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Drilling thin oil layers regarding the high expenditures is always considered as the debate issue in
petroleum industries to invest. Oil rim reservoirs are one kind unconventional reservoirs which are
occupied with a strong aquifer and a big gas cap that provided complex conditions for producing reserve
oil. The purpose of this study is to simulate the six different injectivity scenarios for one of the Iranian’s
oilfield to select the optimum scenario which has the most oil production. In these injectivity scenarios,
different gas-oil ratios, water cut, and drilling new wells were considered in the simulator to compare
each of them in more detail. Consequently, scenario 6 has the optimum volume of field oil production
regarding the drilling of one horizontal well and three vertical well. That is to say that, horizontal wells due
to the higher contact with the thin oil layers have led to more oil production rate and it is recommended
to drill the wells in this type of reservoir horizontally.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

0il rim reservoirs are considered as one of the unconventional
reservoirs with the pay zone of fewer than 100 ft that is occupied
by a gas cap and an aquifer. In this type of reservoirs, the gas and
water coning phenomena are being considered as the debating
and challengeable issues especially in the production procedure.
According to the arrangement of gas cap layer on the oil layers,
the schematic of oil rim reservoirs is categorized as the pancake or
doughnut structure in which the mobility alteration between the
current phases in the system lead to mobilize the oil phase to the
production wells (Augustine et al., 2017; Cosmo and Fatoke, 2004;
Owolabi and Ogungbamigbe, 2017; Song et al., 2017; Tiefenthal,
1994; Tiong-Hui and Cheng, 2018; Zifei et al., 2018) (see Fig. 1).

In this types of reservoirs, the main purpose of field develop-
ment is to produce the maximum volume of reserves and subse-
quently achieving the optimum oil recovery factor with the mini-
mum expenditures. Providing this condition for oil rim reservoirs
with the huge gas cap and a strong aquifer might be challenging.
Therefore, to have a successful project in these reservoirs, it is
required to produce the maximum volume of reserve oil before
the construction of the gas cap above the oil layer. The mechanism
of production-injection of an oil rim reservoir is approximately
complex due to the percolation occurrence of three phase of oil,
water, and gas. The reason of this complexity is related to the
crude oil degassing, water injectivity, retrograde condensation

*  Corresponding author.
E-mail address: Afshin.Davarpanah@srbiau.ac.ir (A. Davarpanah).

https://doi.org/10.1016/j.egyr.2018.10.011

(Davarpanah, 2018; Davarpanah et al,, 2018; Mjaavatten et al.,
2006; Mohd Ismail et al.; Ogiriki et al., 2018; Ogolo et al., 2017;
Olabode et al., 2018; Siddhamshetty and Kwon, 2018). The prin-
cipal driving mechanisms of oil rim reservoirs are gas cap expan-
sion, solution gas expansion, and viscous withdrawal. Hence, the
equivalence of these mechanisms in the oil rim reservoirs would
be a significant parameter to stabilize the oil rim construction.
Reinjection of produced gas has caused to the pressure drop control
in the well, and other parts of the reservoir that this equivalence
is profoundly impacted by the strengthens of the aquifer, the
location, distance of proposed oil layer, and the well perforation.
Thereby, this equivalency has led to the oil stabilize and avoided
its mobilization (Augustine et al., 2017; Cosmo and Fatoke, 2004;
Elmsallati et al., 2005; Fernie et al., 2018; Ferrero et al., 2017;
Fouzdar et al.,, 2017; Lawal et al,, 2010; Mammadov et al., 2017;
Masoudi et al., 2013; Razmjoo et al., 2017).

Despite the challenging circumstances of oil rim reservoirs and
unprofitable economic climate of these reservoirs, there are few
studies to investigate and analyze the recovery techniques in oil
reservoirs. The main objective of this study is to propose six dif-
ferent simulated injectivity scenarios with ECLIPSE simulator with
different conditions to choose the optimum scenario before per-
forming the drilling operations. Thereby, drilling newer wells espe-
cially horizontal wells would prefer for this type of unconventional
reservoirs because the drilled wells have higher contact with the oil
layers.

2352-4847/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
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Fig. 1. Schematic of two ideal types of oil rim reservoirs (Lawal et al., 2010).

Table 1
Petrophysical properties of the reservoir.

Petrophysics property

Average initial value

Initial reservoir pressure (bar) 2147
Reservoir temperature (°F) 140
Formation compressibility (bar~!) 3E-05
Average water saturation (%) 52
Bubble point pressure (bar) 1921
Gas gravity 0.91
Oil gravity 0.82
Reservoir water pressure (bar) 2367

2. Reservoir characteristics

The oil rim reservoir which is taken into consideration in this
simulation is located in the southwest of Iran with the height
of 30 km and the longitudinal weight of 10 km. According to
the National Iranian Oil Company datasheet, the crude oil of this
reservoir is considered as light crude oil with the API number of
more than 40 °API. Moreover, the average initial temperature and
pressure of this reservoir is 141 °F and 2147 bar respectively at the
datum depth of 600 m. Petrophysical properties of the reservoir
are statistically explained in Table 1. To be more accurate, all
of the petrophysical properties of the reservoir were taken into
the average value to eliminate the discrepancies of the reservoir
virtually.

