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a b s t r a c t

Homogeneous charge compression ignition (HCCI) engines have high efficiency and lower NOx-soot
emissions than diesel and gasoline engines. However, these engines suffer from high HC, CO and
unregulated emissions and combustion phasing control. The fuel chemistry, charge dilution and
fuel injection timing strongly control HCCI combustion. The oxygenated renewable biofuels, such as
biodiesel and alcohol, can be used to control combustion. The use of laser diagnostic techniques can
provide insight into the combustion chamber for the air–fuel charge formation and combustion studies.
The charge stratification achieved using intake air conditioning, dilution or varying the fuel reactivity
can overcome the challenges associated with HCCI engines. The review paper examine the critical
challenges in the HCCI engine, use of the renewable fuels and their impact on engine-out emissions.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Compression ignition (CI) engines are preferred for transporta-
tion and power generation due to their high efficiency. However,
the depleting petroleum reserves and heavy nitric oxides (NOx)
and particulate matter (PM) emissions are major concerns for
their continual use in the transport sector (Reitz, 2013). The
charge heterogeneity in CI engines is responsible for NOx-soot
formation and a waste of useful part of fuel into emissions (Han
et al., 2014). The homogeneity of air–fuel charge depends on
fuel injection strategies and physiochemical properties of the
fuel (Bohl et al., 2017). Exhaust gas recirculation (EGR) is used
in CI engine to reduce NOx emissions, however, it leads to in-
crease of hydrocarbon (HC), carbon monoxide (CO) and smoke
emissions (De Serio et al., 2017). Hence, a trade-off is observed in
NOx-soot emission formation in CI engines. The after-treatment
devices such as a selective catalytic reactor (SCR) and a diesel
particulate filter (DPF) are used to reduce NOx and soot emissions
respectively. The DPF and SCR are costly sub-systems, require
frequent regeneration over a period of time, and impose fuel
penalty (Reitz, 2013). Hence, there is a strong requirement to
reduce the fuel consumption and emission from these power
producing devices by improving the in-cylinder combustion.

Biofuels, renewable in nature and produced locally, can be a
sustainable alternative to petroleum-based fuels. They are found
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to reduce engine-out emissions due to the presence of an oxy-
genated component in their composition. However, physical–
chemical properties, such as high viscosity, stability, and volatility
are a hurdle to their direct use in engines. The NOx emission
is found to increase with the higher percentage of biodiesel in
blends with diesel in CI engine (Boggavarapu and Ravikrishna,
2013)

The biodiesels are composed of various fatty acid methyl
esters or ethyl esters (FAME/FAEE) and their composition varies
with the source (species) and location (Knothe, 2005). The
biodiesels can be broadly categorized, based on a dominant com-
ponent in their composition, into two types viz. saturated (e.g.
Myristate, Palmitate, stearate) and unsaturated (e.g. Oleate,
Linoleate, Linonenate). Saturated biodiesels, consisting of a high
percentage of saturated fatty acids, show overall physio-chemical
properties similar to that of diesel but with poor cold flow per-
formance (Hoekman et al., 2012). The unsaturated biodiesel has
higher viscosity and surface tension compared to diesel (Knothe
and Steidley, 2005). The increased NOx emission with use of
biodiesel in CI engine is correlated to physical properties (viscos-
ity, surface tension, bulk modulus), atomization, formation of air–
fuel mixture and presence of inbound oxygen (Benjumea et al.,
2010). Higher NOx emission is attributed to higher bulk modulus,
and shorter ignition delay (ID) due to high cetane number (CN).
The unsaturated biodiesel produces higher NOx emissions com-
pared to saturated biodiesels (Lapuerta et al., 2009). It is essential
to develop a combustion technology which is not sensitive to the
composition of biodiesel and require minimum after-treatment
devices for emission reduction.

https://doi.org/10.1016/j.egyr.2019.07.008
2352-4847/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Combustion in CI, SI and HCCI engine (Saxena and Bedoya, 2013).

The lean combustion based homogeneous charge compression
ignition (HCCI) engine is found to be effective to reduce both soot
and NOx emission simultaneously (Dec, 2009). This review paper
summarizes state of the art research on HCCI engine combustion
in light of the use of biodiesel in CI engine. The following section
discusses the characteristics of HCCI engine charge formation,
combustion, and emissions. This will be followed by a review
of regulated and unregulated emission from HCCI engine with
biodiesels. The use of fuel reactivity, stratification and biodiesel
for extending operating range of HCCI engine is analyzed. The
optical diagnostic techniques used in HCCI combustion research
are discussed in the last section.

