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• The link between oil prices and clean energy stock prices is revisited.
• Using a NARDL model, we study the asymmetric linkages between these variables.
• Ignoring the presence of nonlinear relations leads to misleading findings.
• We find the presence of significant asymmetric effects among the variables.
• These impacts significantly vary in the short- and long-run.
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a b s t r a c t

There is an ongoing debate on how oil prices affect the stock prices of clean energy companies. We
contribute to this debate by questioning the possibility of asymmetric linkages between oil prices, interest
rates, and the stock prices of clean energy and technology firms. Using a recently developed approach
(nonlinear auto-regressive distributed lag (NARDL) model), we document that ignoring the presence of
nonlinearities leads to misleading results. The analyses reveal significant asymmetric effects among the
variables of interest. Our findings suggest that the impacts of positive and negative changes in the oil
prices, interest rates and technology stock prices on clean energy stock prices substantially vary in the
short-and long-run.More specifically, our results point out that the increased investments in clean energy
stocks appear to be due to speculative attacks along with an increase in oil prices in the short-run. But, in
the long-run, the increased oil price has a negative impact on clean energy stock prices and this impact is
asymmetric. Last but not least, the results also emphasize the importance of business cycle fluctuations
for the clean energy stock performance in the long-run. The implications of this paper are noteworthy for
energy economists, policymakers, and investors in the energy and financial markets.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A number of studies showing a significant impact of oil markets
on sector stocks and global stock markets are available in the
existing energy and finance literature (e.g. Jones and Kaul, 1996;
Sadorsky, 1999; Kocaarslan et al., 2017). Rising oil prices lead to
a deterioration in economic activity through the negative impacts
on aggregate output and consumption. This is due to increases
in production costs (Brown and Yucel, 1999) and reductions in
household income levels (Edelstein and Kilian, 2009). On one hand,
the increases in production costs reduce firms’ profits and thereby
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negatively influence their current and future cash flows (Jones
and Kaul, 1996). On the other hand, an increase in oil prices cre-
ates inflationary pressures in global markets (Darby, 1982). The
increased inflationary pressure has a significant impact on the
discount rate of cash flows and hence leads to lower stock prices.
Previous studies generally provide strong evidence of negative
relationships between oil and stock prices (Jones and Kaul, 1996;
Sadorsky, 1999). In addition to these macroeconomic and financial
risks induced by an increase in oil prices, geopolitical uncertainties
and political insecurity in regions where oil reserves exist and
climate change, which is caused by fossil fuels such as oil, act
as a threat to global markets and natural environment. All these
macroeconomic, financial and political risks and growing concern
about global warming have triggered an increasing interest in
alternative energy sources, especially during the last decade.

https://doi.org/10.1016/j.egyr.2019.01.002
2352-4847/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
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Nomenclature

ARDL Auto-regressive distributed lag (ARDL)
NARDL Nonlinear auto-regressive distributed

lag (NARDL)
IEA International Energy Agency
GHG Greenhouse gas
OECD Organisation for Economic Co-operation

and Development
VAR Vector auto-regressive
GARCH Generalized auto-regressive conditional

heteroskedasticity
VECM Vector error correction model
ECO WilderHill Clean Energy Index
PSE Arca Tech 100 index
WTI West Texas Intermediate
LECO Logarithmic prices of clean energy

stocks
LPSE Logarithmic prices of technology stocks
LOP Logarithmic crude oil spot prices ofWest

Texas Intermediate
IR Interest rate on the three-month Trea-

sury bill
DECO Identified dummy variable for clean en-

ergy stocks based on a structural break
DPSE Identified dummy variable for technol-

ogy stocks based on a structural break
DOP Identified dummy variable for crude oil

prices based on a structural break
DIR Identified dummy variable for interest

rate based on a structural break
PP Phillips and Perron test
ZA Zivot and Andrews test
SIC Schwarz information criterion
AIC Akaike information criterion

Along with the accelerated economic growth of emerging mar-
kets (e.g. China, Brazil, Turkey, and India), energy demand has
increased remarkably in recent years. Currently, a great majority
of global energy needs are still met from fossil fuels. However,
because these resources are depletable, investments in renewable
energy resources have increased strikingly. The renewable energy
investments have gained momentum since 2004 (Eyraud et al.,
2011; New Energy Finance, 2010). According to the International
Energy Agency’s (IEA) Medium-Term Renewable Market Report
2016, renewables are predicted to grow 13% more between 2015
and 2021 than between 2014 and 2020, which is supported by
strong policies in China, Mexico, India, and the United States.
However, not all renewable energy sources are considered as clean
energy sources. Clean energy includes energy sources that con-
tribute to a low carbon future and do not have adverse effects on
human health. There is a line of literature showing that consumers’
willingness to pay for green energy is positive (see Sundt and Re-
hdanz (2015) for a meta-analysis of this literature). The literature
on the links between oil and stock markets is also focusing more
on clean energy sources (e.g. Managi and Okimoto, 2013) as a
responsible investment. Kaminker and Stewart (2012) argue that
to meet the greenhouse gas (GHG) emission reduction targets of
the OECD, institutional investors must be involved more in clean
energy investments to meet the financing needs in the sector. One
way of meeting the financing gap is through the capital markets.
However, investors needmore information on the dynamics of the

stocks in this sector to make sound portfolio allocation decisions
and determine hedging strategies. The scientific literature on clean
energy stocks is recently emerging and there is an information gap
in this area.

Themain purpose of this study is to contribute to filling this gap
by studying the factors driving clean energy stock prices. Crude
oil is a major energy commodity that influences macroeconomic
variables and financial asset prices in general and the opportunity
cost of investments in alternative energy sources in particular.
Hence, we consider the oil price as a major factor and examine
the asymmetric linkages between oil prices and clean energy stock
prices. Although sustainability concerns make renewable energies
attractive, they require large initial investments that need to be
financed carefully. Therefore, alternative energy investments are
very sensitive to business cycles. The business cycle literature
indicates that interest rates play a key role in stock market valu-
ations (Sadorsky, 1999). Some studies provide evidence of strong
relationships between interest rates and clean energy stock prices
(Henriques and Sadorsky, 2008; Kumar et al., 2012). It could be also
argued that the high technology level is necessary for successful
clean energy projects (Kumar et al., 2012). Furthermore, investors’
perceptions of the stocks of clean energy and technology compa-
nies are very similar. (Henriques and Sadorsky, 2008; Kumar et al.,
2012; Managi and Okimoto, 2013). Based on these arguments, we
also take into consideration the interest rates and the stock prices
of technology companies to better capture variations in the stock
prices of clean energy companies due to oil price changes.

