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Abstract

Lockdown and vaccination policies have been the major concern in the last
year in order to contain the SARS-CoV-2 infection during the COVID-19 pan-
demic. In this paper we present a model able to evaluate alternative lockdown
policies and vaccination strategies. Our approach integrates and re�nes the
multiscale model proposed by Bellomo et al., 2020, analyzing alternative net-
work structures and bridging two perspectives to study complexity of living
systems. Inside di�erent matrices of contacts we explore the impact of closures
of distinct nodes upon the overall contagion dynamics. Social distancing is
shown to be more e�ective when targeting the reduction of contacts among
and inside the most vulnerable nodes, namely hospitals/nursing homes. More-
over, our results suggest that school closures alone would not signi�cantly a�ect
the infection dynamics and the number of deaths in the population. Finally, we
investigate a scenario with immunization in order to understand the e�ective-
ness of targeted vaccination policies towards the most vulnerable individuals.
Our model agrees with the current proposed vaccination strategy prioritising
the most vulnerable segment of the population to reduce deaths.

Keywords: pandemic; COVID-19; epidemiological models; kinetic theory;
active particles; spatial patterns; networks; vaccination; health policies

AMS Subject Classi�cation: 92C60, 92D30
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1 Introduction

Although the use of SIR type models has been widely adopted by policy makers
[1, 2, 3] in order to obtain predictions about COVID-19 spreading, a severe res-
piratory syndrome caused by a new coronavirus (SARS-CoV-2), many limitations
have been acknowledged to this simple modelling approach, particularly regarding
the role of heterogeneity, which has been shown to signi�cantly a�ect disease trans-
mission and control. Although the in�uence of age a�ecting death probability in a
population is often assumed, only few modeling frameworks are currently able to
include heterogeneity via social networks structures, see e.g., [23, 25, 28].

In this paper, using a multiscale network-based model of contagion dynamics, we
explore the role of heterogeneity in shaping and unfolding the overall di�usion pro-
cess of COVID-19 epidemic. An extensive simulation analysis considering di�erent
social network structures is performed to investigate the impact of social interac-
tions during the pandemic. Results are compared addressing the e�ectiveness of
social distancing policies. The impact of an immunization strategy is also investi-
gated to understand the e�ectiveness of the current COVID-19 vaccination protocols
prioritising the most vulnerable individuals.

The model is able to account for two forms of heterogeneity, namely between-individual
heterogeneity in virus transmission on the basis of individual attributes in�uenc-
ing the epidemic growth, and social-structure heterogeneity, introducing alternative
forms of networks in�uencing the contact dynamics as well as di�erent structured
nodes within which contacts occur, namely schools, hospitals/nursing homes, work-
places and households. In so doing, we explicitly model the two crucial factors
a�ecting the reproduction number of the epidemic, hence the most sought informa-
tion by policy-makers during COVID-19 crisis, contagion, i.e., between-individual
virus transmission, and contact, i.e, the social structure interaction of individuals in
a population.

Methodologically, we make a bridge between two di�erent approaches to model
complex behaviour in living systems. The �rst approach is the kinetic theory of
active particles (KTAP thereafter) [11] which allows to model macroscopic states as
the result of multi-level interactions occurring at microscopic states, going from the
relationship between the virus and the immunological system (within-host dynamics)
toward the population dynamics (between-host dynamics). The KTAP approach
has been successfully employed to innovatively model the contagion dynamics of
the COVID-19 spreading [10, 12]. The second approach is the complex system
analysis of social networks which has seen in the last decades an increasing number
of studies documenting the network properties of social relationships, quite far away
from homogenous distributions, and in general characterised by repeated, structured
and clustered contacts [33]. Both approaches share the view of biological and social
organizations as complex systems, often evolving, and indeed provide many common
interpretations of real world phenomena.

Simulation-based results of the developed model support the role played by net-
work structure in a�ecting the social distancing policies implemented during the
pandemic. In particular, comparing random, scale-free and small-world graphs, we
study the dynamics of contacts occurring among the four di�erent types of nodes
above mentioned, each of them characterized by di�erent size, immunity of the pop-
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ulation and probability of contacts with other nodes. The dynamics of the epidemic
is studied with reference to crucial parameters in�uencing the network structure and
connectivity, mainly the wiring probability and the degree (number of contacts).

Inside alternative contact matrices we study the impact of closures of di�erent
nodes upon the overall contagion dynamics. As we shall show, social distancing
is more e�ective when targeting the reduction of contacts among and within the
most vulnerable nodes, namely hospitals/nursing homes. On the other hand, school
closures do not appear to be the most e�ective policy measure, not a�ecting sig-
ni�cantly the reduction of deaths in the population. Finally, we experiment with a
set-up on immunization in order to understand the e�ectiveness of targeted vacci-
nation policies towards the most vulnerable individuals. According to our model,
vaccinating �rst the most vulnerable segment of the population has an important
role to reduce deaths in the population.

The paper is structured as follows. Section 2 discusses the two modelling ap-
proaches integrated in this paper. Section 3 presents the model and its dynamics,
and Section 4 presents simulation results on social distancing and vaccinations. The
last section concludes this work.

2 KTAP and complex networks

The kinetic theory of active particles [9] represents a powerful avenue to formalize
processes of contagion and progression of infections. This approach shares with
the classical kinetic theory [13] the representation of a large system of interacting
entities by a probability distribution function over their individual state, e.g., at the
microscopic scale. The dynamics is obtained by equating the time derivative of the
probability distribution to the di�erence between the inlet and the outlet �ux in an
elementary volume of the space of the microscopic states.

