002) proposed a multi-stage DEA where the importance of
the input and output criteria is verified and validated by the PCA
and numerical taxonomy. The result from this study shows that
the efficiency of DMUs is based on land cost, road accessibility,
infrastructure cost, population density, supply demand, natural
vulnerability, wind velocity, and total area. DEA is a quantitative
analysis method that has been applied to different cases related
to site selection (Azadeh et al., 2014).

Considering the complexity of the decision-making process.
The fuzzy logic approach on the multi-criteria decision-making
for wind turbine selection in Saudi Arabia was proposed by
Rehman and Khan (2016). Similar fuzzy logic approach was used
for renewable energy plants location selection in Vietnam (Wang
et al., 2018). A fuzzy multi-criteria based on supply chain oper-
ations reference (SCOR), fuzzy analytic network process (FANP),
and technique for order of preference by similarity to ideal
solution (TOPSIS) was used for wind power plant site selection in
Vietnam (Wang et al., 2019). Due to the uncertainty of decision

Table 1
The summary of key related articles.
No Author Year Methodology

1 Wang et al. (2019) 2019 A fuzzy multi-criteria decision
making for selecting wind power
plants in Vietnam

2 Wang et al. (2018) 2018 A multi-criteria decision making
using fuzzy environment for
renewable energy site selection in
Vietnam

3 Chiciudean et al.
(2018)

2018 A PCA for analyzing public
perception regarding the alternative
energy production in North-West
Region of Romania

4 Sağlam (2016) 2017 A two-stage DEA for efficiency
assessment of 39 states’ wind power
locations in the United States

5 Rehman and Khan
(2016)

2016 A fuzzy logic based on multi-criteria
decision making for wind turbine site
selection in Qassim, Saudi Arabia

6 Aktak and Kabak
(2016)

2016 A HFLTS algorithm for determining
the importance of factors related to
wind turbines locations

makers in criteria choices, the hesitant decision-making approach
based on HFLTS can represent levels of certainty for the problem.
The HFLTS algorithm was proposed by Yavuz et al. (2015). The
statistical method PCA (Wu et al., 2016) can be used to reduce
the number of variables under study and consequently rank and
perform analysis of DMUs. The PCA was applied for analyzing
public perception regarding the alternative energy production
in North-West region of Romania (Chiciudean et al., 2018). The
HFLTS algorithm was applied to determine the importance of
factors related to locations of wind turbines (Aktak and Kabak,
2016). A summary of key related articles to this research is shown
in Table 1.

3. Hierarchical fuzzy DEA

In this section, further information regarding the criteria and
the methods used in this research are described.

3.1. Indicators of the model

The criteria based on geographical and technical structure that
have influence on site selection of wind farm are considered in
this research. Based on the availability of the data, the data were
collected based on district and province levels of Indonesia. The
factors are summarized in Table 2.

3.2. Hierarchical fuzzy DEA model

In the scope of the study, wind turbine site selection which is
one of the most important problems related to sustainable energy
development has many alternatives and requires multi-criteria
decision-making. To be able to consider uncertainty from decision
makers in criteria choices, the hesitant decision-making approach
based on fuzzy logic was chosen for uncertainty representation.

The decision-making problem based on the HFLTS is preferred
in this study. The objective of the HFLTS is to represent the
flexibility and completeness of decision-making based on the
fuzzy linguistic approach (Yavuz et al., 2015).

The steps of the algorithm are shown as follows:
Step 1. Setting the linguistic term set S.

S = {no importance (n), very low importance (vl), low impor-
tance (l), medium importance (m), high importance (h), very high
importance (vh), absolute importance (a)}.
Step 2. Set the context-free grammar GH.
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Table 2
Factors for levels 1 and 2.
Level 1 (districts) Level 2 (provinces)

• Land cost by districts in Indonesia • Wind velocity
Due to unprecedented increase in population density around
the globe, land cost has become one of the important criterion
which must be considered in the site selection process.

The wind velocity is the primary criterion which must be considered in the DDEA
model for wind farm site selection. Every province has different average wind speed,
based on the geography of the location. Areas with greater wind velocity are preferable
for wind farm construction.

