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Abstract

This paper analyzes the sources of export volatility estimating a dynamic fac-
tor model on transaction-level data. Using an exhaustive dataset covering all
French export transactions over the period 1993-2017, we reconstruct the latent
factor space associated to global and destination-specific macroeconomic cycles
by means of a modified expectation maximization algorithm to accommodate
both the sparsity and the high dimensionality of the micro time series. Thus
while paving the way for a novel application of dynamic factor models to mi-
croeconomic analysis, we provide a decomposition of the volatility of aggregate
export and firms growth rates, highlighting structural spatial patterns and draw-
ing attention to the role of geographical diversification for the mitigation of risks
related to firms’ export activities.
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1 Introduction
A simple inspection of the components of the GDP reveals that export stands out
as the most volatile part and that trade openness contributes to increase aggregate
volatility (see di Giovanni and Levchenko, 2009 and Figure 1a). This stylized fact
is particularly relevant to the characterization of the risks associated to international
trade along the growth paths of countries, sectors and firms, and justifies the recent
increasing interest on the relationship between trade and income volatility (Caselli
et al., 2020).

Granted this, a fundamental question revolves around the sources of aggregate
trade fluctuations. In this perspective, a first wave of research has investigated to
what extent general aggregate shocks come from more fundamental, sectoral shocks,
and to which degree sectoral diversifcation may reduce aggreagate volatility (Long Jr
and Plosser, 1983; Koren and Tenreyro, 2007). Starting from the seminal work by
Gabaix (2011), a rich stream of literature has then shown that in a granular economy
idiosyncratic shocks to individual firms may lead to large aggregate movements (Ace-
moglu et al., 2012; Carvalho and Gabaix, 2013; Carvalho and Grassi, 2019). Taking
such a viewpoint, if larger firms are expected to contribute to generate large shocks
in the economy, this should be particularly true in international trade, where the firm
size distribution is even more skewed (among the others, Bernard et al., 2009, 2016).
In such a context, the exposure to international shocks might further increase the risk
of granular shock (di Giovanni and Levchenko, 2009; di Giovanni et al., 2014) as well
as induce international business cycle comovement (Di Giovanni et al., 2018).

Following this line of investigation, our work proposes a novel approach to the
identification and quantification of the sources of export volatility at different level of
aggregation, estimating a dynamic factor model on the growth rates of export flows1
for the universe of French exporting firms.

We propose a detailed characterization of the macroeconomic components, en-
coding in the model the dynamics of the macroeconomic factors to estimate common
shocks. Moving from transaction-level, quarterly data we are able to estimate dynamic
effects on a sufficiently long time series and at the same time we are able to mitigate
the potential bias that partial-year effects may have in capturing exporter dynamics
(Bernard et al., 2017). We perform these exercises using data from 1993 to 2017: this
span includes relevant macroeconomic events (i.e. the trade collapse) which might be
relevant in the estimated contribution to aggregate volatility of common movements.

We contribute to several streams of literature. First, we provide a closer look at the
granularity hypothesis with a model designed to capture the relevance of global and
destination-specific export shocks, not only per se but also as drivers of heterogeneous
responses at the firm level. Second, we decompose the volatility at the firm level
providing new insights on the volatility-diversification nexus. Several contributions
find a dampening effect of diversification on volatility (Bottazzi and Secchi, 2006;
Kelly et al., forthcoming); in particular, firms selling multiple products to multiple
countries, which make most of aggregate trade flows (Eaton et al., 2004; Bernard
et al., 2012), could reduce their volatility by diversifying their portfolio (di Giovanni
et al., 2014; Kramarz et al., 2020). Our decomposition allows us to to identify which

1 As will be clear in the following, export flows are intended as firm-destination pairs.
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share of risks can be diversified away.
Once estimated the different components of flows’ growth rates, we recover the

volatility decomposition at the aggregate and firm-level of analysis. On the former,
our results confirm only in part the general wisdom recognising the dominance of
idiosyncratic shocks in originating aggregate volatility: its measured impact results
reduced with respect to the estimates of Gabaix (2011); Carvalho and Gabaix (2013);
di Giovanni et al. (2014), favouring a slight increase of the influence of common macroe-
conomic components. This is possibly due to the peculiar structure of the model that
postulates the existence of latent factors and of heterogenous flow-level loadings. In
fact, global and destination-specific shocks are defined as the interplay between a la-
tent common factor and flow-specific coefficients, the latter capturing the variation of
single flows due to the idiosyncratic response to common shocks.

At the micro-level, we measure the effects of the diverse sources on firms’ volatil-
ity distribution, showing how global and destination specific components originate a
significant part of the risks inherent to export growth, even though the impact of the
idiosyncratic non reducible components is relatively higher. The same decomposition
is then used to understand how and to what extent geographical diversification strate-
gies help dampening both export volatility overall and the single components. We
find that while firms diversifying across different destinations succeed in mitigating
the risks associated to the macroeconomic cycle, a reverse U-shaped relation between
diversification and idiosyncratic volatility suggests that the same strategies do not
dampen idiosyncratic risks until a certain level of diversification is reached.

The remainder of the paper is structured as follows. Section 2 introduces the model
and gives a brief and concise description of the methodology. Section 3 offers a bird’s
eye view on the dataset characteristics, with a particular focus on sparsity and some
firm-level statistics. Section 4 consists of a technical description of the quasi-maximum
likelihood estimation method for dynamic factor models with arbitrary pattern of
missing data. Section 5 presents the results: the reconstruction of the latent factor
space and the volatility decomposition at the aggregate and firm-level. Section 5
concludes.

2 Model and methodology

In this work we provide an econometric framework to identify the contribution of
different sources of shocks affecting international trade flows. As described in the
following, the methodology guarantees a high degree of flexibility as the structure that
we impose a priori is kept to a minimum and can ultimately be referred to the nature
of the disaggregated transaction data.

In brief, the approach allows for the identification of global and destination-specific
shocks hitting international export flows of firms and their influence on aggregate and
firm-level growth patterns. In so doing we build upon the framework laid down by
di Giovanni et al. (2014) and Kramarz et al. (2020) where the authors decompose
micro-level growth rates in terms of orthogonal shocks, of both macroeconomic and
microeconomic nature. We share the general baseline of the orthogonal decomposition,
yet proposing a more detailed characterization of the macroeconomic components, en-
coding in the model the dynamics of the macroeconomic factors and a flow-specific
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Figure 1: Our elaboration on the FRED data offering a comparison of the growth rates of the main
GDP components. Figure (a): time series of the quarterly deseasonalized growth rates for France.
Figure (b): Gaussian kernel estimates of the pooled distribution of quarterly GRs for France, Italy,
Germany and Spain from 1993 to 2018.

response to the identified common shocks. The flow’s growth rate is then recovered as
the sum of three parts. The first two terms identify the flow-specific response to dy-
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namic factors influencing at any time step i) all the transactions in the dataset (global
factor), ii) only the flows directed to a specific destination (destination-specific factors).
The third component is instead an idiosyncratic term, absorbing any non-reducible
flow-specific effects on the growth rate. Technically, this consists in estimating a dy-
namic factors model on flows’ growth rates with a block structure induced by spatial
diversification patterns. In fact, the chosen methodology not only allows to recover
the latent factor space of shocks influencing international trade, but provides an esti-
mation of the idiosyncratic responses as flow-specific factor loadings. Once estimated,
the parameters of the model serve as the baseline for flow’s growth rate decomposition
that is then scaled up to firm and total aggregate level through weighted aggregation.

Figure 2 provides a schematic description of the information flow and the implied
dynamics for the outlined framework. The proposed methodology shows remark-
able differences with respect to the most common orthogonal decomposition mod-
els (ODMs): dynamic factor models convey the information of the sequential cross-
sections chaining export flows co-movements into a latent factor that follows a given
stochastic process, while providing a characterization of the idiosyncratic responses.