Refs. [5, 11] present an overview of the applications and covered domains in
which the KTAP has been employed, ranging from socio-economic systems [4, 17]
to models of mutating virus [16] and bacterial antibiotic resistance [27]. Unlike
the standard kinetic theory [13], the microscopic state is not only identi�ed by the
position and velocity of the particles, but it also includes a vector of additional
variables, called activity, which models the forms of interactions. The whole sys-
tem can be subdivided into groups of interest called functional subsystems, in short,
FSs. Additionally, interactions, which in the classical kinetic theory are governed by
basic principles of classical mechanics, in the active particles (in short a-particles)
approach are modelled by stochastic interactions, wherein actors/agents are iden-
ti�ed by probability distributions. In so doing, interactions do not simply involve
individual entities but also collections of them.

Irreversibility of the interaction processes and potential state-dependent param-
eters fuel the non-linear nature of the approach, increasing the level of complexity
and calling for a computational analysis. Indeed, diverse types of behaviors of agents
and more generally system complexity [6] might be appropriately modelled.

In the following, inspired by [9], our mathematical derivation will avoid mean-
�eld approximations to let extreme behaviors emerge. Complementary but di�erent
approaches closer to a kinetic theory allowing for Boltzmann and Fokker-Plank equa-
tions are in [20, 32], while mathematical tools of statistical-stochastic dynamics are
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in [22].
The sequential steps of the derivation of the model include:

(1) Representation of the functional subsystems involved in the dynamics, where
FSs are constituted by active particles, and where each FS expresses one or more
functions de�ned as activities.

(2) Derivation of a mathematical structure suitable to describe the dynamics of the
dependent variables derived in the �rst step.

(3) Speci�cation of individual interactions by inserting them into the general math-
ematical structure derived in the second step.

From the KTAP approach to complex networks, the extensive review in [33]
discusses the advances made in integrating classic mathematical models of epidemic
spreading (SIR or SIS types) with complex networks.

As acknowledged by the authors such research path gave origin to a long se-
ries of results and modelling techniques quite scattered among di�erent disciplines.
In summary, the integration of epidemic models with network structures has been
systematized in three di�erent approaches.

Individual-based mean-�eld (IBMF) whose basic idea is to build evolution equa-
tions for the probability of a given individual (node) to belong to a given com-
partment, assuming independence from the state of each node with respect to its
own neighbourhood. The method is akin to mean-�eld theory assuming factoriza-
tion between probabilities and it has been mainly used to �nd solutions in static
networks.

To study the evolution of dynamical processes on networks it has been employed
the Degree-based mean-�eld (DBMF) which instead of working at the individual
level, it assumes that all nodes of the same degree are statistically equivalent, there-
fore variables are speci�ed at the degree and not at the individual level. The ap-
proach deals with the probability that a given individual with a given node degree
belongs to a given compartment. In this case, the adjacency matrix is not expressed
in terms of individual contacts, but rather in terms of average contacts among nodes
of di�erent degrees. The approach is used to describe processes of epidemic di�u-
sion occurring at a lower time scale than interaction dynamics, as in this case, the
network, although maintaining its distribution is always rewired.

The third approach is the Generating function which is used to describe a prob-
lem of percolation inside a network. In this case the link between two nodes depends
on the probability of transmission of the disease from one infectious node to a sus-
ceptible one. It therefore nests contagion and contact in the same probability.

Although advancing with respect to homogenous SIS/SIR models, such types of
modelling attempts mainly make heterogeneous the transition probability of belong-
ing to each of the compartment, or alternatively link the creation of the network
structure with the propagation of the virus.

Compared to the extant modelling approaches, the following model presents
many di�erent characteristics:

• The model completely detaches the process of virus propagation from

the structure of interactions among individuals.
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• The propagation of infection is based on entity-level di�erential equations
which de�ne endogenous transition probabilities di�erent across entities.

• The dynamics of contagion is then nested into the dynamics of complex net-
works, which dynamically evolve.

• The model entails alternative micro-meso-macro levels of interactions:

� within-host (virus vs antibodies),

� between-individual (di�erent functional subsystems),

� within-node, whereby nodes represent di�erent structures/places, and not
individuals,

� between-node, whereby each node is linked to neighbours on the basis of
the underlying network structure,

� population level dynamics in terms of overall number of infected, recov-
ered, susceptible, deceased cases.

Given that the characterization of each node is not in terms of single individ-
uals but rather in terms of populations/places, and considering that each node is
populated by individuals (particles) which can move connecting two nodes of the
network, our model is more akin to a particle-network metapopulation approach.
This framework considers that particles inside each given node may react according
to speci�c mechanisms, while across nodes di�use creating edges depending on the
attributes of the nodes, mainly degree. This representation makes the whole system
of epidemic spreading similar to a reaction-di�usion model. When applied to SIR, it
has been shown that metapopulation models present threshold points in determin-
ing the outbreak of the epidemic, also labelled invasion threshold depending on the
mobility between nodes [38].

3 The mathematical model

Let us consider a population of spatially homogeneous distributed individuals. Each
individual can belong, at each time t, to one of the following compartments or FSs:
susceptible (S-FS), infected (I-FS), recovered (R-FS) or deceased (D-FS). The S-FS
is assumed to have only an outlet �ow (into the I-FS), while R-FS and D-FS have
only an inlet �ow (from I-FS), i.e., we assume that recovered individuals get a long
lasting immunity and remain in that compartment, as schematized in Fig. 1.

