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Abstract

The possibility to measure the relative contribution of agents and exchanges to
the price formation process in high-frequency financial markets acquired increasingly
importance in the financial econometric literature. In this paper I propose to adopt
fully data-driven approaches to identify structural vector error correction models
(SVECM) typically used for price discovery. Exploiting the non-Normal distributions
of the variables under consideration, I propose two novel variants of the widespread
Information Share (IS) measure which are able to identify the leaders and the followers
in the price formation process. The approaches will be illustrated both from a semi-
parametric and parametric standpoints, solving the identification problem with no
need of increasing the computational complexity which usually arises when working
at incredibly short time scales. Finally, an empirical application on IBM intraday
data will be provided.
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1 Introduction

The past decades have been characterized by dramatic changes in financial markets, where

the proliferation of algorithmic trading strategies put aside the intervention of human agents

in the price formation process. These algorithms execute orders at incredibly short time

scales and there is no doubt anymore they account for most of the trading volumes in

developed markets. In addition, processes of market fragmentation have been carried out

jointly with the rising of high-frequency trading. This doubly increased the complexity

of financial markets, since quotes and trades might be dispersed across different listing

venues and at heterogeneous time scales which mix the slower dynamic of humans with

the faster dynamic of machines. The possible benefits of fragmented versus consolidated

markets have been object of debates for both economists and regulators also in recent

times (O’Hara and Ye, 2011; Kwan et al., 2015; Hatheway et al., 2017). As a consequence,

the possibility to measure the relative contribution of each exchange in which the asset is

listed, to the price formation process, acquired increasing importance in the research envi-

ronment. Going back in the literature two popular and still widely used measures have been

introduced, which are the information share (IS) of Hasbrouck (1995) and the component

share (CS) directly based on the permanent-transitory (PT) decomposition introduced in

Gonzalo and Granger (1995) (Harris et al., 1995; Booth et al., 1999; Hansen and Lunde,

2006). These two measures build their fundamentals upon the modeling of price changes

through VECMs, with the substantial difference that while the CS is defined only in terms

of speeds of adjustment toward the common trend (i.e. markets with lower cointegration

loadings rapidly adjust and are thus more informative), the IS measure is more concerned

with variations in the prices and seeks to measure the amount of information generated by

each market. Both approaches have their merits and limits which have been documented

by comprehensive discussions in the literature (Baillie et al., 2002; De Jong, 2002; Harris

et al., 2002a,b; Hasbrouck, 2002b; Lehmann, 2002). The IS approach, compared to the CS

one, has a richer specification since it considers the speed of adjustment together with the

relative share of variance of the efficient price process accounted by each market. Still, from

a microstructural modeling point of view, the IS can be uniquely determined only when the

VECM residuals are uncorrelated given that the presence of substantial contemporaneous
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correlations hampers the correct identification of the structural shocks occurred in each

market. Hasbrouck’s suggested solution was, in absence of an established theory providing

the causal chain to correctly order the variables in the model, to identify the SVECM using

the Choleski decomposition and going through all the possible permutations of the variables

so to get upper and lower bounds for the IS of each market. In empirical applications upper

and lower bounds are often very wide giving rise to interpretative ambiguities about the real

allocation of information between the analyzed variables, making impossible to distinguish

between the exchanges which lead the price formation process and exchanges that follow it.

From a recent data-driven perspective instead, Hasbrouck (2019) proposed to exploit the

high frequency at which quotes and trades occur, modeling thus in natural time to drasti-

cally reduce the upper and lower bounds obtained by permuting the variables. Sampling

prices at very short time scales, even from microseconds to nanoseconds precision, heavily

reduces contemporaneous cross correlations between the listing venues indeed, which by

construction leads to narrower IS bounds and allow to discard any interpretive ambiguity.

To deal with the enormous amount of coefficients to be estimated in such a natural time

framework, the author handled the problem by adopting the heterogeneous autoregressive

approach (HAR) proposed by Corsi (2009). Nevertheless, Hasbrouck’s modeling approach

in natural time raised interesting and useful comments and discussions in the literature, in

some cases controversial, directly related to the econometric model specification, treatment

of the high level of data sparsity in natural time, and subsequent identification of where

price discovery occurs (Brugler and Comerton-Forde, 2019; Buccheri et al., 2019; De Jong,

2019; Ghysels, 2020). Despite the identification issue above mentioned and even if other

measures of price discovery have been proposed in the literature (see Lien and Shrestha,

2009; De Jong and Schotman, 2010; Yan and Zivot, 2010; Putniņs̆, 2013), the IS is still

one of the most widely used measures for price discovery as documented by its adoption in

recent works as well (Chen and Tsai, 2017; Kryzanowski et al., 2017; Lin et al., 2018; Ahn

et al., 2019; Baur and Dimpfl, 2019; Brogaard et al., 2019; Hagströmer and Menkveld, 2019;

Entrop et al., 2020). In this article I propose to adopt a completely data driven strategy

based on Independent Component Analysis (ICA) to identify the SVECM widely adopted

in the price discovery context, in order to solve a fundamental problem in the IS measure.
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The proposed methodology wisely exploits the non-Normal distributions of stock returns

to correctly identify the independent sources driving the shocks, and the associated mixing

matrix according to which observed model residuals correlate across markets. The intuition

directly arises from the possibility of introducing a data-driven technique in a research area

in which is very hard to provide general and robust theory-driven identification strategies,

exploiting the empirical properties of financial returns that perfectly fit the non-Normal

requirement. Depending on the validity of the underlying assumptions two different and ef-

fective estimation procedures will be illustrated, leading to the introduction of two measures

which are the Independent Component based-Information Shares(IC-IS) and the Directed

Acyclic Graph based-Information Shares(DAG-IS). The idea of identifying the IS by means

of the distributional properties of the variables was firstly introduced by Grammig and

Peter (2013). The authors introduced the concept of tail dependence through the adoption

in the modeling procedure of different variance regimes, inspired by Rigobon (2003), to

identify the contribution of each market to the price discovery process. The intuition was

that differences between tail and center correlations, caused by the occurrence of extreme

price changes, could be exploited to reach full identification. In particular, following Lanne

and Lütkepohl (2010), they assume price innovations to emerge as a mixture of two serially

uncorrelated Normal random vectors with different covariance matrices, where one is the

identity and the other is a diagonal matrix associated to different variance regimes. Still

providing a solution based on the exploitation of the statistical properties of the variables

of interest, the methodology proposed in this article differs under many aspects. First, the

methodology which I am going to propose can work under any non-Normal distribution

and with no need of introducing different volatility regimes to identify the model. Second,

the problem will be addressed through both semiparametric and parametric procedures

depending also on the validity of the assumptions adopted in the modeling strategy. Third,

keeping Hasbrouck (2019) as a clear benchmark, the strategy proposed in this article is

found to provide coherent empirical results under different time specifications when identi-

fying the leaders and the followers in the price formation process. For all of these reasons

the solution proposed in this article is general, at the cost of introducing the assumption

of independent structural shocks in place of uncorrelated ones. Together with the assump-
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tion of the presence of an acyclic contemporaneous causal structure (Shimizu et al., 2006;

Hyvärinen, 2013), I show we can consistently identify the causal chain in the system and

thus the correct permutation of the variable in the VECM with subsequent unique iden-

tification of the IS measures. Furthermore, for the cases in which the recursive structure

will not be confirmed to exist by the data, I show that the same identification problem

can be addressed also relaxing the just mentioned acyclic causal assumption. Modeling

through independent components found several successful applications ranging from sig-

nal processing and source separation to noise reduction and time series analysis, having

the roots in the computer science research area (Comon, 1994; Hyvärinen and Oja, 2000)

but gaining increasing attention in economics and finance as well as in the statistical and

econometrics literature. Recent developments about the ICA approach can be found par-

ticularly in macroeconometrics where the identification issue of structural VAR (SVAR)

models is pervasive (Moneta et al., 2013; Gouriéroux et al., 2017; Lanne et al., 2017) but

applications can be found also in financial econometric and forecasting studies (Audrino

et al., 2005; Garćıa-Ferrer et al., 2012; Fabozzi et al., 2016; Hafner et al., ress). The article

is organized as follows. In section 2 the general setting is provided, showing the baseline

model with its identification issues for price discovery. In section 3, the models and as-

sumptions are illustrated explaining the identification scheme and a simulation exercise is

provided to clarify the methodology. In section 4, the possibility of relaxing the recursive

structure assumption is addressed through the adoption of an alternative estimation and

identification procedure. Section 5 provides an empirical application on IBM 3 October

2016 intraday data, in order to have the results of Hasbrouck (2019) as a clear benchmark

to compare with. Conclusions and discussions are provided in section 6.