ODMs

δt δt+h

{yi,t}t∈It {yi,t+h}i∈It+h

DFMs

ft ft+1

{yi,t}i∈It {λi}i∈I {yi,t+1}i∈It+1

AR(1)

Figure 2: Comparing orthogonal decomposition models (ODMs) and dynamic factor models
(DFMs): the former’s class estimates the components as series of independent cross-section statistics,
whereas the latter summarizes the information coming from the cross-section into latent factors whose
dynamics is encoded in a general stochastic framework (e.g. AR(p)). In the vertical dimension infor-
mation flows are bidirectional: in a two-step estimation procedure, the estimated factors determine
the idiosyncratic factor loadings that are used in the following step to update the factor estimates
until convergence. The interplay between the horizontal and vertical dimensions allows a full fledged
dynamic decomposition and a most efficient handling of the available information.

Model’s equations Formally, on destination exporter pairs the model is described
by the set of equations:

yde,t = λde ft + ρde gd,t + ξde,t (1)
ft = af ft−1 + uf,t (2)
gd,t = ad gd,t−1 + ud,t (3)

and postulates the influence on the flow-level growth rate (yde,t) of a latent factor
common to all the flows, ft, and one gd,t specific to the destination d. The loadings λde
and ρde model the specific response to shocks affecting the related factors which come
endowed with some additional conditions on their dynamics, encoded in independent
autoregressive processes of order one2. Relying on the vectorized short hand notation
2 Estimation of the model with AR processes of higher orders is possible and technically feasible.

Nevertheless, we have chosen a very simple picture to avoid proliferation of parameters and potential
overfitting.
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(e.g. F = (f1, . . . , fT )′, the matrix formulation highlights the block structure imposed
by the model 

Y1
...
...
YD

 =


Λ1 R1 0 · · · 0
... 0 R2 0
...

...
... . . . ...

ΛD 0 0 · · · RD

 ·


F
G1
...
GD


Within this framework, the factor F impacts — and is estimated out of — all the
considered flows through Λd = (λde1 , . . . , λdenD ), whereas the remaining factors track
destination-specific comovements that are residual to the common component but
relevant to the destination country only. In other words, the matrix equation for a
generic block, Yd = Λd F + RdGd, captures the dynamics of the flows belonging to
a particular block as first order interaction with a factor commmon to all the export
flows and an orthogonal second order block-specific factor. This implicitly defines
a hierarchy of the factor and limit the application of the method to model designs
admitting a pecking order with meaningful economic assumptions.

Empirical estimation Dynamic factor models (DFM) have an established tradi-
tion in macroeconometrics. Their early applications were based on the assumption
that all cross-correlations in the data could depend on few common factors while the
idiosyncratic noise remain cross-sectionally uncorrelated. Unfortunately, this becomes
an unrealistic hypothesis in the case of interest to our research question, where the
dataset’s cross-sections is very large, favouring the emergence of cross-sectional corre-
lations. For this reason, empirical estimation is based on the so called approximate
DFMs, recently developed to provide consistent estimates in presence of limited corre-
lation among idiosyncratic components (see e.g. Forni et al., 2000; Stock and Watson,
2002, for classical principal component approach). Within this stream of literature,
more recent works by Doz et al. (2012); Bańbura and Modugno (2014) introduce the so
called quasi-maximum likelihood (QML) method which allow to recover consistent es-
timates of the components as parameters of the maximum likelihood of a miss-specified
factor model, achieving two crucial improvements in our context: i) the level of com-
plexity is anchored to the number of factors and not to number of series, ii) QML
approach can be adapted to deal with missing data and ad hoc defined block struc-
tures imposed by the model. Building upon these contributions, we further extend
such framework. First, aiming at disentangling global and destination-specific effects
we model a block structure imposing ad hoc zero restrictions on the factor loadings.
This consists in estimating destination-specific shocks as factors that are common to
blocks of series recovering the complete structure of the parameters afterwards (see
the technical exposition below for further details). Second, we optimize the base algo-
rithm and propose an inizialization based on (Breitung and Eickmeier, 2015) to deal
with a dataset with very large cross-sections, approaching an order of magnitude of
∼ 106 time series. In this respect, notice that, for the sake of comparison, standard
applications of dynamic factor models are estimated on few hundreds of time series.
Third, we work with heterogeneous patterns of missing data, yet obtaining successful
results in terms of factor identification even with a sparsity ratio exceeding the 80%.
The proposed approach consist of an iterated estimation procedure called Expectation
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Maximization (EM) algorithm which converges towards the maximum likelihood es-
timates of the model in a sequence of steps. Denoting in short, the factors as Z, the
other parameters3 with θ and the matrix of data with Y , we write the log-likelihood,
l (Y, Z, θ), associated to the system ((1), (2) and (3)) as a function according to the
following steps4:

1. Given the factors, the parameters are derived by analytical log-likelihood maxi-
mization. The expected log-likelihood is computed conditional on the available
information and parameters estimate of the previous iteration

L (θ) = Eθ
[
l
(
Y, Z(k−1), θ

)
|ΩT

]
.

Updated parameters, θ(k) are analytically derived maximizing L (θ).

2. Given the parameters, the factors are derived through Kalman Filter/Smoother
iteration. Once θ(k) has been updated, F (k) matrix is computed running the
Kalman Smoother on the state space model defined by the equations above,
taking the conditional expectation of the true factors given the estimates of θ.

This cycle defines a sequence of increasing log-likelihood values

l
(
Y, Z(0), θ(0)

)
→ l

(
Y, Z(0), θ(1)

)
→ l

(
Y, Z(1), θ(1)

)
and stops when an appropriate convergence condition is fulfilled. Notice that the ana-
lytical expression for the log-likelihood is derived in explicit form assuming gaussianity
of the idiosyncratic components and of the factor’s innovation. In fact, theoretical re-
sults on the consistency and the efficiency of the method are derived under gaussianity.
Nonetheless, several empirical and numerical analysis find that the estimates are ro-
bust when the distribution of idiosyncratic terms is non-gaussian and displays fatter
and asymmetric tails (see e.g. Reis and Watson, 2010; Barigozzi and Luciani, 2019),
suggesting that this methodology, once adapted, can be applied to growth rates of
export transactions whose distributional properties will be explored in the following
section.

In order to adapt the EM algorithm to our dataset, we optimize its computational
implementation for the repeated estimation on random samples of the original dataset.
In practice, we first build a predefined number of partial dataset selecting at random
a fixed number of firms (avoiding possible biases in the destinations representation),
then we apply the estimation procedure to each reduced dataset and recover the factors
and the aggregate volatility estimates by simple averages, constructing the relative
confidence intervals. Analogously, we control that the firm level volatility distributions
are constant across samples and exploit this result to decompose the volatility at the
microeconomic level. This approach reduces the computational overload on the key
steps of the EM algorithm and allows to check the robustness of the model to diverse
sample biases.

3 Namely, the loadings matrix and relevant variance covariance matrices. See the technical details
in the related section below.

4 Index with parenthesis run over the sequential estimation steps.
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Volatility decomposition Once estimated, the model master equation provides a
flow level decomposition of the logarithmic growth rates

ŷde,t = λ̂de f̂t + ρ̂de ĝd,t + ξ̂de,t

Moving from that, the decomposed flows’ grow rates can be mapped to different ag-
gregates. Thus we analyze both from a macroeconomic aggregates, estimating the
volatility components of the total export and of the export to specific destinations5,
and microeconomic ones, focusing on firm level volatilities. When comparing the
growth rate of the aggregate with the rates of its parts it is not always possible to get
an exact relation and often one has to search for reliable proxies, making the micro-to-
macro mapping non-canonical and highly dependent on the properties of the data and
the nature of the research question6. In the following, we offer a comparison between
standard aggregation obtained through weighted sum of the flows (see e.g. Gabaix,
2011; di Giovanni and Levchenko, 2009; Kramarz et al., 2020, relying on constant or
dyamic weigths) and some recently developed method accounting explicitly for dis-
tributional effects (Bottazzi et al., 2019) (Appendix B presents the methods together
with a discussion of the possible limits). From a general perspective, all these meth-
ods are based on the construction of a function that is linear in the flows’ components
(not necessarily in the space of the flows’ time series). Formally, denoting by Agg the
generic aggregation strategy, one is induced to consider an equation of the form

Agg
({
λ̂de f̂t

})
︸ ︷︷ ︸

Globt

+Agg ({ρ̂de ĝd,t})︸ ︷︷ ︸
Destt

+Agg
({
ξ̂de,t

})
︸ ︷︷ ︸

Idiot

whereby the three time series can be interpreted as, respectively, the global/common,
destination-specific and idiosyncratic/granular components. Then, the variance (or
standard deviation) of the series gives a proxy of the volatility that is associated to a
single specific component. As an example, one can recover the aggregate decomposition
after defining the weights7:

ωaggi,t =
yi,t−1∑
j yj,t−1

.

and write the following volatility decomposition:

VarT

(∑
i

ωaggi,t yi,t

)
= VarT

(∑
i ω

agg
i,t · λi · ft

)
+ VarT

(∑
i ω

agg
i,t ·

∑
c ρc,i · dc,t

)
+

VarT
(∑

i ω
agg
i,t · ξi,t

)
+ Cov (4)

Moreover, with the aim of studying the volatility associated to a specific destination
one can both restrict to the country-specific subset of the flows (Ic) and look at the
5 With a minimum impact on the analysis a reduction of the dataset is necessary for the practical

implementation of the estimation method. In the following, we will anyway refer to ’total export’
as the entirety of the dataset after restrictions.