The micro-state of every individual is described by a variable w ∈ [0, 1] cor-
responding to the level of activation of the immune defence. It is convenient to
discretize into a set

w = {w1 = 0, . . . , wk =
k − 1

n− 1
, . . . , wn = 1},

such that n risk groups (e.g., according to age or presence of co-morbidities) are
considered. In this way, w1 = 0 and wn = 1 correspond, respectively, to the lowest
and highest immune system activation.
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Figure 1: Susceptible individuals can get infected with an infection rate αk, entering
to the infected compartment with state u2. Then, competitive interactions between
the virus that proliferates with rate β towards more aggressive states and the im-
mune system which acts with rate γ may end up with a transition into the R or D
compartments.

In addition, within the I-FS individuals are also characterized by a variable
u ∈ [0, 1] representing the level of progression of the viral infection (e.g., from mild
to severe). If m possible states are considered, we have

u = {u1 = 0, . . . , up =
p− 1

m− 1
, . . . , um = 1}.

Here, if an individual reaches the state u1 = 0 we assume that it is recovered from
the infection (transition into R), while reaching the state um = 1 implies a decease
(transition into D).

The representation of the system is given by the following distribution functions:

- fkS(t) is the probability to �nd, at time t, a susceptible individual with micro-
state wk. Susceptible population at time t, fS(t), is simply computed by the
zero-th order moment

∑n
k=1 f

k
S(t).

- fp,kI (t) is the probability to �nd, at time t, an infected individual with micro-

state (up, wk). Prevalence at time t is given by fI(t) =
∑n

k=1

∑m−1
p=2 f

p,k
I (t).

- fkR(t) is the probability to �nd, at time t, a recovered individual with micro-
state wk. The cumulative recovered population, fR(t), is simply computed by
the sum

∑n
k=1 f

k
R(t).

- fkD(t) is the probability to �nd, at time t, a deceased individual with micro-
state wk. As for the recovered, the cumulative deceased population fD(t) is
given by

∑n
k=1 f

k
D(t).

The system of equations representing the evolution of the distribution functions,
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whose derivation can be followed in details in [10], is given by

d

dt
fkS(t) = −

n∑
l=1

m−1∑
q=2

αk uq f
k
S(t) f

q,l
I (t),

d

dt
fp,kI (t) =

n∑
l=1

m−1∑
q=2

αk up f
k
S(t) f

q,l
I (t) δ2p + βup−1 f

p−1,k
I (t)

+ γ wk f
p+1,k
I (t)− β up fp,kI (t)− γ wk f

p,k
I (t),

d

dt
fR(t) = γ

n∑
k=1

wk f
2,k
I (t),

d

dt
fD(t) = β um−1

n∑
k=1

fm−1,k
I (t),

(1)

where for (1)1 one has k = 1, . . . , n, while for (1)2 one has p = 2, . . . ,m − 1 and
k = 1, . . . , n. Equation (1)1 describes the infection of susceptible individuals due
to interactions with infected ones. Equation (1)2 describes the dynamics within the
infected population. The factor δ2p denotes a Kronecker delta function, meaning that
the entry state immediately upon infection is u2, and from that state a competitive
interaction between viral particles and the immune system begins, as illustrated in
Fig. 1. Then, Eqs. (1)3 and (1)4 give the inlet �ows into recovered and deceased
classes, respectively, as a result of the afore mentioned competitive interactions.
Regarding model parameters, αk is the infection rate of individuals with micro-state
wk, β is the viral progression rate and γ the immune action rate towards recovery.

3.1 Network structure

Let us now consider that the dynamics described above takes place within several
nodes of an undirected weighted network G = (V,E), where V is a set of N nodes
and E is a set of edges joining some pairs of nodes. Let A = [aij ]i,j=1...,N be the
adjacency matrix of G, such that its elements indicate whether pairs of vertices are
linked or not. The entries of the adjacency matrix are equal to zero if there is no edge
linking nodes i and j, while they are positive if i and j are linked through an edge.
The existence of a link between two nodes implies that the epidemic may spread with
positive probability from one to the other. We make the following assumptions:

• Entries aij ∈ [0, 1] weigh the �intensity� of the interaction between nodes i and
j.

• Within each node there is a subpopulation of individuals belonging to one of
the classes S, I, R or D.

• To keep the model as a generalization of the one presented above, there is
an edge connecting each node to itself, namely a self-loop. Let aii = 1 for
i = 1, . . . , N .

• The network is undirected. Consequently, A is symmetric.
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Let fkiS , f
p,k
iI , fiR and fiD denote the distribution functions of susceptible, in-

fected, recovered and deceased individuals within node i, for i = 1, . . . , N , k =
1, . . . , n and p = 1, . . . ,m. The system (1) can be now formulated for the entire
network as follows:



d

dt
fkiS(t) = −

N∑
j=1

n∑
l=1

m−1∑
q=2

aij α
k
i uq f

k
iS(t) f

q,l
jI (t),

d

dt
fp,kiI (t) =

N∑
j=1

n∑
l=1

m−1∑
q=2

aij α
k
i up f

k
iS(t) f

p,l
jI (t) δ2p + βup−1 f

p−1,k
iI (t)

+ γ wk f
p+1,k
iI (t)− β up fp,kiI (t)− γ wk f

p,k
iI (t),

d

dt
fiR(t) = γ

n∑
k=1

wk f
2,k
iI (t),

d

dt
fiD(t) = β um−1

n∑
k=1

fm−1,k
iI (t),

(2)

where αk
i is the contagion rate of individuals with state wk within node i.

