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Abstract. We show that the playing sequence–the order in which players update their
actions–is a crucial determinant of whether the best-response dynamic converges to a
Nash equilibrium. Specifically, we analyze the probability that the best-response dy-
namic converges to a pure Nash equilibrium in random n-player m-action games under
three distinct playing sequences: clockwork sequences (players take turns according to a
fixed cyclic order), random sequences, and simultaneous updating by all players. We ana-
lytically characterize the convergence properties of the clockwork sequence best-response
dynamic. Our key asymptotic result is that this dynamic almost never converges to a
pure Nash equilibrium when n and m are large. By contrast, the random sequence best-
response dynamic converges almost always to a pure Nash equilibrium when one exists
and n and m are large. The clockwork best-response dynamic deserves particular atten-
tion: we show through simulation that, compared to random or simultaneous updating,
its convergence properties are closest to those exhibited by three popular learning rules
that have been calibrated to human game-playing in experiments (reinforcement learning,
fictitious play, and replicator dynamics).
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1. Introduction

The best-response dynamic is a ubiquitous iterative game-playing process in which, in

each period, players myopically select actions that are a best-response to the actions last

chosen by all other players. Most of the existing work on best-response dynamics and on

learning rules, such as fictitious play, establishes sufficient conditions on a game’s payoff

structure to guarantee convergence to a Nash equilibrium.1 In this paper we also investigate

the convergence properties of the best-response dynamic but, rather than restricting our

attention to games with a particular structure, our focus is instead on the role of the playing

sequence–the order in which players update their actions. Our key insight is that the playing

sequence is a crucial determinant of whether the best-response dynamic converges to a pure

Nash equilibrium.

We focus on three specific playing sequences: “clockwork” sequences, random sequences,

and simultaneous updating. Under the clockwork playing sequence, players take turns to

play one at a time according to a fixed cyclic order. Player 1 plays first, followed by player

2, and so on up to player n, and then the sequence returns to player 1, and so on. To

our knowledge, the behavior of the best-response dynamic under this playing sequence has

received relatively little attention in the literature.2 Under the random playing sequence,

players take turns to play one at a time and the next player to play is chosen uniformly

at random from among all players. This playing sequence is the most well-studied in the

literature.3 Finally, we also consider simultaneous updating by all players in each period.4,5

To investigate the role of the playing sequence in determining the convergence properties

of the best-response dynamic, we analyze the probability that the best-response dynamic

converges to a pure Nash equilibrium in random n-player m-action games under clockwork,

random, and simultaneous updating. In other words, we generate a game by drawing all

payoffs at random (from atomless distributions to avoid payoff ties) and we determine the

1For example, previous work has established that the best-response dynamic converges to a Nash equilibrium
in weakly acyclic games (Fabrikant et al., 2013), potential games (Monderer and Shapley, 1996), aggregative
games (Dindoš and Mezzetti, 2006), and quasi-acyclic games (Friedman and Mezzetti, 2001, Takahashi and
Yamamori, 2002).
2Boucher (2017) analyzes the clockwork sequence best-response dynamic in potential games.
3The random sequence best-response dynamic has been analyzed in anonymous games (Babichenko, 2013),
near-potential games (Candogan et al., 2013), potential games (Christodoulou et al., 2012, Coucheney et al.,
2014, Durand and Gaujal, 2016, Swenson et al., 2018, Durand et al., 2019), and games on a lattice (Blume
et al., 1993). “Sink” equilibria are studied in (Goemans et al., 2005, Mirrokni and Skopalik, 2009).
4This case is studied in Quint et al. (1997) for 2-player games and in Kash et al. (2011) for anonymous
games.
5There are, of course, many other possible playing sequences. For example, Feldman and Tamir (2012)
study the case in which the sequence of play depends on current payoffs.
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probability that the best-response dynamic starting at a random initial action profile con-

verges to a pure Nash equilibrium of the randomly drawn game. Our paper therefore builds

on the growing literature on random games.6 Studying such games allows us to abstract

from the specific structure of a given game, thereby allowing us to focus solely on the role

of the playing sequence. Furthermore, random games are conceptually useful because they

can be seen as null models for generic situations involving strategic interactions.7

The novel theoretical contributions of this paper are primarily about the convergence

properties of the clockwork best-response dynamic in random games in which payoffs are

drawn independently. Our main finding, which is presented in Section 3.1, is that the

probability that the clockwork best-response dynamic converges to a pure Nash equilibrium

is, up to a polynomial factor, of order 1/
√
mn−1. This has two implications: (i) when the

number of players n and/or the number of actions m is large (nm → ∞), the probability

that the clockwork best-response dynamic converges to a pure Nash equilibrium goes to

zero, and (ii) since the asymptotic convergence probability depends essentially only on the

quantity mn−1, we have that, when n and/or m are large, the probability of convergence

to a pure Nash equilibrium in n-player m-action games is approximately the same as it

is in 2-player mn−1-action games. In fact, our simulations indicate that this asymptotic

relationship between n-player m-action games and 2-player mn−1-action games is also fairly

accurate for small values of n and m. In Section 3.2 we focus exclusively on 2-player

games. This allows us to provide more granular results on the convergence properties of

the clockwork best-response dynamic. In particular, we provide results on game duration

and we derive an exact expression for the probability that the best-response dynamic

reaches a (best-response) cycle of given length at a particular period. As a special case, we

obtain the exact probability that the clockwork best-response dynamic converges to a pure

Nash equilibrium in 2-player m-action games (and we argue that, in the 2-player m-action

case, this probability is the same for random playing sequences). Furthermore, we show

that this probability is asymptotically
√
π/m when m is large (and π ≈ 3.14).

6The literature on randomly generated games starts with Goldman (1957), Goldberg et al. (1968), and
Dresher (1970). Since then, a number of papers have analyzed the distribution of pure and mixed Nash
equilibria in random games (Powers, 1990, Stanford, 1995, 1996, 1997, 1999, McLennan, 2005, McLennan
and Berg, 2005, Takahashi, 2008, Kultti et al., 2011, Daskalakis et al., 2011). Cohen (1998) derives the
probability that a pure Nash equilibrium is Pareto efficient. More recently, Alon et al. (2020) derive the
probability that a random game is dominance-solvable.
7See Pangallo et al. (2019) for a general discussion on the usefulness of considering null models and statistical
ensembles in game theory, and on how this approach is extensively used in other disciplines such as statistical
mechanics and ecology.
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We briefly comment on the approach that we adopted to derive the main result of Section

3.1. We represent the best-response structure of a game by a directed graph (or digraph) in

which the vertices are the action profiles and the directed edges correspond to the players’

best-responses. A pure Nash equilibrium corresponds to a sink of the digraph. The best-

response dynamic can be represented by a path that starts at some initial profile in the

digraph and travels along the directed edges in a direction that is determined by the playing

sequence. Drawing payoffs independently at random (from atomless distributions) induces

a uniform distribution over the best-response digraphs, so the probability of convergence

to a pure Nash equilibrium can be reduced to working out the probability that the best-

response path initiated at a random vertex reaches a sink of the randomly drawn digraph.

The main theoretical challenge that we face when analyzing the best-response dynamic is

that it exhibits some path-dependence: if a player encounters an environment that they

had seen before, they must play the same action that they played when the environment

was first encountered. We tackle this issue by relying on a coupling argument in which

the best-response dynamic is coupled to a (memoryless) random walk through the digraph

that is easier to analyze.

Our results for the convergence properties of the best-response dynamic under ran-

dom and simultaneous updating rely mostly on simulations. Under a random sequence,

conditional on the game having a pure Nash equilibrium, we show that the probability of

convergence to a pure Nash equilibrium goes to one when n or m are large.8 This is in sharp

contrast to our results for the clockwork sequence and highlights one of the key insights of

this paper; namely, that the playing sequence is a crucial determinant of the probability

of convergence to equilibrium. While the existing literature on best-response dynamics

has focused primarily on identifying sufficient conditions on a game’s payoff structure to

guarantee convergence to equilibrium, our results indicate that the playing sequence must

also be given careful consideration. To further corroborate this insight, we show that the

playing sequence also determines the probability of convergence to equilibrium in random

games with correlated payoffs.9 For example, in two player games with strongly positively

correlated payoffs, we find that the best-response dynamic with simultaneous updating is

unlikely to converge to equilibrium, whereas it is very likely to do so under a clockwork

or a random sequence. Over all possible values for the payoff correlation parameter, the

best-response dynamic tends to converge to a pure Nash equilibrium most frequently under

a random playing sequence and least frequently under simultaneous updating.

8Amiet et al. (2019) prove this result analytically for the case m = 2 and n→∞.
9See Goldberg et al. (1968), Stanford (1999), Berg and Weigt (1999), Rinott and Scarsini (2000), Galla and
Farmer (2013), Sanders et al. (2018) for work on random games with payoff correlations.
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Among the three playing sequences, the clockwork playing sequence stands out as de-

serving particular attention. Through extensive simulations, we show that the frequency

of convergence to equilibrium of the clockwork best-response dynamic most closely tracks

the convergence frequency of three popular learning rules, namely the Bush-Mosteller re-

inforcement learning algorithm (Bush and Mosteller, 1953), fictitious play (Brown, 1951,

Robinson, 1951), and replicator dynamics (Maynard Smith, 1982).10 The three learning

algorithms are most naturally defined as involving simultaneous updating, yet when we

vary n, m, or the payoff correlation parameter, the clockwork sequence best-response dy-

namic outperforms both the random sequence and the simultaneous updating best-response

dynamics in most of our simulations. Additionally, when compared with the random se-

quence best-response dynamic, the paths traced by the clockwork sequence best-response

dynamic in the space of all action profiles more closely resemble the paths traced by the

three learning algorithms.

Our focus on reinforcement learning, fictitious play, and replicator dynamics is driven by

the fact that these learning rules have been used to calibrate human game-play in exper-

iments (Bush and Mosteller, 1953, Arthur, 1991, Erev and Roth, 1998, Sarin and Vahid,

2001, Van Huyck et al., 1995, Friedman, 1996, Cheung and Friedman, 1997).11 Our results

suggest that, to the extent that the learning algorithms are consistent with human game-

play in randomly-generated games, the clockwork best-response dynamic could provide a

first-order approximation for the evolution of play in such games.

The paper is structured as follows. In Section 2 we present our analytical framework.

Section 3 contains our theoretical results on the probability that the clockwork sequence

best-response dynamic converges to pure Nash equilibria in random games with indepen-

dently drawn payoffs. The section also compares our findings to existing analytical results

regarding the random playing sequence. Section 4 contains all our numerical simulation

results. All proofs and detailed descriptions of the three learning rules (reinforcement

learning, fictitious play, and replicator dynamics) are in the appendix.

10The convergence properties of these learning algorithms have been extensively studied (Fudenberg and
Levine, 1998), but there is no general result about their probability of convergence to Nash equilibria in
random games.
11Of course, Bush-Mosteller reinforcement learning, fictitious play, and replicator dynamics are not repre-
sentative of all learning algorithms that have been studied in game theory. For example, differently from
these learning rules, regret testing (Foster and Young, 2006, Germano and Lugosi, 2007) converges to a Nash
equilibrium in essentially every n-player, m-action game with high probability. Therefore, its convergence
properties are better approximated by best-response dynamics under a random sequence rather than under
a clockwork sequence.
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2. Best-response dynamics in games

In this section, we introduce the central concepts of our paper. For clarity, we summarize

some of our keys terms in Table 1.

Table 1. Terminology

Game gn,m Game with n players and m actions per player
Environment a−i Part of the action profile a that is played by all players but i
Best-response bi(a−i) Maps a−i to the actions giving highest payoff to i
Non-degenerate game Game with no payoff ties, i.e. the best-response is unique for each i and a−i

Playing sequence s The function s : N→ [n] determines whose turn it is to play
s-best-response
dynamic on gn,m
initiated at a0

Starting at profile a0, in each period t ∈ N, player s(t) plays her myopic
best-response to environment at−1

−s(t) in the game gn,m

Path 〈~a, s〉 Infinite sequence of action profiles ~a = (a0,a1, ...) satisfying at
−s(t) = at−1

−s(t)

for each t ∈ N

2.1. Games. A game with n ≥ 2 players and m ≥ 2 actions is a tuple

gn,m := ([n], [m], {ui}i∈[n]),

where [n] := {1, ..., n} is the set of players and each player i ∈ [n] has a set of actions

[m] := {1, ...,m} and a payoff function ui : [m]n → R.

An action profile is a vector of actions a = (a1, ..., an) belonging to the set [m]n that lists

the action taken by each player. An environment for player i is a vector a−i belonging to the

set [m]n−1 that lists the action taken by each player but i. A best-response correspondence

bi for player i is a mapping from the set of environments for player i to the set of all

non-empty subsets of i’s actions and is defined by

bi(a−i) := arg max
ai∈[m]

ui(ai,a−i).

A game is non-degenerate if for each player i and environment a−i, the best-response

action is unique. Games in which there are no ties in payoffs are non-degenerate games.12

In the rest of this paper, we focus only on non-degenerate games, so each instance of

“game” will be taken to mean “non-degenerate game”. Since best-responses are unique in

non-degenerate games, we write ai = bi(a−i) whenever ai ∈ bi(a−i).

12There are no ties in payoffs if for all players i, all environments a−i, and all ai 6= a′i, ui(ai,a−i) 6=
ui(a

′
i,a−i).
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Figure 1. Illustration of a 3-player 2-action non-degenerate game (left)
and its associated best-response digraph (right). The axes shown in the
center give us our coordinate system.

An action profile a ∈ [m]n is a pure Nash equilibrium (PNE) if for all i ∈ [n] and all

ai ∈ [m],

ui(a) ≥ ui(ai,a−i).

Equivalently, a ∈ [m]n is a PNE if each player i ∈ [n] is playing their best-response

action i.e. ai = bi(a−i). Denote the set of PNE of the game gn,m by PNE(gn,m) and let

#PNE(gn,m) denote the cardinality of this set.