2 General setting

In this section I briefly go back to the microstructure setting introduced in Hasbrouck

(1995), which exploits the vector error correction representation of Engle and Granger

(1987), and repeated in Hasbrouck (2019). This will be preparatory for the methodology

proposed and illustrated in the next section. The starting point is to consider a set of time

series log-prices {p1, p2, ... , pn} observed in n different exchanges but pertaining the same
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security, thus all arbitrage linked and whose dynamic are modeled by VECM:

∆pt = αβ′pt−1 +
k∑
i=1

Φi∆pt−k + εt (1)

where the matrix β contains the n − 1 cointegrating vectors specified as p1 − p2, p1 − p3,

p1 − pn since all price series naturally cointegrate each other, and α ∈ Rn×n is a loading

matrix. The system in equation 1 is covariance stationary, with Cov(εt) = Ω, and thus

admits a VMA(∞) representation

∆pt = Ψ(L)εt (2)

with

Ψ(L) =
∞∑
i=0

ΨiL
i, (3)

and also possess, as implied by the Granger representation theorem, a common trend

representation given by

pt = p0 + Ψ(1)
t∑
i=1

εi + Ψ∗(L)εt (4)

where holds the decomposition Ψ(L) = Ψ(1)+(1−L)Ψ∗(L), which can be seen as the mul-

tivariate generalization of the decomposition introduced in Beveridge and Nelson (1981).

The second term on the right hand side of equation 4 is the random walk component driv-

ing all prices in the system, and thus can be identified as the latent efficient price process,

while the last term is the transitory component admitting the VMA(∞). The matrix Ψ(1)

can be computed as (Johansen, 1991):

Ψ(1) = β⊥

[
α
′

⊥

(
I −

k∑
i=1

Φi

)
β⊥

]−1

α
′

⊥ (5)

and has rank equal to one which is the dimension of the efficient price process behind the

observed series, thus all rows of Ψ(1) are identical. The information share measure for

market j is the share of variance of the common component which is induced by the jth

market, which means

ISj =
ψ2
jΩjj

ψΩψ′
(6)

with ψ being the common row of Ψ(1) and ψj denoting the j-th element of ψ corresponding

to market j. The above definition uniquely allocate the total variance across markets only
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if the covariance matrix of the innovations Ω is diagonal, while an identification issue arises

when price innovations are correlated. To deal with a non-diagonal Ω two practical solutions

have been proposed. The first is to rewrite εt in terms of orthogonal innovations ut as

εt = Cut (7)

where C is the Choleski decomposition of Ω. The IS thus can be computed in terms of the

new orthogonal innovations ut, that is

ISj =

(
[ψC]j

)2

ψΩψ′
. (8)

This allocation mechanism defined through the causal chain implied by the lower triangular

structure of C depends on the particular order in which the variables are inserted in the

VECM, thus the heuristic solution was to consider upper and lower bounds for the IS of

each market by considering all the possible variable permutations. The second practical

solution consists in drastically reducing the gap between upper and lower bounds, in or-

der to eliminate interpretative ambiguities, estimating the model in natural time at very

high resolutions. Non zero cross correlations in Ω naturally arise as the sampling inter-

val increases indeed (Hasbrouck, 2019; Dias et al., 2020), thus they can be minimized by

sampling at higher frequencies. This clearly comes at costs, including both the compu-

tational aspect of dealing with such a number of observations characterized by high level

of sparsity and a suitable model specification to estimate the coefficients still considering

a sufficiently long lag-structure in the data. As explained also in Hasbrouck (2003), the

upper and lower bounds of the IS measures cannot be interpreted as confidence interval

but rather as an identification problem. In the next section I will propose a methodology

to uniquely identify, under few assumptions, the correct permutation of the variables in the

system in order to recover the exchanges which lead the price discovery and the following

ones. Moreover, for the sake of completeness, a further identification strategy still based on

the non-normality of the variables will be addressed without the imposition of any recursive

causal structure.
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3 Model and assumptions

Consider the n-dimensional vector of price innovations εt = [ε1t, ε2t, ..., εnt] characterized

by the non-diagonal covariance matrix Ω. Assume these observed signals to be a linear

mixture of hidden components ηt, which can be modeled as

εt = A0ηt, (9)

where A0 is a n×n mixing matrix through which the latent structural shocks ηt are revealed

in each market. The equation in 9, which closely resembles equation 7, can be estimated

up to permutation, sign, and scaling under some assumptions (Comon, 1994).

Assumption 3.1. The sequence of hidden sources, with finite and non-zero variance, of

market microstructure noise ηt possess at most one Normal marginal distribution;

Assumption 3.2. Independence of the latent shocks: p(η1, η2, ..., ηn) =
∏n

i p(ηi).

The independence assumption regarding the hidden structural components driving price

innovations, could be justified, from a microstructural perspectives, by personal behavioral

strategies, institutional rules and technological endowments which possibly differ across

listing exchanges and trading platforms. Still, observed price innovations are allowed to

correlate each other by means of the mixing matrix A0 (for example as a consequence of

the time aggregation in the sampling process previously mentioned). Since we directly

observe only the mixtures, the independence of the hidden sources cannot be tested and

has to be assumed. Concerning the non-normality assumption it is more a stylized fact

rather than assumption, given the well established leptokurtic shape of the distribution of

financial returns. The independence assumption of the non-Normal structural shocks ηt is

a stronger concept than uncorrelatedness which is not sufficient alone to get rid of all the

dependence information in the data. This additional information is what allows to reach

full identification of the model if there exists a contemporaneous causal chain between the

variables in the system, thus leading to the third and last assumption.

Assumption 3.3. The observed price innovations εt can be arranged in a causal chain,

meaning that their data generating process possesses a directed acyclic graph structure

(DAG) (Spirtes et al., 2000).
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Under assumption 3.3 we can model the system in equation 9 as the following structural

model,

εt = B0εt + ηt (10)

where A0 = (I −B0)−1 and the assumption of acyclical contemporaneous causal structure

implies there exists an appropriate ordering of the variables according to which B0 is lower

triangular. We refer to this model as the Linear Non-Gaussian Acyclic Model (LiNGAM)

introduced by Shimizu et al. (2006) in the research field of non-Normal Bayesian networks.

To easily understand why non-normality is fundamental in the above specified model,

consider for simplicity the two-dimensional case with ε1 and ε2. The structural model should

identify one variable as the exogenous and the other as the dependent one. In the gaussian

case independence and uncorrelatedness coincide and there would be no way to understand

whether ε1 → ε2, or vice versa, relying on the covariance matrix of ηt (Hyvärinen, 2013).

This because the spherical symmetry of the joint normal distribution of the random vector

ηt makes impossible to uniquely identify the matrix A0, which could be estimated only up

to an arbitrary orthogonal transformation as usually done with the PCA approach in the

Gaussian case (Moneta et al., 2013). In what follows, the estimation steps necessary to

achieve the structural identification of the VECM with associated information shares are

illustrated.

3.1 Quantifying non-normality and recovering the independent

components

The first step necessary for the identification process is to recover the non-Normal and

statistically independent sources ηt from the observed price innovations εt. This requires

the adoption of suitable measures which quantify the non-normality of a random variable.

The estimation can thus proceed by estimating the mixing matrix A0 such that the non-

normality of ηt is maximized. There are many approaches to estimate the model in 9 based

for instance on the maximization of the kurtosis, negentropy, or minimization of the mu-

tual information between the random variables. All methodologies are closely related and

exploit the central limit theorem. The additive mixture εt of independent and non-normal

components ηt, is always closer to a Normal distribution than the latter. Thus, maximizing

9



the non-normality of ηt directly relates to finding a direction of the space through the inverse

of A0 such that their mutual dependence is minimized. Going to the optimization schemes

implemented so far in the literature, in this work the FastICA algorithm of Hyvärinen and

Oja (2000) is firstly adopted being one of the most popular algorithm whose performances

have been assessed theoretically and empirically, both from a computational and statisti-

cal perspective, and for which efficient variants of the algorithm have been also provided

(Koldovsky et al., 2006; Miettinen et al., 2017; Moneta and Pallante, 2020). The algorithm

solves the optimization problem quantifying the non-normality in terms of approximated

negentropy. The entropy (amount of information) for a continuous random variables x is

defined as

H(x) = −
∫
f(x) log f(x) dx. (11)

Given that a normal variable has the largest entropy among random variables of equal

variance (Cover and Thomas, 1991), one could optimally quantify, at least theoretically,

the non-normality of a random variable by looking at the difference between its entropy

and the one of a normal variable with the same variance. The so called negentropy is thus

defined as

J(x) = H(N )−H(x). (12)

However, this would require in practice the knowledge of the probability density function

from which the data are generated. For this reason the algorithm deals with an useful

approximation of the negentropy of a random variable which takes the form

J(x) ≈ [E (g(x))− E (g(Z))]2 , (13)

where Z is a standardized normal and g(·) is any suitable non-quadratic function used

to approximate the negentropy given the data (Hyvärinen and Oja, 1998), here g(x) =

−e−x2/2. First, the mixtures are centered to be zero mean and whitened (i.e. uncorrelated

and with their variances equal to one) which means I work with the quantities z = PD−1/2ε,

where PDP t is the spectral decomposition of the covariance matrix of the mixtures Ω. The

algorithm searches for a vector w which maximizes the non-normality of wtz measured as

shown by equation 13, that is

ŵ = argmaxwE(J(wtz)). (14)
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The asymptotic properties of the resulting estimates are studied in detail by Reyhani et al.