Model parameters and variables are summarized in Table 1 to bear in mind the
notation.

Parameter Meaning

n Number of immune states

Iw = {w1, . . . , wk, . . . wl, . . . , wn} Immune states

m Number of states of viral progression

Iu = {u1, . . . , up, . . . uq, . . . , um} Viral progression states

N Network size

A = [aij ] Adjacency matrix

αk
i Infection rate for individuals with state wk within node i

β Disease progression rate

γ Immune action rate

Table 1: Model parametrization.

3.2 Within node dynamics

In order to characterize each node as a distinct metapopulation, we consider four
classes of nodes which are distinguished in terms of three attributes, namely, size
(number of individuals inside each node), distribution of immunity which is a proxy
for age and presence of other co-morbidities, multiplicity of each class of node. To
sum up, we include in the model:
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Node type Node population Immune distribution Color code

Household 5 Centered Green

School 150 Skewed-right Blue

Hospital 150 Skewed-left Red

Company 150 Centered Black

Table 2: Parametrization of each node type.

• Household: this node is the most copious, each of them populated by few indi-
viduals, whose immunity is distributed according to a symmetric distribution,
with far from the average values quite unlikely. Being families characterised
by individuals of di�erent ages, their immunity distribution is expected to be
well-mixed.

• School: this node is characterised by a higher number of individuals compared
to households and presents a right-skewed immune distribution,

with higher values more probable than lower ones, in line with the empirical
evidence according to which infection rates are lower among younger people.

• Hospital/nursing home: this node is characterised by a higher number of in-
dividuals compared to households and presents a left-skewed immune distri-
bution, with lower values more probable than higher ones, in line with the
empirical evidence according to which infection rates are higher among elderly
or patients already exposed to other co-morbidities. Therefore, the higher in-
fection rate emerging out of a left-skewed immune distribution might re�ect
either an older population (nursing homes) or the presence of individuals with
other co-morbidities (hospitals).1

• Company: this node is characterised by a higher number of individuals com-
pared to households and presents a symmetric immune distribution with far
from the average values quite unlikely. Being companies characterised by in-
dividuals of di�erent ages, but generically of ages comprised in the range 20 -
65 years, their immunity distribution is expected to be well-mixed as families.

In order to avoid mixing di�erent attributes at the same time, we parametrize
immunity equally distributed in households and companies; additionally we set the
same size in terms of number of individuals for companies, hospitals and schools.
The �nal parametrization is presented in Table 2.

Figure 2 shows the immune distribution of the population within each of the
di�erent node types as well as the dynamics of cumulative infected, recovered and
deceased cases, assuming in all cases 1 initial infected individual. A common feature
across all four nodes is the emergence of an outburst in the period 50-100, with
however di�erent shapes across nodes with schools converging at a much slower
rate, less concave when compared to the rest.

1In the remaining of the paper we will exclusively refer to hospital for the sake of simplicity.
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A strong heterogeneity emerges when looking at di�erent within-node dynamics.
With reference to nodes of the same size but di�erent in immunity distribution, the
latter clearly in�uences not only the speed of di�usion, but also the overall fraction
of infected and deceased cases, ranging from almost the total in hospitals to one third
in schools in case of infected, and from two to �fty deaths from schools to hospitals.
When comparing nodes of di�erent size but with the same immunity distribution,
households and companies present the same fraction of deceased cases (one tenth),
while the number of individuals in each cluster only in�uences the speed of di�usion,
without altering the shape.

The within-node dynamics is governed by the interaction rate parameter αk
i

which has been on purpose kept equal across all nodes, therefore heterogeneity
mainly derives from di�erent immunity distributions.

3.3 Network dynamics

Once de�ned the dynamics in each node, we open the structure of interrelationship
allowing for contacts across di�erent populations, each located inside a di�erent
node and now having the chance to move reaching another node.

In order to characterize the structure of interactions, we start with the easiest
network topology, considering zero clustering and a Poisson distribution of contacts,
namely the Erdös-Rényi graph which assumes that contacts occur with a completely
random order.

A random network consists of N nodes where each node pair is connected with
wiring probability p. Each node is statistically equivalent to another. Such a network
can be constructed as follows [7, 21]:

1. Start with N isolated nodes.

2. Select a node pair and generate a random number between 0 and 1. If the
number exceeds p, connect the selected node pair with a link, otherwise leave
them disconnected.

3. Repeat the previous step for each of the N(N − 1)/2 pairs of nodes.

Figure 3 illustrates a random network obtained with N = 20 nodes and wiring
probability p = 0.15. Each node belongs to one of the categories introduced above,
namely household (green), school (blue), hospital (red) and company (black). In
this case, a category was randomly assigned to each node in such a way that 15 of
them are households, while the other 5 are distributed among the other categories.