2.2. Best-response digraphs. The best-response structure of a non-degenerate game

gn,m can be represented by a best-response digraph D(gn,m) whose vertex set is the set of

action profiles [m]n and whose edges are constructed as follows: for each i ∈ [n] and each

pair of distinct vertices a = (ai,a−i) and a′ = (a′i,a−i), place a directed edge from a to a′

if and only if a′i is player i’s best-response to environment a−i, i.e. a′i = bi(a−i). There are

edges only between action profiles that differ in exactly one coordinate. A profile a is a

PNE of gn,m if and only if it is a sink of the best-response digraph D(gn,m).

Example (Best-response digraphs). Panel (A) of Figure 1 illustrates a 3-player 2-action

game (on the left) and its associated best-response digraph (on the right). Player 1 selects

rows (along the depth), player 2 selects columns (along the width), and player 3 selects

levels (along height). In the left-hand panel, the payoffs of players 1, 2 and 3 are listed in

that order. The vertices of the best-response digraph are the action profiles. The unique

PNE at the profile (1, 2, 1) is underlined and is a sink of the digraph. �
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2.3. Best-response dynamics. We now consider games played over time, with each

player in turn myopically best-responding to their current environment. A playing se-

quence function s : N→ [n] determines whose turn it is to play at each time period t ∈ N,

where N denotes the set of positive integers {1, 2, ...}. A path 〈~a, s〉 is an infinite sequence

of action profiles ~a = (a0,a1, ...) and an associated playing sequence function s : N → [n]

satisfying the constraint that only one player changes her action at a time, at−s(t) = at−1
−s(t)

for each t ∈ N. So only the action of player s(t) is allowed to differ between profiles at−1

and at along a path.

Note that this set up rules out simultaneous updating from our theoretical analysis

because we allow only one player to play in any given period. A more general framework

would allow subsets of players to update their actions simultaneously in each period – in

other words, a playing sequence would be a sequence of non-empty subsets of [n] – but

we avoid this generality here. As mentioned in our introduction, we focus exclusively on

clockwork and random playing sequences for our theoretical results.

The best-response dynamic with playing sequence s : N→ [n] on a game gn,m initiated

at the action profile a0 generates a path 〈~a, s〉 according to Algorithm 1. Namely, set

the initial action profile to a0 and, in each period t ∈ N, player s(t) myopically plays the

best-response to her current environment at−1
−s(t).

Algorithm 1 s-sequence best-response dynamic on gn,m initiated at a0

(1) For t ∈ N:
(a) Set i = s(t)
(b) Set at−i = at−1

−i
(c) Set ati = bi(a

t−1
−i ) where bi(a

t−1
−i ) := arg maxxi∈[m] ui(xi,a

t−1
−i )

Algorithm 1 generates a path by traveling along the edges of the best-response digraph

D(gn,m) in direction s(t) at step t starting from the initial profile a0. More precisely,

the infinite sequence of actions ~a is determined as follows: if player s(t) is already best

responding then at−1 does not point to any vertex (a′s(t),a
t−1
−s(t)) 6= at−1 and the next profile

in the sequence is at−1 itself, i.e. at = at−1; otherwise, if player s(t) is not already playing

her best response then travel to the vertex that corresponds to her playing her best-response

action, i.e. set at = (a′s(t),a
t−1
−s(t)) where (a′s(t),a

t−1
−s(t)) 6= at−1 is the unique vertex that at−1

points to.

9



2.4. Convergence. For any path 〈~a, s〉 and any set of action profiles A ⊆ [m]n define

τ〈~a,s〉(A) as the first period t ≥ 1 in which some element of the sequence ~a is in the set A:

τ〈~a,s〉(A) := inf{t ∈ N : at ∈ A},

where inf is the infimum operator and we use the convention that inf ∅ = ∞ (i.e. we take

τ〈~a,s〉(A) to be infinite if no element of the sequence ~a is in A). The path 〈~a, s〉 reaches the

set A (in period t) if t = τ〈~a,s〉(A) and t is finite.13

Definition 1. The s-sequence best-response dynamic on game gn,m initiated at a0 con-

verges to a PNE if the path 〈~a, s〉 generated according to Algorithm 1 reaches PNE(gn,m).

Clearly, if the path reaches a PNE in some period, it stays there forever.

2.4.1. Convergence for the clockwork playing sequence. There are infinitely many possible

playing sequences. We will be particularly interested in the clockwork playing sequence

which is defined by s(t) = sc(t) := 1 + (t − 1) mod n. In other words, player 1 plays in

period 1, followed by player 2, then 3, and so on until player n, and then the sequence

returns to player 1, and so on.

Definition 1 applies to all playing sequences but, when the sequence is clockwork, we can

characterize convergence (and non-convergence) more simply in terms of path properties.

We refer to one complete rotation of the clockwork sequence as a round of play; for example,

if a round starts at player i then each player plays once and the round is complete when it

is once again i’s turn to play. For any k ∈ N define

T〈~a,sc〉(k) := inf
{
t ∈ N : at = at+nk and at 6= at+nk

′
for all k′ ∈ N such that k′ < k

}
,

to be the first period in which an action profile is repeated k rounds later (and at no

earlier round). If T〈~a,sc〉(k) is finite then the path 〈~a, sc〉 has the property that from period

T〈~a,sc〉(k) onwards, the sequence of nk possibly non-distinct action profiles at, ...,at+nk−1

repeats itself forever. We therefore say that the path 〈~a, sc〉 reaches a nk-cycle in period

T〈~a,sc〉(k) or, equivalently, that the clockwork sequence best-response dynamic converges to

a nk-cycle (in period T〈~a,sc〉(k)).

Notice that if the action profile is at in some period t and no one deviates from this

profile in a single round (i.e. at = at+n), then at must be a PNE. Therefore, if the path

〈~a, sc〉 reaches a nk-cycle in period T〈~a,sc〉(k) and k = 1 then we say that the clockwork

sequence best-response dynamic reaches a PNE in that period. However, if the path 〈~a, sc〉

13We also say that the path reaches the set A by period t if it reaches A in period τ with τ ≤ t and the
path reaches A before (after) period t if it reaches A in period τ < t (τ > t).
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Figure 2. The digraphs in panels (A)-(C) above are all identical and cor-
respond to the best-response digraph of the game shown in Figure 1. In the
panels we show the first few elements of paths generated according to the
best-response dynamic for different initial profiles and playing sequences.

reaches a nk-cycle in period T〈~a,sc〉(k) and k > 1 then we say that the clockwork sequence

best-response dynamic converges to a best-response cycle (of length nk) in that period.

Because the number of action profiles is finite, T〈~a,sc〉(k) must be finite for some k, so

the clockwork best-response dynamic must always converge either to a PNE or to a best-

response cycle. In dynamical systems language, nk-cycles (including PNE) are attractors

of the clockwork best-response dynamic. Clearly,

T〈~a,sc〉 := inf
{
k ∈ N : T〈~a,sc〉(k)

}
,

is the period in which the path 〈~a, sc〉 reaches a PNE or a best-response cycle.
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Example (Best-response dynamics and convergence). The digraphs in panels (A)-(C) of

Figure 2 are all identical and correspond to the best-response digraph of the game shown

in Figure 1. Each vertex of a best-response digraph is a point in [m]n but, unlike the right-

hand panel of Figure 1, we no longer show the explicit coordinate of each vertex in our

illustrations to avoid clutter. In panels (A)-(C) of Figure 2 we show the first few elements

of paths generated according to the best-response dynamic for different initial profiles and

playing sequences.

In panel (A) the initial profile is set to a0 = (1, 1, 2) and the playing sequence is clock-

work. The first few elements of the infinite sequence ~a are shown in the figure. The path

stays at (1, 1, 2) in period 1 because player 1 does not change her action. The path then

moves to a2 = (1, 2, 2) in period 2 because player 2 plays action 2. In period 3, player 3

plays action 1 which takes the path to a3 = (1, 2, 1). Once at this profile, which is the

unique PNE, the path remains there forever. Furthermore, T〈~a,sc〉(1) = 3.

In panel (B) the initial profile is set to a0 = (1, 1, 1) and the playing sequence is clock-

work. This time, the path moves to the bottom left corner on the front face of the cube

in period 1. The path then cycles forever among the four profiles on the front face of the

cube. Since period t = 1 is the first period in which at 6= at+3 but at = at+3k for some

integer k (namely k = 2) we have that T〈~a,sc〉(2) = 1. In other words, the path reaches

a best-response cycle in period 1. In fact, the path reaches a 6-cycle in period 1: once

reached, the action profile sequence a1, ...,a6 is repeated forever. Note that not all action

profiles in the sequence a1, ...,a6 are distinct.

In panel (C) the initial profile is once again set to a0 = (1, 1, 1) but the playing sequence

is 1-2-1-· · · . This time, the path reaches the PNE in period 3. The playing sequence from

period 4 onwards is irrelevant: once at the PNE, the path will remain forever regardless of

the playing sequence.

The examples in panels (B) and (C) illustrate how changes to the playing sequence and

to the initial profile can affect convergence to a PNE. �

2.5. Best-response dynamics with random inputs. How likely is it for best-response

dynamics to converge to pure Nash equilibria? As discussed in the introduction, several

papers have analyzed the convergence properties of best-response dynamics in games with a

specific payoff structure (e.g. in potential games, aggregative games, etc) and our examples

above illustrate how difficult it is to obtain general results for all games. In particular, the

dynamics depend on the details of the game, the playing sequence, and the initial condition.

Rather than imposing restrictions on the game itself, we answer our question by working
12



out the probability that the best-response dynamic convergences to a PNE when the inputs

to the dynamic are drawn at random.

We generate random games by drawing all payoffs at random: for each a ∈ [m]n and

i ∈ [n], the payoff Ui(a) is a random number that is drawn from an atomless distribution

P. The draws are independent across all i ∈ [n] and a ∈ [m]n. The distribution P ensures

that any ties in payoffs have zero measure, so any resulting game is non-degenerate almost

surely. A random n-player m-action game drawn according to this process is denoted by

Gn,m := ([n], [m], {Ui}i∈[n]).

In addition to the clockwork playing sequence, we will also consider the random playing

sequence sr which is determined as follows: for each t ∈ N, draw sr(t) uniformly at random

from [n]. So, in each period, the player playing in that period is drawn uniformly at random

from among all players. In what follows, we will take a playing sequence s to be an element

of {sc, sr} because we will compare our results concerning the clockwork sequence against

existing analytical results concerning the random playing sequence (Amiet et al., 2019).

Finally, we will draw the initial profile A0 uniformly at random from among all profiles.

Since the game itself is drawn at random, the choice of initial condition is actually irrelevant,

i.e. our results would not change if we had arbitrarily fixed the initial profile to some specific

value. The advantage of drawing the initial profile at random is that it allows us to drop

the dependence on the initial profile in our description of the best-response dynamic.

The best-response dynamic on a random game, playing sequence, and initial condition

is described by Algorithm 2. We randomly draw the game and initial condition and then

essentially run Algorithm 1. Doing so induces a distribution over paths and PNE sets. Our

definitions of convergence given in Section 2.4 all apply here. For example, we say that the

s-sequence best-response dynamic on game Gn,m (and initial condition A0) converges to a

PNE if the path 〈~A, s〉 generated according to Algorithm 2 reaches PNE(Gn,m).

Algorithm 2 s-sequence best-response dynamic on Gn,m

(1) For all i ∈ [n] and a ∈ [m]n draw Ui(a) at random according to P
(2) Draw A0 uniformly at random from [m]n

(3) For t ∈ N:
(a) Set i = s(t)
(b) Set At

−i = At−1
−i

(c) Set Ati = Bi(A
t−1
−i ) where Bi(A

t−1
−i ) := arg maxxi∈[m] Ui(xi,A

t−1
−i )

Step (1) of Algorithm 2 effectively creates a best-response digraph D(Gn,m) on the

vertices [m]n according to the following stochastic process: for each i ∈ [n] and environment
13



a−i select an action a′i uniformly at random from [m] and then for each ai 6= a′i create a

directed edge from (ai,a−i) to (a′i,a−i). This follows from the manner in which the payoffs

are drawn: there is a zero probability of ties because P is atomless and for each i ∈ [n] the

probability that action ai ∈ [m] is a best-response to environment a−i is given by

Pr

[
Ui(ai,a−i) ≥ max

xi∈[m]
Ui(xi,a−i)

]
=

1

m
.

Step (2) of Algorithm 2 then selects an initial profile and step (3) essentially traces a path

by traveling along the edges of the best-response digraph in direction s(t) at step t starting

from the initial profile.

3. Theoretical results

In this section we show that there is a striking difference between the probability of

convergence to a PNE of the clockwork sequence vs. the random sequence best-response

dynamic. Roughly, while the clockwork sequence best-response dynamic never converges

to a PNE in large games, the random sequence best-response dynamic always converges in

large games (conditional on there being a PNE). Our next example develops some intuition

for this result.

Example (Best-response dynamics for clockwork vs. random playing sequence). In the

best-response digraph of Figure 2, we saw that the clockwork playing sequence may not

converge to the PNE depending on the initial profile. By contrast, the random playing

sequence best-response dynamic converges to the PNE at (1, 2, 1) with probability 1 given

sufficient time. The path cannot be stuck in the best-response cycle on the front face of

the cube for example because there is a positive probability that the path will escape to

the PNE.

Figure 3 provides further examples of best-response digraphs. Panels (A) and (B) illus-

trate possible best-response digraphs for 3-player 2-action games. In the digraph of panel

(A), there are two PNE which are represented by black dots at the profiles (1, 1, 1) and

(2, 2, 1). In other words, these profiles are the PNE of any game whose best-response di-

graph is the one illustrated in panel (A). While the random sequence best-response dynamic

converges to one of the PNE with probability 1, the clockwork sequence best-response dy-

namic will converge if and only if the initial profile is one of the four profiles at the bottom

of the cube.