It is important to identify the transmissionmechanisms fromoil
prices and interest rates to clean energy stock prices. The effect of
oil price increases on the stock prices is expected to be negative
in the long-run through negative impacts on overall economy
while this effect varies depending on the source of oil price shocks
(e.g. oil-specific demand, aggregate demand, and oil supply shocks)
in the short-run (Kilian and Park, 2009; Smyth and Narayan, 2018).
On one hand, conventional wisdom suggests that an increase in oil
prices could lead to an increase in clean energy stock prices due to
substitution motives and speculative trader behavior in the short-
run. On the other hand, higher oil prices associatedwithworsening
economic conditions might result in a worse investment climate
for clean energy projects in the long-run. Therefore, it could be
argued that the substitution demand for clean energy is negatively
influenced by worsening economic conditions due to permanently
higher oil prices in the long-run. We test this argument in this
study.

Rising interest rates tend to coincide with increasing economic
growth (Mishkin, 2006; Henriques and Sadorsky, 2008). Due to a
greater increase in the supply of bonds than in the demand for
bonds during business cycle expansions, an increase in interest
rates is frequently observed in periods of high economic activity
(Mishkin, 2006). Hence, increasing interest rates due to faster eco-
nomic growth might motivate investors to change the weights of
sector stocks in an optimal portfolio. Namely, in a period of higher
interest rates associated with an expanding economy, investors
prefer to invest in sectors that benefit from increased economic
growth. Among these sectors, clean energy investments come to
the forefront as an important contributor to higher economic ac-
tivity. Therefore, we argue that the stock prices of clean energy
firms may tend to rise along with rising interest rates during
an expansionary period. Based on this argument, we investigate
whether the above economic mechanism holds or not.

Some traditional economics and finance theories are found to
be insufficient in explaining individuals’ economic and financial
decisions (Kahneman and Tversky, 1979). One possible reason is
the linearity assumption. Therefore, the nonlinear characteristics
of a significant majority of macroeconomic risk factors should
not be neglected in econometric research (Shin et al., 2014). The
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assumption of linear relationships in the short- and long-run in ad-
vance excessively restricts economic and financial analyses. Hence,
analyses using a linear model may lead to misleading results.
Several studies reveal that oil prices asymmetrically influence eco-
nomic activities (e.g. Mork, 1989). The negative impact of rising
oil prices on economic activity is significantly stronger than the
positive impact of declining oil prices on the economy. Asymmetric
impacts may also be subject to change during different phases
of the business cycle. The asymmetric behavior of market par-
ticipants towards risk could be strongly associated with business
cycle shocks (Acemoglu and Scott, 1997). Main macroeconomic
variables show an asymmetric behavior during different periods
of economic activity (Neftci, 1984; Kocaarslan et al., 2018). The
asymmetric effects also play a central role across global markets
(Ang and Bekaert, 2002). In this study, we consider nonlinear
interactions among the variables under consideration, which are
strongly influenced by business cycle fluctuations.

Previous studies have dedicated very little effort to investigat-
ing asymmetric linkages between oil prices, interest rates, and the
stock prices of clean energy and technology firms in the short-
and long-run. Among these studies, Managi and Okimoto (2013)
take into account asymmetric effects and structural changes using
Markov regime-switching VAR approach. In a similar study, Bondia
et al. (2016) criticize the methodology applied in the study of
Managi and Okimoto (2013) by questioning the appropriateness of
Johansen–Juselius methodology and alternatively employ thresh-
old cointegration approaches developed by Hatemi-j (2008) and
Gregory and Hansen (1996) and vector error correction model
(VECM). The choice of the regime-switching variables could be of
immense importance in the empirical investigations (Shin et al.,
2014). The use of nonlinear threshold vector error correctionmod-
els (VECM)may also lead to a convergence problemdue to the large
number of parameters involved. Moreover, the integration order
of the variables should be the same in the applications of these
models. In order to overcome these difficulties, we use a recent ap-
proach (nonlinear autoregressive distributed lag (NARDL) model)
introduced by Shin et al. (2014) to not only examine nonlinear
relationships but also to jointly model short- and long-run asym-
metries. Thismodel does not suffer from the problems listed above
and follows standard bounds testing procedure (Pesaran and Shin,
1998; Pesaran et al., 2001) to test long-run relationships between
the variables of interest regardless of the integration order of the
variables. Due to these advantages, recently, the NARDL method
has been used to make rigorous nonlinear analysis in various
studies in the energy literature (e.g. Tugcu and Topcu, 2018). Very
little is known about the direction, magnitude and significance
of asymmetric effects between oil prices, technology stock prices,
interest rates, and clean energy stock prices. The aim of this study
is to contribute to closing this gap. In this sense, this study differs
from the relevant literature and makes important contributions to
the discussion on the linkages between interest rates, oil prices,
technology stock prices, and clean energy stock prices.

This paper proceeds as follows. Section 2 briefly summarizes
the relevant literature. Section 3 includes the data sources and
characteristics. Section 4 introduces the empirical methodology.
Then, Section 5 presents empirical findings. We present a detailed
discussion on the implications of this paper in Section 6 and finally
conclude with main remarks in Section 7.

2. Literature review

There are a limited number of studies that examine the dynamic
relationship between oil prices and clean energy stock prices. Us-
ing a VAR (vector autoregressive) model, Henriques and Sadorsky
(2008) demonstrate that interest rates, oil prices, and technology
stock prices explain the variations in clean energy stock prices.