(2012). In particular, under the assumptions of Lipschitz continuity for both the first and

second order derivatives of g(·), denoted by g′(·) and g′′(·), boundedness of g′′(·), that

E(z) = 0 and all the moments of z up to the fourth exist, then the FastICA estimator

ŵ = {w : E(zg(wtz) = 0))}, (15)

with E(zg(wtz) = 0 being the first order condition for the maximization problem in 14, is

consistent and asymptotically normal, that is

√
n(ŵ −w)

d−→ N (0,Ω). (16)

Other studies proposed to use non-Normal distributions to identify structural shocks in

SVAR models (Lanne and Lütkepohl, 2010; Lanne et al., 2017; Gouriéroux et al., 2017) by

assuming specific density functions for the structural shocks and deriving the asymptotic

properties of their estimates. Here we start following a flexible semi-parametric approach

which allows for any form of non-normality in the data, while a parametric approach will

be implemented when relaxing the recursive structure assumption.

3.2 Identifying the acyclical causal structure

Until now I made use only of assumptions 3.1 and 3.2 to estimate ηt and the mixing matrix

A0 up to permutation, sign, and scaling. The permutation indeterminacy in particular

prevent the possibility to determine an appropriate order for the variables. I thus introduce

at this point assumption 3.3 to identify the structural model by adapting to our context

a causal search algorithm, well established in the machine learning research area (Shimizu

et al., 2006; Hyvärinen et al., 2010), in which the acyclicity assumption makes possible to

exploit statistical dependencies to recover a unique causal chain between price innovations

in the SVECM. As a consequence I will be able to impose a specific order of the variables

in the Choleski decomposition. In algorithm 1, the whole procedure to finally get the IS

measure for each market without permutation indeterminacy is illustrated. While step 3

deals with the scaling indeterminacy of the ICA estimation, steps 2 and 4 deal with the

sign and permutation indeterminacy which is the crucial problem we have when we want

to identify the IS measures for each market, leading to proposition 3.1.
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Algorithm 1 VECM-LiNGAM algorithm for IS measures

1: Estimate the VECM equation by equation given the known cointegrating relationships,

and perform the ICA estimation on the model residuals (any suitable ICA estimator)

to recover A0 and ηt.

2: Given the unmixing matrix W = A−1
0 , find the permutation of the rows of W such that

the permuted version W ∗ minimize
∑n

i 1/|W ∗
ii|.

3: Divide each row of W ∗ by its diagonal element so to get a matrix W̃ with ones in the

main diagonal.

4: Let B̃0 = I− W̃ be the estimate of B0. Find a permutation matrix Z such that ZB̃0Z
′

as close as possible to be strictly lower triangular. Set the upper triangular elements to

zero and permute back to get the matrix B̂0 containing the directed acyclical graphical

structure (DAG). A non zero element bij in matrix B̂0 indicates the variable in position

j to cause the variable in position i.

5: Thus, order the variable in the VECM according to the DAG structure obtained and

perform Choleski on the estimated price innovations. Compute the IS measures.

It is useful to note that a test of statistical significance for the non zero elements of B̃0

can be performed with no difficulties by boostrapping if a sufficiently long time series is

available, which is the case for high-frequency data.

Proposition 3.1. Suppose that assumptions 3.1, 3.2 and 3.3 hold true. Then the Information

Shares computed by following algorithm 1 are uniquely identified.

Proof. Let σ = {σ1, ..., σn!}, with

σi =

 1 2 . . . n

σi(1) σi(2) . . . σi(n)


and σi(·) : {1, ..., n} → {1, ..., n}, be the set of all possible permutations of the n variables in

the model. Consider the set of the Cholesky factors, of the covariance matrices, associated

to each permutation of the variables C(σ) = {C(σ1), ..., C(σn!)}. The uniqueness of the

Information Share follows directly from the fact that given the estimates of the independent

components, there is only one permutation, among the possible ones, yielding a strictly

lower triangular matrix B̂0 representing the DAG structure of the variables in the model
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(for the proof see Shimizu et al., 2006). Then, being σ∗i and C(σ∗i ) unique solutions, the

identified Information Shares given the estimated DAG structure and computed as

DAG− ISj =

([
ψC(σ∗i )

]
j

)2

ψΩψ′
(17)

are unique.

Thus, the identification scheme proposed ensures the uniqueness of the permutation ac-

cording to which the price innovations in εt are mapped in a one-to-one correspondence

with the structural shocks ηt. In the next section, a simulation exercise is provided to

clarify the methodology.

3.2.1 An illustrative simulation exercise

Here I present the proposed identification mechanism on simulated data. In light of as-

sumptions 3.1 and 3.2 I generate samples of T=5000 observations of independent sources

ηt from an Exponential Power Distribution (EPD) whose density function is defined as

f(η | p, µ, σp) =
p

2σpp1/pΓ(1 + 1/p)
exp

(
−1

p

∣∣∣∣η − µσp

∣∣∣∣p) (18)

where

Γ(1 + 1/p) =

∫ ∞
0

η1/pe−ηdx

= (1/p)!

(19)

is the gamma function. The variances are governed through the scale parameter σp accord-

ing to

σ2 =
σ2
pΓ(3/p)

Γ(1/p)
(20)

Since we need ηt to be non-Normal, I choose to simulate from the EPD density (see Nardon

and Pianca, 2009; Kalke and Richter, 2013, for extensive discussions about simulation

methodologies) to have flexibility in modeling through the additional shape parameter p.

The EPD become a normal when p = 2 and allows for fat tails by setting p < 2 (DiCiccio

and Monti, 2004; Nadarajah, 2005), which is useful in the present setting to simulate data

displaying excess kurtosis as financial price changes do. When p = 1 the distribution
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converges to a Laplace, I start with a shape parameter p = 1.2 which implies an excess

kurtosis of 1.8 according to

k =
Γ(1/p)Γ(5/p)

Γ(3/p)2
− 3. (21)

Typically, intraday financial returns display higher levels of volatility both at the beginning

and at the end of the trading day, and lower levels of volatility in the middle. For this reason

I let the variance of the distributions from which I simulate ηt vary over time, modelling it

through the diurnal U-shape pattern (Hasbrouck, 2002a; Andersen et al., 2012; Bollerslev

et al., 2016).

σηt = C + Ae−at +Be−b(1−t) (22)

where parameters are set as in Andersen et al. (2012), that is C = 0.88929198, A = 0.75,

B = 0.25, a = 10, and b = 10. Modeling stochastic volatility is clearly not the objective

of this section and this is the reason why the variance of ηt vary only in a deterministic

manner, showing the robustness of the proposed approach in recovering the IS even in

presence of time-varying parameters. Moreover, the stochastic behavior is still present

given the random extraction from distributions with time-varying variances. The simulated

non-Normal and independent shocks ηt are then mixed through matrix A to obtain the

observed correlated signals εt. We thus simulate the data starting with a 2-dimensional

VECM, where the signals εt are obtained as a mixture of the simulated structural shocks

ηt through the mixing matrix

A0 =

0.9 0

0.4 0.3

 . (23)

Details about the simulation setting and parameters are provided in the supplemental

appendix. Note that the lower triangular structure of the mixing matrix implies a causal

chain in the SVECM which goes from the first market to the second one. The shocks in

ηt are set to be independent and such that Cov(ηt) = Σt is diagonal with equal variances,

the information shares of the two markets are affected by the speed of adjustments in α

as well. In particular, the first market is much faster in adjusting towards the simulated

efficient price process than the second one. With the specified parameters, the true IS

measures (i.e. the ones given by Choleski if the variables are correctly ordered with respect

to the simulated causal chain) are IS1 = 0.9151 and IS2 = 0.0849, which means the second
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market is dominated by the first one in the price discovery process. I thus recover ηt and

an estimate of A0 up to sign, permutation, and scaling as illustrated in section 3, and I

proceed with algorithm 1 which yields the DAG structure contained in

B̂0 =

 0 0

0.46 0

 . (24)

The non zero element in b21 indicates that the structural shocks propagate from the first

market to the second one, which is consistent with the causal chain imposed in the simula-

tion. The identification of the causal chain is necessary to decide the correct permutation of

the variables when computing the IS measure. Given the above detected acyclical structure,

the estimated IS measures become ÎS1 = 0.9151 and ÎS2 = 0.0849 which coincide with

the true one with no surprise since the correct permutation of variables has been detected.