• Transportation infrastructure • Electricity consumption
Accessibility to the site chosen for wind farm construction is
one of the most important factors that affect the reliability
and the time required for transportation and distribution of
construction materials to and from a site.

Electricity consumption in each province is used as an output indicator of the DDEA
model. The indicator is used to represent the electricity demand in each province.

• Infrastructure construction cost • Natural disaster
The construction of the infrastructure for wind farm requires a
large amount of capital. At some sites, to transport
construction materials to the sites incurs costs for building
new roads in order to access the facility. This can increase the
overhead costs of the wind farm construction.

The probability of the occurrence of natural disasters in the region has a significant
impact on wind farm site selection. The damage caused by natural disasters can incur
extra costs for maintenance, thus, increase the maintenance and operational overhead
expenses of a wind farm. Four main parameters based on the chance of flood, volcanic
eruption, earthquake, and land slide are included in the list of natural disasters that
represents the indicators.

• Population • Population by province in Indonesia:
A wind farm should be constructed in regions not too far
from the demand points or a populated area. This is due to
the fact that distributing electricity over a long distance incurs
a loss of efficiency.

In general, a province that has more population is preferred because it implies a
greater demand for electricity. In order to avoid or minimize the cost of energy
transmission to far-off places, areas with more people are given priority.

• Land availability
Regions that are densely populated and have small land
availability may not be suitable for wind farm construction.
The ratio of the number of people in each region divided by
the total area is used to represent land availability in each
region.

GH = {lower than, greater than, at least, at most, between,
and}.
Step 3. Collect the questionnaire from experts and summarize the
preference relations.
Step 4. Transform the preference relations into linguistic terms.
Step 5. Determine the envelope containing pessimistic and opti-
mistic preference relations.
Step 6. Computing the aggregated pessimistic Lqr (lower bound)
and optimistic collective preferences Uqr (upper bound) for every
pairwise criteria by applying the linguistic aggregation.

Based on the results from step 6, for every pair of criteria (q,
r), the weight ratio vq / ur must be bounded by Lqr (lower bound)
and Uqr (upper bound) as Lqr ≤ vq / ur ≤ Uqr. The bounded weight
ratios can be integrated with the DEA (Lee et al., 2015). The
primary data envelopment analysis can be expressed as follows:

Max
∑R

r=1 urYrk′∑Q
q=1 vqXqk′

(1)

Subject to∑R
r=1 urYrk′∑Q
q=1 vqXqk′

≤ 1 (2)

ur∑Q
q=1 vqXqk′

≥ ε, r = 1, . . . , R (3)

vq∑Q
q=1 vqXqk′

≥ ε, q = 1, . . . ,Q (4)

Lqr ≤
vq

ur
≤ Uqr , r = 1, . . . , R; q = 1, . . . ,Q (5)

where vq is the weight given to the qth input and ur is the weight
output to the rth output. Xqk′ is the amount of the qth input of the
k’th DMU, Yrk′ is the amount of the rth output. Q is the number
of inputs and R is the number of outputs and K is the number of

DMUs. Data for levels 1 and 2 can be founded in the Mendeley
data repository.

The efficiency scores from both levels, levels 1 and 2, of the
hierarchical fuzzy DEA will be combined in order to generate the
final scores. In level 1, all districts are considered in the analysis,
where the districts in province k are represented by a set Jk using
index jk. In level 2, the provinces are considered; there are K
provinces and each province is indexed by a subscript k. Combin-
ing results from both levels consists of three steps (Azadeh et al.,
2011), which are explained as follows:
Step 1: Remove noise in level 1 by scaling each efficiency value
by the average efficiency of group k.

fkjk = ekjk/ek, ek =

⎛⎝∑
jk∈Jk

ekjk

⎞⎠/
|Jk| (6)

|Jk| represents the number of members in set Jk.
Step 2: Calculate the net efficiency by multiplying the scaled
value of fkjk with the efficiency of level 2 (ek).

gkjk = fkjk × ek (7)