Dynamics for a single realization of the experiment with N = 200 is shown in
Figures 4 and 5, where low and high wiring probabilities are considered. Most of
the nodes are assumed to be households, with a lower number of schools, hospitals
and companies, as may be the case e.g., of a neighbourhood. A �rst result is that
under a low wiring probability (cf. Figure 4), connecting the previously isolated
nodes, instead of making the outbreak exploding actually reduces the spreading with
respect to the case of isolated nodes. Notably, the number of infected individuals
is quite low and no outburst of the epidemic occurs. The result is in line with the
literature documenting that introducing some forms of heterogeneity in the structure
of contacts reduces the outbreak [36]. However, when looking at a very high wiring
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probability (cf. Figure 5) a di�erent dynamics emerges with a large cumulative
fraction of infected and deceased cases.

Figure 6 shows the �nal epidemic size and cumulative deaths for many realiza-
tions of the random network with di�erent wiring probabilities. A strong threshold
e�ect in the dynamics of the epidemic is visible: in order to have an actual outburst
the wiring probability needs to reach 50% meaning that any two individuals of dif-
ferent nodes have a probability to meet in one case over two. Threshold e�ects are
quite expected in such type of modelling approach and there exist two limit cases:
if p = 0 the epidemic will remain con�ned in each of the population nodes, without
di�using. Under p→ 1 the epidemic will spread across all-over the nodes because all
individuals visit each node with certainty. In our case p ∈ [0.4, 0.5] de�nes the transi-
tion point, or global invasion threshold at which the epidemic spreads [33]. A strong
correlation indeed emerges between increasing wiring probabilities and fraction of
infected/deceased cases, corroborating the role played by the topological structure
of the network.

In order to experiment with the role played by the latter network structure, we
now construct a Watts-Strogatz di�usion process to link the nodes. Such network
is a random graph with small-world graph properties, such as clustering and short
average path length [40]. A small world network with N nodes is constructed in the
following way [30]:

1. Create a ring lattice with N nodes of mean degree 2K. Each node is connected
to its K nearest neighbours.

2. For each edge in the graph, with independent and uniform probability p̃, that
edge is removed and replaced by a new edge between two nodes that are chosen
uniformly at random from the N nodes, without duplicating or self-looping
edges.

In this way, when p̃ = 0, a ring graph in which each node is coupled to its K
nearest neighbours is obtained. On the other hand, when p̃ = 1, the result is a
random graph [34]. The topology of a small-world network is illustrated in Figure 7
for N = 20, K = 2 and two di�erent wiring probabilities.

Finally, we experiment with large connectivity of few hubs and low connectivity
of the majority of nodes, as represented by the case of scale-free networks. The
following algorithm produces a Barabási-Albert undirected scale-free network of size
N . It begins with an initial network of sizem0 and then N−m0 nodes are introduced
sequentially into the network, where each node connects with m∗ ≤ m0 existing
nodes. Note that it is typical to choose m0 = m∗. One cannot choose m∗ > m0 as
then the �rst new node introduced cannot be assigned m∗ edges. Thus, the initial
network size m0 determines the maximum mean degree of the network. The m∗

existing nodes are chosen with a probability which is proportional to their current
degree; the combination of network growth with this preferential attachment is what
leads to a power-law degree distribution [8]. We have adapted the algorithm by [39]
based on [35]. The topology of a scale-free network is illustrated in Figure 8 for
N = 20, m0 = 3 and two di�erent preferential attachment values m.

Comparing di�erent network structures in Fig. 9, showing an ER, a WS small
world and a scale-free BA graphs, we do not observe any systematic di�erence in the
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overall dynamics, as far as the three graphs are parametrized in �comparable� way.
This suggests that the dynamics and eventual outbreak of the disease depend on the
network connectivity. Therefore in Figure 10 we show the �nal size of cumulative
infected (here we kept only the �gures for infected cases in order to have a better
resolution, since deceased show the same dynamics) as a function of three alternative
measures of centrality, namely mean degree, mean closeness and mean betweenness
for an ensemble of realizations of the model with the three graphs.

For each graph, centrality of a node represents how much the node of interest is
in�uential in spreading the virus. Centrality might be measured by the mean degree
which de�nes the probability that a randomly chosen vertex has degree k, mean
closeness which de�nes how much a node is close to another on average in terms of
shortest paths, mean betweenness which de�nes the average importance of a node
with respect to others in terms of connections it captures as shortest paths, that is
the amount of information the node controls. The experiment, which is run under
randomly chosen parameters (di�erently from the one presented in Fig. 9 which
confronts comparable parametrizations) reveals that:

• Threshold (phase-transition) behaviours are present independently of the graph
under study and occur in the proximity of similar values of mean degree, close-
ness and betweenness.

• Degree and closeness centralities positively correlate with the outspread after
a given threshold is reached, independently from the graph under study: the
higher the number of edges for each node or the closeness between two nodes,
the higher the possibility of the outburst, but only after a given threshold
parameter. On the other side, below a certain threshold, reducing the number
of links or making them more distant is irrelevant in a�ecting the shape of the
epidemic.

• Betweenness centrality negatively correlates with the outspread after a given
threshold is reached independently from the graph under study. Notice that
the betweenness of a node is calculated as the proportion of shortest paths
in the network that pass through it. Nodes with large betweenness centrality
value often act as bridges between distant clusters but have small degrees.
Thus, networks with large mean betweenness resemble one dimensional grids,
explaining the negative correlation with the outspread.