Since there is no PNE in the digraph of panel (B), the best-response dynamic does not

converge to a PNE regardless of the playing sequence.
14
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Figure 3. Panels (A) and (B) provide examples of possible best-response
digraphs for n = 3 and m = 2. Panel (C) illustrates a possible best-response
digraph for n = m = 3.

Finally, panel (C) illustrates a possible best-response digraph for 3-player 3-action games.

The unique PNE at (3, 3, 1) is represented by a black dot. Note that there is a directed edge

from (3, 1, 1) to (3, 3, 1) as well as a directed edge from (3, 2, 1) to (3, 3, 1) but these edges

overlap in our illustration so appear as a single long edge at the bottom of the front face of

the cube. This digraph shows us a situation in which the random sequence best-response

dynamic may not converge to a PNE even if there is one: indeed, if the path reaches one

of the action profiles illustrated as a red dot then the path can never escape to the PNE

regardless of the playing sequence. As implied by the results below, cases like this one

become vanishingly rare in large games. �

We start by noting that in random n-player m-action games, the probability that there

is a pure Nash equilibrium is asymptotically 1−exp{−1} ≈ 0.63 as either n or m (or both)

get large.

Proposition 1 (Rinott and Scarsini, 2000).

lim
nm→∞

Pr [#PNE(Gn,m) ≥ 1] = 1− exp{−1}.
15



In fact, Rinott and Scarsini (2000) prove a much stronger result: they characterize the

asymptotic distribution of the number of pure Nash equilibria in random games, showing

that #PNE(Gn,m) is asymptotically Poisson(1) as nm→∞. The probability that a PNE

exists in a random game has been studied by Goldberg et al. (1968) in the 2-player case

and by Dresher (1970) in the n-player case as m→∞. Powers (1990) and Stanford (1995)

noted that the distribution of the number of PNE approaches a Poisson(1) as m → ∞.

Building on Arratia et al. (1989), Rinott and Scarsini (2000) show that the Poisson(1) limit

holds as nm→∞ (i.e. when m or n get large).

Next, we present the theoretical results for best-response dynamics in random games.14

In Section 3.1 we focus on games with n > 2 players. In this case, we find that best-response

dynamics behave very differently under clockwork vs. random playing sequences. Most of

our results on the probability of convergence to equilibrium are asymptotic. In Section

3.2 we focus on games with n = 2 players. In this case, the probability of convergence to

equilibrium is the same under both clockwork and random playing sequences. Furthermore,

we are able to provide asymptotic as well as exact results for game duration and for the

probability of convergence to equilibrium.

3.1. m-action games with n > 2 players. The following result shows that, in large 2-

action games, the random sequence best-response dynamic converges with high probability

to a PNE if there is one.

Proposition 2 (Amiet et al., 2019).

lim
n→∞

Pr [sr-best-response dynamic on Gn,2 converges to a PNE |#PNE(Gn,2) ≥ 1] = 1.

Combined with Proposition 1, it follows that over the class of all (non-degenerate) 2-

action games, the random sequence best-response dynamic converges to a PNE in (1 −
exp{−1})× 100% ≈ 63% of those games when the number of players is large.

A generalization of Proposition 2 to m-action games is non-trivial and we are not aware

of existing analytical results for m > 2.15 However, we conjecture that the random sequence

14Note that all the convergence results hold modulo any relabelling of the players. For example, while we
described the clockwork playing sequence as ordering the players according to 1-2-· · · -n, our results would
equally hold if the sequence had ordered the players according to n-· · · -2-1 or any such permutation.
15When m = 2, the random digraph D(Gn,2) is a random n-cube in which, independently, for each pair of
profiles a and a′ that differ in exactly one coordinate, there is a directed edge from a to a′ with probability
1/2; otherwise, there is a directed edge from a′ to a with complementary probability 1/2. For such an
n-cube, Amiet et al. (2019) show that when n is large, every pure Nash equilibrium belongs to the set of
vertices that are reachable by some directed path from the initial action profile a0. This is sufficient to
show that, when the number of players is large, the random sequence best-response dynamic converges with
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best-response dynamic converges to a PNE with high probability if there is one as mn→
∞. Consistent with this conjecture, in the simulations of Section 4 we show that the

random sequence best-response dynamic does converge to a PNE with probability close to

1− exp{−1} when m or n get large, provided that n > 2.

Our main result for the clockwork sequence best-response dynamic in games with n > 2

players is given below.

Theorem 1.

lim
nm→∞

Pr [sc-best-response dynamic on Gn,m converges to a PNE] = 0.

So, with high probability, the clockwork sequence best-response dynamic does not con-

verge to a PNE as the number of players or actions gets large. This is in sharp contrast

with the asymptotic behavior of the random sequence best-response dynamic.

Theorem 1 is an immediate consequence of the result below, which gives us bounds on

the probability of convergence to equilibrium:

Theorem 2.

1

4
√
n

1√
mn−1

≤ Pr

[
sc-best-response dynamic

on Gn,m converges to a PNE

]
≤ 7n3/2

√
logm√

mn−1
.

Theorem 2 also gives us the following corollary:

Corollary 1. The probability that the clockwork sequence best-response dynamic converges

to a PNE is, up to a polynomial factor, of order 1/
√
mn−1.

This result gives us a clear “scaling” law: since the asymptotic convergence probability

depends essentially only on the quantity mn−1, we have that, when n and/or m are large,

the probability of convergence to a pure Nash equilibrium in n-player m-action games is

approximately the same as it is in 2-player mn−1-action games.16 This scaling is reflected

in our simulations even for relatively small values of m and n.

We briefly comment on the approach that we take in the appendix to derive Theorem

2. As is clear from the discussion following Algorithm 2, drawing payoffs independently

probability 1 to a pure Nash equilibrium if there is one: indeed, the random playing sequence ensures that
some path to equilibrium is played given sufficient time. The edges in D(Gn,2) are oriented in one way or
the other independently of each other but this is no longer true when m > 2. In D(Gn,m) with m > 2,
if there is a directed edge from (ai,a−i) to (a′i,a−i) for some ai 6= a′i then the graph must also have the
directed edges (a′′i ,a−i) to (a′i,a−i) for all a′′i 6= a′i. This dependence and the more complex graph structure
renders a generalization of Proposition 2 to m > 2 non-trivial.

16Indeed, consider Gn1,m1 and Gn2,m2 where n2 = 2 and m2 = mn1−1
1 . Then,

√
mn2−1

2 =
√
mn1−1

1 .
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at random (from atomless distributions) induces a uniform distribution over best-response

digraphs. So, the probability of convergence to a pure Nash equilibrium can be reduced to

working out the probability that the path generated by Algorithm 2 initiated at a random

vertex reaches a sink of the randomly drawn digraph. The main theoretical challenge that

we face when analyzing such paths is that they exhibit some path-dependence: if a player

encounters an environment that they had seen before, they must play the same action that

they played when the environment was first encountered. We tackle this issue by relying

on a coupling argument in which the clockwork best-response dynamic is coupled to a

(memoryless) random walk through the digraph that is easier to analyze.

We are not aware of any analytical results on the probability of convergence to equi-

librium in random games for the best-response dynamic under simultaneous updating.

Obtaining results for simultaneous updating is non-trivial because the pattern of path-

dependence is more complex than it is for the clockwork best-response sequence. See

footnote 28 for a more detailed comment.

3.2. m-action games with n = 2 players. When there are n = 2 players, we are able

to provide detailed results on both game duration and on the probability of convergence

to equilibrium.

The following theorem gives us an exact expression for the probability that the clockwork

sequence best-response dynamic converges to a 2k-cycle in period t.17

Theorem 3. For any k ∈ {1, ...,m} and t ∈ {1, ..., 2(m− k + 1)},

Pr

[
sc-best-response dynamic on G2,m

converges to a 2k-cycle in period t

]
=

1

m

t+2(k−1)∏
i=1

(
1− 1

m

⌊
i

2

⌋)
.(1)

For any k ∈ {1, ...,m}, if t > 2(m − k + 1) then the probability that the clockwork

sequence best-response dynamic reaches a 2k-cycle is zero.18 Setting k = 1 in (1) yields the

exact probability that the clockwork sequence best-response dynamic on G2,m converges

to a PNE in period t.

As a straightforward corollary of Theorem 3, we can sum (1) over all t ∈ {1, ..., 2(m −
k+ 1)} to obtain the exact probability that the clockwork sequence best-response dynamic

converges to a 2k-cycle:

17See also Pangallo et al. (2019) for an exact formula giving the probability of existence of cycles of any
length in 2-player games.
18Since the number of action profiles is finite, a path cannot reach a 2k-cycle only after 2(m−k+1) periods.
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Corollary 2.

(2) Pr

[
sc-best-response dynamic on

G2,m converges to a 2k-cycle

]
=

1

m

2(m−k+1)∑
t=1

t+2(k−1)∏
i=1

(
1− 1

m

⌊
i

2

⌋)
.

Setting k = 1 in (2) yields the exact probability that the clockwork sequence best-

response dynamic on G2,m converges to a PNE.

In order to get a better sense of the behavior of (2), we now study the expression when

m is large. To do so, let bxc be the floor operator of x and let Φ(·) denote the standard

normal cumulative distribution function:

Φ(x) :=
1√
2π

∫ x

−∞
exp

{
−z

2

2

}
dz.

The asymptotics of (2) are given below.

Proposition 3. If k = o(m2/3) then, as m→∞, (2) is asymptotically19

2

√
π

m

(
1− Φ

(
2k − 1√

2m

))
.

And if k = o(
√
m) then, as m→∞, (2) is asymptotically

√
π/m.

The asymptotics given in Proposition 3 help us to better understand the behavior of the

clockwork sequence best-response dynamic in large 2-player games. (i) The probability of

convergence to a PNE, which corresponds to setting k = 1, goes to zero when m→∞. (ii)

Short cycles all have about the same probability. Indeed, for k = o(
√
m) the probability

is asymptotically
√
π/m. Finally, (iii) it is very unlikely that the best-response dynamic

converges to a very long cycle: if k/
√
m → ∞ then the probability that the dynamic

converges to a cycle of length at least 2k tends to 0.20

Our results are illustrated in Figure 4, which shows the probability of convergence to

cycles of given length as calculated from the exact formula in Theorem 3. The panels on

the left and in the center plot (2) for m = 5 and m = 10 and show that the probability of

convergence is lower for long cycles than for short cycles. The panel on the right plots (2)

for m = 1000. Since 31 ≈
√

1000, we placed a vertical line at 2k = 62. The probability

19f(n) = o(g(n)) denotes f(n)/g(n)→ 0 as n→∞.
20When k = o(

√
m), the argument of Φ(·) goes to zero. Since Φ(0) = 1/2 we have that the convergence

probability goes to
√
π/m which is independent of k. If, instead, k/

√
m → ∞ then the argument of Φ(·)

grows large and since Φ(∞) = 1, the convergence probability goes zero. Our proof of Proposition 3 allows

us to derive the asymptotics only for the range k = o(m2/3), but this is sufficient to obtain some insight
into the behavior of (2).
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of convergence is more or less uniform up to that point, which is consistent with our

observations above.
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Figure 4. Convergence of the clockwork sequence best-response dynamic
to 2k-cycles in 2-player games, using the exact formula from Theorem 3.

We now compare the behavior of the clockwork sequence best-response dynamic in 2-

player games with the behavior of the random sequence best-response dynamic in 2-player

games. (i) The probability of convergence to a PNE is the same for clockwork and for

random playing sequences in 2-player games. The reason is that, under the random playing

sequence, players’ actions do not change whenever the sequence asks the same player to

play several times in a row. The profiles that are therefore visited along the path are the

same under both playing sequences, which induces the same probability of convergence to

equilibrium. However, (ii) the game duration will be different since the random playing

sequence introduces delays. In fact, the result below allows us to more precisely pin down

game duration.

Theorem 4. The probability that the sc-best-response dynamic on G2,m does not converge

to a PNE or to a best-response cycle before period x
√

2m is exp{−x2/2} as m→∞.

This result shows that the clockwork sequence best-response dynamic in 2-player games

is likely to converge to a PNE or to a best-response cycle within
√

2m periods when m

is large. The game duration for the random playing sequence should be greater than for

the clockwork playing sequence by a factor of 2. The reason is that, under the clockwork

playing sequence, the players alternate at the tick of each period whereas, under the random

playing sequence, the number of periods that it takes for the playing sequence to turn to

the other player is Geometric(1
2). Thus the random playing sequence can be considered as

a slowing down of the clockwork playing sequence in which the expected time to play the

next step is 2.
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4. Simulation results

In this section, we run simulations of the clockwork sequence best-response dynamic.

This allows us to compare its behavior against the best-response dynamic under random

and simultaneous updating and against other learning rules (reinforcement learning, ficti-

tious play, and replicator dynamics).

For our theoretical results, we limited ourselves to analyzing best-response dynamics in

random games where the payoffs are drawn independently across players and action profiles.

For our simulations, we allow the payoffs to be correlated across players (Goldberg et al.,

1968, Stanford, 1999, Berg and Weigt, 1999, Rinott and Scarsini, 2000, Galla and Farmer,

2013, Sanders et al., 2018). To do so, at initialization, for each action profile a we draw

the vector U(a) = (U1(a), . . . , Un(a)) at random from a multivariate normal distribution

with mean zero, unit variance, and covariance matrix with 1s on the diagonal and Γ
n−1

on the other entries. So Γ ∈ [−1, n − 1] parametrizes the degree to which payoffs are

correlated. Once drawn, the payoffs are kept fixed for the rest of the simulation. If Γ = 0

then the payoffs are chosen independently, so this recovers the case for which we derived

our theoretical results. At one extreme, if Γ = n− 1 then at each action profile all players

receive the same payoff and, at the other extreme, if Γ = −1 then we have a zero-sum

game. More generally, when Γ > 0 the game is “cooperative” and when Γ < 0 the game is

“competitive” (Rinott and Scarsini, 2000).