Furthermore, they show a positive and stronger impact of a shock
to technology stock prices on clean energy stock prices than a
shock to oil prices. Using a similar methodology to that adopted
by Henriques and Sadorsky (2008), Kumar et al. (2012) reveal
that the fluctuations in clean energy stock prices are captured by
past movements in technology stock prices, interest rates, and oil
prices, but, they do not find a significant relationship between
clean energy stock prices and carbon prices. Sadorsky (2012) esti-
matesmultivariate GARCHmodels and documents higher dynamic
correlations of clean energy stock prices with technology stock
prices than with oil prices. Managi and Okimoto (2013) report a
significant and positive impact of oil prices on clean energy stock
prices after structural break in late 2007 by applying Markov-
switching VAR (vector autoregressive) models.

More recently, employing the cointegration tests of Hatemi-
j (2008) and Gregory and Hansen (1996), Bondia et al. (2016)
conclude that clean energy stock prices are influenced by interest
rates, oil prices, and technology stock prices in the short run, but
not in the long-run. Dutta (2017) demonstrates the impact of oil
price uncertainty on the variance of clean energy stock returns.
Ahmad (2017) reports the importance of technology stocks in
influencing clean energy stocks by using the directional spillover
index approach developed by Diebold and Yilmaz (2012) and mul-
tivariate GARCH models.

As shown in the background literature, previous studies have
not jointly modeled short- and long-run asymmetries between the
stock prices of clean energy and technology companies, oil prices,
and interest rates. To fill this void, we use the NARDL model. As
explained in the introduction part, this model also has the ability
to overcome some difficulties that other nonlinear methods face.

3. Data sources and characteristics

We use the WilderHill Clean Energy Index (ECO) for clean en-
ergy stock prices which is a modified dollar weighted index of
clean energy stocks. It is a selective index of clean energy stocks.
In order to be included in this index, a company must either be
exposed to clean energy or contribute to advancing or develop-
ing clean energy.1 The Arca Tech 100 index (PSE) is used as a
proxy for technology stock prices. The PSE is composed of leading
firms from industries containing software, telecommunications,
computer hardware, aerospace and defense, semiconductors, elec-
tronics, biotechnology and healthcare equipment. ECO and PSE are
widely used indices to represent the stock prices of clean energy
and technology companies, respectively, in the related literature.
Following the literature, interest rates are represented by the yield
on a 3-month US Treasury bill and oil prices are measured as
the crude oil spot prices of the West Texas Intermediate (WTI).
All stock data (ECO and PSE) are sourced from Bloomberg and
the interest rate and oil price data are obtained from the Federal
Reserve Board of St. Louis. We use daily data and concentrate our
focus on the period between 2004 and 2018 as the great major-
ity of increases in renewable energy investments have occurred
since 2004 (Eyraud et al., 2011; New Energy Finance, 2010). Our
observation period spans from January 5, 2004 to January 18, 2018,
including 3502 observations.

Table 1 provides the descriptive statistics of the stock and oil
prices. The statistics demonstrate the non-normal and asymmetric
distributions of the time series. The logarithmic transformations
of the daily closing prices of the Arca Tech 100 index (PSE), the
WilderHill Clean Energy Index (ECO) and the West Texas Inter-
mediate (WTI) are used to reduce heteroscedasticity and non-
normality in the data for the empirical investigations (LPSE, LECO,

1 See more details about the ECO index at https://wildershares.com/about.php.

https://wildershares.com/about.php
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and, LOP henceforth). Unconditional correlation coefficients sug-
gest positive links between the daily returns of the ECO, PSE, and
WTI indexes, among which the strongest correlation appears to be
between the ECO and PSE (see Table 2). These findings are consis-
tent with the evidence presented by previous studies (e.g. Kumar
et al., 2012; Sadorsky, 2012).

The variables should be integrated of order 0 or 1, but not
2, to apply the linear and nonlinear ARDL models (Pesaran and
Shin, 1998; Pesaran et al., 2001; Shin et al., 2014). To investi-
gate the stationarity characteristics of the time series variables,
we conduct the unit root tests with and without an unknown
structural break accounting for intercept and both intercept and
trend. Phillips and Perron (1988) (PP) test is broadly used in the
literature. However, the findings of the PP test could be biased in
the presence of structural breaks in the time series (Perron, 1989;
Zivot and Andrews, 1992). Since energy and financialmarkets have
experienced global shocks during our sample period (e.g. global
financial crisis in 2008, the sharp decline of oil prices in 2014),
along with the PP test, we also use Zivot and Andrews (1992) (ZA)
unit root test allowing for an endogenously determined structural
break. Table 3 reports the unit root test results for the variables
analyzed. To better understand the stationarity characteristics of
the variables, the summarized test results for unit root are also
presented in Table 4. The structural breakpoints suggested by the
Zivot and Andrews (1992) (ZA) unit root tests are used to code and
create dummy variables for the empirical tests. The unit root tests
generally indicate similar results suggesting that the variables are
integrated of order 0 or 1. Hence, we can continue our analysis
using the ARDL and NARDL models without any hesitation.

4. Methodology

As explained in the introduction part, although some regime-
switching models take asymmetric effects into consideration they
are known to cause some difficulties in the estimation procedure.
The concept of ‘‘hidden cointegration’’ is developed by Granger
and Yoon (2002). In their study, it is argued that the cointegration
relationship could be identified between the negative and positive
components of the underlying factors. To investigate hidden coin-
tegration, Schorderet (2003) suggests an asymmetric cointegrating
regression model in which only one component of each series is
incorporated into the cointegration relationship. In a cornerstone
study, Shin et al. (2014) introduce a nonlinear ARDL framework,
which utilizes negative and positive partial sum decompositions of
the predetermined independent variables. This approach enables
us to easily detect asymmetric interactions between variables in
the short- and long-run.