Step 3: Scale the value of gkjk to [0,1].

hkjk = gkjk × R, R = min
k,jk

{
1/gkjk

}
(8)

3.3. PCA

In this study, the PCA is used to verify the importance of the
factors considered as the input and the output of the hierarchical
fuzzy DEA. The objective of the PCA (Wu et al., 2016) is to
verify the importance of the factors that can reduce ineffective
indicators from the analysis. Functions from IBM SPSS software
were used for evaluating the importance of different factors. Scree
plot was used to determine the number of components to be
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Table 3
Notation for input and output criteria considered in the questionnaire.
Level Criteria Notation

Level (district) Land cost LC

Population in region PinR
Ratio of free usage land RF
Primary road PR
Secondary road SR
Tertiary road TR
Total required infrastructure cost TCI

Level 2 (province) Wind velocity WV

Population in province PinP
Total area TA
Electricity consumption EC
Landslide LL
Flood LF
Earthquake LE
Volcanic eruption LVE

Table 4
Importance degree and context free grammar for HFLTS.
Number Degree of importance Context free grammar

0 No importance (n) lower than
1 Very low importance (vl) greater than
2 Low importance (l) at least
3 Medium importance (m) at most
4 High importance (h) between
5 Very high importance (vh) and
6 Absolute importance (a)

extracted in the analysis. Direct Oblimin which is an approach
to produce an oblique factor rotation where the factors solution
can be actually correlated with each other was selected as a
rotation method. After getting the Pattern Matrix for interpreting
the results, the significance criteria were obtained by PCA to be
used for measuring the efficiency of the locations both on district
and province levels.

4. Results and discussion

In this section, the implementation of the hierarchical fuzzy
DEA is presented. An example of how the responses from experts
are processed is provided. Furthermore, the verification of the
importance of factors based on the PCA is summarized.

4.1. Fuzzy hierarchical data envelopment analysis result

In this study, experts from different fields, including aca-
demic, Non-Governmental Organizations on renewable energy,
integrated energy and environmental planning and policy of In-
donesia, engineers in wind turbine projects in Indonesia, and
the technical officers at the ASEAN Center for Energy were se-
lected for their opinions related to the site selection of wind
power plants. The notations for the input and output criteria are
summarized in Table 3.

To process the responses from the experts, the fuzzy linguistic
approach presented in Section 3.2 is used. The degree of impor-
tance and the context-free grammar built in the first and the
second steps are shown in Table 4. In steps 3 and 4, the question-
naires from experts were collected and the preference relations
were summarized. An example illustrates the implementation of
the fuzzy linguistic approach for all steps. Table 5 depicts this
example of the pairwise comparison of criteria from one of the
experts based on the criteria used in level 1. After applying step
5, the envelope containing pessimistic and optimistic preference
relations from an expert is shown in Table 6.

Table 6
Envelope containing pessimistic and optimistic preference relations from an
expert.
E1 LC PinR RF PR SR TR TCI

LC – [l, a] [l, m] [m, m] [l, m] [l, m] [l, l]
PinR [n, h] – [vh, vh] [h, vh] [h,v h] [n, vh] [h, vh]
RF [m, h] [vl, vl] – [h, vh] [h, vh] [n, h] [vl, l]
PR [m, m] [vl, l] [vl, l] – [h, h] [vh, vh] [h, vh]
SR [m, h] [vl, l] [vl, l] [l, l] – [h, h] [l, l]
TR [m, h] [vl, a] [l, a] [vl, vl] [l, l] – [vl, vl]
TCI [h, h] [vl, l] [h, vh] [vl, l] [h, h] [vh, vh] –

In step 6, the aggregation of the pessimistic and optimistic
collective preferences from 10 experts based on a pairwise com-
parison of LC and PinR is shown as follows:

Pessimistic preference:

P−

L12
= ∆

(
1
10

(
∆−1(l, 2) + ∆−1(vl, 1) + ∆−1(m, 3) + ∆−1(vl, 1)

+ ∆−1(h, 4) + ∆−1(n, 0) + ∆−1(vh, 5) + ∆−1(h, 4)