4 Social distancing and vaccination

Taking as a departure point the random network with the same features as in Fig. 5,
some experiments are now conducted in order to analyse di�erent ways of reducing
contacts. Given the structure of our model, social distancing might be performed
under alternative strategies: i) reducing between-node contacts, ii) reducing within-
node contacts, iii) reducing both within- and between-node contacts, iv) comparing
reduction of contacts among alternative nodes, v) targeting speci�c nodes.
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4.1 Between-node contacts reduction

We start by experimenting with the strategy of between-node contacts reduction.2

Fig. 11 shows the e�ect of reducing the weights of the edges connecting alternative
nodes. While aii is kept equal to 1 for all i = 1, . . . , N , aij (i 6= j) now takes di�erent
weights from 0.6 to 1 from a given �locking time�, supposed to be at Tlock = 100. The
reduction of weights from 1 to 0.6 e�ectively reduces the spreading of the epidemic
with substantial impacts in terms of cumulative infected and deceased cases, almost
halved when reducing the between-node propagation. It is worth mentioning that
the entries of the adjacency matrix are changed in such a way that it preserves the
symmetry.

We now move to analyse which type of between-node contacts reduction is more
e�ective, recalling that they are di�erentiated in terms of immunity and size. Figure
12 shows, respectively, the scenario in which only schools (�rst row), only hospitals
(second row) or only companies (third row) are closed (100% closure) or partially
closed (50% closure), while the rest of nodes keep receiving �ows of individuals.

Comparing contacts reduction in terms of alternative nodes, school closures ap-
pear to be the less e�ective in terms of reducing the number of cumulative infected
and deceased cases: particularly in terms of deaths we observe that a reduction of
the weights of connections toward schools from 1 to 0 marginally a�ects the total
number of deceased cases in the system. At the opposite, the reduction of weights
connecting hospitals from 1 to 0 strongly a�ects the number of deaths, while com-
pany closures represent an intermediate case, for sure more e�ective than school
closures in containing the epidemic. Recall that the three nodes are di�erentiated
only in terms of the immunity distribution, while the size and the numerousness
among them is comparable. Therefore, the latter heterogeneous e�ects are only due
to the within-host dynamics a�ected by di�erent immunity distributions.

Figure 13 compares one by one node closures under the three alternative network
con�gurations in order to study the robustness of our results and to detect the extent
to which di�erent connectivity might play a role. In all three studied networks, school
closures are the less e�ective social distancing strategy particularly in a�ecting the
number of deaths.

4.2 Between-node vs within-node contacts reduction

The next experiment consists in comparing the e�ects of reducing between-node
contacts vs reducing the intensity of interactions inside each node. The experiment
allows to understand the extent to which it is more e�ective mitigating the spreading
of the contagion inside each node or conversely the di�usion across nodes. The trade-
o� is not trivial since lockdown policies restricting the access to di�erent nodes are
socially more strenuous than controlling interactions inside each node.

Results are presented in Figure 14 where we compare three alternative scenarios
under a common random graph. At time t = 100 the lockdown might consist in:

2In the following, we exclude contacts reduction from and toward households since, given the
symmetric property of the adjacency matrix, it will entail the unreasonable scenario of preventing
individuals to reach their home. Note also that households have the same qualitative dynamics of
companies, being characterised by the same immune distribution (cf. Figure 2.)
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a. reducing social interactions within each node via the parameter αk
i ;

b. reducing the di�usion across nodes via weights in the adjacency matrix;

c. reducing the number of edges that connect nodes.

In all three cases the reduction is set at 25%. Acknowledging that strategy [c] is the
most invasive for society since it implies the deterministic deletion of some edges,
in our case identi�ed randomly but potentially identi�able also on the basis of node
centrality (so called hubs), strategy [b] results indeed to be less e�ective than [a] in
mitigating the overall di�usion. In fact, reduction of interactions inside nodes not
only mitigates the peak of infection but also delays it.

Having considered alternative ways to undertake lockdown measures and their
e�ectiveness, we now present the scenario in which the lockdown strategy is consid-
ered to be the most e�ective. We label this experiment as �protecting the vulnerable�
and we introduce a set-up in which we compare reduction of social interactions for
the vulnerable segment of the population, denoted by α1

i , and reducing weights of
edges connecting to hospitals (cf. Figure 15). In both cases the reduction was done
at 50%. While the �rst experiment is directed in controlling virus di�usion among
the most vulnerable segment, the elderly or people a�ected by co-morbidities, the
second experiment allows to reduce the access to hospitals/nursing homes to avoid
the possibility of spreading the infection in such places. From the model results, cou-
pling the two strategies would be the most e�ective policy in mitigating the number
of deaths.

4.3 Vaccination

The �nal experiment we conduct consists in analysing the impact of vaccination
targeting a given population. De�ning the target population from which starting
the vaccination is a complex task from a health management point of view and there
have been di�erent possibilities on how to do it. In [14] two alternative strategies
have been discussed, assuming that vaccines are able to protect against disease
and infection, either i) the immunization of the most vulnerable segment of the
population or ii) the immunization of super-spreaders.3

Although the existing COVID-19 vaccines are reported with remarkable e�ec-
tiveness against severe disease, the sterilizing immunity conferred by these vaccines
are still being evaluated. Our model considers an imperfect vaccine with vaccinated
individuals able to transmit the disease even when a certain level of immunity is
acquired. Here, our baseline assumption is that immunizing primarily the vulner-
able individuals would reduce deaths, whereas immunizing primarily the so called
�super-spreaders� would contain the di�usion of the disease.