We first consider the linear ARDLmodel. Following the bounds-
testing procedure (Pesaran and Shin, 1998; Pesaran et al., 2001),
the error correction representations of the linear ARDLmodels can
be represented as follows (Eqs. (1)–(4));

∆LECOt = µ+ α1LECOt−1 + α2LPSEt−1 + α3LOPt−1 + α4IRt−1

+

p−1∑
i=1

λ1∆LECOt−i +

q−1∑
i=0

λ2∆LPSEt−i

+

q−1∑
i=0

λ3∆LOPt−i +

q−1∑
i=0

λ4∆IRt−i + ψDECOt + εt (1)

∆LPSEt = µ+ α1LECOt−1 + α2LPSEt−1 + α3LOPt−1 + α4IRt−1

+

p−1∑
i=1

λ1∆LPSEt−i +

q−1∑
i=0

λ2∆LECOt−i

+

q−1∑
i=0

λ3∆LOPt−i +

q−1∑
i=0

λ4∆IRt−i + ψDPSEt + εt (2)

∆LOPt = µ+ α1LECOt−1 + α2LPSEt−1 + α3LOPt−1 + α4IRt−1

+

p−1∑
i=1

λ1∆LOPt−i +

q−1∑
i=0

λ2∆LPSEt−i

+

q−1∑
i=0

λ3∆LECOt−i +

q−1∑
i=0

λ4∆IRt−i + ψDOPt + εt (3)

∆IRt = µ+ α1LECOt−1 + α2LPSEt−1 + α3LOPt−1 + α4IRt−1

+

p−1∑
i=1

λ1∆IRt−i +

q−1∑
i=0

λ2∆LPSEt−i

+

q−1∑
i=0

λ3∆LOPt−i +

q−1∑
i=0

λ4∆LECOt−i + ψDIRt + εt (4)

The above regression equations are estimated to investigate
symmetric cointegration relationships between the variables.
LECO, LPSE, and LOP are the prices of clean energy and technology
stocks and oil prices in logarithms, respectively. IR is the interest
rate on the three-month Treasury bill. DECO, DPSE, DOP, and DIR
stand for the dummy variables which are created and coded based
on the structural break dates suggested by the Zivot and Andrews
(1992) (ZA) unit root tests for the dependent variables in the
relevant equations. The value of the dummy variable is 1 if the
period is after structural break time and 0 otherwise. The most
significant dummy variables are incorporated into the models
estimated. The ∆ denotes the first difference of variables. The
coefficient λj refers to the short-run coefficients of the model as
the αj represents the long-run coefficients for the variables with
j=1, 2, 3, 4. The F statistics are used to test the null hypothesis of
no cointegration, which is α1 = α2 = α3 = α4 = 0.

If the relationships between variables are not linear, the appli-
cation of the linear ARDL model may lead to drawing misleading
conclusions about the actual relationships. To overcome this po-
tential bias, we utilize an asymmetric ARDL (NARDL) model that
captures possible long- and short-run nonlinearities (Shin et al.,
2014). Following Shin et al. (2014), the below nonlinear long-run
cointegrating regression is considered;

yt = β+xT+
+ β−xt− + ut (5)

with yt and xt referring to LECOt , LPSEt , LOPt , and IRt . β+ and β−

represent the associated long-run parameters. xt is a k*1 vector of
regressors defined as xt=x0+xt++x−

t where x0 is the initial value.
The NARDL model employs the decomposition of the exogenous
variables into their negative andpositive partial sums for decreases
and increases as follows;

For positive partial sums; xt+ =

t∑
i=1

∆xi+ =

t∑
i=1

max(∆xi, 0) (6)

and for negative partial sums; xt− =

t∑
i=1

∆xi− =

t∑
i=1

min(∆xi, 0)

(7)

The extended version of the linear ARDL models including asym-
metries (NARDL) can be indicated as below (Eqs. (8)–(11));

∆LECOt = µ+ χLECOt−1 + ω1
+LPSEt−1

+
+ ω1

−LPSEt−1
−

+ ω2
+LOPt−1

+
+ ω2

−LOPt−1
−

+ ω3
+IRt−1

+
+ ω3

−IRt−1
−

+

p−1∑
i=1

τ∆LECOt−i +

q−1∑
i=0

φ1
+∆LPSEt−i

+
+

q−1∑
i=0

φ1
−∆LPSEt−i

−
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+

q−1∑
i=0

φ2
+∆LOPt−i

+
+

q−1∑
i=0

φ2
−∆LOPt−i

−
+

q−1∑
i=0

φ3
+∆IRt−i

+

+

q−1∑
i=0

φ3
−∆IRt−i

−
+ ψDECOt + εt (8)

∆LPSEt = µ+ χLPSEt−1 + ω1
+LECOt−1

+
+ ω1

−LECOt−1
−

+ ω2
+LOPt−1

+
+ ω2

−LOPt−1
−

+ ω3
+IRt−1

+
+ ω3

−IRt−1
−

+

p−1∑
i=1

τ∆LPSEt−i +

q−1∑
i=0

φ1
+∆LECOt−i

+
+

q−1∑
i=0

φ1
−∆LECOt−i

−

+

q−1∑
i=0

φ2
+∆LOPt−i

+
+

q−1∑
i=0

φ2
−∆LOPt−i

−
+

q−1∑
i=0

φ3
+∆IRt−i

+

+

q−1∑
i=0

φ3
−∆IRt−i

−
+ ψDPSEt + εt (9)

∆LOPt = µ+ χLOPt−1 + ω1
+LPSEt−1

+
+ ω1

−LPSEt−1
−

+ ω2
+LECOt−1

+
+ ω2

−LECOt−1
−

+ ω3
+IRt−1

+
+ ω3

−IRt−1
−

+

p−1∑
i=1

τ∆LOPt−i +

q−1∑
i=0

φ1
+∆LPSEt−i

+
+

q−1∑
i=0

φ1
−∆LPSEt−i

−

+

q−1∑
i=0

φ2
+∆LECOt−i

+
+

q−1∑
i=0

φ2
−∆LECOt−i

−
+

q−1∑
i=0

φ3
+∆IRt−i

+

+

q−1∑
i=0

φ3
−∆IRt−i

−
+ ψDOPt + εt (10)