+∆−1(a, 6) + ∆−1(h, 4)
) )

P−

L12
= ∆

(
1
10

(2 + 1 + 3 + 1 + 4 + 0 + 5 + 4 + 6 + 4)
)

P−

L12
= ∆(3.00)

P−

L12
= ∆(m, .00)

Optimistic preference:

P+

L12
= ∆

(
1
10

(
∆−1(a, 6) + ∆−1(l, 2) + ∆−1(h, 4) + ∆−1(m, 3)

+ ∆−1(h, 4) + ∆−1(l, 2) + ∆−1(a, 6) + ∆−1(vh, 5)

+∆−1(a, 6) + ∆−1(h, 4)
) )

P+

L12
= ∆

(
1
10

(6 + 2 + 4 + 3 + 4 + 2 + 6 + 5 + 6 + 4)
)

P+

L12
= ∆(4.20)

P+

L12
= ∆(h, .20)

The result after aggregating the pessimistic and optimistic
collective preferences for district level from all experts is shown
in Table 7. In step 7, the bounds of the weight ratios are sum-
marized. An example of the bounds for a weight ratio is based
on the weight ratio of land cost and population in region. Based
on the results from Table 7, the lower bound of the ratio is 3.00
and the upper bound of the ratio is 4.20. The same procedure is
carried out on all the pairwise criteria to calculate the pessimistic
and optimistic collective preferences.

After including the constraints based on the bounds of weight
ratios, the hierarchical fuzzy DEA is evaluated for both district
and province levels. The efficiency scores from both levels can be
combined by using Eqs. (6)–(8); the results for the top 5 provinces
is shown in Table 8. The result shows that by considering the
experts’ opinions on the importance of significant criteria with
regard to the input and output criteria, South Sumatra is the most
appropriate location for establishing wind power plants.

4.2. PCA results

In this section, the PCA is used to evaluate the importance
of the criteria for the hierarchical fuzzy DEA. Fig. 1 shows the
pattern matrix of level 1 (district) criteria and Fig. 2 shows the
pattern matrix of level 2 (province) criteria.
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Table 5
An example of the pairwise comparison of criteria from one of the experts based on the criteria in level 1.

LC PinR RF PR SR TR TCI

Expert 1’s linguistic evaluations

LC – at least l between l and m m between l and m between l and m is l
PinR at most h – is vh between h and vh between h and vh at most vh between h and vh
RF between m and h is vl – between h and vh between h and vh at most h between vl and l
PR is m between vl and l between vl and l – is h is vh between h and vh
SR between m and h between vl and l between vl and l is l – is h is l
TR between m and h at least vl at least l is vl is l – is vl
TCI is h between vl and l between h and vh between vl and l is h is vh –

Table 7
Aggregated result of pessimistic and optimistic preference relations for district
level (level 1).
Level 1 LC PinR RF PR SR TR TCI

P O P O P O P O P O P O P O

LC – – 3.0 4.2 3.2 4.0 2.7 4.0 1.9 4.2 2.6 4.2 1.4 2.4
PinR 1.8 3.0 – – 3.4 4.4 3.0 3.6 3.7 4.6 3.0 4.1 2.4 2.7
RF 2.0 2.8 1.6 2.6 – – 2.1 3.2 2.0 4.3 1.6 3.5 1.0 1.4
PR 2.1 2.8 2.4 3.0 2.8 3.9 – – 3.5 4.0 4.7 5.1 1.2 2.2
SR 1.8 4.1 1.5 2.3 1.7 4.0 2.0 2.5 – – 3.0 4.0 1.3 2.0
TR 1.9 3.4 1.9 3.0 2.5 4.4 0.9 1.3 2.0 3.0 – – 1.3 1.6
TCI 3.6 4.6 3.3 3.5 4.6 5.0 3.8 4.8 4.0 4.5 4.4 4.7 – –

Based on the oblique rotated component solution, the pattern
matrix can help identify the significant criteria of each compo-
nent. For the first component, total cost of infrastructure is 92.2%,
tertiary road is 92.2%, secondary road is 90.3%, and primary road
is 87.8%. The first component represents the criteria related to the
available infrastructure. The second component has two major
loadings that are land cost (91.2%) and population (89.9%). The
third component has one major loading that is the ratio of free
space (99.8%). The result from the pattern matrix confirms the
importance of the criteria in level 1.