In all simulations, for each combination of n, m, and Γ, we draw 500 games and simulate

for 5000 time steps starting from randomly chosen initial conditions. In Section 4.1 we

simulate the clockwork sequence best-response dynamic in random n-playerm-action games

with independent payoffs (i.e. Γ = 0). This allows us to verify our theoretical results. In

Section 4.2 we compare the behavior of the clockwork sequence best-response dynamic

against the best-response dynamic under random and simultaneous updating for different

values of n, m, and Γ. In Section 4.3 we compare the behavior of the best-response

dynamic (with clockwork, random, and simultaneous updating) against other learning

rules (reinforcement learning, fictitious play, and replicator dynamics) for different values

of n, m, and Γ.

4.1. Simulations of clockwork best-response dynamics. We simulate the clockwork

sequence best-response dynamic in n-player m-action games with Γ = 0. We find good

agreement with our main theoretical results and we show that Corollary 1, which states

that the asymptotic probability of convergence to a PNE is, up to a polynomial factor, of

order 1/
√
mn−1, is also reflected in our simulations for relatively small values of m and n.
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The blue markers in Figure 5 show the frequency of convergence to a PNE in our

simulations for different values of n and m. Clearly, the frequency of convergence to a

PNE decreases as the number of players and/or actions increases. The solid black line

in the top panel is the analytical probability of convergence to a PNE in 2-player games

which is calculated using equation (2). Up to sampling noise, our analytical result perfectly

matches the numerical simulations.
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Figure 5. Frequency of convergence to a PNE for the clockwork best-
response dynamic with Γ = 0. In the bottom panel, the horizontal axis is
rescaled according to Corollary 1.

Figure 5 also allows us to verify Corollary 1; namely, that the frequency of convergence to

a PNE in a n-player m-action game is roughly the same as in a 2-player mn−1 action game.

While in Section 3 this result was only proved asymptotically (mn → ∞), we investigate

the extent to which the result holds for small values of m and n. Using Corollary 1,

we approximate the frequency of convergence to a PNE in a n-player m-action game by

replacing the number of actions m in equation (2) by mn−1, which is the equivalent number

of actions in the corresponding 2-player game. We plot these approximate frequencies as

dashed lines in the top panel of Figure 5. As can be seen, there is a good match between

the approximation and our simulation results, particularly when the number of actions m is
22



relatively large. The bottom panel of Figure 5 gives us another way to illustrate Corollary 1.

Here, we rescale the number of actions for n-player games to match the number of actions

of the equivalent 2-player game. After rescaling, a point corresponding to m actions in

an n-player game is moved on the horizontal axis to a number of actions given by mn−1.

For example, the point giving the convergence frequency for 4-player 10-action games is

translated to the right to the horizontal coordinate corresponding to 103 = 1000 actions

in a 2-player game. The re-scaled markers all lie relatively close to the black line – which

corresponds to the analytical probability of convergence to a PNE in 2-player m-action

games.

0.00.20.40.60.81.0 2-Player Games 3-Player Games

Clockwo
rk4-Player Games

0.00.20.40.60.81.0

Random
2 4 6 8 10 12 14 16 18 200.00.20.40.60.81.0

2 3 4 5 6 7 8Number of Actions 2 3 4 5 6 7 8 Simulta
neous

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0

Converg
ence to 

Pure Na
sh Equi

librium

Figure 6. Frequency of convergence to pure Nash equilibria under clock-
work, random, and simultaneous best-response dynamics. The solid line
corresponds to Γ = 0, the darker dashed lines to Γ = n−1

5 , 2n−1
5 , . . . , (n−1),

and the lighter dashed lines to Γ = −0.2,−0.4, . . . ,−1.

4.2. Simulations of best-response dynamics under clockwork, random, and si-

multaneous updating. We simulate best-response dynamics under clockwork, random,
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and simultaneous updating. We find that there are significant differences in the proba-

bility of convergence to a PNE when Γ = 0. When comparing clockwork against random

sequences, the differences are consistent with the theoretical findings of Section 3. When

Γ 6= 0, we find that the differences in the probability of convergence to a PNE become more

muted but, overall, best-response dynamics converge to a PNE most frequently under a

random sequence and least frequently under simultaneous updating, with the clockwork

case lying somewhere in between.

Figure 6 shows the frequency of convergence to a PNE under clockwork, random, and

simultaneous best-response dynamics. (i) The solid line corresponds to Γ = 0, (ii) the

darker lines correspond to positive correlations, Γ = n−1
5 , 2n−1

5 , . . . , (n − 1), and (iii) the

lighter lines correspond to negative correlations, Γ = −0.2,−0.4, . . . ,−1. We discuss each

case in turn:

(i) Uncorrelated payoffs: Γ = 0. The frequency of convergence to a PNE is decreasing

in n and m for the clockwork playing sequence and for simultaneous updating.

The random playing sequence is different. When there are only n = 2 players, the

random playing sequence has the same convergence probability as the clockwork

playing sequence – as argued in Section 3.2. Amiet et al. (2019) proved that the

random sequence best-response dynamic always converges to a PNE if there is one

when m = 2 and n→∞. As argued in Section 3.1, this gives us an unconditional

probability of convergence of 1− 1/e ≈ 63%. Our simulations show that the result

of Amiet et al. (2019) also appears to hold for games with more than two actions

provided n > 2. In fact, the random sequence best-response dynamic almost always

converges to a PNE in games that have a PNE (even for relatively small values of

n and m).

(ii) Positively correlated payoffs: Γ > 0. For any value of m and n convergence tends to

be more likely than with Γ = 0 under all playing sequences. The reason is that un-

der positively correlated payoffs (especially if the correlation is very strong) there

is a proliferation of pure Nash equilibria (Goldberg et al., 1968, Stanford, 1999,

Berg and Weigt, 1999, Rinott and Scarsini, 2000). The best-response dynamic is

therefore very likely to converge to one of these equilibria. The only exception is

the simultaneous best-response dynamic in 2-player games with highly correlated

payoffs (e.g. Γ = 0.9, 1). For some intuition, consider a 2-player 2-action coordina-

tion game (in which payoffs are strongly positively correlated). If players start at

one of the two action profiles that are not pure Nash equilibria, they keep bouncing

back and forth between these two action profiles forever.
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(iii) Negatively correlated payoffs: Γ < 0. For any value of m and n convergence to a

PNE tends to be less likely than with Γ = 0 under all playing sequences. When

Γ ≈ −1 we essentially generate zero-sum games (Goldberg et al., 1968, Rinott and

Scarsini, 2000). Such games do not have pure Nash equilibria, so no version of the

best-response dynamics converges to a PNE.

4.3. Simulation of other learning rules. In this section we compare the behavior of

best-response dynamics (under clockwork, random, and simultaneous updating) against

three classic learning rules: Bush-Mosteller reinforcement learning (Bush and Mosteller,

1953), fictitious play (Brown, 1951, Robinson, 1951), and replicator dynamics (Maynard Smith,

1982). Our interest in these rules stems from the fact that they are well-known, they

embody different behavioral assumptions about learning in games, and they have been

calibrated to human game-play in experiments. The upshot of our simulation results is

that, compared with random and simultaneous updating, the convergence properties of

the clockwork best-response dynamic most closely match the convergence properties of the

three learning rules.

4.3.1. Description of the learning rules. Here, we provide high-level descriptions of our

three learning rules (reinforcement learning, fictitious play, and replicator dynamics) and

of the convergence criteria that we use in our simulations. More detailed descriptions of

the rules and of the convergence criteria are given in Appendix C.

Bush-Mosteller reinforcement learning is based on the idea that players are more likely

to play actions that yielded a better payoff in the past. It is a standard learning algorithm

that is used to model game playing under limited information and/or without sophisticated

reasoning, such as in animal learning. Variants of reinforcement learning models have been

calibrated to human game-play in experiments in Arthur (1991), Erev and Roth (1998),

and Sarin and Vahid (2001). Under Bush-Mosteller learning, in each period, each player

chooses their action by sampling according to a mixed strategy vector whose evolution is

governed by reinforcement learning. We assess convergence of these vectors, i.e. whether

the difference from one period to the next falls below a threshold and becomes indistin-

guishable from sampling noise. Tracking the mixed strategy vectors rather than the actions

played makes it possible for us to determine whether the dynamic converges to mixed Nash

equilibria.

Fictitious play requires more sophistication, as it assumes that the players construct a

mental model of their opponent. Each player assumes that the empirical distribution of her

opponent’s past actions is her mixed strategy, and plays the best response to this belief.
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Classical experiments with human players in which fictitious play is used as a learning model

are those by Cheung and Friedman (1997) who consider coordination, dominance-solvable,

and cyclic 2-player 2-action games. To assess convergence, we follow Fudenberg and Levine

(1998) in tracking the convergence of the belief vectors rather than the convergence of

actions played. As with Bush-Mosteller learning, this choice makes it possible to include

convergence to mixed equilibria in our analysis.

The replicator equation is commonly used in ecology and population biology, but it has

also been viewed as a learning algorithm in which each population trait corresponds to

an action (Börgers and Sarin, 1997).21 In our implementation, in each period, each player

chooses their action by sampling according a mixed strategy vector whose evolution is

governed by the replicator equation. Van Huyck et al. (1995) study two tacit bargaining

games and show that players’ behavior is in line with what they would do if they were

playing replicator dynamics. (Friedman (1996) comes to a similar conclusion in a larger

sample of games.) As above, we track the convergence of the mixed strategy vectors. Note,

however, that the multi-population replicator dynamic never converges to mixed equilibria

in random games. In other words, if the dynamic converges to an equilibrium, each mixed

strategy vector will assign all the mass to a single action.

The convergence properties of our three learning algorithms have been studied theoret-

ically. It is well-known, for instance, that fictitious play converges to Nash equilibrium in

certain classes of games such as potential, zero-sum, and supermodular games (Fudenberg

and Levine, 1998). It is also well-known that evolutionarily stable strategies are locally

stable fixed points of replicator dynamics (Hofbauer and Sigmund, 1998). However, there

is no general result about the probability of convergence of these learning rules to pure

Nash equilibria in random games.

4.3.2. Results. We compare the probability of convergence of best-response dynamics (un-

der clockwork, random, and simultaneous updating) against each of the three learning

rules. In Figure 7 we do this for uncorrelated payoffs so Γ = 0, for n = 2 and 3 players,

and for a varying number of actions m. In Figure 8 we allow Γ to vary but fix the number

of actions to m = 5. Finally, in Figure 9 we allow n, m, and Γ to all vary.

In our comparisons, we distinguish between cases in which Bush-Mosteller learning and

fictitious play converge to pure vs. mixed Nash equilibria. In Figures 7 and 8, we use a

dashed line to indicate the frequency of convergence to pure equilibria only, while a solid

line indicates convergence to any type of equilibrium. Thus, for any number of actions,

21We consider a multi-population version of the replicator dynamic because our randomly drawn payoff
matrices are, in general, not symmetric.
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Figure 7. The frequency of convergence to PNE under best-response dy-
namics compared to the frequency of convergence to (mixed and pure) Nash
equilibria under the other learning rules for Γ = 0.

the vertical distance between the dashed line and the solid line indicates the frequency of

convergence to mixed equilibria only.

As can be seen in Figure 7, the frequency of convergence to a PNE under the clockwork

best-response dynamic most closely tracks the frequency of convergence to PNE under the

three learning rules. In games with 3 or more players, the random sequence best-response

dynamic almost always converges to a PNE if there is one, which is why the orange line

rapidly flattens at 1 − 1/e ≈ 0.63. By contrast, the frequency of convergence to pure (or

mixed) Nash equilibria under the three learning rules decreases as the number of actions
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grows. The best-response dynamic under simultaneous updating converges to a PNE too

infrequently relative to the three learning rules.22

When also considering convergence to mixed Nash equilibria, we see that the clockwork

best-response dynamic converges too infrequently compared to the three learning rules,

especially in the case of fictitious play with two players. However, (i) as the number of

actions increases, it tracks the trend in convergence of the learning rules to mixed or pure

Nash equilibria better than random best-response dynamics when there are three or more

players, and (ii) its frequency of convergence to equilibrium is closer to that of the three

learning rules as compared to the simultaneous best-response dynamic.

In Figure 8 we fix the number of actions to m = 5 and vary Γ.23 The clockwork and

random sequence best-response dynamics tend to track the other learning rules relatively

well (though the clockwork sequence appears to outperform the random sequence). Note,

however, that the best-response dynamic under simultaneous updating converges too infre-

quently. This is consistent with our previous observation that even when there are many

Nash equilibria (under strongly positively correlated payoffs), this version of the dynamic

will not converge as often as the other versions.

Figure 9 shows us scatter plots of the frequency of convergence to a PNE for the best-

response dynamic (under each playing sequence) against the frequency of convergence to

pure or mixed equilibria for each of the three learning rules. Each dot corresponds to the

convergence frequency for a particular value of n, m, and Γ.24 The identity line is plotted

for reference. The frequency of convergence to a PNE for the clockwork sequence best-

response dynamic does not perfectly match the frequency of convergence to pure or mixed

equilibria for the three learning rules, but it does appear to outperform the other versions

of the best-response dynamic that we have considered in this paper. We emphasize that,

in Figure 9, Bush-Mosteller learning and fictitious play are allowed to converge to either

pure or mixed equilibria. If we had considered convergence to pure equilibria only for each

of our learning rules, then the clockwork sequence best-response dynamic would match the

outcomes of the three learning rules even more closely.