Note that applying all the possible permutations as usually done with the IS measure, the

bounds would have been very wide with IS1 = [0.6583, 0.9198] and IS2 = [0.08, 0.3417].

Even if in both cases we are able to attribute most of the price discovery to the first market,

the result sensibly changes. In the correct case the second market would not contribute at

all to the price discovery, while with the wrong permutation we would attribute more than

a 30 percent share which become a significant contribution to the price discovery process.

In the 2-dimensional case the application aimed at recovering the correct causal chain was

straightforward and with few room for errors. It is then interesting to repeat the simulation

with a higher number of variables involved, to see whether the proposed methodology is

still able to consistently reconstruct the simulated process. In the light of the empirical

application provided in the next section, in which no more than 4-variables will be contem-

poraneously considered, I simulate a 4-dimensional VECM process still driven by only one

common stochastic trend. Again, I refer the readers to the supplemental appendix which

contains the model’s parameters adopted in the simulations. The signals εt are obtained

by mixing ηt through the matrix

A0 =


0.9 0 0 0

0.4 0.6 0 0

0.5 0.2 0.7 0

0.3 0.5 0.3 0.1

 (25)
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whose lower triangular structure implies a causal chain from the first to the forth variables

passing through the second and the third ones. With the specified parameters, the true

IS measures are IS1 = 0.58, IS2 = 0.01, IS3 = 0.39, and IS4 = 0.02. The identification

procedure yields the following acyclic structure

B̂0 =


0 0 0 0

0.44 0 0 0

0.42 0.43 0 0

0.2 0.68 0.43 0

 , (26)

which means the estimated DAG structure consistently recover the causal chain from the

first variable to the fourth, passing before through the second and third variables. Figure

1 shows the scatter plots for the reduced form residuals εt, clearly correlated as imposed

in the data generating process (DGP), and the recovered independent structural sources

ηt. Note that the estimated mixing matrix, upon which the causal search algorithm 1 is

performed, closely resemble the true A0 up to sign indeterminacy as shown below

Â0 =


−1 0.01 0.03 0.004

−0.43 0.69 0.04 0.01

−0.59 0.26 −0.75 0.005

−0.34 0.58 −0.3 0.1

 . (27)

The computation of the ISs going through all the possible permutations would provide

us with IS1 = [0.1, 0.58], IS2 = [0.01, 0.32], IS3 = [0.1, 0.6], and IS4 = [0.01, 0.31], which

make impossible to correctly disentangle the contribution of each market to the variance

of the efficient price process. However, recovering the correct causal chain by means of the

proposed identification strategy we are able to correctly permute the variables to get the

true IS measures. The above simulations have been performed to illustrate the possibility

of recovering, with a data-driven identification strategy, the permutation of variables in the

VECM which is consistent with the real causal chain implied by the simulated DGP. While

in the present setting the acyclical structure has been imposed and the procedure has been

able to detect it, when working with real data there are no guarantees that the assumed

recursive structure is respected. For this reason, an alternative identification approach for

price discovery will be now illustrated.
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Figure 1: Scatter plots for the simulated reduced form residuals (top half) and estimated latent

structural shocks (bottom half).
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4 Relaxing the recursive structure assumption

4.1 Motivations

The LiNGAM approach for identifying the SVECM model in price discovery analyses al-

ways return an acyclical contemporaneous structure which is imposed a-priori in the iden-

tification scheme. This also happens with the Choleski decomposition, with the main dif-

ference that the variables’ order is decided relying on economic theory when possible. Thus,

it might be necessary to test the significance of the coefficient matrix B0 of instantaneous

effects, to understand whether the typically imposed assumption of acyclical contempo-

raneous structure is supported by the data or not. This can be done with a bootstrap

approach if sufficiently long time series are available, in order to test both the stability of

the causal chain recovered by the algorithm and the statistical significance of the coeffi-

cients in B0. Also parametric approaches, however, have been recently introduced in the

literature to estimate and identify SVAR models through ICA, giving the possibility of con-

ducing statistical inference. These approaches do not impose a recursive structure which is

considered only as a special case, but they do impose specific non-normal distributions for

the error terms in order to compute the likelihood function to maximize in the estimation

process. Two recent data-driven identifications of non-Normal SVAR models have been in-

troduced in the econometric literature which are the maximum likelihood (ML) estimator

of Lanne et al. (2017) which exploits the identification scheme of Ilmonen et al. (2011),

and the pseudo-ML (PML) estimator of Gouriéroux et al. (2017). Both approaches give

the possibility to statistically test usual identifying restrictions applied to SVAR models

in macroeconomics, leading to a unique instantaneous coefficient matrix without impos-

ing a recursive structure. Thus, they can be taken as alternative parametric identification

schemes to compare with the semi-parametric approach previously illustrated when as-

sumption 3.3 is not supported by the data. In what follows, given the typical leptokurtic

behavior of the variables under analysis, the ML estimator under t-Student distributions

will be implemented. Moreover, the identification scheme from Ilmonen et al. (2011) can

be suitably adapted to our context in order to solve the lack of identification of the IS

measure.
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4.2 Identification and ML estimation

Consider again the SVECM model

∆pt = αβ′pt−1 +
k∑
i=1

Φi∆pt−k + A0ηt (28)

where A0ηt = εt. The problem is again the identification of the matrix of instantaneous

effects A0, since for any nonsingular n×n matrix Q the matrix A0 and the shocks in ηt can

be replaced by A0Q and Q−1ηt leading to an observationally equivalent model and thus to

an identification problem. In typical SVAR analyses the covariance matrix of the structural

shocks is restricted to a diagonal matrix so that Q = DC where C is orthogonal and D is

the diagonal matrix. This is what happens when identifying VAR models with Choleski

indeed. As shown at the beginning of this section, under the assumptions 3.1 and 3.2 we

can restrict the orthogonal matrix C to a permutation matrix P in order to allow only for

permutation and scale indeterminacy in the columns of A0. I now get rid of the assumption

3.3 and I follow a different identification procedure. Given the setMn of nonsingular n×n

matrices, and given the equivalence relation ∼, then Ai0 ∼ Aj0 ⇐⇒ Aj0 = Ai0DP for some

diagonal matrix D and some permutation matrix P , with Ai0, A
j
0 ∈Mn, for ∀i, j ∈ N with

i 6= j, defining a set of observationally equivalent SVECM processes. In the following, the

steps necessary to get complete identification, thus selecting a particular SVECM model

from its equivalence class, are illustrated.

Identification scheme. For a given A0 ∈ Mn, take the sequence of transformations

A0 → A0D
+
1 → A0D

+
1 P → A0D

+
1 PD2 with: (i) D+

1 a positive definite diagonal matrix such

that the columns of A0D
+
1 have Euclidean norm one; (ii) P is the permutation matrix such

that the generic element of A0D1P in position ij satisfies |cii| > |cij|, ∀ i < j; (iii) D2 is

the diagonal matrix such that all diagonal elements of A0D
+
1 PD2 equals one. Let A ⊆Mn

be the set containing all those A0 for which the matrices D+
1 , P , and D2 exist. Then, given

the linear application G(·) : A → A such that G(A0) = A0D
+
1 PD2, we define the set A0

consisting of unique, separate representative matrices from each equivalence class in A as

A0 = G(A) = {Ã0 ∈Mn : Ã0 = G(A0) for A0 ∈ A}.