Regarding the evaluations of petrophysical logs, perforation
circumstances, and the history matching of production wells, oil-
water contact is measured about 370 m under the surface. Frac-
tures dispersion of the rock is being modeled in ECLIPSE by the
surrounding circular technique to distinguish the types of fractures
which are clearly illustrated the reservoir permeability in each
section. The schematic of fractures dispersion in the studied field
is depicted in Fig. 2.

Moderate Fracture -
No Effective Fracture

High Fracture

Fig. 2. Fracture dispersion in the studied field.

3. Simulation analysis by ECLIPSE software

Due to the petrophysical properties of the studied oilfield, a
black oil model was defined in the ECLIPSE 100 software to com-
pare the six injectivity scenarios. The Static model of the field along
is depicted in Fig. 3. In this model, the volume of primary gas was
assumed of 700000 million cubic feet and 600 million barrels of
oil. After the construction of the geological model in the software,
a network with the dimensions of NX = 17, NY = 10, and NZ = 23
with the total cells of 3910 was defined in the software (each cell in
the network mesh has the approximate dimension of 400*700 m.
Regarding the reservoir fractures, the proposed model should be
defined as the dual porosity model in which the fracture properties
were defined separately in the software. In respect of the way, the
constructed model has contained 4,6 layers (layers 23-46 were
related to the fractures), and the total number of cells is equal to
7820 cells.
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Fig. 3. The static model of the studied field.

PVTi module is used to analyze the petrophysical properties of
the reservoir such as relative permeability by the administration
of Corey correlation. The relative permeability curves of water—
oil contact and gas-oil contact for each injectivity scenario are
schematically plotted in Figs. 4 and 5. As can be seen in Fig. 4, when
oil and water were in contact in the reservoir condition, the relative
permeability of the oil phase had the maximum value in the low
water saturation, and it had decreased gradually by the increase
of water saturation. It had reached zero in the water saturation
of 75-80, and it is the evidence of no oil production in this stage.
Thereby, it is witnessed that in the lower water saturation, oil
droplets could be able to mobilize more in the reservoir and caused
to higher relative permeabilities. According to the results of Fig. 4,
the relative water permeability had a reserved pattern rather than
oil relative permeability. Therefore, water relative permeability
was about zero in the lower water saturation. Since then, it had
increased dramatically in the water saturation of 50-75 percent.
As a result, the higher water relative permeability had caused to
higher production of water which is of elaborated as the lower oil
production. Relative permeabilities in the contact of oil-gas phase
is alittle different with water-oil contact. As it can be seen in Fig. 5,
oil relative permeability was about zero up to reaching the water
saturation to the 80 percent. Next, it had increased by the rise
of water saturation for each well up to reach a stable oil relative
permeability to 0.6. On the other hand, gas relative permeability
had witnessed a diverse pattern than oil relative permeability. It
has its maximum value in the lower water saturation (it is about
0.15), and after that, it had been decreased gradually by the rise of
water saturation. Thereby, in the higher water saturation, the gas
relative permeability had reached zero.

3.1. History matching

In this study, by simulating different injectivity models, we
try to adopt the simulated models with the real field data. In
respect of the way, by the alteration of matching parameters in the
acceptable limit and fix them in the simulator, the oil production
history and field pressure are being modeled for well number 1.
These parameters contain fracture transfer coefficient, DZMATRIX,
porosity, SIGMA, and absolute permeability. The logical limits for
the history matching are as the following assumptions;

e The acceptable pressures for the matching would be differen-
tiated in the range of 50 psia lower or higher the actual field
pressure.

e Adaptation of field oil production rate and simulated oil pro-
duction rate should be in a good agreement to estimate the
plans properly.

e The water quality in the field conditions and the simulator
would be approximately in a good agreement.

History matching was done for the well no. 1in this field to validate
the simulation results with the experimental observations. As it is
evident in Fig. 6, in the first years of production from the reservoir,
the oil production rate had fluctuated sequentially, and it was
approximately stabilized in the year 1993. This stabilization was
about three years, and it was decreased in the upcoming years. It
was reached a plateau; it was about 2000 STB/Day. According to
the simulation and experimental results, the history matching had
shown a good agreement with them. Thereby, the good agreement
with both techniques corresponded to the accuracy of the simu-
lated model.

Pressure drop for this well is not changing enough; it had
decreased gradually in 14 years. It was decreased about 100 bar
in the production period. According to the simulated results and
experimental observations, real field pressures fluctuated a bit
slow in this period, and the adaptation of these pressure values
illustrate the accuracy of the simulated model. It is schematically
plotted in Fig. 7.