2. HCCI engines

The HCCI engine uses lean homogeneous air–fuel mixture
which is ignited by compression of the charge (Yao et al., 2009).
The lean charge reduces the overall and local temperature leading
to low NOx and soot emission. Onishi et al. (1979), developed a
ported 2-stroke, controlled auto-ignition engine, for stable lean-
burn combustion as one of the initial attempt towards HCCI
engines. They reported a reduction in fuel consumption and emis-
sions. Najt and Foster (1983), extended the lean burn combustion
to a 4-stroke single cylinder engine.

2.1. HCCI operation

The difference in operation of CI, spark ignition (SI) and HCCI
engine is explained in Fig. 1. The combustion in CI engine is
heterogeneous and flame is around the spray plume and com-
bustion is initiated by auto-ignition of fuel. In the case of SI
engine, combustion is initiated by spark and flame propagates
in a homogeneous mixture. The HCCI engine operation combines
the features of SI and CI engine where homogeneous mixture
combustion is initiated by auto-ignition. Due to instantaneous
volumetric heat release, the combustion duration is short and
shows a high pressure rise rate (PRR). The operating characteris-
tics of HCCI engines are shown in Fig. 2. At high load operations,
the requirement of high equivalence ratio advance the ignition
timing and results in high heat release rate (HRR), increases the
NOx emissions, and knocking. High equivalence ratio leads to
poor cycle-to-cycle stability, and limits the maximum combustion
phasing (Dec, 2009). At low load, incomplete combustion and
combustion instability is observed under cold start condition with
the use of high EGR. The combustion efficiency decreases and HC
emission increases significantly for equivalence ratio (φ) ≤ 0.2.

It is observed that the high equivalence ratio requires a in-
take manifold that can handle high temperature charge. Also,
the present microprocessor based feedback control system and
associated hardware is unable to control the transient load HCCI
operation within a few engine cycles and requires further devel-
opment (Agarwal et al., 2017; Fathi et al., 2017).

2.2. HCCI combustion

The HCCI combustion exhibits two-stage ignition (Fig. 3) with
high chemical reactivity fuels (HRF), such as diesel and biodiesel.
The first stage of heat release is referred as low-temperature
heat release (LTHR) where kinetic reactions are slow and occur
at a temperature below 850 K with small (7%–10% of total)
heat release (Zheng et al., 2001). The rest of fuel energy is re-
leased when the charge temperature is beyond 950 K during
the high-temperature oxidation reaction, also referred as high-
temperature heat release (HTHR). The LTHR and HTHR are sep-
arated by a negative temperature coefficient (NTC) regime (as
shown in Fig. 3). The overall reaction rate exponentially decreases
during the NTC region even with the increase in overall charge
temperature (Battin-Leclerc, 2008). The combustion phasing thus
depends on NTC region as it controls the start of main heat release
rate. The charge reactivity during NTC period can be controlled
by a pressure–temperature history of charge, EGR and by low
reactivity fuel (LRF) such as gasoline, ethanol in case of duel fuel
engine (Zhao, 2007).

2.3. Combustion chemistry

The oxidation of hydrocarbon in low-temperature zone is a
complex process that involves various chain branching and chain
propagation reactions (Gaffuri et al., 1997). A spontaneous ig-
nition occurs when the number of chain branching initiation
reactions is less than the chain termination reactions. The chain
branching leads to isomerization reaction where straight-chain
alkanes are converted to branched isomers by a heating process.
This provides several radicals to start the auto-ignition reaction.
The timing and amount of heat release in first stage ignition de-
pend on the size and structure of the fuel molecule, and pressure–
temperature history of charge. A better understanding of HCCI
combustion of diesel and biodiesel fuels require detailed knowl-
edge of the properties of individual components along with their
chemical kinetics.

2.3.1. Diesel
Diesel is a mixture of a number of hydrocarbon molecules

that includes 41% paraffin, 30% cycloparaffins and 29% aromatics
by volume (Battin-Leclerc, 2008). Paraffins and naphthalenes are
saturated HC molecules. Aromatics and olefins are unsaturated
HC which can convert carbon–carbon (C==C) covalent or aromatic
bond to a single bond by adding hydrogen (H) atom to the adja-
cent carbon (C) atom (Singh et al., 2017). A large fraction of long,
straight-chain alkane (n-paraffins) species in diesel is responsible
for two-stage characteristic ignition chemistry (Lapuerta et al.,
2014). A long chain saturated HC molecule has high CN and short
ID.