The identification scheme above makes possible to implement a particular scaling and

permutation to identify a unique matrix A0 from the equivalence class containing the
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observationally equivalent SVECM models. The identification strategy imposed in the

estimation procedure is quite appealing since the set ε of matrices which have been excluded

from the identification scheme has Lebesgue measure zero in Rn×n (for the proof I refer

the readers to Lanne et al., 2017), meaning that the exclusion of those models is not

relevant in practice. The SVECM is estimated via ML as follows. The parameters of the

model to be estimated are θ = [γ, A0, λ] and will be estimated in separate steps, where

γ = (α,Φ1, ...,Φk) and λ contains any additional parameter characterizing the specific

density function chosen. Consider the generic standardized log-likelihood function of the

model

Lt(θ) =
1

T

T∑
i=1

lt(θ) (29)

where lt(θ) is the sample log-likelihood at time t which depend on the specific non-Normal

error density function fx(x; θ) chosen. As previously anticipated, given the leptokurtic

behavior of financial returns, the Student’s t-distribution will be employed in the next

section’s empirical analysis and thus λ contains the degrees of freedom. First the reduced

form VECM is estimated equation by equation via the least squares (LS) estimator, given

the known cointegrating relationships, obtaining the parameters’ estimate γ̃. In the second

step, given γ̃, the reduce form residuals are recovered and the parameters related to A0ηt

are estimated maximizing the log-likelihood function of the errors with respect to A0 and

λ (see Lange et al., ress, for the code implementation of this step). Full identification is

reached by imposing the set of restrictions previously provided through the identification

scheme when maximizing the likelihood. Finally, the estimates are further replaced in the

log-likelihood of the model and a second maximization takes place in order to recover the

ML estimates γ̂ as well. Under the usual regularity assumptions on the differentiability and

integrability of respectively the log-likelihood function and its partial derivatives, ensuring

the score function to be zero mean and with finite and positive definite covariance matrix

evaluated at the true parameters ΣθT = E[(l
′
t(θ)|θ=θT )(l

′
t(θ)|θ=θT )

′
], then the ML estimator

possesses the usual properties of consistency and asymptotic normality. That is

√
T (θ̂ − θT )

d−→ N (0,Σ−1
θT

). (30)

This allow us to provide an estimate of the Information Share in terms of the independent
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structural shocks as

IC − ISj :=

(
[ψA0]j

)2

ψ(A0ΣηA
′
0)ψ′

, (31)

where Ση = In and ψ is computed in the same manner with the SVECM parameters γ̂ and

the cointegration matrix β. I refer to the modified measure as the Independent Component

based-Information Shares (IC-IS) for which the identification problem is solved.

Proposition 4.1. The IC-IS measure is invariant to arbitrary permutations of the variables

in the model.

Proof. Let Ã0 = A0D
+
1 be the estimated mixing matrix of the independent shocks, with

columns having Euclidean norm one. As a consequence of assumption 3.1 and assumption

3.2, column permutations create a lack of identification for Ã0. Consider the mixing matrix

identified through the transformation Ã0 → Ã0P , with P being the permutation matrix

of the identification scheme such that the generic element of Ã0P in position ij satisfies

|cii| > |cij|, ∀ i < j, and let be Ã0P
(r) the estimated mixing matrix with randomly per-

muted columns through the random permutation matrix P (r). Then, there always exist a

permutation matrix Q = P (r)TP yielding Ã0P
(r)Q = Ã0P .

Exploiting basic properties of the permutation matrices, the proof above simply shows

that independently from the arbitrary column ordering of the mixing matrix we will always

be able to find an appropriate permutation matrix, since the product of two permutation

matrices is a permutation matrix itself, such that the identification scheme imposed in the

estimation procedure is respected. In the next section an empirical application is provided,

implementing the proposed methodologies on real high-frequency data.

5 Empirical application

5.1 Benchmarking the models

Bringing the procedure on high-frequency data exposes to several caveats, mostly related

to the sparsity of the data and to model specification issues. To have a benchmark to

compare with, I empirically test the proposed methodologies on the same IBM data adopted

21



by Hasbrouck (2019), for the day 3 October 2016, which have been shared under the

authorization of the NYSE making this analysis possible. I thus try to disentangle the

relative contribution to the price discovery process of listing and non-listing exchanges,

participant-based and SIP-based quotes, trades and quotes. As previously illustrated, the

main power of the approaches relies in the exploitation of the non-Normal distributions

to separate the sources of noise in each variable. In this respect it becomes interesting to

test the model stability both in natural and event time, adopting a relatively low level of

resolution (i.e. second precision) in the data for the natural time specification. This to

eventually check the consistency of the obtained results in both time specifications without

increasing the computational complexity and data sparsity introduced when working at

very high frequencies.

5.2 IBM, 3 October 2016

As anticipated above, the empirical application focuses on some detailed analyses already

conducted in the literature in order to have a direct comparison which makes clearer the

interpretation of the obtained results. The econometric analysis is performed on IBM’s

quotes and trades for the day 3 October 2016, with each record reporting both participant-

based and SIP-based timestamps. VECM models are thus estimated both in natural and

event-time with a maximum lag k = 10, and then the data-driven identification strate-

gies for the IS measures are implemented. The first study disentangles the impact of time

reporting differentials on the quantification of price discovery measures, through the es-

timation of a 4-variables VECM including national best bids (NBBs) and offers (NBOs)

constructed from both participant and SIP timestamps. Given that the SIP timestamps are

by construction delayed signals of the participant ones, one expects to attribute the price

discovery to the participant-based data. I then proceed with the second analysis which

consists in quantifying the price discovery in both the primary listing and other exchanges.

The VECM will include bids and offers placed on the primary listing, plus best bids and

offers taken from all the exchanges except the primary one. Finally, the third study is

aimed at determining the relative contributions of trades and quotes. I thus insert in the

model trades occurred on lit and dark pools separately, plus NBBs and NBOs quotes from
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participant timestamps. In figure 2, the quantile-quantile plots for the VECM reduced

form residuals are displayed. It can be noticed that the residuals are visibly leptokurtic as

expected (the normality hypothesis was soundly rejected at the 1% by different tests usu-

ally adopted as the Jarque-Bera and the Shapiro-Wilk tests). This to justify the suitability

of an identification approach based on the requirement of non-Normality.

Figure 2: Quantile-quantile plots of the VECM reduced form residuals. In Panel (a) are displayed the

model residuals related to the price discovery analysis across trades and quotes, while in panel (b) the one

across exchanges using quotes.

The residuals of the models estimated for the participant versus SIP timestamps are not

reported in the quantile-quantile plots to avoid useless redundancies, given that the vari-

ables would be again NBBs and NBOs with just the time-delays differentials in reporting

them. For each model related to a given price discovery analysis, the two identification

procedure proposed in this work, leading respectively to the DAG-IS and IC-IS measures,

are performed and compared with the approach in which upper and lower bounds are com-
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puted by going through all the possible permutations in Choleski. While table 1 shows

the estimated coefficients of the structural matrix A0 for each analysis and identification

procedure, table 2 summarizes the information shares estimated for each variable. The

autoregressive and loading coefficients, for each estimated VECM, are not reported here

for the sake of brevity and can be found in the supplemental online appendix. However,

as also reported in Hasbrouck (2019), estimates are mostly insignificant at the 1-second

resolution while they are very significant in the event-time specification. The DAG-IS

measure, defined by adopting the LiNGAM approach, is able to identify the participant

timestamps as the dominating ones thus suggesting the correct variable’s order in the sys-

tem even in the low resolution case (1-second precision) in which a permutation approach

does not solve the identification issue given the very wide upper and lower bounds. There

is no doubt in the event time specification instead, where also the approach based on all

the possible permutations identify the participant timestamps as the variables leading the

price formation process. Noticeably the result differs when identifying the model with the

ML approach leading to the IC-IS measure, given that it attributes higher importance to

the SIP timestamps especially in the natural time framework, where up to the 30 percent

of information share is attributed. Still, also the IC-IS measure is able to uniquely identify

the participants as the the ones who lead the price discovery and the SIP timestamps as

the following ones. Also in the price discovery across exchange analysis, both approaches

yield identification results which consistently identify the primary listing exchange as the

leader both in natural and event-time. This would not be possible using the heuristic solu-

tion with upper and lower bounds. It has to be noticed, however, that the DAG-IS works

by finding a permutation respecting the most the statistical dependencies of the data but

does not solve the temporal aggregation issue we have when using low levels of resolution.

This means that if we discard price variations in each market by aggregating over seconds,

the measurement will be obviously overestimated or vice versa. This is not the case for

the parametric approach which yielded a consistent result across the two different time

specifications, despite it attributes to the listing exchange around 13 percent more (0.56 vs

0.691) than what obtained by assuming a recursive structure as done either in LiNGAM

or all Choleski permutations.
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Table 1: Estimated instantaneous effect matrices A0.