∆IRt = µ+ χ IRt−1 + ω1
+LPSEt−1

+
+ ω1

−LPSEt−1
−

+ ω2
+LOPt−1

+
+ ω2

−LOPt−1
−

+ ω3
+LECOt−1

+
+ ω3

−LECOt−1
−

+

p−1∑
i=1

τ∆IRt−i +

q−1∑
i=0

φ1
+∆LPSEt−i

+
+

q−1∑
i=0

φ1
−∆LPSEt−i

−

+

q−1∑
i=0

φ2
+∆LOPt−i

+
+

q−1∑
i=0

φ2
−∆LOPt−i

−
+

q−1∑
i=0

φ3
+∆LECOt−i

+

+

q−1∑
i=0

φ3
−∆LECOt−i

−
+ ψDIRt + εt (11)

Similar to the linear model, initially, we employ the F-statistic
to test the null hypothesis of no asymmetric cointegration rela-
tionship that χ = ω1

+
= ω1

−
= ω2

+
= ω2

−
= ω3

+
=

ω3
− = 0. Then, employing the standard Wald test, the short- and

long-run symmetries are tested (Shin et al., 2014). To examine the
existence of long-run nonlinearities, we test the null hypothesis
of long-run symmetry that is β+

= β− where β+
= − ωj

+/ χ
and β−

= − ωj
−/ χ with j=1, 2, and 3. The presence of short-

run symmetry can be assessed by testing the null hypothesis that∑q−1
i=0 φk

+
=

∑q−1
i=0 φk

− with k = 1, 2, and 3. The findings provided
by these empirical investigations are discussed in the following
sections.

5. Empirical findings

In this section, we present the empirical test results obtained
from the linear and nonlinearmodels introduced above. In the first
step, we investigate the presence of symmetric and then asymmet-
ric cointegration relationships between the variables of interest
using the linear ARDL (Pesaran and Shin, 1998; Pesaran et al.,
2001) and nonlinear ARDL models (Shin et al., 2014), respectively.
We determine the optimal lag length in the unrestricted error
correction models (ARDL and NARDL models) using the Schwarz

information criterion (SIC).2 The maximum lag length is chosen as
twelve for the lagged levels of the variables. A series of stability and
diagnostic tests are applied to check the robustness of the ARDL
and NARDL models.3 We do not detect any significant departures
from standard assumptions except for heteroscedasticity problem.
To correct for heteroscedasticity leading to inefficient estimations
and thus to provide accurate estimates, we use Newey and West
(1987) standard errors with lags determined based on the SIC
criterion for the estimated coefficients from the models.

Table 5 provides the F-statistics testing the linear and nonlinear
cointegration relationships respectively, in Panel A and B. The
estimated F-statistics fail (do not fail) to reject the null hypothesis
of no cointegration relationship if the statistics are smaller (larger)
than the lower (upper) critical values. If the statistics fall between
lower and upper critical values the results are inconclusive. The F-
statistics reported in Panel A indicate the absence of linear cointe-
gration relationships between the variables.4 This finding leads to
the examination of asymmetric impacts via the NARDL approach.
Panel B presents the F-statistics testing the null hypothesis of no
asymmetric cointegration relationship. The results suggest nonlin-
ear cointegration relationships between the stock prices of clean
energy (LECO) and technology firms (LPSE) and other explanatory
variables. The overall evaluation shows that ignoring nonlinearity
may lead to wrong inferences about the real relationships among
the variables.

The LECO is significantly affected by the other variables in the
short- and long-run, as shown in Table 6. We also report the
summarized results for the impact of the determinants of clean
energy stock prices in Table 7, since one of the focal points of this
study is to examine these determinants.We find that the LPSE has a
positive and significant impact on the LECO in the short- and long-
run and this impact is asymmetric in the long-run. Namely, in the
long-run, a negative change in the LPSE has a greater impact on the
LECO, which leads to more decreases in the LECO than increases
sourcing from a positive change in the LPSE. The LOP is a signif-
icant and positive factor on the LECO in the short-run. However,
interestingly, the effect of the LOP on the LECO changes from being
positive and symmetric to being negative and asymmetric in the
long-run. An increase in the LOP has a larger negative effect on the
LECO than a positive effect on the LECO in response to a decrease
in the LOP in the long-run. The IR asymmetrically and positively
influences the LECO in the long-run in such a way that the larger
impact on the LECO is resulting from a positive change in the IR.

The effects of explanatory variables on the LPSE are indicated
in Table 8. The findings mainly demonstrate that the LECO has
positive and asymmetric effects on the LPSE in the short and long-
runs. The greatest impact on the LPSE is due to a negative change
in the LECO, which significantly decreases the LPSE, rather than a
positive change in the LECO leading to an increase in the LPSE in
the short-run. But, the opposite of this situation holds true in the
long-run.We do not find an asymmetric impact of LOP on the LPSE.
However, an increase in the LOP significantly and negatively affects
the LPSE in the short-run, but the size of this effect is relatively low.
The Wald test results also suggest the asymmetric effect of the IR
on the LPSE in the long run, but the coefficients are not statistically
significant. A decrease in the IR has a significant and negative, but
relatively small effect on the LPSE in the short-run. In the following
sections, we discuss the implications of our results mentioned in
this part and then conclude with highlights of the main findings
and further research directions.

2 We also employ Akaike information Criterion (AIC) to select the optimal
lag length for the cointegration tests and obtain similar findings regarding the
cointegrating relationships. The results are provided upon request.
3 The findings are available from authors upon request.
4 We also apply the Johansen and Juselius (JJ) (1990) cointegration test and do

not find cointegration between the variables of interest. This finding suggests that
the first set of results is robust. For brevity, the JJ cointegration test results are not
reported. The results are provided upon request.
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Table 1
Descriptive statistics (on stock data and oil prices).

ECO PSE OP

Mean 107.0399 1286.864 71.46862
Median 87.295 1043.56 69.215
Maximum 297.05 3031.23 145.31
Minimum 36.53 516.89 26.19
Std. Dev. 63.84746 583.3687 23.62898
Skewness 0.738268 0.854202 0.31371
Kurtosis 2.262455 2.604717 2.195263
Jarque–Bera 397.4958 448.6783 151.9367
Probability 0 0 0
Observations 3502 3502 3502

Notes: Table 1 presents the descriptive statistics of all stock data and oil prices
for the sample period. ECO, PSE, and OP represent clean energy stocks, technology
stocks, and oil prices respectively.

Table 2
Pairwise correlations between daily returns.