22There is an offset between the frequency of convergence to a PNE for the replicator dynamic and the
frequency of convergence to a PNE for the clockwork best-response dynamic. As we explain in the appendix,
this is mainly due to numerical limitations: the replicator dynamic has infinite memory, so a trajectory
might hit the machine precision limit without having reached a PNE.
23Note that for the 2-player case with Γ = −1, the frequency of convergence to any equilibrium (pure or
mixed) for fictitious play is close to one. This is consistent with existing theoretical results regarding the
convergence of fictitious play in 2-player zero-sum games (Fudenberg and Levine, 1998).
24The 418 combinations for the values of n, m, and Γ that we consider are: n = 2 with m = 2, ..., 15; n = 3
with m = 2, ..., 10; n = 4 with m = 2, ..., 8; n = 5 with m = 2, ..., 5; n = 6 with m = 2, 3; n = 7 with
m = 2, 3; each for Γ = −1,−0.8, ..., 0, n−1

5
, 2n−1

5
, ..., (n− 1).
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Figure 8. The frequency of convergence to PNE under best-response dy-
namics compared to the frequency of convergence to (mixed and pure) Nash
equilibria under the three learning rules, with varying Γ and m = 5.

We now compare how the clockwork best-response dynamic performs against the three

learning rules not only in terms of convergence probability but also in terms of the evolution

of play itself. Figure 10 shows a best-response digraph as well as the paths traced by Bush-

Mosteller learning, fictitious play, and the replicator dynamic starting from various initial

conditions.25 The paths show the evolution of the mixed strategy vectors for the learning

rules, and these appear to follow the directions of the edges in the best-response digraph.

25The underlying game has binary payoffs of zero or one. The trajectories in the action profile space would
be distorted if the payoff values had been different, though Pangallo et al. (2019) show that the patterns
exhibited by the learning algorithms in two player games are quite robust to general payoff values.
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Figure 9. The frequency of convergence to PNE under best-response dy-
namics against the frequency of convergence to (mixed or pure) Nash equi-
libria under the three learning rules, for varying values of n, m, and Γ and
m = 5.

These edges also govern the evolution of play in the clockwork best-response dynamic, but

they do not govern the evolution of play under a random sequence. In fact, the random

sequence best-response dynamic would eventually converge to the pure Nash equilibrium
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CUBES

Pl. 3 V VI
I Pl. 2 III (0,0,0) (0,0,1)

Pl. 1 IV (1,1,1) (0,1,0)
II Pl. 2 III (1,0,1) (1,1,0)

IV (0,1,0) (1,0,1)

Table 1. Binary 3-player, 2-action game with one pure Nash equilibrium, and two mixed
Nash equilibria.

Bush-Mosteller Learning Fictitious Play Replicator Dynamics Simulataneous
Best-Response Dynamics

Figure 1. Trajectories of Bush-Mosteller learning, fictitious play, and replicator dynamics
in comparison to clockwork best-response dynamics, and in comparison to simultaneous
updating (last panel) for the same game 1. Blue trajectories converge, red trajectories do
not. Blue arrows correspond to pure Nash equilibria, light blue arrows lead there; red arrows
correspond to cycles, orange arrows lead there.

1

Figure 10. Trajectories of Bush-Mosteller learning, fictitious play, and
replicator dynamics. Blue trajectories converge to Nash equilibria (pure
or mixed), red trajectories do not. Blue arrows correspond to pure Nash
equilibria, light blue arrows lead there; red arrows correspond to cycles,
orange arrows lead there.

in this digraph, given sufficient time. So, the paths traced by the clockwork sequence best-

response dynamic more closely resemble the paths traced by the three learning algorithms

than those traced by the random sequence best-response dynamic, and this is true in spite

of the fact the three learning algorithms are most naturally defined as involving simulta-

neous updating.26 Our conclusion regarding how “close” the paths of the clockwork vs.

random sequence best-response dynamics are to those exhibited by the learning algorithms

is based on our observations in a number of games.27 And, our results corroborate Pangallo

et al. (2019) who find that the prevalence of 2k-cycles is a good predictor of the frequency

of convergence to Nash equilibrium of the learning algorithms in 2-player random games.

More generally our findings suggest that, to the extent that the learning algorithms are con-

sistent with human game-play in randomly-generated games, the clockwork best-response

dynamic could provide a first-order approximation for the evolution of play in such games.

26The paths traced by the learning algorithms are likely to have features resembling elements of the paths
traced by the best-response dynamic under both clockwork and simultaneous updating. The degree to
which the learning algorithms have “memory” is likely to modulate the extent to which the paths resemble
those generated by the best-response dynamic under clockwork vs. simultaneous updating.
27We do not carry out a comprehensive quantitative analysis of “path closeness” though we expect our
finding regarding clockwork vs. random sequence best-response dynamics to be robust, particularly for
large games.
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Appendix A. Proof of Theorem 2

We start by stating two lemmas that will be used to prove Theorem 2. Lemma 1 bounds

the probability that the clockwork sequence best-response dynamic converges to a pure

Nash equilibrium or to a best-response cycle only after period t. Lemma 2 bounds the

probability that the clockwork sequence best-response dynamic converges to a pure Nash

equilibrium by period t.

Lemma 1. Let 〈~A, sc〉 be generated according to Algorithm 2. For any t ∈ N,

Pr
[
T〈~a,sc〉 > t

]
≤ exp

{
−

(b tn − 1c)2

2mn−1

}
.

Recall that T〈~A,sc〉 is the period in which 〈~A, sc〉 reaches PNE(Gn,m) or a best-response

cycle.

Lemma 2. Let 〈~A, sc〉 be generated according to Algorithm 2. For any t ∈ N,⌈
t

n

⌉
1

mn−1

(
1− n

mn−1

(d tne)
2

2

)
≤ Pr

[
〈~A, sc〉 reaches PNE(Gn,m) by t

]
≤ t

mn−1
.

We now show how Theorem 2 follows from Lemmas 1 and 2. In what remains of this

section we provide proofs for the lemmas themselves.

Proof of Theorem 2. Let 〈~A, sc〉 be generated according to Algorithm 2. The probability

that the sc-best-response dynamic on Gn,m converges to a PNE is equal to the probability

that 〈~A, sc〉 reaches PNE(Gn,m). Let us start with the upper bound. For any t ∈ N,

Pr
[
〈~A, sc〉 reaches PNE(Gn,m)

]
= Pr

[
〈~A, sc〉 reaches PNE(Gn,m) by t

]
+ Pr

[
〈~A, sc〉 reaches PNE(Gn,m) after t

]
≤Pr

[
〈~A, sc〉 reaches PNE(Gn,m) by t

]
+ Pr

[
T〈~a,sc〉 > t

]
≤ t

mn−1
+ exp

{
−

(b tn − 1c)2

2mn−1

}
.(3)

Equation (3) follows from Lemmas 1 and 2. Now, set

t = n
(⌈√

2mn−1 log(mn−1)
⌉

+ 1
)
.

Since x ≤ dxe ≤ x+ 1 and
√

2mn−1 log(mn−1) > 1 for m ≥ 2 and n ≥ 2, we obtain

n
(√

2mn−1 log(mn−1) + 1
)
≤ t ≤ n

(√
2mn−1 log(mn−1) + 2

)
< 3n

√
2mn−1 log(mn−1).
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It follows that

(4)
t

mn−1
<

3n
√

2mn−1 log(mn−1)

mn−1
<

5n3/2
√

logm√
mn−1

,

and that

(5) exp

{
−

(b tn − 1c)2

2mn−1

}
≤ 1

mn−1
<

2n3/2
√

logm√
mn−1

.

Adding the upper bounds in (4) and (5) yields the desired result.

Let us now turn to the lower bound. For any t ∈ N,

Pr
[
〈~A, sc〉 reaches PNE(Gn,m)

]
≥Pr

[
〈~A, sc〉 reaches PNE(Gn,m) by t

]
≥
⌈
t

n

⌉
1

mn−1

(
1− n

mn−1

(d tne)
2

2

)
.(6)

Equation (6) follows from Lemma 2. Now, set

t = n

⌊√
mn−1

√
n

⌋
.

Since m ≥ 2 and n ≥ 2, we obtain 1
2

√
n
√
mn−1 ≤ t ≤

√
n
√
mn−1. It follows that

(7) 1− n

mn−1

(d tne)
2

2
≥ 1

2
,

and that

(8)

⌈
t

n

⌉
1

mn−1
≥ 1

2
√
n

1√
mn−1

.

Multiplying the lower bounds in (7) and (8) together yields the desired result. �

We now turn to the proofs of Lemmas 1 and 2. The main challenge posed by paths

generated according to Algorithm 2 is that they have “memory”: whenever player sc(t)

encounters an environment that she has encountered before (i.e. At−1
−sc(t) = Au−1

−sc(u) and

sc(t) = sc(u)) then, in period t, the player must play the same action that she played when

she previously encountered the environment (i.e. Atsc(t) = Ausc(u)). This path-dependence

complicates the analysis of the clockwork best-response dynamic. We therefore study a

simpler (random walk) process that is “memoryless” to which we couple a dynamic that

induces the same distribution over paths as Algorithm 2. The coupled dynamic follows the
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random walk process until an environment is encountered by some player for the second

time and becomes deterministic thereafter.

The coupled system is described by Algorithms 3 and 4 below.

Algorithm 3 Clockwork random walk

(1) Draw an initial profile X0 uniformly at random from [m]n

(2) For t ∈ N:
(a) Set i = sc(t)
(b) Set Xt

−i = Xt−1
−i

(c) Independently draw Xt
i uniformly at random from [m]

Algorithm 4 Coupled dynamic

(1) Set Ri(a−i) = 0 for all i ∈ [n] and a−i ∈ [m]n−1

(2) Set the initial action profile to Y0 = X0

(3) For t ∈ N:
(a) Set i = sc(t)
(b) Set Yt

−i = Yt−1
−i

(c) If Ri(Y
t−1
−i ) = 0: set Y t

i = Xt
i and Ri(Y

t−1
−i ) = Y t

i

If Ri(Y
t−1
−i ) 6= 0: set Y t

i = Ri(Y
t−1
−i )

〈~X, sc〉 and 〈~Y, sc〉 denote paths generated according to Algorithms 3 and 4 respectively.

Algorithm 3 is a “clockwork random walk” on the set of action profiles [m]n. The walk

starts at some randomly drawn initial profile X0 and, in each period t, moves in direction

sc(t) to a profile chosen uniformly at random from among the m profiles in that direction.

A path generated according to this process does not have memory.

Algorithm 4 describes the coupled dynamic. The process starts at the same initial profile

as the clockwork random walk. For each player i and environment a−i, we set the initial

“response” value Ri(a−i) to zero. The crucial step to how the process evolves is (3c): if the

response value to the current environment Yt−1
−i is zero, then the environment was never

encountered before and, in that case, player i’s response value is set to Xt
i , the action drawn

by the clockwork random walk in period t. If, on the other hand, the response value to

the current environment Yt−1
−i is non-zero (i.e. the environment was encountered before),

then this value is the action that i takes in period t. In other words, 〈~Y, sc〉 has the same

memory property that is characteristic of paths generated according to Algorithm 2.28

28The pattern of path-dependence is more complex for simultaneous updating than for the clockwork
playing sequence. In the case of simultaneous updating, the choices of the players who have encountered an
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Recall that Algorithm 2 essentially draws a best-response digraph, selects an initial

profile, and then traces a path by traveling along the edges of the digraph starting at the

initial profile and moving in direction sc(t) at step t. Under Algorithm 2, the entire best-

response digraph is drawn up front. In contrast, Algorithm 4 starts with an empty digraph

and then generates its edges in an “online” manner. Nevertheless, both algorithms induce

the same distribution over paths, as summarized in the following remark.

Remark 1. Let 〈~A, sc〉 and 〈~Y, sc〉 be generated according to Algorithms 2 and 4 respec-

tively. Then 〈~A, sc〉 and 〈~Y, sc〉 have the same distribution.

For any path 〈~a, sc〉 and for each t ∈ N define

f〈~a,sc〉(t) := min
{
u ≤ t : au−1

−sc(u) = at−1
−sc(t) and sc(u) = sc(t)

}
.

So f〈~a,sc〉(t) is the first period along the path 〈~a, sc〉 that player sc(t) encounters the envi-

ronment at−1
−sc(t). Notice that if sc(t) encounters at−1

−sc(t) for the first time in period t then

f〈~a,sc〉(t) = t, and if sc(t) encountered at−1
−sc(t) for the first time in some period u < t then

f〈~a,sc〉(t) < t. We also define

F〈~a,sc〉 := inf
{
t ∈ N : f〈~a,sc〉(t) < t

}
.

So F〈~a,sc〉 is the first period in which some player encounters an environment that they

encountered previously along the path. The value F〈~a,sc〉 is bounded above by 1 + nmn−1

for any path.

By construction, the sequences ~X and ~Y must agree at least up to (but not including)

the period at which some player encounters an environment for the second time. In that

period, under Algorithm 4, the player must play the action determined by their response

function evaluated at that environment but, under Algorithm 3, the next action may be

any of the available actions for that player. Remark 2 summarizes the key relationship

between the clockwork random walk and the coupled dynamic.

Remark 2. F〈~X,sc〉 = F〈~Y,sc〉.