6 Not many papers explore thoroughly the possible implications of this trivial fact. A remarkable
exception is the work of Amiti and Weinstein (2018) where, within a firm-bank orthogonal decom-
position model, the authors show how to adapt the aggregation strategies to estimation techniques
adopted to identify the micro-level shocks.

7 Here, until the end of the paragraph, we simplify the notiation using i or j as multinidices running
over exporter-destination pairs (e, d)
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variance of the global, of the destination-specific components or at the sum of the two.
After rescaling the weights

ωci,t =
yi,t−1∑
j∈Ic yj,t−1

.

VarT

(∑
i∈Ic

ωci,t · ρc,i · dc,t

)
(5)

Aggregation through dynamic weighting applies also to the firm-level aggregation,
once recovered the firm’s portfolio (Is) and defined the firm-level weights

ω
(s)
i,t =

yi,t−1∑
j∈Is yj,t−1

.

to get eventually the volatility proxy:

VarT

(∑
i∈Is

ω
(s)
i,t yi,t

)
= VarT

(∑
i∈Is ω

(s)
i,t · λi · ft

)
+ VarT

(∑
i∈Is ω̃

(s)
i,t ·

∑
c λ

(d)
c,i · dc,t

)
+

VarT
(∑

i∈Is ω
(s)
i,t · ξi,t

)
+ Cov (6)

whose components are again interpreted according to the classification given before.
For this last aggregation step, it is not possible to rely on the aggregation methods as
proposed in Appendix B: indeed the relevant empirical distributions have few points
to be estimated out of because i) many firms do not report enough country level flows
(many exporters trade with partners in limited number of countries), ii) even restricting
the analysis to very diversified exporters only, the number of destination considered
in the analysis defines an upper bound of less than one hundred of observations.

3 Data and stylized facts
To estimate the outlined model, we rely on transaction-level exports recorded by
the French customs office (Direction Générale des Douanes et des Droits Indirects,
DGDDI).8 The dataset contains detailed information on export flows on monthly ba-
sis for each year from 1993 to 2017 for all French exporters. Each exporter is identified
by a unique official identification number (SIREN code) and transactions report ex-
port value, quantity, country of destination, and an 8-digit product code following the
European Union’s Combined Nomenclature (CN8). We start by applying standard
cleaning methodologies described in Bergounhon et al. (2018) and often employed on
this set of data. They consist in the harmonization of product codes, constructing a
coherent chain of HS system’s labels, and homogenization of registered transactions.
As to the latter, since the registration of the transactions below the threshold of 1000
euros (or 1000 Kgs) was not compulsory before 2010, we opted for the deletion of all the
transactions not reaching the threshold before and after 2010. The number of involved
elements is consistent, around 1.5 millions of firm-product-destination-month tetrads

8 The data are directly provided to researchers by the DGDDI upon the approval of a research
proposal by the Comité du Secret Statistique.
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per year, yet accounting for a very small fraction the total export value (around 0.5%).
This basic cleaning leaves an average value of export per year of euros 340.99 billions
and, after aggregating along the product dimension, 3.2 millions of firm-destination
pairs (namely, the flows that are the base units of our analysis). As a first step, one
has to transform the panel of transactions into a matrix of time series, one for each
firm-destination pair, and whenever a transaction is not observed for a given time step
a zero is imputed. Figure 3 offers a visual representation of this operation. Let us
notice that, since our analysis focuses on the intensive margin of export flows, when
estimating the model on logarithmic growth rates the imputed zeros generate NAs,
which incidence and distribution has to be analyzed in order to proceed with the model
estimation.

Dataset sparsity and skewness along the country dimension The first rel-
evant issue arising in the attempt to estimate the model (1) regards the sparsity of
the dataset: 89.99% of all elements are missing values with a very skewed distribution
across flows. Figure 4 shows that, after the basic cleaning procedures, almost the 90%
of the series has more than 75% of missing.

Figure 3: The transformed series. From the table at the bottom, yearly growth rates are calculated
on four points per years on a yearly basis, taking quarter-to-quarter logarithmic ratios.

The second problem concerns the skewness along the country dimension. Among
the 259 included in the original dataset, only few of them are relevant for our analysis:
for example, during the considered time span only 65 countries report on average at
least 1000 active flows (out of potential 3.2 million of flows) and this, of course, reflects
into the distribution of export value.

Time frequency, spatial and other restrictions Given the properties of the
dataset, the manipulations aimed to design the correct setup to estimate the equations
of the model are related, on one side, to the choice of the optimal time frequency and,

10
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on the other side, to the possibility of reducing the number of countries and, hence, the
model’s factors space dimension. Concerning the frequency, we rely on quarterly data
in attempt to enhance the standard volatility analysis in two different characteristics.
First, quarterly data allow to deal with sufficiently long time series (96 points in yearly
quarter-to-quarter growth rates) providing a proper context for the identification of
growth rates dynamics. Second, taking quarters in place of years reduces possible
biases due to the so called partial-year effect (see e.g. Bernard et al., 2017), that might
lead to the overestimation of the growth rates between the first and the second year
(and therefore of the associated volatility) because firms start exporting at different
months during the first year of activity.

We next consider how to restrict the number of countries to exclude those that are
least interested by trade flows of French firms. In this respect, a robust and consistent
estimation of the destination-specific effects requires that factors have measurable
impacts both at macroeconomic and microeconomic level. We keep in the dataset
those countries that: i) are sufficiently represented in the portfolios of the firms; ii)
are relevant in terms of export value as share of the total export. This leaves us with
65 destinations, accounting for 88.25% of total export value. As we are ultimately
interested in growth rates, we further drop firm-country flows that over the whole
span of time report data on only three points (over 96). We are finally left with
86.44% of total export value and close to 900 thousands firm-destination pairs. Not
surprisingly, the operated spatial restriction induces a reduction on micro-level sparsity
(see Figure 4).9

Growth rates volatility and diversification While the base unit of our statistical
analysis will be the firm-destination pair, to provide directly comparable evidence to
previous works, let us start reporting descriptive evidence on firm-level volatility and
its link with diversification. Defining the weighted logarithmic growth rates of the
firms as in (6):

y
(e)
t =

∑
d∈Ie

w
(e)
d,t yde,t . (7)

9 After imposing the restrictions, the number of firms in the dataset shrink from around 167 thou-
sands to 140 thousands.
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these show the classical tent-shaped distribution confirming the presence of extreme
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Figure 5: Gaussian kernel densities for firm-level growth rates (as from (7)) at four different moments
of the considered time span. Left panel: yearly pooled quarterly GRs. Right panel: yearly GRs.

growth events. As shown in Figure 5, the Laplace density fits properly at different
years. The volatility associated to firm s growth rates is computed as its variance along
the time dimension. Table 1 reports descriptive statistics for the volatility associated
to weighted log-growth rates on a yearly, σy(g), and a quarterly, σq(g), basis.

In order to get a first understanding of the relationship between growth rate volatil-
ity and patterns of firms’ diversifcation, we employ some diversification measures that
have been used in the literature: the number (#) of destination markets, the share of
firm exports accounted for by the most important market (top share), and the Herfind-
ahl index of export shares (see, among many others, Braakmann and Wagner, 2011; di
Giovanni et al., 2014; Vannoorenberghe et al., 2016; Kramarz et al., 2020). For each
of these variables, we compute the firm average over time (on a quarterly basis) and
then report basic descriptives in Table 1. From the reported statistics, taking as an
example the number of destination per year (Figure 6), we observe a consistent level
of skewness and concentration in all the relevant distributions.