2.3.2. Biodiesel
Biodiesel is a mixture of fatty acid esters. The CN of biodiesel

increases with the increase in aliphatic chain length and de-
creases with increase in the number of double bond or branching
in the chain (Knothe et al., 2003). The linolenic methyl ester,
found in many biodiesels, has least CN while stearic methyl
ester has highest. The oxidation of esters with aliphatic chain
Cn > 4 is observed to be similar as that of n-heptane/iso-
octane (Coniglio et al., 2013). At low temperature, chain branch-
ing occurs by addition of oxygen molecule (O2) through ketohy-
droperoxide species. The chain propagation reaction of hydroper-
oxyalkyl (QOOH) species increases with the increase in ambient
temperature. This leads to the formation of cyclic ether and
olefinic molecules through ketohydroperoxide species (Coniglio
et al., 2013).
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Fig. 2. Operating characteristics of HCCI engines.

Fig. 3. Heat release curve of n-heptane HCCI combustion (Yao et al., 2009).

The LTHR and HTHR are initiated by the decomposition of
ketohydroperoxide at low temperatures and rapid dissociation
of hydroperoxide (H2O2) into the hydroxide (OH) radicals. The
oxidation mechanism involves temperature dependent competi-
tion between chain propagating channels and chain branching
channels for esters with aliphatic main chain (Fisher et al., 2000).
During the low-temperature reactions, temperature and pres-
sure sharply increase over a limited temperature range (around
500 K). However, the reaction stops before combustion is com-
plete due to decreased reactivity in NTC region (Westbrook and
Dryer, 1984). The alkyl and alkyl ester peroxy radical isomer-
ization to hydroperoxy alkyl and hydroperoxy alkyl ester radi-
cal reactions play a key role in the low-temperature chemistry
and controls the auto-ignition of fuel (Ranzi et al., 1995). The
number of double bonds and its location in the main aliphatic
chain reduce the reactivity of unsaturated methyl esters during
low-temperature region but increase the reactivity in the high-
temperature zone (Lai et al., 2011). Majority of aliphatic chains
in biodiesel shows various un-saturated chemical species that
hinders the internal isomerization of a molecule.

2.3.3. Gasoline
Gasoline has nearly 42% saturated hydrocarbons, which are

dominant with single sigma bond branched alkanes. Gasoline
exhibits high volatility due to a high percentage of small hy-
drocarbon molecules, C4-C9 (85%). However, smaller molecule
requires higher energy to break the bonds, thus reducing the fuel
reactivity (Battin-Leclerc, 2008).

2.3.4. Alcohol
Alcohol affects the hydroxyl (OH) radical formation, decreas-

ing the concentrations of reactive intermediate species (formalde-
hyde (CH2O), OH, hydroperoxyl (HO2)). Due to the attached hy-
droxyl group, alcohols reduce the low-temperature combustion
reactions, increase the ignition delays, reduce the combustion
temperatures and soot emissions (Komninos and Rakopoulos,
2012). However, an increase in carbon monoxide (CO) emissions
is observed with alcohol-based fuels due to carboxylation (Mau-
rya et al., 2018).

Based on the above discussion, it is observed that the start of
ignition depends on fuel reactivity and is driven by chemical ki-
netics. The saturated and unsaturated fatty esters in biodiesel are
found to impact low-temperature reaction. The alcohols are found
to decrease low-temperature combustion reactions, although it
helps in improving atomization of diesel and biodiesel.

2.4. NOx-soot emissions

The emission formation in combustion depends on tempera-
ture, equivalence ratio and combustion chemistry. Fig. 4 shows
the zone of NOx and soot formation for combination of local tem-
perature and equivalence ratio. The SI engine operates around an
equivalence ratio of 1. SI engine operates near to NOx emissions
zone (Gan et al., 2011). The CI engine combustion is diffusion type
giving the entire range of equivalence ratio. This puts local condi-
tion prone to both NOx and soot emissions (Maurya et al., 2018).
The HCCI engine operates at low equivalence ratio around (φ)
< 0.45. This also ensures low local temperature leading to very
low NOx and soot emissions. Low equivalence ratio in combustion
with EGR further reduces the local temperature and hence NOx
formation. The adiabatic flame temperature curve is also shown
in Fig. 4. The adiabatic flame temperature and equivalence ratio
suggests the NOx-soot free operating regime for engines operating
in zone left of the adiabatic curve. The use of biodiesel in CI engine
has shown an increase in NOx emissions. The NOx emissions
decreases with increase in EGR for biodiesel-fueled pilot ignited
HCCI engine (Zheng et al., 2006). The absence of aromatics con-
tent and the presence of oxygen in biodiesel reduces the soot, CO
and hydrocarbon emissions (Subramanian, 2017). The biodiesel
shows high CN and advances the combustion. Hence, to achieve
premixed charge before the start of combustion, high levels of
diluted charge is required that provides longer ID and avoids the
NOx formation.