From Fig. 2, the major positive loadings are population, elec-
tricity consumption, and wind velocity for the first component.
The second component has 3 major loadings, which are volcanic
eruptions, landslides and floods. The third component has total

area as the most important factor. Overall, we can conclude that
each criterion has high positive loading in one of the components.
Consequently, all criteria are statistically significant in level 2.

Based on the weights of district and province levels from the
PCA, the hierarchical scores of all the provinces were calculated
as shown in Table 9.

The ranking from the PCA is the same as the result from
the hierarchical fuzzy DEA, where South Sumatra is the most
appropriate location for establishing wind power plants.

4.3. Discussions

The top five provinces based on the hierarchical fuzzy DEA and
the PCA are shown in Table 10. The ranks from both methods
are the same although only the hierarchical fuzzy DEA considers
the judgment from experts for the importance of the criteria.
Expert judgment is beneficial for complex decision that involves
factors from different categories. The top five suitable locations
for establishing wind turbine power plant in Indonesia are South
Sumatra, Papua, West Papua, Maluku and East Nusa Tenggara
provinces, respectively, The geographic locations are shown in
Fig. 3.

The hierarchical fuzzy DEA gave South Sumatra the highest
priority to build a wind farm. The results from the PCA show
that the ratio of free usage area and total cost of infrastructure
have significant influence on the result in district level. This is
because the ratio of free usage area in South Sumatra is high. It
shows that more space area in one region is advantageous due to

Table 8
Top 5 hierarchical Scores from the hierarchical fuzzy DEA.
No Province Efficiency District Efficiency Combined score

Step 1
Combined score
Step 2

Combined score
Step 3

Combined score
province level

1 South Sumatra 0.725

Palembang 0.6076 4.9965 3.6238 13.1317

2.626
Pagar Alam 0.0000 0.0001 0.0001 0.0000
Lubuk Linggau 0.0001 0.0010 0.0007 0.0000
Prabumulih 0.0001 0.0010 0.0008 0.0000
Lahat 0.0002 0.0013 0.0010 0.0000

2 West Papua 0.729

Manokwari 0.1218 0.7429 0.5414 0.2931

1.979
Sorong 0.0001 0.0004 0.0003 0.0000
Fakfak 0.0005 0.0032 0.0024 0.0000
Sorong City 0.6972 4.2520 3.0989 9.6031
Bintuni 0.0002 0.0015 0.0011 0.0000

3 Papua 0.885

Jayapura 0.0017 2.9959 2.6500 7.0227

1.695
Merauke 0.0002 0.3528 0.3121 0.0974
Biak Numfor 0.0000 0.0487 0.0431 0.0019
Nabire 0.0002 0.3285 0.2906 0.0844
Mimika 0.0007 1.2740 1.1269 1.2700

4 Maluku 0.908

Ambon 0.6807 1.5134 1.3738 1.8874

1.388
Seram 0.0002 0.0004 0.0003 0.0000
Tual 0.7079 1.5738 1.4287 2.0413
Aru 0.8598 1.9117 1.7355 3.0118
Buru 0.0003 0.0008 0.0007 0.0000

5 East Nusa Tenggara 0.639

Kupang 0.0030 3.2750 2.0918 4.3758

0.938
Alor 0.0003 0.3644 0.2327 0.0542
Belu 0.0003 0.3631 0.2320 0.0538
Ngada 0.0005 0.5607 0.3581 0.1283
Southwest Sumba 0.0004 0.4368 0.2790 0.0779
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Table 9
PCA result.
Province Province

efficiency
District District

efficiency
Combined score
Step 1

Combined score
Step 2

Combined score
Step 3

Hierarchical
score

South Sumatra 0.949

Palembang 1.000 2.325 2.208 4.874

1.340
Pagar Alam 0.136 0.316 0.300 0.090
Lubuk Linggau 0.338 0.786 0.747 0.557
Prabumulih 0.256 0.595 0.565 0.319
Lahat 0.420 0.978 0.928 0.862