Example (Illustration of Algorithms 3 and 4). Figure 11 illustrates the relationship be-

tween 〈~X, sc〉 and 〈~Y, sc〉 by plotting the first few elements of ~X and of ~Y. Panel (A)

environment twice is deterministic but the choices of the players who have never encountered an environment
twice remain random. For example, suppose A0 = (1, 1, 1) and A1 = (2, 1, 1). Then, player 1 must repeat
action 2 in period 2, but the actions of players 2 and 3 in period 2 are not deterministic. Keeping track of
the evolution of the path under simultaneous updating is therefore complex.
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◦

◦

◦
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◦

◦
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◦

◦

◦

◦

◦

◦
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(b)

Period Player ~X f〈~X,sc〉(t)
~Y f〈~Y,sc〉(t)

– – (1,1,1) – (1,1,1) –
1 1 (2, 1,1) 1 (2, 1,1) 1
2 2 (2,1, 1) 2 (2,1, 1) 2
3 3 (2,1,2) 3 (2,1,2) 3
4 1 (1, 1,2) 4 (1, 1,2) 4
5 2 (1,1, 2) 5 (1,1, 2) 5
6 3 (1,1,1) 6 (1,1,1) 6
7 1 (1, 1,1) 1 (2, 1,1) 1
8 2 (1,2, 1) 8 (2,1, 1) 2

(c)

Figure 11. Illustration of Algorithms 3 and 4. Panel (A) shows the first
elements of a possible path generated according to Algorithm 3 and panel
(B) shows the corresponding path generated according to Algorithm 4. The
table in panel (C) provides details, with environments highlighted in bold.

shows the first few elements of a possible path generated according to the clockwork ran-

dom walk starting at the profile X0 = (1, 1, 1). In panel (B), we represent the coupled

dynamic, starting with an empty digraph and numbering the directed edges according to

the period in which they are first placed.

In the clockwork random walk, player 1 chooses action 2 in period 1. This generates the

directed edge from Y0 to Y1 in period 1 in panel (B). The paths are identical up to and

including period 6. In period 7, however, player 1 encounters the same environment that

she had encountered in period 1 (namely, players 2 and 3 each choosing action 1). The

first time that player 1 encountered this environment, she responded by playing action 2,

so she must play action 2 again in period 7. In other words, the path must follow the edge
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Panel (A) Panel (B)
Period Player ~a f〈~a,sc〉(t) ~a f〈~a,sc〉(t)

– – (1,1,2) – (1,1,1) –
1 1 (1, 1,2) 1 (2, 1,1) 1
2 2 (1,2, 2) 2 (2,2, 1) 2
3 3 (1,2,1) 3 (2,2,2) 3
4 1 (1, 2,1) 4 (2, 2,2) 4
5 2 (1,2, 1) 5 (2,1, 2) 5
6 3 (1,2,1) 3 (2,1,1) 6
7 1 (1, 2,1) 4 (2, 1,1) 1
8 2 (1,2, 1) 5 (2,2, 1) 2

Table 2. First few elements of the paths in panels (A) and (B) of Figure 2.

that was placed in period 1 and therefore Y7 = (2, 1, 1). This is not true of the clockwork

random walk. Since the process is memoryless, it can remain at X7 = (1, 1, 1) in period 7

and travel to X8 = (1, 2, 1) in period 8.

The path in panel (B) will keep cycling among the action profiles on the left-hand side

of the cube forever whereas the path in panel (A) is allowed to freely wander. Note here

that F〈~X,sc〉 = F〈~Y,sc〉 = 7. �

Remark 3. T〈~A,sc〉 < F〈~A,sc〉.

Remark 3 notes that any path 〈~A, sc〉 generated according to Algorithm 2 must reach

PNE(Gn,m) or a best-response cycle before any player encounters an environment for the

second time.

Example (Illustration of Remark 3). Table 2 shows the values of the function f〈~a,sc〉(t)

for the first few elements of the paths generated according to the clockwork sequence best-

response dynamic in panels (A) and (B) of Figure 2. Recall that the path in panel (A)

reaches the pure Nash equilibrium in period 3 and that the path in panel (B) reaches a

best-response cycle in period 1. Furthermore, from Table 2 we can see that the value of

F〈~a,sc〉 is 6 for panel (A) and 7 for panel (B). We therefore conclude that, for panel (A),

T〈~a,sc〉 = 3 < 6 = F〈~a,sc〉, and for panel (B), T〈~a,sc〉 = 1 < 7 = F〈~a,sc〉. �

The lemma below, which concerns paths 〈~X, sc〉 that are generated by the clockwork

random walk, is useful for proving Lemmas 1 and 2. Under the clockwork sequence, player

i ∈ [n] plays in period hi(k) := i + (k − 1)n for k ∈ N. For any i ∈ [n] and any period

t ∈ N, define

k∗i (t) := 1 +

⌊
t− i
n

⌋
.
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So k∗i (t) is the largest k ∈ N such that hi(k) ≤ t. The environments that player i ∈ [n]

encounters on her turns between (and including) periods 1 and t are given in the sequence

(X
hi(1)−1
−i ,X

hi(2)−1
−i , ...,X

hi(k
∗
i (t))−1

−i ). Lemma 3 establishes bounds on the probability that

these environments are all distinct.

Lemma 3. For any i ∈ [n] and t ∈ N,

1− 1

mn−1

(d tne)
2

2
≤ Pr

[
X
hi(k)−1
−i for k ∈ {1, ..., k∗i (t)} are all distinct

]
≤ exp

{
−

(b tn − 1c)2

2mn−1

}
.

Proof of Lemma 3. For any i ∈ [n], the environments X
hi(1)−1
−i ,X

hi(2)−1
−i , ...,X

hi(k
∗
i (t))−1

−i are

independent because they are disjoint subsets of the draws of the clockwork random walk.

Each environment is distributed uniformly on [m]n−1. Therefore,

(9) Pr
[
X
hi(k)−1
−i for k ∈ {1, ..., k∗i (t)} are all distinct

]
=

k∗i (t)−1∏
k=1

(
1− k

mn−1

)
.

If k∗i (t) > 1 + mn−1 then equation (9) is zero, and the lemma holds trivially (k∗i (t) >

1 +mn−1 implies b t−in c > mn−1 which, in turn, implies d tne > mn−1, so the lower bound in

the statement of the lemma is negative and the upper bound is positive). We will therefore

consider the case in which k∗i (t) ≤ 1 +mn−1.

We obtain the following upper bound:

k∗i (t)−1∏
k=1

(
1− k

mn−1

)
≤

k∗i (t)−1∏
k=1

exp

{
− k

mn−1

}
≤ exp

{
−(k∗i (t)− 1)2

2mn−1

}
≤ exp

{
−

(b tn − 1c)2

2mn−1

}
.

The first step follows from exp{x} ≥ 1 + x for all x. The final inequality follows from

k∗i (t)− 1 = b t−in c ≥ b
t−n
n c = b tn − 1c.

We now turn to the lower bound:

k∗i (t)−1∏
k=1

(
1− k

mn−1

)
≥ 1−

k∗i (t)−1∑
k=1

k

mn−1
= 1− 1

mn−1

k∗i (t)
2

2
≥ 1− 1

mn−1

(d tne)
2

2
.

The first step is an application of the Weierstrass product inequality. The final inequality

follows from the fact that k∗i (t) = 1 + b t−in c ≤ 1 + b t−1
n c = d tne. �

Proof of Lemma 1. T〈~A,sc〉 > t is the event that 〈~A, sc〉 reaches PNE(Gn,m) or a best-

response cycle only after period t. Remark 3 implies that F〈~A,sc〉 > t. So

Pr
[
T〈~A,sc〉 > t

]
≤ Pr

[
F〈~A,sc〉 > t

]
.
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By Remarks 1 and 2,

Pr
[
F〈~A,sc〉 > t

]
= Pr

[
F〈~Y,sc〉 > t

]
= Pr

[
F〈~X,sc〉 > t

]
.

Now, let us focus on the path 〈~X, sc〉 and on player 1. The environments that player 1 faces

between periods 1 and t are given in the sequence (X
h1(1)−1
−1 ,X

h1(2)−1
−1 , ...,X

h1(k∗1(t))−1
−1 ). The

event F〈~X,sc〉 > t implies that the environments in this sequence are all distinct. Hence

Pr
[
F〈~X,sc〉 > t

]
≤ Pr

[
X
h1(k)−1
−1 for k ∈ {1, ..., k∗1(t)} are all distinct

]
≤ exp

{
−

(b tn − 1c)2

2mn−1

}
,

where the final step follows from Lemma 3. �

To prove Lemma 2, we introduce Algorithm 5 which describes a dynamic that is also

coupled with the clockwork random walk. 〈~Z,x, sc〉 denotes a path generated according to

Algorithm 5.

Algorithm 5 Coupled dynamic with sink x

(1) Set Ri(a−i) = 0 for all i ∈ [n] and a−i ∈ [m]n−1

(2) Set Ri(x−i) = xi for all i ∈ [n]
(3) Set the initial action profile to Z0 = X0

(4) For t ∈ N:
(a) Set i = sc(t)
(b) Set Zt−i = Zt−1

−i
(c) If Ri(Z

t−1
−i ) = 0: set Zti = Xt

i and Ri(Z
t−1
−i ) = Zti

If Ri(Z
t−1
−i ) 6= 0: set Zti = Ri(Z

t−1
−i )

Algorithm 5 is identical to Algorithm 4 except that for some particular profile x the

algorithm is initialized with Ri(x−i) = xi for all i ∈ [n]. Algorithm 5 therefore initializes

the digraph with the directed edges (x′i,x−i) to (xi,x−i) for all i and x′i 6= xi, so that the

profile x is a sink. In the remaining steps, the algorithm selects a random initial profile

and starts tracing a path by traveling along edges that (other than those edges already

pointing to x in the initialization) are generated in an online manner. The paths traced

by the clockwork random walk and this coupled dynamic with a sink at x must agree at

least up to (but not including) the period at which either an environment is encountered

by a player for the second time or the environment is x−i for some player i.

Example (Illustration of Algorithms 3 and 5). Figure 12 illustrates the relationship be-

tween 〈~X, sc〉 and 〈~Z,x, sc〉 by plotting the first few elements of ~X and of ~Z. Panel (A)

shows the first few elements of a possible path generated according to the clockwork random
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Figure 12. Illustration of Algorithms 3 and 5. Panel (A) shows the first
elements of a possible path generated according to Algorithm 3 and panel
(B) shows the corresponding path generated according to Algorithm 5.

walk starting at the profile X0 = (1, 1, 1). In panel (B), we represent the corresponding

path generated according Algorithm 5. This time, rather than starting with an empty di-

graph, the profile x is made a sink (with the red edges placed in period 0). The remaining

directed edges are numbered according to the period in which they are first placed.

The clockwork random walk takes the path ~Z to Z4 = (1, 1, 2) in period 4. While the

random walk can continue wandering through the action profiles according to the clockwork

sequence, the path ~Z must end up at Z5 = x in period 5. �

Remark 4. Let 〈~A, sc〉 and 〈~Z,x, sc〉 be generated according to Algorithms 2 and 5 re-

spectively. Then the distribution of 〈~A, sc〉 conditional on x ∈ PNE(Gn,m) is the same as

the distribution of 〈~Z,x, sc〉.

Proof of Lemma 2. For any t ∈ N,

Pr
[
〈~A, sc〉 reaches PNE(Gn,m) by t

]
=
∑

x∈[m]n

Pr
[
〈~A, sc〉 reaches {x} by t and x ∈ PNE(Gn,m)

]
=
∑

x∈[m]n

Pr
[
〈~A, sc〉 reaches {x} by t

∣∣∣x ∈ PNE(Gn,m)
]

Pr [x ∈ PNE(Gn,m)]

=
∑

x∈[m]n

Pr
[
〈~Z,x, sc〉 reaches {x} by t

]
︸ ︷︷ ︸

(10.1)

Pr [x ∈ PNE(Gn,m)]︸ ︷︷ ︸
(10.2)

(10)
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The first step follows from the definition of reaching a pure Nash equilibrium. The final

step follows from Remark 4; namely, the probability that 〈~A, sc〉 reaches {x} by period t

conditional on x ∈ PNE(Gn,m) is equal to the probability that 〈~Z,x, sc〉 reaches {x} by

period t. We now analyze the expressions (10.1) and (10.2).

For (10.2), since payoffs are drawn identically and independently according to the atom-

less distribution P, we have that

(11) Pr [x ∈ PNE(Gn,m)] =
n∏
i=1

Pr

[
Ui (x) ≥ max

x′i∈[m]
Ui
(
x′i,x−i

)]
=

1

mn
.

We now find upper and lower bounds on (10.1) by relating 〈~Z,x, sc〉 to the clockwork

random walk path 〈~X, sc〉. We start with the upper bound. Notice that 〈~Z,x, sc〉 cannot

reach {x} by period t unless Xτ−1
−sc(τ) = x−sc(τ) for some τ ≤ t. Therefore

Pr
[
〈~Z,x, sc〉 reaches {x} by t

]
≤ Pr

[
t⋃

τ=1

{Xτ−1
−sc(τ)} = x−sc(τ)}

]

≤
t∑

τ=1

Pr
[
Xτ−1
−sc(τ) = x−sc(τ)

]
=

t

mn−1
.(12)

The final step follows from the fact that Xτ−1
−sc(τ) consists of n − 1 independent random

variables, each uniformly distributed on [m].