N. obs. Mean SD Median Min Max Skewness Kurtosis
Avg. # of dest. 166928 1.64 4.49 0.31 0.03 134.15 7.71 95.75
Median # of dest. 166928 1.25 4.74 0.00 0.00 134.00 8.12 98.89
Avg. top sh. 166928 0.24 0.19 0.18 0.01 1.00 1.20 0.94
Avg. Herf. index 166928 0.78 0.17 0.83 0.00 0.99 -1.36 1.68

Table 1: Summary statistics for the distributions of firm-level volatility, on a quarterly and yearly
basis, and for some key diversification indicators. Averages and median are taken on the distribution
of values across the active quarters of the time span of a firm.

Once we have identified a palette of diversification indicators, whose robustness
will be discussed in the following, we can give a first glance to the pairwise correla-
tions. Table 2 provides a descriptive confirmation that more diversified firms tend to
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Figure 6: Firms per number of active destinations in log-log scale at different moments of the
considered time span.

experience less volatile growth patterns. While discussing the results on the volatility
decomposition this relationship will be analyzed further looking at the distributional
properties of the volatility (and its components) for classes of firms grouped by diver-
sification quantiles (see the final part of section 4).

σ(g) Avg. # Med. # Avg. STOP Avg. Herf.
σq(g) 1.0000
Avg. # -0.1396 1.0000
Median # -0.1185 0.9578 1.0000
Avg. STOP -0.1151 0.1982 0.2033 1.0000
Avg. Herf. 0.0835 -0.0772 -0.0912 -0.9844 1.0000

Table 2: Correlation matrix of the indicators of Table 2. Different diversification measures (on a
quarterly basis when not specified) and log weighted volatility on yearly and quarterly basis.

4 Results

In this section we outline an overview of the main results of our analysis, grouped in
two main categories. First, on the macroeconomic dimension, we show how dynamic
factor models provide a robust identification of macroeconomic factors that, together
with flow-specific loadings, serve as the main tool for the volatility decomposition.
For the macroeconomic analysis, the latter is recovered in a comparative framework,
where the implications of different aggregation strategies are shown, and then used to
measure the relative impact of the global, destination-specific and idiosyncratic com-
ponents. On the same line, it is shown how absolute volatility estimates distribute
along geographical patterns typical of gravity models for export flows. Second, on the
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microeconomic dimension, we look at the distributions of the components of firms’
volatility and then provide a characterization of the linkages between spatial diversi-
fication and volatility trends.

4.1 Volatility at the aggregate level
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Figure 7: The identified global factor (black full line) with 90% and 99% confidence intervals,
compared with other independent sources for aggrgate growth rates of French export: i) FRED (red
dashed line), ii) BACI-CEPII (yellow dotted line), iii) the simple aggregate series of the dataset (green
dot-dashed line).

Factor space reconstruction The global factor identified is shown in Figure 7,
where it is compared with French total export quarterly growth rates from FRED
database. Simple visual inspection suggests a certain level of agreement between the
two independent measures of total export. This means that the chosen empirical
strategy finds and exploits the nexus between micro-level transactions and aggregate
macroeconomic trends: comovements of the export flows encode enough information
to reconstruct the behaviour of aggregate statistics at a first level of approximation.
What clearly remains unexplained by the factor are second order movements and
possible shifts of the complete time series: this is natural if we recall that the latent
factors have zero mean by definition and come out from a smoothing procedure that
cleans second order fluctuations.

Before moving to the the use of this result in the analysis of aggregate volatility, we
need a further consistency check on the factor space identified via the EM algorithm,
due to the special procedure of sampling applied for the estimation of the model’s
parameter. To check whether factors’ sample estimates describe the same factor space
we compute pairwise trace statistics with the formula10:

10 The matrix Z denotes in short both global and destination specific factors.
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Tr(k,h) =

Tr
(
Ẑ(k)′Ẑ(h)

(
Ẑ(h)Ẑ(h)′

)−1
Ẑ(h)′Ẑ(k)

)
Tr
(
Ẑ(k)′Ẑ(k)

)
The range of the trace statistics is (0, 1) and the factor space tend to be closer when

Tr(k,h) approaches the right limit. Trace statistics allow to test for the equivalence of
the factor spaces estimated running the EM algorithm on each sample. The estimated
matrices of factors from two different sample are compared taking the related trace
statitistics. The pairwise computed values for 20 samples have a minimum of 0.96 and
maximum of 0.98, confirming a very good coherence of the different estimates.

Aggregate volatility and granularity The estimated factors and loadings serve
as the starting points to proceed to the identification of the macroeconomic compo-
nents of the volatility. As anticipated, distributional effects might play an effective
role in determining the relative importance of the volatility components and results
might show consistent variations if the actual shapes of the empirical distributions are
taken into account. After a simple visual inspection of the fitted densities (see e.g.
the bottom panel of Figure 8 for the global/common flow-level component), we draw
attention to two relevant facts: first, we observe Laplace-like shapes for all the years
and all the components; second, the evolution of the fitted parameters display remark-
ably different time-patterns for the three components, the common/global components
showing consistent fluctuations during the trade collapse, attributable either to cycli-
cal transfers of mass among the tails or shift to the mean of the distribution. Figure 8
displays the time series of the components’ means11 and the fitted distributions for
the global component only at four selected time steps. A detailed characterisation of
the evolution of the fittings is out of the scope of this paper, nonetheless this prelimi-
nary analysis suggests that, while aggregating, if the distributional movements of the
components are encoded the relative importance of the volatility components might
change.

Having identified the common shock, we identify the destination specific shocks
and the residual idiosyincratic shock as per Equation 1. Using these results we first
assess the impact on the three sources of shocks on the volatility of aggregate export
sales. The left panel of Figure 9 reports the relative volatility, measured as the ratio
between the standard deviation explained by the single components and the overall
variance of the growth rates, 12, whereas the right panel shows the time-correlation
with export sales’ time series. It is evident that variation in aggregate export is domi-
nated by the idiosyncratic component, rather than global and destination-specific ones.
The volatility associated to firm level shocks is close to 0.8 of the total volatility and
presents a high level of correlation. By contrast, global and destination-specific contri-
butions are relatively less variable, with a clear prominence of the former on the latter,
yet still with a positive and significant correlation. These results confirm in part the
general knowledge of the dominance of idiosyncratic shocks in determining aggregate

11 E.g. the series µglob
t = 1

#(I)

∑
i∈I λ̂if̂t for the global/common component

12 In the context of a decomposition, we name them ‘shares’, notice however that due to the existence
of covariance terms, they do not sum to one.
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Figure 8: Zooming into the cross-sectional distributions of the growth rates components. In the top
panel, the simple component means at each time step form the time series from 1993 to 2017. On
the bottom panel, the distribution of the common component is fitted at four selected time-points,
showing considerable differences in the distribution of probability mass in the tail and at the center of
the distribution. This suggests that while cross-section averages can partly capture this movements,
considering higher order moments in the aggregation procedure might better capture the underlying
dynamics.

volatility (Gabaix, 2011; Carvalho and Gabaix, 2013; di Giovanni et al., 2014) with a
major distinction regarding the measure of this impact. Indeed, in measuring global
and destination-specific impacts as the interplay between a latent common factor and
flow-specific coefficients, the model captures more variation, possibly because the two
components encode both common movements and the implied idiosyncratic responses.
This for example might explain why the non idiosyncratic component explains around
30% of the aggregate export volatility, which seems to be larger than the share ac-
counted for by the non-idiosyncratic component in the analysis by di Giovanni et al.
(2014). With respect to the latter, another possible complementary explanation could
be found in the peculiar time span of our analysis: the inclusion of the trade col-
lapse (Baldwin, 2009) and the subsequent recovery gives more relevance to common
movements implied by the synchronization typical of deep downturns and following
rebounds13. As anticipated, changing aggregation strategy increases the relative im-

13 On this, in Figure 7 the almost perfect match between the factor and the aggregate suggests that
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portance of the global/common components.
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Figure 9: Aggregate volatility decomposition. Correlation and volatility share of the three compo-
nents as simple averages over the 20 sample estimations (each samples counting 80k firms). Error
bars define the confidence interval over the repeated sample estimations. At the bottom of each bar:
the ratio between the measure of the 90% confidence interval and the estimated value of the related
statistics.