RECO RPSE ROP

RECO 1 0.799907476 0.326810398
RPSE 0.799907476 1 0.236169614
ROP 0.326810398 0.236169614 1

Notes: Table 2 presents daily return correlations between variables for the sample
period. RECO, RPSE, and ROP represent the daily returns of clean energy stocks,
technology stocks, and oil prices respectively.

6. Discussion

Ignoring the variety of market player reactions over different
phases of business cycles may lead to misleading inferences and
incorrect economic analysis. Identifying the asymmetric linkages
between interest rates, oil prices, and the stock prices of clean en-
ergy and technology firms is of great importance to reflect investor
behavior. Hence, the NARDL results are vital for risk management
andpolicy-making in energy and financialmarkets. Using theARDL
and NARDL models, we first examine the linear and nonlinear
cointegration relationships between the variables. Our findings
show the absence of linear cointegration relationships between the
variables and suggest a nonlinear link.

The NARDL results indicate the combined asymmetric effect
of explanatory variables on the stock prices of clean energy and
technology firms in both the short- and long-run. The results
demonstrate significant and positive effects of the LPSE on the
LECO in the short- and long-run and the magnitudes of these
effects are higher in the long-run than those in the short-run. This
result confirms the existing evidence that investors consider the
clean energy stocks to be like technology stocks. This impact can
be explained by the use of high technology in alternative energy
investments (Kumar et al., 2012). On the other hand, the larger
impact of the LPSE on the LECO is stemming from the negative

changes in the LPSE rather than the positive changes in the long-
run. To this respect, it could be argued that investors display more
pessimistic behaviors towards clean energy stocks depending on
the changes in the LPSE in the long-run.

As for the impacts of the LOP on the LECO, the results show
a significant and positive impact of the LOP on the LECO in the
short-run. This finding supports the argument that oil prices are
driving forces behind the increases in clean energy stock prices,
since clean energy is considered as a promising alternative to fossil
fuels. Conversely, the positive impact of the LOP on the LECO is
reversed in the long-run and this negative impact is stronger along
with oil price increases than the positive impact resulting from
the decreases in oil prices. In the short-run, the positive link is
probably due to speculative trader behavior in the asset markets.
Whereas, in the long-run, high oil prices suppress investments in
clean energy due to the increased opportunity cost of responsible
investment in the energy markets. On one hand, the increases
in oil prices considerably worsen economic activity due to the
negative effects on household income levels and firms’ production
costs. This distorts economic balance andultimately causes aworse
investment climate. On the other hand, renewable energy sources
are considered as the input for the economy (Sadorsky, 2012).
When one considers this economic mechanism, in the long-run,
one sees that an increase in oil prices negatively influences clean
energy stock prices against common belief. This implies that the
reason behind the short-run positive impact of oil price increases
on the LECO could be the speculative investments in clean energy
stocks. Also, the analysis of the asymmetric impact of the LOP on
the LECO, as in the impact of LPSE on the LECO, points out more
pessimistic behaviors of investors towards clean energy stocks in
the long-run based on the shifts in overall economic conditions
caused by oil price changes.

Interest rates play a central role in the economyand the linkages
among energy, stock, and bond markets are of key importance in
macroeconomic analysis. According to our results, the interest rate
(IR) has a strong, asymmetric and positive effect on the LECO in the
long-run. More clearly, a positive change in the IR has a greater
positive effect on the LECO than a negative effect on the LECO
stemming from a negative change in the IR. Mostly, rising inter-
est rates are strongly associated with increased economic growth
(Henriques and Sadorsky, 2008). As criticized by Milton Friedman,
other variables than interest rates in the economy are influenced
as a result of the increase in money supply, and thereby, interest
rates may rise rather than decline (Mishkin, 2006). In addition,
an increase in both the demand and supply in the bond market
is accompanied by increased economic activity and the resulting
increase in income. It appears that the supply of bonds significantly
increases during business cycle expansions and hence, the interest
rates increase in periods of high economic activity and decrease
during recessions (Mishkin, 2006). When considering the input
characteristics of clean energy investments for economic activity,

Table 3
Unit root tests without and with a structural break.

PP ZA Break PP ZA Break
Statistics Statistics Points Statistics Statistics Points

LECO Intercept −1.049483 −3.487134 [8/29/2008] Intercept −2.216675 −3.966749 [8/29/2008]
LPSE 0.439108 −4.196228 [11/01/2007] and Trend −1.865731 −4.678536 [8/18/2008]
LOP −2.548274 −4.595184∗ [9/29/2014] −2.533696 −4.105553 [9/29/2014]
IR −0.807374 −5.906256∗∗∗ [8/09/2007] −1.080239 −5.703241∗∗∗ [8/09/2007]

DLECO Intercept −57.00499∗∗∗
−14.13276∗∗∗ [12/27/2007] Intercept −56.99686∗∗∗

−14.14512∗∗∗ [3/10/2009]
DLPSE −63.50755∗∗∗

−13.00346∗∗∗ [3/10/2009] and Trend −63.54180∗∗∗
−13.14011∗∗∗ [11/21/2008]

DLOP −61.24003∗∗∗
−14.43560∗∗∗ [12/24/2008] −61.25179∗∗∗

−14.59973∗∗∗ [12/24/2008]
DIR −50.09753∗∗∗

−10.91984∗∗∗ [2/21/2007] −50.08845∗∗∗
−11.57379∗∗∗ [3/24/2008]

Notes: Table 3 provides the results of Phillips–Perron (PP) and Zivot–Andrews (ZA) tests used by this paper. D and L are the first differences and natural log operators,
respectively. Superscripts *, **, *** represent the significance at 10%, 5%, and 1% levels, respectively. Numbers in square brackets refer to the structural break dates suggested
by the Zivot–Andrews (ZA) tests.
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Table 4
Summarized test results for unit root.