The soot increases with deposition of fuel on combustion
chamber walls during fuel injection (Maurya et al., 2018). A suf-
ficient degree of premixed combustion results in negligible soot
formation while an increase in charge stratification increases the
soot formation (De Zilwa and Steeper, 2005). It is observed that
the soot forms only in regions where OH radicals are absent (Yao
et al., 2009). The decreased oxygen concentrations in the mixture
are found to be responsible for soot formation (Liu et al., 2004).
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Fig. 4. φ–T map for NOx and soot emissions in diesel combustion (Dec, 2009).

Fig. 5. Challenges with HCCI engines.

3. HCCI challenges

The actual power train application of HCCI engines is restricted
by few challenges and needs to be solved before implementation.
The challenges with HCCI engines are shown in Fig. 5.

3.1. Mixture formation

A homogeneous charge preparation is challenging to achieve
in HCCI engine over a range of operating condition due to a
short time span and ambient conditions inside the combustion
chamber. The charge formation can be achieved internally or
externally by mixing fuel with intake air outside the combustion
chamber. The Fig. 6 shows various methods used for air–fuel
mixture formation in HCCI engine.

3.1.1. External mixture preparation
It is the most effective and simple technique to achieve the

premixed homogeneous charge with highly volatile fuels (Mau-
rya et al., 2018). The volatile fuels such as gasoline, alcohols,
dimethyl ethers (DME), acetylene, hydrogen, compressed natural
gas (CNG), and biogas are introduced in the intake manifold. A
fumigation technique can be utilized to vaporize the diesel and
biodiesel fuels by heating at higher temperatures and mixing
with the intake air to achieve the homogeneous charge (Agarwal
et al., 2017). The low volatility of some fuels can lead to wall
wetting (Pandey et al., 2018). The external mixture preparation is
a simple method for homogeneous charge formation with volatile
fuel. However, it provides little control over the start of ignition
at various operating conditions.

3.1.2. In-cylinder (internal) mixture preparation
Internal mixture preparation can be achieved by early and

late direct injection of fuel inside the combustion chamber. The
early fuel injection timing refers to fuel injection during early
compression stroke while late injection means injection near
top dead center (TDC) or at the end of compression stroke. The
charge formation depends on fuel properties, injection timing,
spray development, evaporation, and diffusion in compressed
air (Baumgarten, 2006; Gupta and Agarwal, 2016). The early fuel
injection during the compression stroke is limited by longer tip
penetration and wall impingement which leads to an increase
in HC, CO emissions and dilution of lubricating oil (Zhu et al.,
2013; Lu et al., 2011; Yu et al., 2017). The use of split injection,
and fuel preheating with significant EGR can improve the air–fuel
mixing (Singh and Agarwal, 2012; Turkcan et al., 2018).

In the late injection strategy, fuel is injected close to TDC (3-
5◦ after TDC) where ambient gas densities and temperatures are
high. These ambient conditions enhance the fuel evaporation and
diffusion leading to short ID. The in-cylinder mixture can give
good control over HCCI combustion though it depends on various
parameter which are difficult to control.

3.2. Combustion phasing

The combustion phasing is critical in HCCI engine and occurs
in a narrow crank angle window near TDC. The combustion
phasing is characterized by CA50, the crank angle position where
50% of the total heat release occurs (Kalghatgi and Head, 2006).
The combustion phasing in CI engines is controlled by the timing
and quantity of fuel injected. However, in HCCI engines fuel is
premixed and lean, hence the start of combustion is influenced by
low-temperature chemistry of the fuel. The molecular structure of
fuel, residence time, equivalence ratio, and temperature–pressure
history of intake charge decide the rate of low-temperature ox-
idation reactions. The control on combustion timing is difficult
in HCCI engine due to LTHR dependence on fuel chemistry and
ambient conditions (Saxena and Bedoya, 2013). If the main heat
release (2nd stage ignition) occurs too early during a compression
stroke, combustion phasing is advanced, that may lead to an in-
crease in the operating noise and knocking. On the contrary, delay
in heat release by retarded ignition with lean charge increases the
probability of misfiring and leads to very high HC emissions with
reduced engine performance.

Ignition timing is advanced with high intake air temperature
and pressure, which promotes the chemical kinetics (Hasan et al.,
2018). The combustion timing advances for high reactivity fuels.
The low reactive fuels have a lower specific heat ratio and require
a higher temperature to start the auto-ignition. The variation
in gross indicated mean effective pressure (IMEP), CA10 (crank
angle position where 10% of the total heat release occurs) and
engine misfire increases with highly retarded combustion phas-
ing. It is important to maintain the combustion phasing between
knocking and stable misfire limits for the operating range of the
engine (Lawler et al., 2018).