Macroeconomic geographical patterns. Looking at the destination-specific
volatility associated to the aggregate French export, we are able to identify gravity-like
patterns confirming that geographic and spatial effects — affecting flows and trade in-
tensities — mitigate the risks attached to high volatile trade relationships. We measure
the volatility associated to a given export destination as

VarT

(∑
i∈Ic

ωci,t(λi · ft + ρc,i · dc,t)

)
(8)

where Ic is the set of the flows targeting country c and wci,t is the relative dynamic
weight associated to the flow i ∈ Ic. A preliminary inspection of the scatter plots
in Figure 10 confirms the clear inverse relation when restricting the analysis to EU
countries, whereby the EU single market provides a common playground for trade
relationship mitigating distortions coming from different economic factors. Indeed,
the outliers, if any, are considered intra EU commercial partners joining the Union in
the second half of the time window14. Analogous considerations apply to the patterns
on the left panel: whenever a sharp inverse relation is violated it is possible to iden-
tify underlying macroeconomic mechanisms fostering or dampening both number and
intensity of microeconomic trade flows. Among the many, we highlighted the trade
relationship with ex-colonies, reducing the risks expected for commercial partnerships

synchronization is influencing the outcome.
14 Slovakia and Lithuania joined the EU single market in 2004 whether the considered time span goes

from 1993 and 2017
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with low income countries as shown by the downward deviation of the relative points.
To provide a quantitative assessment of these trends, we ran a simple gravity-like
regression adding geographical distance and controls grounded on geopolitical vari-
ables (free trade agreements, ex-colonies relationship, intra or extra EU dummies).
Results presented in Table 3 and Figure 10 confirm the evidence and provide a solid
quantitative ground to the outlined macroeconomic trends.
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Figure 10: Destination-specific volatility vs destination GDP for extra-EU (left panel) and intra-EU
(right panel) trade relations.

Log. dest. vol.

(1) (2) (3)

Log. dist. 0.251∗∗∗ 0.243∗∗∗ 0.195∗∗∗
(0.064) (0.079) (0.072)

Log. GDP 0.009 −0.106∗∗ −0.084∗∗
(0.031) (0.040) (0.040)

Geo+Colonies controls No Yes No

FTA+Colonies controls No No Yes

Constant −3.759∗∗∗ −0.505 −0.628
(0.995) (1.303) (1.138)

Observations 65 65 65
R2 0.199 0.378 0.431
Adjusted R2 0.173 0.326 0.350
Residual Std. Error 0.488 (df = 62) 0.441 (df = 59) 0.433 (df = 56)
F Statistic 7.680∗∗∗ (df = 2; 62) 7.179∗∗∗ (df = 5; 59) 5.298∗∗∗ (df = 8; 56)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: OLS estimates of gravity-like regressions for the volatility associated to each destination.
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4.2 Volatility at the firm level

In order to establish the role of the various sources of shocks to growth rates fluctua-
tions (and hence determining volatility), in line with the work of Kramarz et al. (2020),
we look at micro-distributions where one or more components have been muted. Com-
paring the two bottom panels of Figure 11 we see that global and destination-specific
components have similar impacts on firm volatility distribution, both in terms of mag-
nitude and direction: once muted singularly, a visible effect consists in a shift to the left
of the second and third quartile threshold and, with minor intensity, of the first one;
the effect is almost identical for both components. On the other hand, if we exclude
the idiosyncratic component we observe a relevant left-shift of the quartile thresholds
and a substantial narrowing of the right tail. More precisely, the median reduction
due to the removal of one of the aggregate shocks is around the 30% (from 0.93 to
0.65), whereas the impact of the microeconomic contribution amounts to a dampening
of the 47% (from 0.19 to 0.8), confirming the prominent role of the idiosyncratic com-
ponent, yet showing global and destination-specific terms have a non negligible effects
as drivers of volatility. This means that exporters, even though majorly exposed to
microeconomic risks, still face the risk of shocks coming from aggregate fluctuations
lead by the global and regional macroeconomic factors. In the remainder, the focus
will move to the nature of this link and the role of diversification in mitigating its
effects.

Total vol.

Global muted

Dest. muted

Idio. muted

0 0.5 1 1.5 2

Figure 11: Gaussian kernel densities for ‘counterfactual’ volatility distributions: on each panel a fit
of the empirical distribution is provided for firm-level volatilities silencing the macroeconomic effects
together (top panel) and singularly (middle panels). A comparison is offered with the actual volatility
distribution (bottom panel).

Volatility components and diversification The preceding analysis has two main
implications. First, that firm-level volatility has a fundamental idiosyncratic com-
ponent, which by definition is not affected by global and destination specific shocks.
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Second, that, on top of a major firm-specific component, macroeconomic business
cycles play a non negligible role as drivers of volatile growth paths. At this stage,
one might wonder whether diversification strategies help firms to reduce trade-related
risks, and how and to what extent they impact the different components. Common
wisdom suggests that we should observe a negative relationship between firm level
volatility and degree of diversification in terms of destination markets. Table 4 pro-
vides a quantitative assessment of a linear relation between the logarithm of firm
volatility and diversification — measured in terms of inverse Herfindahl index, as time
average across the considered window — showing that the linear fit is enhanced when
controlling for sectoral patterns and size classes.

An analogous exercise can be repeated for the three different components. When
fitting a linear relation (Table 5), diversification seems to help dampening the risks
coming from macroeconomic sources more than microeconomic ones, confirming the
idea that flow-specific idiosyncratic risks can be hardly diversified away. Actually,
since the exporters’ universe is populated by highly heterogeneous players and diver-
sification strategies have non-linear effects, we present a deeper exploration beyond
the realm of linear regressions. In fact, the low R-squared estimates suggest that the
interplay between volatility and diversification develops on more complex patterns:
moving along the quantiles of diversification index and of estimated volatility, we ob-
serve contrasting trends. A visual inspection of the quantile-quantile plots might help
understanding the underlying dynamics (Figure 12 for general trends and Figure 13
high and low volatile firms). First, the macroeconomic volatility components move to-
gether — if we consider both the most and the least volatile firms — with a downward
trend in logs. Second, the idiosyncratic component moves along two opposite trends
if we look at exporters that diversify respectively below or above the median. Indeed,
looking at the first half of the diversification spectrum the volatility lies on a steady
path, or even increases for less volatile firms, whereas on the second half moves along
the expected inverse linear path, meaning that risk mitigation becomes relevant only
after a certain threshold. This diversification limit is indeed quite high, corresponding
to an average Herfindahl index of 0.10, that is the theoretical values obtained by a
firm operating evenly on ten different destinations for her life span.

Summing up, the risk exposure is reduced for firms that diversifies their activities
on the destination markets. Log-linear risk dampening effects seem to work only for
shocks originated by macroeconomic induced fluctuation, with no remarkable differ-
ence between global and destination-specific shocks. On the contrary, the idiosyncratic
component of the growth rate generates a volatility distribution at the firm level that
does not change substantially while firms diversify more until a certain level, when
passing the threshold diversification strategies give a consistent reduction helping firms
to approach less volatile growth paths.
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Dependent variable:

log(VOL)

(1) (2) (3) (4)

Div. index 0.074∗∗∗ −0.023∗∗∗ −0.182∗∗∗ −0.195∗∗∗
(0.004) (0.004) (0.011) (0.010)

Log Size (2nd decile) 0.837∗∗∗ 0.582∗∗∗ 0.487∗∗∗
(0.023) (0.095) (0.092)

Log Size (3rd decile) 1.314∗∗∗ 0.906∗∗∗ 0.827∗∗∗
(0.023) (0.095) (0.091)

Log Size (4th decile) 1.606∗∗∗ 1.128∗∗∗ 1.036∗∗∗
(0.023) (0.096) (0.092)

Log Size (5th decile) 1.842∗∗∗ 1.325∗∗∗ 1.163∗∗∗
(0.023) (0.095) (0.091)