PP ZA

Level First difference Level First difference

LECO Not stationary Stationary Not stationary Stationary
LPSE Not stationary Stationary Not stationary Stationary
LOP Not stationary Stationary Not stationary Stationary
IR Not stationary Stationary Stationary Stationary

Notes: Table 4 presents the stationarity characteristics of the variables at 1% significance level for the levels and first differences of the
variables. PP and ZA refer to the Phillips–Perron, and Zivot–Andrews unit root test results, respectively. LECO, LPSE, and LOP represent the
logarithmic prices of clean energy and technology stocks, and logarithmic crude oil spot prices of West Texas Intermediate, respectively.
IR is the interest rate on the three-month Treasury bill.

Table 5
Bounds testing procedure results.
Panel A. F-test results for the ARDL models Panel B. F-test results for the NARDL models

Cointegration hypotheses F stat. Cointegration hypotheses F stat.

F(LECOt /LPSEt , LOPt , IRt ) 0.855957 F(LECOt /LPSEt
+ , LPSEt

− , LOPt
+ , LOPt

− , IRt
+ , IRt

−) 4.584091∗∗∗

F(LPSEt /LECOt , LOPt , IRt ) 2.080296 F(LPSEt /LECOt
+ , LECOt

− , LOPt
+ , LOPt

− , IRt
+ , IRt

−) 7.078305∗∗∗

F(LOPt /LPSEt , LECOt , IRt ) 3.258601 F(LOPt /LPSEt
+ , LPSEt

− , LECOt
+ , LECOt

− , IRt
+ , IRt

−) 2.763848
F(IRt /LPSEt , LOPt , LECOt ) 2.860117 F(IRt /LPSEt

+ , LPSEt
− , LOPt

+ , LOPt
− , LECOt

+ , LECOt
−) 3.449311

Notes: Table 5 provides Bounds testing procedure results. For the ARDL models in Panel A, the critical values are 3.23–4.35 and 4.29–5.61
for 5%, and 1% significance levels, respectively. For the NARDLmodels in Panel B, the critical values are 2.45–3.61and 3.15–4.43 for 5%, and
1% significance levels, respectively. Superscript *** represents significance at 1% level. LECO, LPSE, and LOP represent the logarithmic prices
of clean energy and technology stocks, and logarithmic crude oil spot prices of West Texas Intermediate, respectively. IR is the interest
rate on the three-month Treasury bill.

Table 6
NARDL estimation results (Dependent variable: △LECOt ).
Panel A. Estimated coefficients (Adj. R2

= 0.671788)

EV Coefficient Robust Std. error t-statistic Prob.

C 0.040523 0.010421 3.888762 0.000
LECOt−1 −0.007767 0.002013 −3.858145 0.000
LPSEt−1

+ 0.018487 0.003514 5.260831 0.000
LPSEt−1

− 0.02134 0.004242 5.030547 0.000
LOPt−1

+
−0.003204 0.001353 −2.3682 0.018

LOPt−1
−

−0.002124 0.001043 −2.035364 0.042
IRt−1

+ 0.001798 0.00045 3.995277 0.000
IRt−1

− 0.000818 0.000288 2.842666 0.005
△LPSEt

+ 1.179029 0.050212 23.48079 0.000
△LPSEt−1

+ 0.230187 0.037769 6.094603 0.000
△LPSEt−2

+ 0.097013 0.037519 2.585678 0.010
△LPSEt

− 1.416551 0.053906 26.27823 0.000
△LOPt

+ 0.107487 0.017427 6.167836 0.000
△LOPt

− 0.128675 0.02398 5.365871 0.000
△IRt

+ 0.00917 0.008677 1.056895 0.291
△IRt

−
−0.006662 0.007526 −0.885224 0.376

DUM[3/10/2009] 0.003505 0.001602 2.188194 0.029

Panel B. Long-run coefficients and symmetry test results

LPSE+ 2.380198∗∗∗ LPSE− 2.747521∗∗∗

LOP+
−0.412514∗∗ LOP−

−0.273464∗∗

IR+ 0.231492∗∗∗ IR− 0.105317∗∗∗

WLR,LPSE 7.795751∗∗∗ WSR,LPSE 0.94643
WLR,LOP 5.859507∗∗ WSR,LOP 0.36761
WLR,IR 16.79228∗∗∗ WSR,IR 1.63714

Notes: EV denotes the explanatory variables. The Newey and West (1987) autocorrelation and heteroskedasticity robust standard errors
and t-statistics are presented. LECO, LPSE, and LOP represent the logarithmic prices of clean energy and technology stocks, and logarithmic
crude oil spot prices of West Texas Intermediate, respectively. IR is the interest rate on the three-month Treasury bill. The superscripts
‘‘+’’ and ‘‘−’’ refer to positive and negative partial sums, respectively. LPSE+ , LPSE− , LOP+ , LOP− , IR+ , and IR− are the estimated long-run
coefficients for the positive and negative changes of corresponding variables. WLR,LPSE , WLR,LOP , and WLR,IR refer to the standard Wald test
for the null of long-run symmetry for the corresponding variable. WSR,LPSE , WSR,LOP , and, WSR,IR refer to the standard Wald test for the null
of the additive short-run symmetry condition for the corresponding variable. DUM [3/10/2009]is a dummy variable for the structural break
date suggested by the Zivot and Andrews test (1992) for the dependent variable. Superscripts **, *** represent the significance at 5% and
1% levels, respectively.

this economic mechanism explains the reason why an increase in
interest rates strongly increases the clean energy stock prices.

Additionally, our results suggest that the LECO asymmetrically
and positively influences the LPSE in the short and long-runs.
More specifically, the larger effect on the LPSE is stemming from a
negative (positive) change in the LECO in the short-run (long-run).

The size of these impacts is greater in the short-run than that in

the long-run. The demand for technology products is considered as

a new desire of consumers (Sadorsky, 2012). In the short-run, the

greater negative impact on the LPSE sourcing from the decreases in

the LECO and negative impacts of oil price increases and interest
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Table 7
Summarized results for the impact of explanatory variables on clean energy stocks.
Explanatory variables The direction of the impact The characteristic of the relationship

In the short-run In the long-run In the short-run In the long-run

LPSE Positive Positive Not asymmetric Asymmetric
LOP Positive Negative Not asymmetric Asymmetric
IR Not significant Positive Not asymmetric Asymmetric

Notes: Table 7 reports the summarized results for the impact of the determinants of clean energy stock prices. LPSE and LOP represent the
logarithmic prices of technology stocks, and logarithmic crude oil spot prices of West Texas Intermediate, respectively. IR is the interest
rate on the three-month Treasury bill.