We now turn to the lower bound. If F〈~X,sc〉 > t and Xτ−1
−sc(τ) = x−sc(τ) for some τ ≤ t

then 〈~Z,x, sc〉 must reach {x} by period t. In other words, if no environments are repeated

for any player and the environment is x−i for some player i by period t, then 〈~Z,x, sc〉
must reach {x} by period t. Therefore,

Pr
[
〈~Z,x, sc〉 reaches {x} by t

]
≥Pr

[
t⋃

τ=1

{Xτ−1
−sc(τ) = x−sc(τ)} and F〈~X,sc〉 > t

]

= Pr

[
t⋃

τ=1

{Xτ−1
−sc(τ) = x−sc(τ)}

∣∣∣∣F〈~X,sc〉 > t

]
Pr
[
F〈~X,sc〉 > t

]
.(13)
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To bound the first term in (13), notice that X
h1(k)−1
−1 = x−1 for some k ∈ {1, ..., k∗1(t)}

implies that Xτ−1
−sc(τ) = x−sc(τ) for some τ ≤ t. Therefore

Pr

[
t⋃

τ=1

{Xτ−1
−sc(τ) = x−sc(τ)}

∣∣∣∣F〈~X,sc〉 > t

]
≥ Pr

k∗1(t)⋃
k=1

{Xh1(k)−1
−1 = x−1}

∣∣∣∣F〈~X,sc〉 > t


=

k∗1(t)∑
k=1

Pr
[
X
h1(k)−1
−1 = x−1

∣∣∣F〈~X,sc〉 > t
]

=

k∗1(t)∑
k=1

1

mn−1

=

⌈
t

n

⌉
1

mn−1
.(14)

The first summation follows from the fact that since all the environments for player 1

are distinct, the events in the union are mutually exclusive. The next step follows from

the fact that our process is invariant under symmetry. So for any k ∈ {1, ..., k∗1(t)} and

for all x−1 and y−1, Pr[X
h1(k)−1
−1 = x−1 |F〈~X,sc〉 > t] = Pr[X

h1(k)−1
−1 = y−1 |F〈~X,sc〉 > t]

which implies that Pr[X
h1(k)−1
−1 = x−1 |F〈~X,sc〉 > t] = 1

mn−1 . The last step follows from

k∗1(t) = 1 + b t−1
n c = d tne.

To bound the second term in (13), notice that if for each i ∈ [n] the environments

X
hi(1)−1
−i ,X

hi(2)−1
−i , ...,X

hi(k
∗
i (t))−1

−i are all distinct then F〈~X,sc〉 > t. Therefore

Pr[F〈~X,sc〉 > t] ≥ Pr

 ⋂
i∈[n]

{Xhi(k)−1
−i for k ∈ {1, ..., k∗i (t)} are all distinct}


= 1− Pr

 ⋃
i∈[n]

{Xhi(k)−1
−i for k ∈ {1, ..., k∗i (t)} are not all distinct}


≥ 1−

∑
i∈[n]

Pr
[
X
hi(k)−1
−i for k ∈ {1, ..., k∗i (t)} are not all distinct

]

≥ 1− n

mn−1

(d tne)
2

2
.(15)

The final step follows from Lemma 3.

Gathering the results (10), (11), (12), (14), and (15) together yields the desired conclu-

sion. �
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Appendix B. Proofs of Theorem 3, Proposition 3, and Theorem 4

In this section, we focus exclusively on the clockwork sequence best-response dynamic

in 2-player games. We first explicitly work out the exact probability that a path generated

by Algorithm 4 reaches a 2k-cycle in period t. We then turn to the asymptotic behavior

of our formulas of interest.

Recall the definitions of hi(k) and k∗i (t) preceding Lemma 3. On a path 〈~X, sc〉 generated

by Algorithm 3, the environments that player i ∈ {1, 2} encounters on her turns between

(and including) periods 1 and t are given in the sequence (X
hi(1)−1
−i ,X

hi(2)−1
−i , ...,X

hi(k
∗
i (t))−1

−i ).

B.1. Proof of Theorem 3. In order for a path generated by Algorithm 4 to reach neither

a pure Nash equilibrium nor a best-response cycle by period t it must be the case that,

by period t + 1 (inclusive), no player encounters an environment that they have seen

before, and the action taken by player sc(t + 1) in period t + 1 must not repeat any of

the environments encountered by period t by player sc(t). To put it differently, for each

i ∈ {1, 2} it must be the case that the environments (X
hi(1)−1
−i ,X

hi(2)−1
−i , ...,X

hi(k
∗
i (t+1))−1

−i )

are all distinct, and the action Xt+1
sc(t+1) taken by player sc(t+ 1) in period t+ 1 is distinct

from each of the environments encountered by period t by player sc(t). It follows that the

probability that the clockwork sequence best-response dynamic converges to neither a pure

Nash equilibrium nor a best-response cycle by period t for t ∈ [2m] is

(16)

t∏
i=1

(
1− 1

m

⌊
i

2

⌋)
.

In order for the path to reach a pure Nash equilibrium in period t, for each i ∈ {1, 2}
it must be the case that the environments (X

hi(1)−1
−i ,X

hi(2)−1
−i , ...,X

hi(k
∗
i (t+1))−1

−i ) are all

distinct, and the action Xt+1
sc(t+1) taken by player sc(t + 1) in period t + 1 is equal to the

environment Xt−1
−sc(t) encountered by player sc(t) in period t. Therefore, the probability

that the clockwork sequence best-response dynamic converges to a pure Nash equilibrium

in period t ∈ [2m] is

(17)
1

m

t∏
i=1

(
1− 1

m

⌊
i

2

⌋)
.

More generally, in order for the path to reach a 2k-cycle in period t, for each i ∈ {1, 2}
it must be the case that the environments (X

hi(1)−1
−i ,X

hi(2)−1
−i , ...,X

hi(k
∗
i (t+2k−1))−1

−i ) are all

distinct, and the action Xt+2k−1
sc(t+2k−1) taken by player sc(t + 2k − 1) in period t + 2k − 1 is

equal to the environment Xt−1
−sc(t) encountered by player sc(t) in period t. Therefore, the
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probability that the clockwork sequence best-response dynamic converges to a 2k-cycle for

k ∈ [m] in period t ∈ [2(m− k + 1)] is

1

m

t+2(k−1)∏
i=1

(
1− 1

m

⌊
i

2

⌋)
.(18)

This is precisely formula (1) given in the statement of Theorem 3. Notice that setting

k = 1 in (18) recovers formula (17).

The probability that the clockwork sequence best-response dynamic reaches a 2k-cycle

for k ∈ [m] is obtained by summing (18) over all t ∈ [2(m− k + 1)]:

(19)
1

m

2(m−k+1)∑
t=1

t+2(k−1)∏
i=1

(
1− 1

m

⌊
i

2

⌋)
.

This is expression (2) in Corollary 2.

Example (Illustration of formulas (16) to (18)). To illustrate our results we schematically

map out all the possible paths of the clockwork sequence best-response dynamic in 2-player

m-action games in the tree shown in Figure 13. The initial profile, in period 0, is arbitrarily

set to (1, 1).

In order to reach neither a pure Nash equilibrium nor a best-response cycle by period 3,

for example, we must travel down the tree along the sequence (1, 1), (1, 1), (1, 2), (2, 2), (2, 3)

or the sequence (1, 1), (2, 1), (2, 2), (1, 2), (1, 3). Let us look at the first sequence more

closely. Up to (and including) period 4, the environments encountered by each player

respectively are all distinct. Player 2 must select action 3 in period 4 to ensure that the

sequence does not end up revisiting a previously encountered environment. The probability

of traveling along (1, 1), (1, 1), (1, 2), (2, 2), (2, 3) or (1, 1), (2, 1), (2, 2), (1, 2), (1, 3) is given

by formula (16) with t = 3.

Let us consider the probability of reaching a pure Nash equilibrium in period 4. In Figure

13, we must travel along the sequence (1, 1), (1, 1), (1, 2), (2, 2), (2, 3), (2, 3) or the sequence

(1, 1), (2, 1), (2, 2), (1, 2), (1, 3), (1, 3). Let us look at the first sequence more closely. Up

to (and including) period 5, the environments encountered by each player respectively

are all distinct. Player 1 must select action 2 in period 5 (this was the environment

encountered by player 2 in period 4) to ensure that the pure Nash equilibrium (2, 3) was

reached in period 4. The probability of traveling along (1, 1), (1, 1), (1, 2), (2, 2), (2, 3), (2, 3)

or (1, 1), (2, 1), (2, 2), (1, 2), (1, 3), (1, 3) is given by formula (17) with t = 4.
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Let us consider the probability of reaching a 4-cycle in period 2. In Figure 13 we must

travel down the tree along the sequence (1, 1), (1, 1), (1, 2), (2, 2), (2, 3), (1, 3) or the se-

quence (1, 1), (2, 1), (2, 2), (1, 2), (1, 3), (2, 3). Let us look at the first sequence more closely.

The action profile is (1, 2) in period 2, and this is the first action profile of our 4-cycle.

A further 2k − 1 periods must pass before looping back to (1, 2). Up to (and includ-

ing) period 5, the environments encountered by each player respectively are all distinct.

In order to “close” the cycle, player 1 must select action 1 in period 5 (this was the

environment encountered by player 2 in period 2). The probability of traveling along

(1, 1), (1, 1), (1, 2), (2, 2), (2, 3), (1, 3) or (1, 1), (2, 1), (2, 2), (1, 2), (1, 3), (2, 3) is given by for-

mula (18) with t = k = 2. �

B.2. Proof of Theorem 4. To prove Theorem 4 we now work out the asymptotic behavior

of formula (16). Note that (16) can be written as

t∏
i=1

(
1− 1

m

⌊
i

2

⌋)
=


m!2

(m− t+1
2

)!2mt+1 if t is odd(
m− t

2
m

)
m!2

(m− t
2

)!2mt if t is even
.

Using Stirling’s formula which states that

n! ∼
√

2πn · nn exp{−n},

as n→∞, we obtain29

(20)
m!2

(m− t+1
2 )!2mt+1

∼

(
m− t+1

2

m

)t−2m

exp{−(t+ 1)}.

and

(21)

(
m− t

2

m

)
m!2

(m− t
2)!2mt

∼
(
m− t

2

m

)t−2m

exp{−t}.

whenever m− t→∞. Taking a logarithm of the last expression,30

− t+ (t− 2m) ln

(
1− 1

m

t

2

)
=− t+ (t− 2m)

(
−1

2

t

m
− 1

8

t2

m2
+O

(
t3

m3

))
=− 1

4

t2

m
+O

(
t3

m2

)
.

29f(n) ∼ g(n) denotes f(n)/g(n)→ 1 as n→∞.
30f(n) = O(g(n)) if there is M > 0 and N such that |f(n)| ≤Mg(n) for all n ≥ N .
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Figure 13. Illustration of possible paths for 2-player m-action games. We
arbitrarily set the initial action profile to be (1, 1) in period 0. In period
1, player 1 either plays action 1 (left branch) or some other action (right
branch) which we arbitrarily call action 2. Player 2 then responds in period
2, and so on. All red leaves are Nash equilibria and all blue leaves are
profiles that belong to best-response cycles.

Provided that t = o(m2/3), the second term goes to zero and therefore equation (21)

behaves asymptotically like exp{−t2/(4m)}. An identical argument shows that, under the

same conditions, (20) is also asymptotically exp{−t2/(4m)}. Hence,

(22)

t∏
i=1

(
1− 1

m

⌊
i

2

⌋)
∼ exp

{
− t2

4m

}
.

This completes the proof of Theorem 4. Note that approximation (22) holds uniformly in

the range [1, o(m2/3)].
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B.3. Proof of Proposition 3. To prove Proposition 3, we now turn to the asymptotic

behavior of (19). Let T = T (m) satisfy T = o(m2/3) and k = o(T ). We assume that

T ≥ m2/3

ln(m) so that T is not too small, and we split the summation in (19) into two ranges:

t ≤ T and t > T . Since (22) holds uniformly in our first range, we have

1

m

T∑
t=1

t+2(k−1)∏
i=1

(
1− 1

m

⌊
i

2

⌋)
∼ 1

m

T∑
t=1

exp

{
−(t+ 2(k − 1))2

4m

}
.

We now approximate the summation on the right-hand side with an integral. Firstly, note

that

1

m

∫ T+1

1
exp

{
−(t+ 2(k − 1))2

4m

}
dt =

√
2

m

∫ T+1+2(k−1)√
2m

2k−1√
2m

exp

{
−x

2

2

}
dx

∼
√

2

m

∫ ∞
2k−1√

2m

exp

{
−x

2

2

}
dx

= 2

√
π

m

(
1− Φ

(
2k − 1√

2m

))
,(23)

where the first step uses the transformation x = (t+ 2(k − 1))/
√

2m. Furthermore,

1

m

∫ 1

0
exp

{
−(t+ 2(k − 1))2

4m

}
dt ≤ 1

m
,

which goes to zero faster than (23). Since∫ T+1

1
f(t)dt ≤

T∑
t=1

f(t) ≤
∫ T

0
f(t)dt ≤

∫ T+1

1
f(t)dt+

∫ 1

0
f(t)dt,

for any positive and decreasing function f(·), it follows that

1

m

T∑
t=1

exp

{
−(t+ 2(k − 1))2

4m

}
∼ 2

√
π

m

(
1− Φ

(
2k − 1√

2m

))
.
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It remains for us to show that the summation (19) over the second range is negligible.

Since exp{x} ≥ 1 + x and bxc > x− 1 for all x, we obtain the following upper bound:

1

m

2(m−k+1)∑
t=T+1

t+2(k−1)∏
i=1

(
1− 1

m

⌊
i

2

⌋)
≤ 1

m

2(m−k+1)∑
t=T+1

T+1+2(k−1)∏
i=1

(
1− 1

m

⌊
i

2

⌋)

≤ 1

m

2(m−k+1)∑
t=T+1

exp

− 1

m

T+1+2(k−1)∑
i=1

(
i

2
− 1

)
≤ 2m− 2k − T + 1

m
exp

{
− 1

4m
(T + 2(k − 1)− 2)2

}
.

This expression is small compared to the other half of the sum.

Appendix C. Descriptions of the learning rules

We compare best-response dynamics to three more complicated learning dynamics:

Bush-Mosteller learning as an example of reinforcement learning, fictitious play as an

example of belief learning, and replicator dynamics as the most important equation in

evolutionary biology.

There are unavoidable arbitrary choices in the specification of the learning dynamics,

the values of the parameters and the criteria that determine convergence to mixed or pure

Nash equilibria, however the overall picture is robust to the specific implementation for

all sensible parametrizations. The dynamics here are all in discrete-time or had to be

converted to discrete-time.

We now describe the learning dynamics in detail, as well as the convergence criteria and

our choice of parameters. We use similar convergence criteria to those used by Pangallo

et al. (2019) in the two-player case.