3.3. Heat release rate (HRR) and pressure rise rates (PRR)

The volumetric ignition of complete charge in HCCI engine
leads to rapid HRR that may lead to knocking combustion. A lean
air–fuel ratio with high EGR helps to reduce HRR with stable
combustion. However, at high loads, combustion results in high
HRR due to higher equivalence ratio. The high HRR limits the
maximum BMEP of an HCCI engine (Olsson et al., 2001). The
maximum brake mean effective pressure (BMEP) of around 18
bar is achieved for a light duty CI engine with turbo-charging. A
naturally aspirated HCCI engine shows maximum indicated mean
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Fig. 6. Mixture formation in HCCI engines.

effective pressure (IMEP) of 5 bar for 1000–1500 RPM (Saxena
and Bedoya, 2013). The addition of water in gasoline HCCI, ex-
tends the engine operating range from maximum allowable IMEP
of 3.5 to 10 bar but requires a higher intake pressures (2.4 bar)
at high load (Valero-Marco et al., 2018).

A high PRR causes acoustic resonance, knocking, and reduces
the combustion duration. Thermal stratification within bulk gas
governs the sequential auto-ignition and reduces the PRR at high
load condition (Dec, 2009). A decrease in combustion tempera-
ture slows the chemical kinetic reactions and reduces the PRR.
Olsson et al. (2001) reached up to 16 bar BMEP with dual fuel
turbocharged engine at 1000 RPM and maximum efficiency up
to 41.2%. The use of split injection in ethanol-gasoline fueled
HCCI-DI engine shows a decrease in maximum pressure and heat
release rate (Turkcan et al., 2018). A combination of fuel injection
strategy with duel fuel is required to control HRR and PRR in HCCI
engine.

3.4. HC and CO emissions

Reduced in-cylinder combustion temperature, spray impinge-
ment and cold cylinder wall temperatures lead to increased HC
and CO emissions in HCCI engines. A longer burn duration leading
to partial misfire and expansion quenches in the coldest zone
increases the HC and CO emissions. The major source for HC
formation is the top ring land crevice of the combustion chamber.
The unburnt HC regions are observed along the centerline, squish
volume and bowl/central clearance volume (Lu et al., 2011). The
nozzle region is also found as a major source of unburnt HC
emission (Aronsson et al., 2009). Due to lower combustion tem-
peratures, CO is not completely oxidized to carbon dioxide (CO2),
which requires temperatures above 1450 K. The CO emissions
decrease with increase in premixing ratio, load and fuel–air ra-
tio (Reitz and Duraisamy, 2015). The reduction in HC and CO
emissions can be simultaneously achieved by increasing the in-
let air temperature (Gowthaman and Sathiyagnanam, 2017) and
compression ratio (CR) (Calam et al., 2019). Development of a
low-temperature oxidation catalyst is required to control the
tailpipe emissions in HCCI engine (Reitz and Duraisamy, 2015).

3.5. Unregulated emissions

The HCCI combustion is also reported to have an unregu-
lated emission like aldehyde and ketones which are partially
oxygenated organic compounds (Maurya et al., 2018). Aldehy-
des include Formaldehyde (HCHO) and Acetaldehyde (MeCHO).

Aldehydes are characterized by HC==O and ketones are character-
ized by RC==O. Aldehydes are carcinogenic and very reactive to
form ozone by photochemical oxidation (O’riordan, 2014). Chain
carrier radicals in the hydrocarbon combustion are alkyl radicals
(Ṙ) and are formed by the cleavages of C-C or C-H bonds of
hydrocarbon. The dehydrogenation by O2 and the presence of
other combustion radicals influence this process at high tem-
peratures. Formaldehyde formation is most pronounced at low
temperatures and acetaldehyde formation occurs at rich air–
fuel mixtures (Wagner and Wyszyński, 1996). The formaldehyde
emissions from aliphatic fuels are five times higher than aromatic
fuels. Olefins exhibit highest aldehyde emissions while aromatics
show lowest (Shore et al., 1993). The aldehyde emissions are
found to decrease with the increase in fuel–air ratio and increase
with the fuel CN. The oxygenated fuels produce higher aldehyde
emission (Wagner and Wyszyński, 1996). The soybean biodiesel
up to 30% shows a decrease in aldehyde and ketones in the
exhaust than diesel (Lapuerta et al., 2008). The formaldehyde
emissions decrease with increase in temperature, pressure and
EGR while they increase with the increase in CR (Li et al., 2017).
The low-temperature combustion with gasoline-n-butanol blend
under the primary individual hydrocarbon emissions include the
ethylene (C2H4), propene (C3H6), n-pentane (NC5), iso-pentane
(IC5) and aromatic HC.