Log Size (6th decile) 1.953∗∗∗ 1.455∗∗∗ 1.294∗∗∗
(0.023) (0.096) (0.092)

Log Size (7th decile) 2.051∗∗∗ 1.497∗∗∗ 1.344∗∗∗
(0.023) (0.094) (0.090)

Log Size (8th decile) 2.070∗∗∗ 1.427∗∗∗ 1.255∗∗∗
(0.023) (0.095) (0.091)

Log Size (9th decile) 1.994∗∗∗ 1.369∗∗∗ 1.246∗∗∗
(0.023) (0.092) (0.088)

Log Size (10th decile) 1.694∗∗∗ 0.677∗∗∗ 0.644∗∗∗
(0.023) (0.091) (0.088)

Sector control YES

Log Size Q. x Div. Q 0.557∗∗ 0.666∗∗∗

Constant −1.545∗∗∗ −2.891∗∗∗ −1.740∗∗∗ −2.295∗∗∗
(0.009) (0.017) (0.072) (0.083)

Observations 143,194 140,310 140,310 140,310
R2 0.002 0.098 0.182 0.246
Adjusted R2 0.002 0.098 0.181 0.245
Residual Std. Error 1.999 (df = 143192) 1.889 (df = 140299) 1.800 (df = 140199) 1.729 (df = 140103)
F Statistic 330.568∗∗∗ (df = 1; 143192) 1,530.720∗∗∗ (df = 10; 140299) 283.482∗∗∗ (df = 110; 140199) 221.440∗∗∗ (df = 206; 140103)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: The results for the OLS estimates of the regression of the logarithm of the firm-
level volatility against the inverse of the Herfindahl–Hirschman Index (HHI), with four
incremental model specification: i) plain regression, ii) controlling for firms’ size class
(deciles), iii) including the interaction term between diversification class (percentiles)
and size class (deciles), iv) controlling for sector fixed-effects.
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Dependent variable:

log(COM_VOL) log(CNT_VOL) log(IDIO_VOL)

(1) (2) (3)

Div. index. −0.269∗∗∗ −0.244∗∗∗ −0.190∗∗∗
(0.010) (0.010) (0.010)

Log Size (2nd decile) 0.207∗∗∗ 0.232∗∗∗ 0.678∗∗∗
(0.026) (0.024) (0.026)

Log Size (3rd decile) 0.357∗∗∗ 0.378∗∗∗ 1.131∗∗∗
(0.027) (0.025) (0.027)

Log Size (4th decile) 0.395∗∗∗ 0.410∗∗∗ 1.437∗∗∗
(0.028) (0.026) (0.028)

Log Size (5th decile) 0.481∗∗∗ 0.497∗∗∗ 1.722∗∗∗
(0.028) (0.027) (0.029)

Log Size (6th decile) 0.479∗∗∗ 0.524∗∗∗ 1.892∗∗∗
(0.029) (0.028) (0.030)

Log Size (7th decile) 0.553∗∗∗ 0.531∗∗∗ 2.096∗∗∗
(0.030) (0.028) (0.031)

Log Size (8th decile) 0.438∗∗∗ 0.517∗∗∗ 2.152∗∗∗
(0.030) (0.029) (0.031)

Log Size (9th decile) 0.453∗∗∗ 0.454∗∗∗ 2.249∗∗∗
(0.031) (0.029) (0.032)

Log Size (10th decile) 0.208∗∗∗ 0.295∗∗∗ 2.094∗∗∗
(0.031) (0.030) (0.032)

Sector control YES YES YES

Size Q. x Div. Q. 1.288∗∗∗ 1.209∗∗∗ 1.564∗∗∗
(0.068) (0.065) (0.070)

Constant −3.855∗∗∗ −4.055∗∗∗ −4.178∗∗∗
(0.049) (0.046) (0.050)

Observations 140,310 140,310 140,310
R2 0.131 0.137 0.258
Adjusted R2 0.130 0.135 0.257
Residual Std. Error (df = 140103) 1.678 1.593 1.722
F Statistic (df = 206; 140103) 102.629∗∗∗ 107.608∗∗∗ 236.396∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Results of the OLS estimates for the regressions of the three compo-
nents against the diversification index with size and sector controls (the Herfind-
ahl–Hirschman Index).
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Figure 12: Diversification versus volatility, quantile-quantile plot. On the y-axis the deciles of
volatility are plotted, from the darkest (top 10%) to the lightest (bottom 10%).
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Figure 13: Diversification versus volatility, quantile-quantile plot. On the left panel the first decile
of the volatility distribution for different percentiles of inverse Herfindahl index (average on the time
window), for the three different components. On the right panel, the analogous graph for the bottom
10%.

5 Conclusions

In this paper we propose a dynamic factor model approach to the decomposition of
aggregate and firm-level volatility. Aspects of novelties are related to the estimation
technique adopted to reconstruct the latent space of macroeconomic and destination-
specific shocks. The econometric strategy provides manifold improvements to the
extant literature. First, we address the decomposition problem in a proper dynamic
framework proposing an orthogonal partition whose terms account for the evolution
along the time dimension of the macroeconomic factors (described as simple AR pro-
cesses). Second, we disentangle the sources of macroeconomic fluctuations separating
flow-specific response to global and to destination-specific shocks. This provides new
insights on the role of the global/common component to the volatility, which role has
always been considered minor with respect to the idiosyncratic component. Third, at
the microeconomic level we are capable to analyze the relevant distributions of the var-
ious component, showing that the contributions of the global and destination-specific
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effects are comparable in the way they affect the first and the second moment of the
distribution, whereas the idiosyncratic component of the volatility has a much more
sizeable effect. In addition, we show how diversification across destination markets
can protect firms from shocks coming from macroeconomic events but seems not to
have effect on the idiosyncratic components. Concluding, not to be overlooked is the
methodological contribution. To our knowledge, we provide the first application of
dynamic factor model applied to microeconomic data, which required an estimation
based on a modified expectation maximization algorithm to accommodate both the
missing values and the high numerosity of the micro time series, opening the way for
other similar applications to firm-level analysis.
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A Estimation strategy: technical details

A.1 Dynamic factor models with arbitrary pattern of missing
data in presence of a block structure

The estimation of the main equation of the model with additional dynamic equations
on the common factors formally pass through the definition of a dynamic factor model
with an imposed block structure. We propose here a general version of the model with
a number of blocks C, an arbitrary number of common factor (KG) and an arbitrary
number of factors per block (Kc with c = 1, . . . , C)15.

yi,t = λi ft + ρc,i dc,t + ξi,t ξt ∼ IID(0, R) (9)
fg,t = ag fg,t−1 + ug,t ug,t ∼ IID(0, qf ) (10)
dlc,t = ac dlc,t−1 + ulc,t ulc,t ∼ IID(0, qc) (11)

where the index i = 1, . . . , N runs over the export flows, t = 1, . . . , T over the time
span , c = 1, . . . , C over the selected blocks (countries), lc = 1, . . . , Kc over the country-
specific number of factors, g = 1, . . . , G over the global factors and ξt defines the vector
of the idiosyncratic terms at the cross-section. As for the elements of the equation,
fg,t is a global factor whose dynamics is ruled by (10) and dlc,t are Kc factor specific to
the block c. Each time-series is associated to only one block, hence we have that the
number of flows admits the partition N =

∑
c=1,...,C nc, where nc is the number of time

series associated to block c. The system can be written in the synthetic vectorized
form:

yt = Λzt + ξt ξt ∼ IID(0, R) (12)
zt = Azt−1 + ut ut ∼ IID(0, Q) (13)

15 The estimation of the model (1) is obtained taking KG = Kc = 1 ∀c and as C the number of
destination-specific effects.
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and, for the case KG = KC = 1, the block-structure with zero imposed restrictions
becomes:

Y11
...

Y1n1

Y21
...

Y2n2

...

...
YC1
...

YCnR



=



λ11 ρ11 0 · · · 0
...

...
... . . .

λ1n1 ρ1n1 0 · · · 0
λ21 0 ρ21 · · · 0
...

... . . . ...
λ2n2 0 ρ2n2 · · · 0
...

...
...

...
λC1 0 0 · · · ρC1
...

... . . . ...
λCnR 0 0 · · · ρCnR



·


ft
d1,t
...
dC,t

+



ξ11
...

ξ1n1

ξ21
...