C.1. Reinforcement learning. We consider the Bush-Mosteller learning algorithm as an

example of reinforcement learning (Bush and Mosteller, 1953), using the specifications in

Macy and Flache (2002) and Galla and Farmer (2013).

Each player has an aspiration level that corresponds to a weighted average of the payoffs

that the player has received while playing the game. Each player then associates a level of

satisfaction with each action, which is positive if the payoff the player gets when choosing

this action is higher than the player’s aspiration level, and negative otherwise. The prob-

ability of playing an action is increased if the satisfaction was positive and decreased if it

was negative.
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Formal description. In each period, each player i ∈ [n] chooses an action x ∈ [m] with prob-

ability pti(x). The evolution of the mixed strategy of each player i, pti = (pti(1), ..., pti(m)),

is governed by reinforcement learning, as we describe below. The learning rule generates a

mapping from pt = (pt1, ...,p
t
n) to pt+1.

Let ℵti be the aspiration level of player i in period t. It evolves according to

ℵt+1
i = (1− α)ℵti + αui(x,a

t
−i).

when (x,at−i) is the profile played in period t.

The updated aspiration level is therefore a weighted average of the payoff received at

time t and the player’s past aspiration level. Payoffs received in the past are discounted

by a factor of (1− α), where α stands for the rate of memory loss. Player i’s satisfaction

with action x ∈ [m] in period t is defined by

σti(x) =
ui(x,a

t
−i)− ℵti

maxy∈[m]n |ui(y)− ℵti|
.

Note that σti(x) lies within −1 and 1. If player i chooses action x in period t, player i

associates positive satisfaction with this action if the payoff they received in period t is

higher than the player’s aspiration level.

If player i played action x in period t, then the probability that i plays x again in period

t+ 1 is updated as

(24) pt+1
i (x) =

pti(x) + βσti(x)(1− pti(x)) σti(x) ≥ 0

pt+1
i (x) + βσti(x)pti(x) σti(x) < 0

,

and the probability of choosing a different action y 6= x in period t+ 1 is updated as

(25) pt+1
i (y) =

pti(y)− βσti(x)pti(y) σti(x) ≥ 0

pti(y)− βσti(x)
pti(x)pti(y)

1−pti(x)
σti(x) < 0

.

In the equations above, β represents the learning rate. Positive satisfaction for action

x leads to an increase of the probability to choose action x, negative satisfaction has the

opposite effect. Note that the actions of all players but i, at−i, only enter the learning

process of i through the payoff that i receives from playing action x against at−i, ui(x,a
t
−i).

Player i need not know the actions of the other players. Rather i needs only to keep track of

her own actions and of her own payoffs in order to update her aspiration, satisfaction, and

mixed strategy vector. This implementation of the Bush-Mosteller dynamic is therefore a

classic example of reinforcement learning in which limited information is required.
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Convergence criteria. To assess convergence, we check whether pt converges to a fixed

point of the mapping pt 7→ pt+1. This choice makes it possible to also assess convergence

to mixed Nash equilibria, which would be missed if we only looked at the actions played.

Of course, because players play actions by randomly sampling from their mixed strategy

vectors, the evolution of pt is stochastic, and so we need to allow for noise in our assessment

of convergence. Additionally, pt never reaches a fixed point of pt 7→ pt+1 within simulation

time. The reason for that is that equations (24) and (25) have no memory loss term, so

the probability for playing an unsuccessful action keeps decreasing over time without ever

reaching a steady state. To address these issues, we use the same heuristic as in Pangallo

et al. (2019):

(1) Only consider the last 20% time steps, to avoid transient effects.

(2) Only keep the actions that have been played with a probability larger than 0.05,

averaged over the time interval.

(3) If the average standard deviation, calculated over the time interval for each selected

action and averaged over the selected actions is larger than 0.01, the simulation

run will be regarded as non-convergent, otherwise as convergent. We identify a

convergent simulation run as having reached a pure Nash equilibrium if each belief

vector pti has a component that is larger than 0.98.

Parameter values. We perform the simulations with α = 0.2 and β = 0.5, but could not

observe much sensitivity to the parameter values. We simulate for 5000 time steps with

randomly chosen initial conditions.

C.2. Fictitious play. Fictitious play is an example of belief learning and was first pro-

posed as an algorithm to calculate Nash equilibria. It was later interpreted as a learning

algorithm (Brown, 1951, Robinson, 1951). Each player takes the empirical distribution of

actions taken by the opponents as an estimate of their mixed strategies, calculates the ex-

pected payoff of each action based on this estimate, and chooses the (pure) action with the

highest expected payoff. Variants include weighted fictitious play (Fudenberg and Levine,

1998), in which the players discount opponents’ past actions and give higher weight to more

recent actions, and stochastic fictitious play, where the players choose the best performing

action with a certain probability, and the other actions with a smaller probability.
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Formal description. In period t ≥ 0, each player’s belief ptj(x) that player j will play action

x in period t+ 1 is given by the fraction of times that player j chose action x in the past:

ptj(x) =
1

t+ 1

t∑
τ=0

1[aτj = x],

where 1[aτj = x] = 1 if j played action x in period τ and 1[aτj = x] = 0 otherwise. In each

period, each player i then deterministically selects the action with the highest expected

payoff given their belief about their opponents, pt−i:

at+1
i = arg max

x∈[m]

∑
x−i∈[m]n−1

ui(x,x−i)
∏

j∈[n]\{i}

ptj(xj).

Convergence criteria. To study convergence to mixed equilibria, we follow Fudenberg and

Levine (1998) in considering convergence of beliefs pt = (pt1, ...,p
t
n) rather than convergence

of the actions played. Our convergence criteria for pt are the same as those described above

for reinforcement learning. A minor difference is that we identify a convergent simulation

run as having reached a pure Nash equilibrium if each belief vector pti has a component

that is larger than 0.99.

Parameter values. Fictitious play has no parameters.

C.3. Replicator dynamics. Replicator dynamics are the most basic evolutionary model

(Maynard Smith, 1982). They play an important role in describing evolutionary game

dynamics and population dynamics. Following the interpretation in Börgers and Sarin

(1997), we view replicator dynamics as a learning algorithm for individual players.31 Be-

cause our randomly generated payoff matrices are not necessarily symmetric, we consider

the multi-population version of the replicator dynamic (Taylor and Nowak, 2006, Gokhale

and Traulsen, 2010).

Formal description. In each period t, each player i chooses an action x with probability

pti(x), and the probability vector pti = (pti(1), ..., pti(m)) evolves according to the replicator

equation, as described below.

When all other players sample their actions according to pt−i, the expected payoff of

player i when choosing action x in period t is

ũi(x,p
t
−i) =

∑
x−i∈[m]n−1

ui(x,x−i)
∏

j∈[n]\{i}

ptj(xj).

31Replicator dynamics are also obtained as the continuous time limit of discrete time reinforcement-learning
algorithms (Börgers and Sarin, 1997, Sato and Crutchfield, 2003, Tuyls et al., 2006, Pangallo et al., 2017).
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The average expected payoff for player i is then

ūi(p
t) =

∑
x∈[m]

ũi(x,p
t
−i)p

t
i(x).

For our simulation, the usual continuous replicator equation

ṗti(x) = pti(x)
(
ũi(x,p

t
−i)− ūti(pt)

)
,

must be discretized. We use the discretization proposed in Maynard Smith (1982), where

δ takes small values:

pt+1
i (x) = pti(x)

1 + δũi(x,p
t
−i)

1 + δūi(pt)
.

Convergence criteria. Similarly to the other learning rules, we consider the convergence of

pt = (pt1, ...,p
t
n). There are several technical problems associated with simulating replicator

dynamics, including the fact that all stable fixed points are on the boundary of the strategy

space and therefore cannot be reached in finite simulation time, and that the period of cycles

increases over time, due to the infinite memory of the process.

Additionally, we must stop the simulation run as soon as one component of one of the

players’ mixed strategy vector reaches the machine precision limit and is taken to be zero

by the simulator. Indeed, by the properties of replicator dynamics, if pti(x) reaches zero, it

remains at zero forever. However, it often happens in simulations of replicator dynamics

that an action whose probability had been decreasing for a long time suddenly becomes

advantageous due to changes in what other players are playing, leading to a reversal of

the dynamics. This reversal will not be reflected in our simulations if pti(x) is stuck at

zero due to the machine precision limit being reached, leading to an unfaithful numerical

representation of the dynamics.

To address all these issues, and to specifically account for the behavior of replicator

dynamics, we choose the following simulation criteria:

(1) Only consider the last 20% time steps.

(2) For each player, find the action with the highest probability and verify whether

this probability has been increasing over the full time interval.

(3) Check that the probabilities of all other actions have been decreasing.

(4) If conditions 2-3 are satisfied for all players, identify the solution run as convergent.

Note that the issue of machine precision unavoidably creates biases when the replicator

dynamics take long to reach an attractor, be it a fixed point or a cycle. In particular,

it could lead us to consider as non-convergent a simulation run that would eventually

converge, because the replicator dynamics hit the machine precision limit while still in a
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transient phase. Empirically, it turns out that transient dynamics are longer as the number

of players or actions increases, thus these biases are likely to be more serious in “large”

games than in games with just a few actions and players.

Parameter values. We choose δ = 0.1.
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Dindoš, M. and C. Mezzetti (2006). Better-reply dynamics and global convergence to Nash equilibrium in

aggregative games. Games and Economic Behavior 54 (2), 261–292.

Dresher, M. (1970). Probability of a pure equilibrium point in n-person games. Journal of Combinatorial

Theory 8 (1), 134–145.

54

https://lyariv.mycpanel.princeton.edu/papers/DominanceSolvability.pdf
https://lyariv.mycpanel.princeton.edu/papers/DominanceSolvability.pdf


Durand, S., F. Garin, and B. Gaujal (2019). Distributed best response dynamics with high playing rates

in potential games. Performance Evaluation 129, 40–59.

Durand, S. and B. Gaujal (2016). Complexity and optimality of the best response algorithm in random

potential games. In International Symposium on Algorithmic Game Theory, pp. 40–51. Springer.

Erev, I. and A. E. Roth (1998). Predicting how people play games: Reinforcement learning in experimental

games with unique, mixed strategy equilibria. American economic review , 848–881.

Fabrikant, A., A. D. Jaggard, and M. Schapira (2013). On the structure of weakly acyclic games. Theory

of Computing Systems 53 (1), 107–122.

Feldman, M. and T. Tamir (2012). Convergence of best-response dynamics in games with conflicting

congestion effects. In International Workshop on Internet and Network Economics, pp. 496–503. Springer.

Foster, D. P. and H. P. Young (2006). Regret testing: Learning to play nash equilibrium without knowing

you have an opponent. Theoretical Economics 1 (3), 341–367.

Friedman, D. (1996). Equilibrium in evolutionary games: Some experimental results. Economic Journal ,

1–25.

Friedman, J. W. and C. Mezzetti (2001). Learning in games by random sampling. Journal of Economic

Theory 98 (1), 55–84.

Fudenberg, D. and D. K. Levine (1998). The theory of learning in games. MIT Press.

Galla, T. and J. D. Farmer (2013). Complex dynamics in learning complicated games. Proceedings of the

National Academy of Sciences 110 (4), 1232–1236.

Germano, F. and G. Lugosi (2007). Global nash convergence of foster and young’s regret testing. Games

and Economic Behavior 60 (1), 135–154.

Goemans, M., V. Mirrokni, and A. Vetta (2005). Sink equilibria and convergence. In 46th Annual IEEE

Symposium on Foundations of Computer Science (FOCS’05), pp. 142–151. IEEE.

Gokhale, C. S. and A. Traulsen (2010). Evolutionary games in the multiverse. Proceedings of the National

Academy of Sciences 107 (12), 5500–5504.

Goldberg, K., A. Goldman, and M. Newman (1968). The probability of an equilibrium point. Journal of

Research of the National Bureau of Standards 72 (2), 93–101.

Goldman, A. (1957). The probability of a saddlepoint. The American Mathematical Monthly 64 (10),

729–730.

Hofbauer, J. and K. Sigmund (1998). Evolutionary games and population dynamics. Cambridge university

press.

Kash, I. A., E. J. an, and J. Y. Halpern (2011). Multiagent learning in large anonymous games. Journal of

Artificial Intelligence Research 40, 571–598.

Kultti, K., H. Salonen, and H. Vartiainen (2011). Distribution of pure Nash equilibria in n-person games

with random best responses. Technical Report 71, Aboa Centre for Economics. Discussion Papers.

Macy, M. W. and A. Flache (2002). Learning dynamics in social dilemmas. Proceedings of the National

Academy of Sciences of the United States of America 99, 7229–7236.

Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge University Press.

McLennan, A. (2005). The expected number of Nash equilibria of a normal form game. Econometrica 73 (1),

141–174.

55



McLennan, A. and J. Berg (2005). Asymptotic expected number of Nash equilibria of two-player normal

form games. Games and Economic Behavior 51 (2), 264–295.

Mirrokni, V. S. and A. Skopalik (2009). On the complexity of Nash dynamics and sink equilibria. In

Proceedings of the 10th ACM conference on Electronic commerce, pp. 1–10.

Monderer, D. and L. S. Shapley (1996). Potential games. Games and economic behavior 14 (1), 124–143.

Pangallo, M., T. Heinrich, and J. D. Farmer (2019). Best reply structure and equilibrium convergence in

generic games. Science Advances 5 (2), eaat1328.

Pangallo, M., J. Sanders, T. Galla, and D. Farmer (2017). A taxonomy of learning dynamics in 2×2 games.

arxiv.org/abs/1701.09043.

Powers, I. Y. (1990). Limiting distributions of the number of pure strategy Nash equilibria in n-person

games. International Journal of Game Theory 19 (3), 277–286.

Quint, T., M. Shubik, and D. Yan (1997). Dumb bugs vs. bright noncooperative players: A comparison. In
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