NATURAL-TIME (1-SEC)

participant VS SIP timestamps

LiNGAM

1 0 0 0

MLE t-student

1 -0.62 1.003 -0.74

0.34 1 -0.36 0 0.67 1 -0.062 0.9

-0.99 0 1 0 1.002 -0.61 1 -1.09

0.016 -1.001 -0.016 1 0.67 1.23 -0.06 1

primary VS non-primary

LiNGAM

1 0.026 -0.45 -0.22

MLE t-student

1 0.007 -0.014 0.06

0 1 -0.23 -0.45 0.35 1 0.053 0.15

0 0 1 0 0.74 0.04 1 0.07

0 0 -0.35 1 0.1 0.06 0.04 1

Quotes VS Trades

LiNGAM

1 0 -0.0013 0

MLE t-student

1 -0.0017 -0.008 0.057

0.012 1 0 0.039 -0.0027 1 -0.0053 0.043

-0.062 0 1 0 0.032 0.096 1 0.0002

-0.051 0 0.071 1 0.067 0.0048 0.18 1

EVENT-TIME

participant VS SIP timestamps

LiNGAM

1 -0.05 -0.038 -0.046

MLE t-student

1 -0.008 0.0006 -0.025

0 1 0.063 0 0.052 1 -0.14 0.15

0 0 1 0 0.002 0.004 1 0.03

0 -0.12 0.13 1 -0.052 0.023 0.011 1

primary VS non-primary

LiNGAM

1 0 -0.33 -0.012

MLE t-student

1 -0.00047 0.032 -0.004

0.08 1 -0.015 -0.034 -0.033 1 0.016 0.044

0 0 1 0 0.036 -0.0054 1 0.021

0 0 -002 1 0.01 0.0027 0.019 1

Quotes VS Trades

LiNGAM

1 0 0 0

MLE t-student

1 -0.014 -0.014 0.002

-0.011 1 -0.0083 0.019 -0.006 1 -0.035 -0.004

-0.032 0 1 0 0.05 0.01 1 -0.03

-0.033 0 -0.028 1 0.03 0.009 0.1 1

Notes: Coefficients in bold are significants at the 1% level in both LiNGAM and MLE t-student approaches. For

the LiNGAM approach, statistical significance has been tested using standard errors from 1000 bootstrap samples.
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.

Table 2: Information shares: Summary results.

DAG-IS IC-IS All permutations

participants SIP participants SIP participants SIP

Min Max Min Max

1-sec 0.999 0.001 0.7 0.3 0.002 0.999 0.001 0.998

Event time 0.962 0.038 0.89 0.11 0.943 0.999 0.001 0.057

primary non-primary primary non-primary primary non-primary

Min Max Min Max

1-sec 0.994 0.006 0.695 0.305 0.12 0.994 0.006 0.88

Event time 0.56 0.44 0.691 0.309 0.46 0.56 0.44 0.54

Quotes Trades Quotes Trades Quotes Trades

Min Max Min Max

1-sec 0.67 0.33 0.65 0.35 0.39 0.979 0.021 0.61

Event time 0.64 0.36 0.62 0.38 0.61 0.67 0.33 0.39

Notes: Information shares measures obtained for each identification procedure and for each price dis-

covery analysis across participants and SIP timestamps, trades and quotes, and exchanges. In the

natural-time(1-sec) setting the most recent price observed in a given second interval is taken. In the

event time specification, the time counter is incremented whenever there is an update to any variable in

the system instead. Trades comprises both lit and dark trades, given that the contribution of the latter

to the IS measure is negligible.

Finally, no sound difference between methodologies has been detected when measuring the

informational content of quotes and trades. Quotes are more informative than trades and

the finding is noticeably consistent across methodologies and time specifications. Since the

contribution of dark trades turns out to be negligible, their shares have been put together

with the ones of lit trades differentiating only between trades and quotes. Discrepan-

cies in the results however can easily arise given the different assumptions and estimation

techniques employed in the identification of the structural matrix A0. Thus, the choice of

employing a particular technique should depend on which assumptions behind the method-

ology are believed to be more realistic for the kind of data under treatment. Coefficients in
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table 1 show that, with few exceptions, the assumption of a recursive structure seems to be

not supported by the data also in event-time, raising concerns about the lower triangular

structure imposed both by LiNGAM and Choleski. When the assumption of a recursive

structural relation between the variables is hardly justifiable, a more general approach is

recommended but still keeping in mind that the resulting IC-IS will depend on the partic-

ular density function chosen. On the contrary, the DAG-IS is a good measure when we can

recover a plausible causal chain between the variables involved. The fact that the DAG-IS

is able to identify the leaders and the followers, even if a causal chain between all the vari-

ables is not supported by the data, should not surprise. This because the few significant

coefficients in A0 are not sufficient to describe the entire causal chain, but they are at least

sufficient to tell us which variable, associated to some statistically significant causal rela-

tions, should occupy the firsts positions in the Choleski decomposition. Consequently, it is

still possible to understand who leads the price formation process despite the shares will

be quite imprecise. Given that each methodology possesses different strengths and short-

comings, providing both the DAG-IS and IC-IS could be a robust way to identify, with

few room for errors in case of coherent results across methodologies, the variables leading

the price discovery process. Otherwise, they should be carefully chosen depending on the

plausibility of the underlying assumptions. Overall, the results obtained in the empirical

application just illustrated are coherent in choosing the leaders in the price formation pro-

cess, and in line with the results of Hasbrouck (2019) but without increasing the modeling

and computational complexity introduced by working at incredibly short time-scales.

6 Conclusions

Measuring the informational content of fragmented financial markets acquired increasing

importance over time for both academics and practitioners. This article proposes two

novel methodologies, exploiting the typical non-Normal distributions of financial returns,

to uniquely identify one of the most widely adopted measures for price discovery and for

which no identification solutions had been proposed for almost twenty years until the first

approach proposed by Grammig and Peter (2013). Differently from the cited approach,

with this article I put forward two procedures in which the Information Shares measures

27



can be always determined with no need of exploiting the possible presence of different

volatility regimes caused by extreme price changes, thus providing a general identification

framework for price discovery analyses. To this purpose two alternative measures are

introduced, namely the DAG-IS and IC-IS measures depending on whether the presence of

an acyclical causal structure among the variables is supported by the data or not. The new

estimation procedures have been assessed both theoretically and empirically. Keeping the

empirical analysis of Hasbrouck (2019) as a direct benchmark to compare with, the proposed

procedure is found to yield coherent results even across different time specifications, being

able to correctly identify the leaders in the price formation process. Given the flexibility of

the modeling strategy which can be assessed from both a semiparametric and parametric

perspectives, depending also on the few assumptions needed, future applications in the field

might benefit from the revisited Information Shares measures here introduced.
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Appendix

This supplemental appendix contains all the details about the simulation setting. The

tables containing the VECM estimates for to the empirical application are also displayed.

Appendix A: Simulation details

Data for the illustrative exercise are simulated from the equivalent VAR representation of

the VECM adopted in the paper as follows

Π(L)pt = εt (32)

where

Π(L) ≡ In −
k∑
i

ΠiL
i (33)

αβ′ = (
k∑
i

Πi − In) (34)

φs = −(Πs+1 + Πs+2 + ...+ Πk) (35)

for s = 1, 2, ..., k − 1, and such that |In − Π1z − Π2z
2 − ... − Πkz

k| = 0 has only one

unit root since the system is driven by only one common stochastic trend. Consequently,

the matrix β contains the known cointegrating vectors and has rank equal to n-1. In the

two-dimensional case the parameters are

α =

0.1

0.5

 , Ω =

 1 0.45

0.45 0.32

 , φ1 =

 0.6 0.3

−0.7 −0.9



β′ =

 1

−1

 , Π2 =

−0.6 −0.3

0.7 0.9

 Π1 =

 1.7 0.2

−0.2 −0.4

 ,

while in the four-dimensional case are
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α =


0.025 0.05 0.03

0.08 0.07 0.06

0.1 0.01 0.04

0.09 0.06 0.09

 , Ω =


1 0.45 0.57 0.34

0.45 0.67 0.4 0.54

0.57 0.4 0.98 0.58

0.34 0.54 0.58 0.56

 ,

φ1 =


0.2 −0.2 −0.7 0.4

0.1 0.35 0.6 0.1

0.6 0.35 0.55 −0.1

0.4 −0.9 −0.25 0.3

 , Π1 =


1.305 −0.225 −0.75 0.37

0.31 1.270 0.53 0.04

0.75 0.25 1.54 −0.14

0.64 −0.99 0− .31 1.21

 ,

Π2 =


−0.2 0.2 0.7 −0.4

−0.1 −0.35 −0.6 −0.1

−0.6 −0.35 −0.55 0.1

−0.4 0.9 0.25 −0.3

 , β′ =


1
... −In−1

1

 .

Appendix B: Additional tables

Below, the tables containing the estimates of the VECM coefficients for each empirical

analysis are directly reported from the console output. With a1, a2, a3 I indicate the

coefficients in the speed of adjustment matrix α. The four dependent variables at time t,

which are not displayed with labels on the columns because of graphical issues caused by

the large number of lags, have to be read (clearly from the left to the right) following the

same order in which they appear as lagged exogenous variables in the first column.
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Table 3: Primary VS non-primary exchanges in natural-time (1-sec) using quotes.

coef. s.e.