According to our model, virus transmission does not only depend on the number
and structure of contacts, as the super-spreader strategy would entail, but also on
the biological evolution of the virus. The within-host dynamics is equally if not
more important than the structure of contacts in determining the transmission:
most vulnerable individuals not only have higher chances to get infected but also of

3Super-spreaders represent the 20% fraction of the population responsible for 80% of infections,
according to the 80-20 Pareto law of cumulative processes [14].
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die out of the infection. Additionally, this fraction is not only more vulnerable but
also more contagious because of high viral loads concentrating in elderly residency
and hospitals.

In order to test the e�ectiveness of targeted vaccination toward the most vulner-
able segment of the population, we de�ne an experiment according to which:

• We employ the ER random network with N = 200 and p = 0.9 as a sample
graph (see Fig. 5).

• Each realization of the experiment consists in choosing randomly a proportion
of the total nodes, and within the chosen nodes we �vaccinate the vulnerable
individuals�. We model the e�ect of vaccination �moving� those individuals
with states w1 and w2 to the highest level wn.

After 200 realizations of the experiment, we get the results shown in Fig. 16. The
Spearman correlation coe�cient is around −0.9. The reduction in terms of infected
and deceased cases strongly increases with the number of vaccinated nodes just
immunizing a small fraction of the population inside each node. The number of
vaccinated people for each realization depends on the randomly chosen nodes and
can be computed by looking at how many individuals belong to the classes w1 and
w2 for each node type (see left panel in Fig. 2). Note that nodes have not been
targeted in this experiment but chosen randomly. We �t by means of a Least Squares
(SLQ) robust �lter the scattered points obtained under repeated MC realizations:
a deterministic sigmoidal �lter well approximates the dynamics signalling that the
variance across realizations does not explode.

Even in this random set-up, which does not start from e.g., hospitals/nursing
homes, protecting the vulnerable contributes signi�cantly in reducing the burden of
the epidemics in terms of deaths.

5 Conclusions

Lockdown and vaccination policies have been the major concern in the last year in
order to contain the SARS-CoV-2 transmission. We present a model able to study
the impact of di�erent lockdown policies and vaccination strategies. It integrates
and re�nes the multiscale approach presented in [10] by means of alternative network
structures, therefore bridging two perspectives to study complexity of living systems
[11]. While the multiscale approach allows to tackle both the within- and between-
host dynamics, modelling the problem of virus propagation as a competition process
between immunity and the virus itself, contacts among individuals are structured
within nodes via a constant probability, and across nodes via network dynamics.
Additionally, we characterize four alternative nodes in terms of their size and im-
munity distributions, namely households, companies, schools and hospitals/nursing
homes. Methodologically, our model can be seen as a metapopulation multiscale
model able to interact biological and social dynamics.

Simulation results have shown that protecting the vulnerable hub, namely hos-
pitals/nursing homes, by reducing their contact with the other hubs and contacts
within the hub would in�uence signi�cantly the reduction of deaths, whereas reduc-
tion of contacts toward the most heterogeneous hubs, namely schools and companies,
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would not a�ect the number of decease cases as much, but rather in�uencing on dis-
ease transmission. Clearly, controlling the di�usion of the virus inside nodes is very
important and e�ective in containing the epidemics.

Moreover, the within-host dynamics allows to implement vaccine administration
and to evaluate the impact of di�erent strategies, which we are able to study acting
on the immunity distribution of individuals. We show that protecting the most vul-
nerable segment of the population is very e�ective in reducing deaths and eventually
transmission.

Lockdowns are carriers of an enormous mental stress at the societal level and
therefore must be limited and properly planned to be e�ective. They have inequal-
ity enhancing e�ects, impinging more on children and youth, women, and migrants.
In terms of social side-e�ects, lockdowns have to be assessed in light of i) the low
e�ect they have when put in place generically, without targeting speci�c segments
of the population (nodes in our modelling set-up), ii) the challenge they represent
for early stage education because of school closures, hardly substitutable via online
schooling for the majority of pupils [24, 31, 37]. In terms of economic side-e�ects,
lockdowns enormously exacerbate disparities among those who can telework, main-
taining income and job security, versus those who cannot, at risk of unemployment
and income losses [15]. In the last year, workplace safety, particularly in segments
like logistic and food processing, has been largely missing and this calls again for
the implementation of targeted policies at workplaces well beyond lockdowns [19].

Studies like the one described here are of major importance to understand the
dynamical behaviour of epidemics in a population. As an example, our model allows
to study the role played by workplaces as hubs of virus spreading and have showed
that mitigating accesses to companies is indeed more e�ective than reducing accesses
to schools. Moreover, our model also shows that prioritizing vaccination towards the
most vulnerable is the most e�ective strategy to reduce severe cases and deaths.

From a global health-management perspective, although after six months many
rich countries got decent immunization rates, the majority of developing countries
still misses vaccines. Under vaccine scarcity, immunizing the most vulnerable seg-
ments in less-developed areas of the globe should be the priority. Therefore, plans
to make vaccine production free and easily replicable, relaxing intellectual property
rights and promoting transfer of know how should be encouraged by international
institutions, starting with the World Trade Organization. Related, international
agreements favouring the acquisitions of vaccines from non-producing countries at
controlled prices should be fostered as well [18].