West Papua 1.000

Manokwari 0.301 0.483 0.483 0.233

1.339
Sorong 0.110 0.176 0.176 0.031
Fakfak 1.000 1.605 1.605 2.576
Sorong City 0.705 1.131 1.131 1.280
Bintuni 1.000 1.605 1.605 2.576

Papua 1.000

Jayapura 0.358 1.049 1.049 1.100

1.166
Merauke 0.243 0.713 0.713 0.508
Biak Numfor 0.260 0.760 0.760 0.578
Nabire 0.240 0.703 0.703 0.495
Mimika 0.606 1.775 1.775 3.150

Maluku 1.000

Ambon 0.687 1.041 1.041 1.083

1.105
Seram 0.348 0.527 0.527 0.278
Tual 0.719 1.089 1.089 1.187
Aru 1.000 1.514 1.514 2.293
Buru 0.547 0.828 0.828 0.686

East Nusa Tenggara 1.000

Kupang 0.201 0.653 0.653 0.427

1.101
Alor 0.251 0.818 0.818 0.669
Belu 0.467 1.519 1.519 2.308
Ngada 0.248 0.805 0.805 0.649
Southwest Sumba 0.370 1.204 1.204 1.450

Table 10
Comparison of the ranks based on the hierarchical fuzzy DEA and the PCA.
Province Scores from hierarchical

fuzzy DEA
Rank Scores from

PCA
Rank

South Sumatra 2.626 1 1.340 1
West Papua 1.979 2 1.339 2
Papua 1.695 3 1.166 3
Maluku 1.388 4 1.105 4
East Nusa
Tenggara

0.938 5 1.101 5

Fig. 1. Pattern matrix of level 1 (district) criteria.

the lower land cost. Also, South Sumatra has good primary and
secondary road infrastructure, and do not need to build additional
infrastructure for tertiary road. This decreases the total cost of
infrastructure, which contributes to the high efficiency score. This
result is similar to the result from Aktak and Kabak (2016) where
land cost and operational cost are two of the most important
factors for choosing location of wind turbines.

Fig. 2. Pattern matrix of level 2 (province) criteria.

In the province level, some criteria such as population, elec-
tricity consumption and occurrence of natural disaster have the
most influence on the total efficiency score. This result is similar
to the result from Seiford and Zhu (2002). In South Sumatra, it
shows that having high spreading population can help decrease
the transportation and accommodation cost of labors. Electricity
consumption demand in South Sumatra is also high, as a result,
the establishment of wind farm in South Sumatra can help fulfill
the electricity demand. The third influence criterion in South
Sumatra is the occurrence of natural disaster. The South Sumatra
is geographically located in the Sumatra Island, this region has
less occurrence of landslide, earthquake and volcanic eruption.
Due to the reasons, South Sumatra is considered as the most
suitable location to build a wind farm power plant.
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Fig. 3. Top five selected provinces in Indonesia.

5. Conclusion

In this study, we proposed a hierarchical fuzzy DEA approach
to determine the integrated efficiency scores of DMUs from both
district and province levels. The integrated efficiency scores from
district and province levels based on the hierarchical fuzzy DEA
were determined. HFLTS was used for determining the different
levels of importance of the criteria based on the responses from
experts. The validation of the significant criteria is based on the
PCA. The final results show that the South Sumatra province has
the highest efficiency score and is the most economical loca-
tion for constructing a wind farm. The most significant criterion
that has influence on wind turbine site selection at the district
level is the ratio of free usage area, followed by total cost of
infrastructure.

In this research, key criteria were selected and included in
the analysis, however, additional criteria specification that in-
cludes social, environmental, economic, and technical aspects
would make the analysis more accurate. Furthermore, the final
site selection will be more practical, if opinions from experts,
policy makers, government, and private stakeholders are also
considered in the analysis.
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