ξ2n2

...

...
ξR1
...

ξRnR


where F is a (T × 1) global factor vector and Dc are block factor vectors. Following
Doz et al. (2012) we compute the log-likelihood, l(Y, Z, θ), associated to the system
composed by the equations (12) and (13) as a function of the data matrix Y , the set of
parameters θ = {Λ, R,A,Q} and the matrix of factors Z(see appendix B of Bańbura
and Modugno, 2014, for the explicit form.) Then, we proceed to the maximization of
l through the following two steps procedure (which details are exposed below):

1. Given the factors, the parameters are derived by analytical maximization of l.

2. Given the parameters, the factors are derived running Kalman Filter/Smoother
on the system of equations (12) and (13).

This procedure defines a sequence of increasing log-likelihood values

l
(
Y, F (0), θ(0)

)
→ l

(
Y, F (0), θ(1)

)
→ l

(
Y, F (1), θ(1)

)
that needs an appropriate initialization and stops when an appropriate stopping rule
(we mutuate convergence condition from the end of section 2.1 of Bańbura and Mod-
ugno, 2014, with a threshold of 0.001).

Initialization algorithm. The procedure is initialized computing the sequential
least square estimator associated to the model on a ‘complete’ matrix of data. The
estimates Λ(0), R(0), A(0), Q(0) are the results of the following two steps:

1. We fill the missing values of the original dataset with series medians, then we
smooth the outcome taking the moving averages of the series, so that we can
work with the filled matrix Y ;

2. Once a complete matrix is given, the sequential least square estimator by Bre-
itung and Eickmeier (2015) can be applied to obtain the block-by-block param-
eters initialization.
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From model parameters to factors: Kalman Filter algorithm. At iteration
k, we set up a recursive procedure on the time dimension t = 1, . . . , T computing
(after suitable choices for z0 and P̃0) the predicted state vector and variance-covariance
matrix as proposed in Durbin and Koopman (2012). From now on, in order to deal
with missing values, parameters are restricted to each time step to that portion with
available information. Hence, the “NA” index or suffix denotes the matrix/vector
cleaned by row, column or elements corresponding to NA entries at time t. Then, we
have:

zt = A(k)zt−1 (14)

Pt = A(k)P̃t−1A
(k)′ +Q(k) and G

(k)
t = Λ

(k)
NA,tP̃tΛ

(k)
NA,t

′
+R

(k)
NA,t (15)

and the filtered equivalents

z̃t = zt + PtΛ
(k)
NA,t

′
G−1t

(
yNA
t − Λ

(k)
NA,tzt

)
(16)

P̃t = Pt + PtΛ
(k)
NA,t

′
G−1t Λ

(k)
NA,tP

′
t (17)

The varying part of the loglikelihood can be computed as

loglik(k) = − 1

2

T∑
t=1

log
(

Λ
(k)
NA,tP̃tΛ

(k)
NA,t

′
+R

(k)
NA,t

)
(18)

− 1

2

T∑
t=1

(
yNA
t − Λ

(k)
NA,tzt

)(
Λ(k)P̃tΛ

(k)
NA,t

′
+R

(k)
NA,t

)(
yNA
t − Λ

(k)
NA,tzt

)′
(19)

With the filtered and smoothed estimates of zt and Pt we can initialize the smoother
to obtain the smoothed estimates (z1, . . . , zT ), Z in matrix form, and (P 1, . . . , P T ) by
the inverse recursion:

zt−1 = z̃t−1 + P̃t−1A
′ P−1t

(
zt − A(k)zt−1

)
(20)

P t−1 = P̃t−1 + P̃t−1A
′ P−1t

(
P t − P−1,t

) (
P̃t−1A

′P−1t

)′
(21)

From latent factors to model parameters. Once the smoothed estimates of
the latent factors have been obtained, we can apply the results of the expected log-
likelihood maximization over the parameter space, given the observations ΩT and the
parameters θ(k):

A(k+1)
g =

(
T∑
t=1

Eθ(k)
[
zg,tz

′
g,t−1|ΩT

])( T∑
t=1

Eθ(k) [zg,t−1zg,t−1
′|ΩT ]

)−1
(22)

Q(k+1)
g =

1

T

(
T∑
t=1

Eθ(k)
[
zg,tz

′
g,t|ΩT

])
− A

(k+1)
g

T

(
T∑
t=1

Eθ(k) [zg,tzg,t−1
′|ΩT ]

)′
(23)

where the index g denotes the restriction to the global factor. Now, for a given
block c, an analogous formula is used for A(k+1)

c , Q
(k+1)
c . For the actual computations,
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expectations used in equations (22) and (23) are replaced by the smoothed estimates
of the factors Z and their restriction to the common an block specific components,
Zg, {P g}Tt=1 and Zc, {P c,t}Tt=1

16.

Â(k+1)
g =

(
ZgZ

′
−1,g +

T∑
t=1

P−1,g,t

)(
Z−1,gZ

′
−1,g +

T∑
t=1

P g,t

)−1
(24)

Q̂(k+1)
g =

1

T

(
ZgZ

′
g +

T∑
t=1

P g,t

)
− Â

(k+1)
g

T

(
ZgZ

′
−1,g +

T∑
t=1

P−1,g,t

)′
(25)

(26)

Estimates of the complete form parameters Â(k+1), Q̂(k+1) are obtained by trivial re-
composition of the block structure. The updated estimates for the loadings matrix
can be seen as the NA-corrected OLS solutions of the regressions (see Bańbura and
Modugno, 2014, pag. 138, eq. (11))17

yt = ΛgZg,t + ΛcZc,t + vt c = 1, . . . , C (27)

for nb series of the block b.

vec(Λb) =

(
T∑
t=1

Zgc,tZ
′
gc,t ⊗ IndNA

t

)−1
vec

(
T∑
t=1

yNA
b,t Z

′
t

)
(28)

18 The matrix Ĉ(k+1) is composed via vertical merging of the estimated blocks and this
step concludes with the matrix R in line with the eq.(12), pag.138 of Bańbura and
Modugno (2014):

1

T

T∑
t=1

(
yNA
t − IndNA

t Λ̂(k+1) Zt

)(
yNA
t − IndNA

t Λ̂(k+1) Zt

)′
+

IndNA
t Ĉ(k+1) P t Ĉ

(k+1)′ IndNA
t +

(
In − IndNA

t

)
R̂(j)

(
In − IndNA

t

)
(29)

Then, a new step of the algorithm can start from
{(

Λ̂(k+1), R̂j+1, Â(k+1), Q̂(k+1)
)}

.

A.2 Reconstructing aggregate measures from sample estimates

As anticipated above, the estimation algorithm is applied to H subsamples,
{
Y (h)

}H
h=1

,
with constant number of firms (but variable number of flows) of the original dataset19.
As a result, we obtain H different estimates of the main parameters and latent factors

16 The index −1 denotes the matrix of lagged factors.
17 In line with the notation introduced above, IndNA

t denotes a diagonal matrix with ones when the
corresponding cross element is available in the cross section t and a zero when it is not.

18 The matrix Zgc by juxtaposition of the restrictions of Z to the global and block-specific components.
19 With a slight abuse of notation we use the same symbols (an index between parenthesis) to indicate

partial estimates of the parameters (subsection A.1) and estimates or quantities referred to different
sample of the original dataset (A.2).
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of equation (1). The family of estimates of the global,
{
f̂
(h)
t

}H
h=1

, and destination-

specific
{
d̂
(h)
c,t

}H
h=1

factors can be used to recover the final estimates by simple average:

f̂t =
1

H

H∑
h=1

f̂
(h)
t and d̂c,t =

1

H

H∑
h=1

d̂
(h)
c,t

Analogously, we use the outcomes from the H samples to compute the three distinct
components of the aggregate volatility. For the global component (σg) we have:

σg =
1

H

H∑
h=1

σ(h)
g =

1

H

H∑
h=1

VarT

(∑
j

ωj,t · λ̂(h)j · f̂
(h)
t

)
.