Among many potential modelling re�nements, the direct extension would entail
the inclusion of an economic process regulating the relationship among companies
in order to study the coupled dynamics between the biological system, the social
structure of interactions and economic outcomes.
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Figure 2: Frequency distribution of immunity levels wk (left panel) for each node
type, and cumulative infected, recovered and deaths (right panel) assuming initially
one infected individual in the node.
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Figure 3: Random network with N = 20 and p = 0.15. The color node code is:
green = household; blue = school; red = hospital; black = company.
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Figure 4: Random network with N = 200 and p = 0.1, 0.2, 0.3, with 195 households,
2 schools, 1 hospital and 2 companies. The total population is 1725 with 5 initial
infected individuals. Parameter values are αk

i = 0.4, β = 0.1 and γ = 0.2. Curves
represent (a) prevalence I(t), (b) cumulative infected Icumu(t), (c) recovered R(t)
and (d) deceased D(t).
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represent (a) prevalence I(t), (b) cumulative infected Icumu(t), (c) recovered R(t)
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(b) Cumulative deaths vs. wiring probability

Figure 6: (a) Final epidemic size and (b) cumulative deaths vs. wiring probability,
for 200 realizations of the random network. Spearman correlation coe�cient of 0.75.

(a) p̃ = 0 (b) p̃ = 0.1

Figure 7: Watts-Strogatz small world network with N = 20, K = 2 (the mean
degree is thus 4) and wiring probabilities (a) p̃ = 0 and (b) p̃ = 0.1. The color node
code is: green = household; blue = school; red = hospital; black = company.
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(a) m = 1 (b) m = 3

Figure 8: Scale free Barabasi Albert network with N = 20, m0 = 3 and (a) m = 1,
(b) m = 3. The color node code is: green = household; blue = school; red =
hospital; black = company.
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Figure 9: Infected, cumulative infected, recovered and deceased cases for three dif-
ferent types of networks with N = 200, same number of nodes of each type and of
initial infected individuals: random graph with p = 0.75, WS with K = 70, p̃ = 0.1,
BA with m0 = m∗ = 90.
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(a) Final epidemic size vs mean degree
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(b) Final epidemic size vs mean closeness
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(c) Final epidemic size vs mean betweenness

Figure 10: Proportion of long time cumulative infected as a function of (a) mean
degree, (b) mean closeness, and (c) mean betweenness, for three di�erent types of
networks: ER (blue circles), WS (black squares), scale-free (red diamonds). Each
realization generates a graph with randomly chosen parameters.
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Figure 11: Infected, cumulative infected, recovered and deceased cases in a weighted
Erdos-Renyi random network with N = 200 and p = 0.9. From Tlock = 100, weights
are reduced to 0.8 and 0.6. The yellow curve shows the scenario without weight
reduction.
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(a) School closure - Cum. Infected (b) School closure - Deceased
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Figure 12: Cumulative infected and deceased cases in a weighted Erdos-Renyi ran-
dom network with N = 200 and p = 0.9. Scenarios showing no closure (yellow),
50% closure (red) and 100% closure (blue) of schools ((a) and (b)), hospitals ((c)
and (d)), and companies ((e) and (f)), at Tlock = 100.
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(a) Erdos-Renyi - Cum. Infected (b) Erdos-Renyi - Deceased
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(c) Watts-Strogatz - Cum. Infected (d) Watts-Strogatz - Deceased
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(e) Barabasi Albert - Cum. Infected (f) Barabasi Albert - Deceased

Figure 13: Cumulative infected and deceased cases in a weighted Erdos-Renyi ran-
dom network with N = 200 and p = 0.9 ((a) and (b)), small world Watts-Strogatz
network with N = 200, p = 0.1 and K = 70 ((c) and (d)), scale-free Barabasi Albert
network with N = 200, m0 = m1 = 90 ((e) and (f)). Scenarios show a 50% closure
of schools only, hospital only and work places only at Tlock = 100, contrasted to the
scenario without weight reduction.
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Figure 14: (a) Infected, (b) cumulative infected, (c) recovered and (d) deceased cases in a
weighted Erdos-Renyi random network with N = 200 and p = 0.9. At time Tlock = 100,
assuming a 25% reduction for each considered scenarios: social interactions αk

i (red), edges
weights (yellow) and the total number of edges randomly reduced (purple). The scenario
with no reduction is shown in blue.

29



0 200 400 600 800 1000

time

0

50

100

150

200

I(
t)

No control

Reduction of 1

Reduction of weights

0 200 400 600 800 1000

time

0

500

1000

1500

I c
u
m

u
(t

)
No control

Reduction of 1

Reduction of weights

(a) Infected (b) Cumulative infected

0 200 400 600 800 1000

time

0

200

400

600

800

1000

1200

1400

R
(t

)

No control

Reduction of 1

Reduction of weights

0 200 400 600 800 1000

time

0

50

100

150

200

D
(t

)

No control

Reduction of 1

Reduction of weights

(c) Recovered (d) Deceased

Figure 15: Protecting the vulnerable. (a) Infected, (b) cumulative infected, (c) recovered
and (d) deceased cases in a weighted Erdos-Renyi random network with N = 200 and
p = 0.9. At time Tlock = 100, a reduction of 50% is considered for two scenarios: social in-
teractions involving the most vulnerable population αi

1 (red) and weight of edges connecting
to hospitals (yellow). The scenario with no reduction is shown in blue.
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(a) Final epidemic size
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(b) Cumulative deceased cases

Figure 16: (a) Final epidemic size and (b) cumulative deceased cases vs. fraction of
vaccinated nodes for 200 realizations of the experiment. Spearman correlation coef-
�cient of -0.9 in both cases. Blue markers represent the output of each realization,
and the red curve is a sigmoidal LSQ robust �lter.
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