Filed water cut is plotted in Fig. 8 to compare with field oil
production rate. As it is evident, in the first years of production,
the water cut is high enough which might be caused by a strong
aquifer. It had the maximum value of 0.045 in the year 1992. Since
then, it has decreased dramatically in the next two years to reach
the zero. After that, it was increased drastically between the years
1994-1998 which might be caused by the water flooding in this
period. Next, it gradually rose in the following years. Therefore,
it is clear that in this well, the rate of water cut is high enough
which should be taken into consideration to propose this issue in
the simulated performances.

4. Result and discussion

Injectivity scenarios were included five scenarios with different
conditions to provide a comparative analysis with them and choose
the optimum characteristics. The following assumptions were con-
sidered in the simulator to calculate the field oil production rate
(FOPR), field gas production rate (FGPR), field water production
rate (FWPR), and pressure drop. Oil productivity rate for all the
injectivity scenarios are assumed 4000 STB/Day, and there were
three production wells was considered for all the scenarios in the
simulator. Other parameters for each scenario are explained in
more detail in the following assumptions;

e Scenario one; gas-oil ratio (henceforth; GOR) was 850 SCF
/STB, the water cut was 10%, and there is no new drilled
vertical well.

e Scenario two; GOR = 1050 SCF/STB, the water cut was 10%,
and there is no new drilled vertical well.

e Scenario three; GOR = 1050 SCF/STB, the water cut was 10%,
and there is one new drilled vertical well.

e Scenario four; GOR = 1050 SCF/STB, the water cut was 26%,
and there is one new drilled vertical well.

e Scenario five; GOR = 1050 SCF/STB, water cut was 26%, and
there are two new drilled vertical wells.

e Scenario six; GOR = 1050 SCF/STB, water cut was 26%, and
there are three new drilled vertical wells and one horizontal
well.

4.1. Comparative analysis of FOPR

The simulation procedure was started in 2001 for the six
decades of production. As it is evident in Fig. 9, in the first decade of
injection (2001-2010), there is a sharp increase in the field oil pro-
duction rate which is regarded as the sequential injection of water
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Fig. 6. History matching of field oil production rate.

flooding and gas flooding in this decade. However, the maximum
oil production in the sequential injection of water flooding and gas
flooding processes was about 9350 STB/Day for all the scenarios;
the oil production rate was decreased in the upcoming decades.

Due to the alteration of injectivity parameters in the simulator,
there is not a significant rise in the oil production for scenario
1 and 2. It had reached its minimum value in the last decades
of injectivity. In scenarios 3-5, regarding the drilling new wells,
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the simulated wells had experienced a gradual decrease in the
next decades which was indicated the considerable influence of
newly drilled wells on the oil production. Thereby, among injec-
tivity scenarios of 3-5, scenario five due to the number of newly
drilled wells had provided more oil production volume in the
upcoming decades and had decreased less. In the step of injectivity
performances, a new horizontal well was added in the simulation
processes in the length of 2075 ft. Horizontal wells regarding their
higher contacts with the oil layers were provided the more oil
production. Thereby, in comparison with other scenarios, drilling
horizontal wells would cause to the more oil production rate, and
scenario six was considered as the optimum scenario especially for
oil rim reservoirs that has thin oil layers.

4.2. Comparative analysis of FGOR and FWCT

The production of the gas phase is inevitable in the recovery
processes due to the high mobility of gas in the pores than oil.
As can be seen in Fig. 10, for all the injectivity scenarios, in the
first decade of production (2001-2010), the gas-oil ratio had an
extremely low volume which was negligible. It has risen dramat-
ically in the next decade and reached its maximum value of 0.85
MSCF/STB which might be caused by the sequential injection of
water and gas in the reservoir. Next, it had fluctuated for three
decades. Thereby, drilling new wells have caused a lower gradual

decrease in the FGOR in the injectivity scenarios of 3-6. Further-
more, the field water cut for each scenario was schematically
shown in Fig. 11.

4.3. Pressure drop

By passing the production time in the recovery procedures,
pressure has been decreased; in the first decades of production, the
pressure value had a stable pattern and did not have a significant
decline. After that, it had decreased slightly for all the injectivity
scenarios, but this phenomenon is a bit slowly for scenario 5 and
six regarding the drilling newer wells which provides less pressure
drop rather than other scenarios. It is shown in Fig. 12.

5. Conclusions

Enhanced oil recovery of unconventional reservoirs such as
oil rim reservoirs has always considered as the main concerns of
petroleum industries regarding the small thickness of oil layers
in which some of these reservoirs were abandoned due to the
less economic prosperity of oil rim reservoirs. The purpose of this
study is to simulate six different injectivity scenarios for one of
the oil rim reservoirs to compare each scenario and select the
optimum scenario. According to the results of this study, scenario
six regarding the drilling of one horizontal well which has caused
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Fig. 12. Simulated field pressure ratio versus time.

to have more contact with the oil layers and three vertical wells
had the most field oil production rate and preferred for the future
drilling operations.
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