NBBotherL1 4.461e-04 1.555e-03

NBOotherL1 7.019e-04 1.270e-03

NBBlistL1 -2.571e-03 4.849e-03

NBOlistL1 5.012e-03 4.491e-03

NBBotherL2 -1.057e-04 1.556e-03

NBOotherL2 1.053e-03 1.271e-03

NBBlistL2 -1.470e-02* 4.909e-03

NBOlistL2 3.365e-02* 4.561e-03

NBBotherL3 2.065e-03 1.560e-03

NBOotherL3 3.589e-04 1.271e-03

NBBlistL3 -3.358e-02* 4.939e-03

NBOlistL3 2.903e-02* 4.580e-03

NBBotherL4 1.730e-03 1.560e-03

NBOotherL4 1.181e-03 1.270e-03

NBBlistL4 -1.837e-02* 4.952e-03

NBOlistL4 2.655e-02* 4.586e-03

NBBotherL5 7.102e-04 1.560e-03

NBOotherL5 5.380e-04 1.270e-03

NBBlistL5 -1.967e-02* 4.959e-03

NBOlistL5 3.110e-02* 4.590e-03

NBBotherL6 1.583e-03 1.561e-03

NBOotherL6 -8.537e-04 1.269e-03

NBBlistL6 -4.629e-02* 4.958e-03

NBOlistL6 3.900e-02* 4.591e-03

NBBotherL7 1.565e-03 1.561e-03

NBOotherL7 8.768e-04 1.269e-03

NBBlistL7 -3.497e-02* 4.954e-03

NBOlistL7 5.179e-02* 4.583e-03

NBBotherL8 2.254e-03 1.562e-03

NBOotherL8 1.464e-03 1.269e-03

NBBlistL8 -2.187e-02* 4.948e-03

NBOlistL8 6.906e-02* 4.572e-03

NBBotherL9 3.393e-03* 1.561e-03

NBOotherL9 2.072e-03 1.266e-03

NBBlistL9 -4.350e-02* 4.932e-03

NBOlistL9 9.795e-02* 4.541e-03

NBBotherL10 6.825e-03* 1.561e-03

NBOotherL10 3.634e-03* 1.266e-03

NBBlistL10 -5.183e-02* 4.873e-03

NBOlistL10 1.100e-01* 4.470e-03

a1 1.353e-04 1.064e-04

a2 9.190e-06 3.904e-05

a3 -1.623e-05 4.581e-05

∗p < 0.05

coef. s.e.

9.082e-05 1.691e-03

1.096e-03 1.381e-03

1.124e-02* 5.272e-03

-7.042e-03 4.882e-03

-3.656e-04 1.691e-03

-2.153e-03 1.382e-03

2.898e-02* 5.337e-03

-2.019e-02* 4.958e-03

1.055e-03 1.696e-03

5.240e-04 1.382e-03

2.970e-02* 5.369e-03

-2.502e-02* 4.979e-03

-4.223e-04 1.696e-03

-5.052e-04 1.381e-03

3.424e-02* 5.383e-03

-3.612e-02* 4.986e-03

1.042e-03 1.696e-03

6.282e-04 1.381e-03

3.529e-02* 5.391e-03

-2.031e-02* 4.990e-03

8.106e-04 1.697e-03

5.279e-04 1.379e-03

4.436e-02* 5.390e-03

-4.446e-02* 4.991e-03

-2.901e-04 1.697e-03

5.720e-04 1.379e-03

3.784e-02* 5.386e-03

-2.943e-02* 4.982e-03

2.395e-03 1.698e-03

1.661e-03 1.379e-03

6.024e-02* 5.379e-03

-2.672e-02* 4.970e-03

3.006e-03 1.697e-03

3.137e-03* 1.377e-03

7.171e-02* 5.362e-03

-3.601e-02* 4.937e-03

4.798e-03* 1.697e-03

8.238e-03* 1.376e-03

1.447e-01* 5.297e-03

-9.194e-02* 4.860e-03

-1.851e-04 1.156e-04

-4.198e-05 4.244e-05

-8.578e-06 4.980e-05

coef. s.e.

-2.042e-03 0.0042

-1.961e-03 0.00349

4.438e-03 0.01333

-5.879e-03 0.01235

-2.473e-03 0.00427

3.606e-04 0.00349

1.226e-02 0.01350

3.996e-03 0.01254

-9.143e-04 0.00429

8.533e-04 0.00349

4.643e-03 0.01358

6.407e-03 0.01259

-6.053e-04 0.00429

3.267e-02* 0.00349

-1.615e-03 0.01361

9.590e-04 0.01261

-2.301e-03 0.00429

-5.343e-04 0.00349

9.511e-03 0.01363

8.762e-03 0.01262

4.914e-03 0.00429

-3.696e-02* 0.00348

1.031e-02 0.01363

2.362e-02 0.01262

-1.677e-03 0.00429

-1.913e-03 0.00348

1.298e-03 0.01362

3.982e-02 0.01260

-4.961e-03 0.00429

-1.012e-03 0.00348

2.623e-02 0.01360

2.896e-02 0.01257

-2.752e-02* 0.00429

-4.619e-02* 0.00348

4.337e-02* 0.01356

7.750e-02* 0.01248

-4.029e-03 0.00429

3.406e-03 0.00348

6.344e-02* 0.01340

6.964e-02* 0.01229

1.335e-04* 0.0002

4.962e-04* 0.00010

5.687e-04* 0.00012

coef. s.e.

-8.415e-04 0.00524

-5.120e-03 0.00428

7.902e-04 0.01635

7.773e-03 0.01514

-1.001e-03 0.00524

-8.363e-04 0.00428

1.952e-02 0.01655

-4.463e-03 0.01537

-7.546e-04 0.00526

-1.575e-03 0.00428

6.187e-03 0.01665

3.937e-03 0.01544

-1.259e-03 0.00526

-8.110e-03 0.00428

1.173e-02 0.01669

2.027e-03 0.01546

1.259e-04 0.00526

-1.790e-03 0.00428

2.611e-02 0.01672

-1.267e-03 0.01547

-1.603e-02* 0.00526

-6.421e-02* 0.00427

3.326e-02* 0.01671

2.696e-02 0.01548

-1.652e-03 0.00526

-1.434e-03 0.00427

2.734e-02 0.01670

8.151e-03 0.01545

-4.692e-03 0.00526

-2.093e-03 0.00427

-2.095e-03 0.01668

4.466e-02* 0.01541

4.301e-05 0.00526

-5.244e-03 0.00427

5.587e-02* 0.01663

1.484e-02 0.01531

2.257e-03 0.00526

-3.890e-03 0.00427

6.346e-02* 0.01643

7.372e-02* 0.01507

-2.634e-04 0.00035

1.807e-04 0.00013

1.540e-04 0.00015
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Table 4: Primary VS non-primary exchanges in event-time using quotes.
coef. s.e.

NBBotherL1 -0.240* 0.00489

NBOotherL1 -0.006* 0.00221

NBBlistL1 0.132* 0.00502

NBOlistL1 0.070* 0.00474

NBBotherL2 -0.017* 0.00509

NBOotherL2 0.0140* 0.00224

NBBlistL2 0.0765* 0.00535

NBOlistL2 0.0455* 0.00494

NBBotherL3 -0.026* 0.00509

NBOotherL3 0.0125* 0.00221

NBBlistL3 0.0523* 0.00535

NBOlistL3 0.0340* 0.00494

NBBotherL4 0.0281* 0.00507

NBOotherL4 0.0057* 0.00223

NBBlistL4 0.0420* 0.00532

NBOlistL4 0.0328* 0.00494

NBBotherL5 -0.0175* 0.00481

NBOotherL5 0.0106* 0.00221

NBBlistL5 0.0289* 0.00501

NBOlistL5 0.0209* 0.00479

NBBotherL6 0.012* 0.005

NBOotherL6 0.003 0.00227

NBBlistL6 0.01 0.00502

NBOlistL6 0.13* 0.0052

NBBotherL7 -0.02* 0.00509

NBOotherL7 0.009* 0.00224

NBBlistL7 -0.0048* 0.00552

NBOlistL7 0.0125* 0.00507

NBBotherL8 -0.026* 0.00509

NBOotherL8 0.01* 0.00225

NBBlistL8 0.0069 0.00545

NBOlistL8 0.0262* 0.00501

NBBotherL9 -0.023* 0.00533

NBOotherL9 0.00789* 0.00224

NBBlistL9 0.0085 0.00536

NBOlistL9 0.01* 0.00497

NBBotherL10 -0.019* 0.00507

NBOotherL10 0.0032 0.00223

NBBlistL10 0.0047 0.00503

NBOlistL10 0.012* 0.00479

a1 -0.0403* 0.00175

a2 0.0173* 0.00111

a3 0.0434* 0.00173

∗p < 0.05

coef. s.e.