Table 8
NARDL estimation results (Dependent variable: △LPSEt ).
Panel A. Estimated coefficients (Adj. R2

= 0.659351)

EV Coefficient Robust Std. error t-statistic Prob.

C 0.104485 0.016171 6.461297 0.000
LPSEt−1 −0.015916 0.002478 −6.423132 0.000
LECOt−1

+ 0.00407 0.001065 3.82042 0.000
LECOt−1

− 0.002448 0.000873 2.805381 0.005
LOPt−1

+ 0.001004 0.000749 1.340231 0.180
LOPt−1

− 0.000857 0.000573 1.494483 0.135
IRt−1

+
−0.000418 0.000243 −1.720721 0.085

IRt−1
− 0.0000519 0.000163 0.318059 0.751

△LPSEt−1 −0.059036 0.020395 −2.894624 0.004
△LPSEt−2 −0.029525 0.012597 −2.343821 0.019
△LECOt

+ 0.423085 0.017896 23.64153 0.000
△LECOt−1

+
−0.054637 0.019592 −2.788802 0.005

△LECOt
− 0.524362 0.014957 35.05691 0.000

△LOPt
+

−0.025027 0.012074 −2.0728 0.038
△LOPt

−
−0.003249 0.014805 −0.219457 0.826

△IRt
+ 0.006322 0.004015 1.574694 0.115

△IRt
− 0.013701 0.005052 2.711851 0.007

DUM[11/21/2008]
−0.00331 0.001187 −2.788879 0.005

Panel B. Long-run coefficients and symmetry test results

LECO+ 0.255717∗∗∗ LECO− 0.153807∗∗∗

LOP+ 0.063081 LOP− 0.053845
IR+

−0.026262 IR− 0.00326
WLR,LECO 19.17257∗∗∗ WSR,LECO 23.38819∗∗∗

WLR,LOP 0.292875 WSR,LOP 0.925741
WLR,IR 11.46401∗∗∗ WSR,IR 1.038585

Notes: EV denotes the explanatory variables. The Newey and West (1987) autocorrelation and heteroskedasticity robust standard errors
and t-statistics are presented. LECO, LPSE, and LOP represent the logarithmic prices of clean energy and technology stocks, and logarithmic
crude oil spot prices of West Texas Intermediate, respectively. IR is the interest rate on the three-month Treasury bill. The superscripts
‘‘+’’ and ‘‘−’’ refer to positive and negative partial sums, respectively. LECO+ , LECO− , LOP+ , LOP− , IR+ , and IR− are the estimated long-run
coefficients for the positive and negative changes of corresponding variables. WLR,LECO , WLR,LOP , and WLR,IR refer to the standard Wald test
for the null of long-run symmetry for the corresponding variable. WSR,LECO , WSR,LOP , and, WSR,IR refer to the standardWald test for the null
of the additive short-run symmetry condition for the corresponding variable. DUM [11/21/2008] is a dummy variable for the structural break
date suggested by the Zivot and Andrews test (1992) for the dependent variable. Superscript *** represents the significance at 1% level.

rate decreases might be related to worsening economic circum-
stances influencing consumer demands. On the other hand, in the
long-run, the larger positive effect on the LPSE sourcing from the
increases in the LECO could be due to business cycle expansions.

7. Conclusions

Market players are experiencing complex and asymmetric re-
lationships in the energy and financial markets. Moreover, the
increased interest in energy markets is promoting policy-makers
and investors to further examine their investment and risk poten-
tial considering asymmetric linkages between energy and financial
assets. The exhaustion of fossil-based fuels turns policy-makers’ at-
tention to seeking alternative energy sources. In addition, recently,
there is increased interest in clean energy investments due to en-
vironmental issues. Previous studies demonstrate the considerable
effects of interest rates, oil and technology stock prices on the
clean energy stock prices. Following this line of research, our paper
examines the asymmetric effects between these variables using
the NARDL approach. Our study reveals that asymmetric impacts
play a central role in the dynamic relationships between clean
energy stocks and other factors. Furthermore, these impacts shift

considerably between the short- and long-runs in terms of both
magnitude and direction. This suggests that investors interpret
positive and negative signals differently both in the short- and
long-run. Sound economic policy decisions and risk management
strategies require information on asymmetric linkages between
financial and energy markets. In this regard, our NARDL findings
are of immense importance for the relevant market players, such
as policymakers, speculators, fund managers, and investors.

Our results point out that the increased investments in clean
energy stocks appear to be due to speculative attacks along with
an increase in oil prices in the short-run. On the other hand, clean
energy stocks are more vulnerable to business cycle fluctuations
in the long-run than in the short-run. This implies that investors
do not tend to invest in clean energy stocks during a period of low
economic activity. In order to be able to eliminate this perception
and push investment tendencies to clean energy stocks, it is neces-
sary to increase government subsidy for clean energy investments
and to raise public awareness about the destructive impacts of
fossil-based fuels on the environment such as climate change. Our
results emphasize that taking into account the expected direction
of changes (negative or positive) in macroeconomic conditions,
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policy-makers concerned about environmental issues should fol-
low more sensible and dynamic strategies in the short- and long-
run. Furthermore, they should promote the necessity of renew-
able and sustainable energy investments to better adjust the risk
exposure of clean energy stock portfolios in response to shifts in
macroeconomic fundamentals.

For future research, the asymmetric effects of interest rate,
oil, and technology stock prices on the stock prices of different
alternative energy sectors (e.g. wind, solar and etc.) might be
further analyzed. It would also be useful to simulate the short- and
long-run risk-return performance of different investment strate-
gies. Moreover, research investigating the asymmetric linkages
between clean energy stocks and macroeconomic fundamentals
in different developing and developed countries could illuminate
the potentials and problems in the financing of clean energy in-
vestments. This would help understand the vulnerability of clean
energy investments to variousmacroeconomic risks in these coun-
tries.

Appendix

See: Tables 1–8.
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