The carcinogenic and mutagenic action of acetylene (C2H2)
affects the living beings. The polycyclic aromatic hydrocarbons
(PAHs) species are found to be precursors for soot formation
(Yang et al., 2014). The PAHs, carbonyl compounds, benzene,
toluene, ethyl-benzene and xylene (BTEX) are harmful to hu-
man health and categorized as ‘‘possible carcinogens’’ (Srivastava
et al., 2018). At rich and lean LTC operation NPAH (Nitro-PAH)
emissions are much higher than diesel operation.

Based on the literature, it is observed that the formation mech-
anism, sources, and harmful effects of unregulated emissions
from HCCI combustion have not been fully explored and under-
stood yet. It is important to study these unregulated emissions
from HCCI combustion and regulate them.

4. Fuel reactivity and stratification

The auto-ignition in HCCI engine depends on the fuel chemical
kinetics and local equivalence ratio (Zhao, 2007). Single reactivity
fuels are unable to control HRR and PRR for high load HCCI
operation (Paykani et al., 2016). A low CN fuel retards the start
of ignition and shows fast HTHR with negligible LTHR, which
results in high cylinder pressure and NOx formation. An intake
charge with high temperature is required to achieve the optimum
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combustion phasing at higher loads for low CN fuel (Bunting
et al., 2007). On the contrary, high CN fuels with high equivalence
ratio lead to early LTHR and fast combustion. The LTHR rate
is constant and it is not affected by the engine speed whereas
the HTHR scales with engine speed and combustion duration
remains constant (Bunting et al., 2007). Low engine speed favors
more advancing in combustion phasing while high engine speed
requires substantially decreased LTHR time scale.

A dual fuel reactivity can control the start of ignition and com-
bustion phasing. Fuel reactivity stratification affects the ignition
delay, ignition location and growth rate of reaction during the
combustion. The fuels with different reactivity can control the
global reactivity, hence HRR and combustion phasing (Dempsey
et al., 2014). The addition of hydroperoxide in n-butanol, facili-
tates the formation of hydroxyl and hydroperoxyl radicals in the
cylinder. It extends the engine operating range to lower load
(with reduced HC and CO emissions) and improves the indi-
cated thermal efficiency (Zhou et al., 2019). The addition of small
amount of hydrogen in the mixture DME/CNG fueled HCCI engine,
retards the ignition and expands the operating range within the
knock limit (Bastawissi et al., 2019). At high load, biodiesel-
hydrogen fueled HCCI engine retards the combustion phasing,
lowers the peak HRR and reduces the NOx-soot emissions (Khan-
dal et al., 2019). In biogas–diesel fueled HCCI engine, with the
increase in CO2 the HRR and NOx-soot emissions decrease with-
out affecting the thermal efficiency (Nathan et al., 2010). The
LRF requires charge stratification, which indicates that ignition
should occur first in an outer region of the combustion chamber.
However, the temperature gradient suggests that ignition should
occur in the center of the combustion chamber (Kokjohn et al.,
2015). Flame propagation from high to low reactivity regions
can reduce the PRR. The charge stratification with duel fuel in
HCCI engine is obtained using port injected gasoline and direct
injected diesel. Dual fuel HCCI shows the ability to operate at
low EGR levels and controls combustion phasing during transient
operations (Divekar et al., 2016).

The review of the research work on HCCI engine indicates
that air–fuel mixture stratification and chemical kinetics of the
fuel is important to control the combustion in HCCI engine. It
is important to understand the air–fuel mixture formation and
chemical kinetics experimentally. Various optical diagnostic tech-
niques are used to study the mixture formation and combustion.
The relevant techniques and studies are reviewed in the following
section.

5. Optical diagnostics

The optical diagnostic is an effective tool to understand the
physical and chemical processes in HCCI engines. Gasoline HCCI
combustion process is first spectroscopically investigated by
Noguchi in 1979 (Noguchi et al., 1979). They detected vari-
ous intermediate chemical radicals significantly different from
conventional gasoline combustion. The laser based diagnostic
techniques used in combustion research are broadly catego-
rized in Scattering, Chemiluminescence and Planar Laser Induced
Fluorescence (PLIF). The scattering technique involves imaging,
scattered light from particles (molecules, gas particles, liquid
droplets). Rayleigh scattering, Mie scattering and Raman scatter-
ing is used in combustion research. Chemiluminescence involves
imaging the light emitted by radicals or particular species. PLIF
visualization involves excitation of particular species by laser and
imaging their fluorescence.