Confidence intervals for the averages across samples are calculated as follow. Let us
denote with x =

(
x1, . . . , xN

)
the vector of sample estimates of the measure x. We

define x as the simple average of the elements of x and approximate the distribution
of the deviation from the true means δ = x − µ, by the empirical distribution δ∗ =
x∗ − x, where x∗ are the averages of random samples x∗ of elements of x taken with
replacement (equally sized with the same size of x). Once the empirical distribution of
δ∗ is computed, given a confidence level α, the quantile-thresholds for the values 1−α

2

and 1−α
2
, defines respectively the lower and upper bound of the confidence interval.

A.3 Firm-level distributions: robustness across samples

Before proceeding with the analysis of the microeconomics of volatility decomposition,
let us spend few lines to explain how it is possible to work on firm-level empirical
distributions in a context of data subsampling. Instead of taking simple across sample
averages and then computing the empirical distributions, we first test the equivalence
of distributions of the component (or other related micro-statistics) generated running
the estimation method on the different data subsamples. On this topic, figure 14
offers an example: the distributions of volatility with muted global components can
be compared both by visual inspection and analysing the heatmap of the statistics of
the pairwise Kolmogorov-Smirnov tests. With a good degree of significance, we can
treat those empirical distributions as coming from the same population distribution,
this being true for all the relevant variables we will consider in the following. This
serves our analysis in two ways: first, confirming that the estimation of the micro-level
components of the decomposition are coherent and unaffected from biases in firms’
selection; second, that we can exploit any of the computed empirical distributions
avoiding possible distortions of the following analysis.
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(a) Gaussian kernel densities compared.a

a The non-zero probability assigned to negative
values is just an artifact of the fit. A more rig-
orous estimate would not change the main intu-
ition of the distributions’ comparison.

(b) Pairwise KS tests.

Figure 14: Figure (a): a visual comparison of the fitted distribution for the volatility with muted
global components. Figure (b): heatmap of the p-values of the pairwise Kolmogorov-Smirnov test for
the empirical distribution of the volatility with muted global components.

B Aggregation under fat-tailed distributions

yi,t = log
(

xi,t
xi,t−1

)
yCi,t + yDi,t + yIi,t

Yt = log
( ∑

i xi,t∑
i xi,t−1

)
YC
t + YD

t + YI
t

DFM decomposition

Same source Aggregation proxies

Macro decomposition

Diagram B.1

Figure 15: An illustrative diagram of the conceptual linkages between microeconomic and macroe-
conomic decompositions. On the left, the flow level growth rates and their distribution (top) with the
aggregate growth rate (bottom), both stemming from the same empirical source: the levels of trade
flows (firm-destination pairs). The dynamic factor model serves as baseline to obtain the micro-level
decomposition on the top right corner. Then, through selected aggregation strategies (dashed line)
the macroeconomic decomposition is recovered, and the two following steps define a linkage between
the aggregate growth rates and the macro-component growth rates.

Diagram 15 illustrates schematically the conceptual connections between the rele-
vant statistical entities of the proposed analysis. When analyzing the macroeconomic
decomposition implied by the flow-level estimated DFM, the aggregation strategies
mapping the flow-level components into the aggregate equivalents need particular at-
tention. Indeed, the possible avenues connecting the elements on the right of the
diagram are manifold, and the optimal strategy needs to be weighed looking at the
characteristics of the data upon which the analysis relies. We propose here an overview
of some recent methods outlined in Bottazzi et al. (2019) — contextualized to our
framework — that can complement the results and insights from the more widespread
weighted aggregation.
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Denoting with {xi,t} the level of trade flows we can write the logarithmic growth
rate as

Yt = log

( ∑
i xi,t∑
xi,t−1

)
= log

(∑
i xi,t−1e

yi,t∑
xi,t−1

)
E
= log

(∑
i xi,t−1E [eyi,t ]∑

xi,t−1

)
(30)

Thus, the problem is reduced to the optimal characterization of the cumulant gener-
ating function (CGF) and then the best approximation given the distributional prop-
erties of the micro-level growth rates. Noticing that the equation (*) decomposes by
construction yi,t in three orthogonal components and that the CGF of the sum of three
independent random variables, we can proxy the E [eyi,t ] as the product of the CGF
associated to the three components. Hence, we are induced to consider three different
approximation of the CGFs in order of increasing accuracy20. For a generic variable
Zt with realizations {zi,t}:

E
[
eZt
]
' eµZ,t

E
[
eZt
]
' eµZ,t+σ

2
Z,t

E
[
eZt
]
' e(x/xi,t)

2βt (C2,t−C2,t)/2 · eµZ,t+σ2
Z,t

While the first two formulas are subsequent terms in the series of CGF, the third, re-
lying on more sophisticated theoretical ground, introduces a size dependent correction
term accounting for the so called scaling relation between the variance of the growth
rates and their size (this subject is thoroughly analyzed in industrial dynamic studies
such as Bottazzi and Secchi, 2006). For what concerns our analysis, it is relevant to
flag that once the dependence on size is introduced then, first, the three terms of the
GR decomposition cannot be disentangled completely because the relative correction
terms are absorbed in the sum, and, second, the size-variance relation is ruled by the
series of parameters βt. Hence, when deploying the finer version of the CGF decom-
position one has to assess the magnitude of the scaling effect and evaluate the impact
of the correction term in the context of application. For the case of interest, table 6
shows that the span of the values of the betas is large and consistently far from the
characteristic value of −0.20 that it take when the growth rates are analyzed at the
firm rather than at the flow level. With the just exposed caveats, we can test the
validity of the examined approximations for the series of the flow level growth rates
yi,t. In order to understand the appropriateness we compare the approximated aggre-
gation with the actual aggregate growth rate Yt, in terms of correlation and variance
ratio. We notice that, looking at table 7, the Spearman rank correlation suggests that
all the three approximations display a significant level of correlation decreasing for in-
creasing accuracy21, whereas in term of relative variance the the second and the third
approximation are the closest to the actual aggregate. Finally, ?? offers a comparison
between different aggregation strategies for the three components of the model’s main
equation.

20 For the sake of the synthesis, we cannot provide all the details that are thoroughly discussed in
Bottazzi et al. (2019)

21 This is explained by two main consideration, first, A1 outperform A2 for a sophisticated mechanism
of compensation explained in (Bottazzi et al., 2019) and, second, A2 outperform A3 because the
impact of beta is probably not relevant or has a contrasting effect.
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Min 1st quartile Median 3rd quartile Max

Common -0.1005 -0.0733 -0.063 -0.0538 -0.02
(-0.1018,-0.0995) (-0.0744,-0.0726) (-0.0635,-0.0626) (-0.0543,-0.0532) (-0.0241,-0.0158)

Dest. specific -0.1 -0.0755 -0.0668 -0.0576 -0.0317
(-0.1016,-0.098) (-0.0764,-0.0748) (-0.0678,-0.0662) (-0.0581,-0.0571) (-0.0336,-0.0299)

Idiosyncratic -0.0564 -0.0455 -0.0411 -0.0358 -0.0211
(-0.0572,-0.0558) (-0.0459,-0.0451) (-0.0415,-0.0408) (-0.0363,-0.0354) (-0.0218,-0.0204)

Table 6: Quantiles of the distribution along the time dimension of βs for the three components

A1 A2 A3

Corr. 0.8564 0.7414 0.6981
Rel. Var. 0.0064 1.11 0.98

Table 7: Correlations and relative variance of the three aggregation proxies with respect to the log
growth rate of the aggregate.

Volatility Share

Dynamic Weighted Sum Constant Weighted Sum
Global Dest. Spec. Idio. Global Dest. Spec. Idio.
0.254 0.218 0.724 0.328 0.230 0.734

(0.207,0.302) (0.184,0.258) (0.691,0.749) (0.259,0.372) (0.208,0.250) (0.688,0.760)

Approximate CGF Corrected CGF (Bottazzi et al. 2020)
Global Dest. Spec. Idio. Global Dest. Spec. Idio.
0.471 0.272 0.775 0.297 0.215 0.895

(0.446,0.502) (0.251,0.305) (0.745,0.796) (0.281,0.319) (0.198,0.233) (0.838,0.924)

Table 8: Aggregate volatility shares for the global, destination-specific and idiosyncratic compo-
nents. Aggregation based on weighted sums (top panels), with constant or dynamic flow-specific
loadings (along with respectively Di Giovanni et al., 2018; Kramarz et al., 2020), are compared with
aggregations accounting for fat-tails and variance-size scaling relations.
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