5.1. Scattering

Diesel spray evolution in a wide and narrow-angle injector
with multiple injections is determined using Mie scattering (Fang
et al., 2009). The narrow-angle injector showed fuel impinge-
ment and a large amount of fuel deposition with ignition in
central bowl region, higher soot luminosity and lower NOx emis-
sions (Fang et al., 2009). Mie scattering and LIF was used for spray
development and fuel distribution measurement of swirl and
eight hole gasoline direct injector (GDI) in low-load HCCI engine.
The 8 hole injector small packets fuel vapor that lead to lower
peak gas temperature and lower NOx emissions (Steeper and
De Zilwa, 2007). Musculus (2006) studied liquid fuel penetration,
vapor jet penetration and ignition location using Mie scattering,
fuel fluorescence and chemiluminescence imaging respectively.
They observed an increase in liquid fuel penetration, OH species
(throughout diesel jet cross section) and increased soot formation
in the downstream head of jet.

5.2. Chemiluminescence imaging

The relaxation of the excited combustion radicals produce
the chemiluminescence. The radicals such as OH, HCHO, CO2
exhibit the chemiluminescence in n-heptane flame (Yu et al.,
2013). A strong radiation from the luminous flame in conven-
tional diesel combustion overwhelms the weak chemilumines-
cence signal, which makes imaging of chemiluminescence dif-
ficult. A low soot emission from HCCI engine makes an analy-
sis of chemiluminescence and spectral images relatively simple
task (Dec and Espey, 1998). Chemiluminescence intensity and
rate of heat release show a strong correlation (Augusta et al.,
2006). The chemiluminescence images and spectral analysis of
n-heptane and iso-octane mixtures show cool flames for HCCI
combustion (Hultqvist et al., 1999). The spectral analysis of HCCI
combustion with dimethyl ether showed the formaldehyde de-
rived cool flames in LTHR (Kim et al., 2002). The study of n-
heptane distribution using a high speed natural flame luminosity
shows the increase in flame propagation and decrease in the
combustion reactions with the rise in fuel inhomogeneity (Zheng
et al., 2019). The HCCI combustion chemiluminescence images
show the multiple locations of single auto-ignition of air–fuel
mixtures. The inhomogeneity in temperature or air–fuel mixture
fraction increases the probability of random combustion (Char-
alambides et al., 2018). It is observed that the engine parameters
affect auto-ignition timings but not the HCCI reaction pathways.

A reduction in soot concentration is observed for rapeseed
biodiesel at low fuel injection pressure using two-color pyrom-
etry (Mancaruso and Vaglieco, 2010). Dec et al. (2006) used
chemiluminescence imaging and reported lower PRR in optical
HCCI engine by natural stratification in the combustion cham-
ber. Chemiluminescence imaging in HCCI combustion showed
stronger turbulence and lower PRR for square bowl piston com-
pared to flat piston due to charge stratification (Vressner et al.,
2007). The multiple injection, inlet air preheating and residual gas
trapping under HCCI condition show large temperature inhomo-
geneities which slows the auto-ignition (Aleiferis et al., 2005). The
local equivalence ratio variation by fuel injection timing increases
the combustion duration and moderates the heat release (Bernts-
son and Denbratt, 2007). Kumano et al. (2007) studied the effect
of charge inhomogeneity on HCCI combustion in an optical engine
using chemiluminescence. A large part in combustion chamber
showed luminescence for a short time due to locally fast combus-
tion under homogeneous condition. The luminescence is observed
locally for a non-homogeneous condition with longer combus-
tion duration, lower peak pressure and moderate heat release
compared to homogeneous charge (Kumano et al., 2007).
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Based on chemiluminescence imaging it can be observed that
the fuel injection timing, EGR level, piston shape and intake air
preheating can induce the charge stratification to extend the HCCI
operating range.

5.3. Planar laser induced fluorescence (PLIF) imaging

The PLIF imaging can be used to image the distribution of
various species during combustion. Richter et al. (2000) used
the planar laser-induced fluorescence (PLIF) to study the degree
of air–fuel mixture homogeneity obtained by port fuel injection
and charge preheating. The distribution of HCHO is observed
using PLIF imaging during cool flame of iso-octane and n-heptane
blend (Collin et al., 2003). The HCHO is formed as an intermediate
species during hydrocarbon oxidation at the low-temperature
reaction. The early and late fuel injection respectively show more
homogeneous and stratified charge distribution before combus-
tion and good spatial resemblance in both cases (Särner et al.,
2005). Charge temperature primarily affects HCHO distribution
of primary reference fuel blends, while HCHO consumption is
affected by its concentration and temperature (Zhao et al., 2004).
The PLIF imaging of iso-octane fueled HCCI engine shows a sig-
nificant production of HCHO during the cool flames and fast
consumption during the second stage ignition results in steep
pressure rise with short ID (Strozzi et al., 2019). The LIF mea-
surements of a lean mixture in the squish region showed that
the high wall heat transfer suppresses the lean mixture oxidation
and increases the UHC and CO emissions (Ekoto et al., 2009).
The major contributor to CO formation is observed to be squish
volume. The source of HC formation is clearance volume stem
regions near cylinder centerline and top ring land crevice (Kim
et al., 2009). The unburnt HC and CO emissions decrease at high
loads with an increase in intake pressure (Colban et al., 2007).

Kashdan and Papagni (2005) studied the PLIF images of HCHO,
during early stage cool flame in late-injection diesel HCCI com-
bustion. The combustion phasing is influenced by the ratio of the
pilot and main injection fuel mass. The intensity of the PLIF signal
from formaldehyde is more due to the homogeneous charge
compared to uniform bulky combustion system (UNIBUS) and late
injection HCCI (Hildingsson et al., 2005). Split injection increases
HCHO lifetime and broader distribution of OH is found in HCCI
combustion.

The NO-LIF is used to investigate the NO formation of diesel
combustion. It is observed that the jet periphery just after dif-
fusion flame and hot combustion gases are responsible for NO
formation (Dec and Canaan, 1998; Jin and Zheng, 2015). De Zilwa
and Steeper (2005) reported that each air–fuel packet in HCCI
combustion burn as a homogeneous mixture and a strong cor-
relation between in-cylinder charge distribution and emission
formation is observed. Sufficient degree of premixed combus-
tion results in negligible soot formation while an increase in
charge stratification increases the soot formation levels (De Zilwa
and Steeper, 2005). The soot formation detection by two-color
pyrometry in LTC conditions showed lower temperatures than
conventional combustion. The soot forms only in regions here OH
radicals are absent (Yao et al., 2009). The decreased concentra-
tions of oxygen in the mixture are found to be responsible for
soot formation (Liu et al., 2004).

The liquid–vapor phase fuel distribution and intermediate
combustion species are measured in an optically accessible HCCI
engine using laser-induced exciplex fluorescence (LIEF) and
chemiluminescence imaging respectively by Kashdan et al. (2004).
The piston geometry shows an important role in mixture prepa-
ration, combustion and emissions characteristics in late injection
strategy. The presence of intermediate species, formaldehyde as

auto-ignition. precursor in early stages of cool flames was con-
firmed by LIEF. The flat piston showed strong PAH fluorescence
signals as an indicator for the presence of soot.

The optical techniques are important to understand the mix-
ture formation and combustion in HCCI engine. It is observed
that the charge stratification, distribution of LRF and HRF inside
the combustion chamber and ignition locations play an important
role in heat release and emission formation. Their dependencies
can be revealed only through optical diagnostics studies in HCCI
engine. There are a few optical investigations in HCCI engine
using biodiesels.

6. Conclusions

The review article recapitulates the current research in air–
fuel mixture formation and combustion mechanism in HCCI en-
gine in light of the use of biodiesels. Various approaches to control
the ignition and charge stratification are discussed. Some of the
techniques examined are intake air conditioning, fuel injection
timing, degree of charge homogeneity, fuel chemistry, and EGR
level to control the ignition and reaction timing. The oxygenated
fuels, such as biodiesel, advance the combustion timing and ex-
hibit the two-stage combustion. However, alcohol-based fuels are
observed to retard the combustion timing and show single stage
ignition. The chemical reactivity of the fuel is found to be respon-
sible for the unique two-stage heat release characteristic. The OH
and HCHO species formation and consumption decide the start
of ignition and combustion duration. The HCCI combustion can
achieve low NOx and soot emission with high thermal efficiency.
However, due to the low combustion temperature, HC and CO
emissions are high. The development of low-temperature oxida-
tion catalyst is required to oxidize the HC and CO emissions from
HCCI engines. The unregulated oxygenated and non-oxygenated
hydrocarbon emissions are found to be high in HCCI combustion.
There is an urgent need to address the problem of unregulated
emissions from these engines.

The optical techniques are essential tools to understand the
charge distribution and combustion inside the HCCI engine. The
HCHO and OH radicals are suitable tracers at low and high-
temperature reaction respectively. The EGR level influence the
lifetime of HCHO and mixture homogeneity, and reduces the
combustion phasing and high-temperature ignition. The partial
charge or reactivity stratification achieved by low and high reac-
tivity fuel provides better control over the start of ignition and
combustion phasing for a transient and high load operation. The
investigations on chemical kinetics for biodiesel combustion in
HCCI engine are required for improving efficiency.
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