-0.0405* 0.0107

-0.1348* 0.0048

0.1418* 0.0109

0.1809* 0.0104

-0.0358* 0.0112

0.0729* 0.0049

0.0946* 0.0119

-0.0017 0.0110

-0.1957* 0.0113

0.0389* 0.0049

0.0675* 0.0120

-0.03* 0.0111

-0.0972* 0.0113

0.0700* 0.0049

0.0866* 0.0121

-0.0169 0.0111

-0.1435* 0.0114

0.0521* 0.0049

0.0791* 0.0121

-0.0238* 0.0111

-0.1081* 0.0114

0.0890* 0.0049

0.0749* 0.0121

-0.02 0.0110

-0.1124* 0.0113

0.0689* 0.0049

0.0680* 0.0120

-0.0081 0.0110

-0.1461* 0.0114

0.0695* 0.0049

0.0391* 0.0119

-0.0251* 0.0109

-0.0818* 0.0116

0.0777* 0.0049

0.0388* 0.0116

-0.0218* 0.0108

0.0251* 0.0111

0.0789* 0.0048

0.0294* 0.0109

-0.0294* 0.0104

-0.0616* 0.0040

0.1560* 0.0029

0.0518* 0.0040

coef. s.e.

0.137* 0.00471

0.027* 0.00215

-0.316* 0.00482

0.114* 0.00463

0.098* 0.00494

0.007* 0.00219

-0.095* 0.00525

0.101* 0.00486

0.058* 0.00497

-0.001 0.00214

-0.129* 0.00525

0.075* 0.00487

0.057* 0.00505

-0.002 0.00214

-0.035* 0.00533

0.073* 0.00488

0.033* 0.00502

-0.004* 0.00218

-0.063* 0.00532

0.057* 0.00488

0.029* 0.00501

-0.005* 0.00217

-0.046* 0.00532

0.047* 0.00487

0.014* 0.00501

-0.006* 0.00217

-0.037* 0.00530

0.039* 0.00486

0.018* 0.00501

-0.007* 0.00216

-0.022* 0.00523

0.036* 0.00481

0.022* 0.00511

-0.005* 0.00215

-0.026* 0.00514

0.029* 0.00476

0.016* 0.00486

-0.007* 0.00213

-0.004 0.00482

0.016* 0.00457

0.032* 0.00179

-0.019* 0.00128

-0.029* 0.00177

coef. s.e.

0.0813* 0.00494

0.0389* 0.00225

0.114* 0.00504

-0.263* 0.00482

0.0772* 0.00513

0.00948* 0.00227

0.0871* 0.00549

-0.0726* 0.00504

0.0558* 0.00522

0.00274 0.00223

0.0707* 0.00545

-0.111* 0.00516

0.0551* 0.00527

0.00193 0.00223

0.0606* 0.00554

-0.0309* 0.00506

0.0421* 0.00527

-0.00236 0.00228

0.0409* 0.00558

-0.0682* 0.00505

0.0372* 0.00524

-0.00349 0.00223

0.0275* 0.00557

-0.0442* 0.00504

0.0379* 0.00521

-0.00525* 0.00222

0.0285* 0.00553

-0.0371* 0.00508

0.0310* 0.00524

-0.00816* 0.00225

0.00979 0.00546

-0.0464* 0.00502

0.0314* 0.00534

-0.00899* 0.00225

0.0236* 0.00537

-0.0217* 0.00498

0.0308* 0.00508

-0.00573* 0.00222

0.0191* 0.00504

-0.0151* 0.00477

0.0110* 0.00187

-0.0233* 0.00133

-0.0150* 0.00185
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Table 5: Trades (Lit and Dark) VS Quotes (NBB and NBO) in event-time.

coef. s.e.

Lit.L1 -0.168* 0.00496

DL1 0.0453* 0.00406

NBBL1 0.0709* 0.00449

NBOL1 0.0930* 0.00512

Lit.L2 0.0208* 0.00567

DL2 0.0268* 0.00416

NBBL2 0.121* 0.00501

NBOL2 0.0515* 0.00535

Lit.L3 0.0340* 0.00552

DL3 0.0151* 0.00418

NBBL3 0.00387 0.00422

NBOL3 -0.0856* 0.00520

Lit.L4 0.0136* 0.00549

DL4 0.0156* 0.00419

NBBL4 -0.0323* 0.00418

NBOL4 -0.0974* 0.00522

Lit.L5 0.0763* 0.00541

DL5 0.00791 0.00416

NBBL5 -0.0974* 0.00412

NBOL5 -0.0285* 0.00522

Lit.L6 0.0528* 0.00542

DL6 0.0150* 0.00415

NBBL6 -0.0113* 0.00404

NBOL6 -0.00398 0.00538

Lit.L7 0.0469* 0.00535

DL7 -0.00367 0.00412

NBBL7 -0.0802* 0.00404

NBOL7 0.00589 0.00531

Lit.L8 0.0595* 0.00524

DL8 0.00667 0.00409

NBBL8 0.0179* 0.00405

NBOL8 0.103* 0.00538

Lit.L9 0.0807* 0.00502

DL9 0.00664 0.00405

NBBL9 -0.0894* 0.00399

NBOL9 0.0336* 0.00523

Lit.L10 0.0615* 0.00490

DL10 0.00083 0.00401

NBBL10 -0.127* 0.00395

NBOL10 -0.0152* 0.00488

a1 -0.0644* 0.00196

a2 -0.0047* 0.00199

a3 0.139* 0.00373

∗p < 0.05

coef. s.e.

0.0163* 0.00609

-0.187* 0.00499

0.0190* 0.00552

0.00953 0.00628

-0.0399* 0.00695

-0.0845* 0.00511

0.00494 0.00614

0.0263* 0.00656

-0.0427* 0.00677

-0.0553* 0.00513

0.00787 0.00518

0.0805* 0.00638

-0.055* 0.00674

-0.0288* 0.00514

-0.0373* 0.00514

0.0508* 0.00640

-0.000814 0.00663

-0.00586 0.00511

-0.0202* 0.00505

0.0312* 0.00637

-0.0339* 0.00664

-0.00909 0.00509

-0.0172* 0.00496

0.0547* 0.00660

-0.0642* 0.00656

-0.00601 0.00506

-0.0342* 0.00495

0.0377* 0.00651

-0.0273* 0.00643

-0.00498 0.00501

0.00849 0.00497

-0.0165* 0.00660

0.0171* 0.00617

0.000682 0.00497

0.0258* 0.00489

-0.0304* 0.00641

0.138* 0.00601

0.000297 0.00491

0.0307* 0.00485

-0.0543* 0.00599

0.00561* 0.00241

0.0889* 0.00244

-0.0797* 0.00458

coef. s.e.

0.153* 0.00549

-0.00434 0.00450

-0.220* 0.00498

0.124* 0.00566

0.0541* 0.00627

0.0627* 0.00461

-0.0733* 0.00554

-0.0868* 0.00592

0.0802* 0.00611

0.0207* 0.00463

-0.00762 0.00467

-0.240* 0.00576

-0.0225* 0.00608

-0.00419 0.00463

0.0211* 0.00463

0.128* 0.00577

0.0567* 0.00598

0.0114* 0.00461

-0.166* 0.00456

0.331* 0.00575

0.0905* 0.00599

0.0148* 0.00459

-0.058* 0.00447

-0.0542* 0.00596

0.0101 0.00592

0.0149* 0.00456

-0.0988* 0.00447

0.220* 0.00587

-0.0180* 0.00580

0.000959 0.00452

-0.104* 0.00449

0.0205* 0.00595

0.0273* 0.00556

0.0105* 0.00448

-0.254* 0.00441

-0.0367* 0.00579

-0.0168* 0.00542

0.0144* 0.00443

-0.123* 0.00437

0.0286* 0.00541

0.0501* 0.00217

-0.03* 0.00220

-0.0717* 0.00413

coef. s.e.

0.0701* 0.00480

0.0131* 0.00393

0.378* 0.00435

-0.418* 0.00495

0.132* 0.00548

0.000749 0.00403

0.155* 0.00485

0.000711 0.00517

-0.0970* 0.00534

0.00916* 0.00405

0.0494* 0.00408

0.0408* 0.00504

0.0702* 0.00532

0.00278 0.00405

-0.113* 0.00405

0.116* 0.00505

0.103* 0.00523

-0.00212 0.00403

-0.0569* 0.00399

-0.0246* 0.00503

-0.0271* 0.00524

-0.0133* 0.00401

-0.0307* 0.00391

-0.0872* 0.00521

0.0709* 0.00517

-0.00328 0.00399

-0.121* 0.00391

0.151* 0.00514

-0.0114* 0.00507

0.0249* 0.00396

-0.0608* 0.00392

-0.0925* 0.00521

0.0297* 0.00486

-0.0212* 0.00392

-0.151* 0.00386

0.0238* 0.00506

0.0313* 0.00474

0.00374 0.00388

-0.133 * 0.0038280

-0.00417 0.00473

0.0166* 0.00190

-0.0102* 0.00193

-0.0606* 0.00361
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Table 6: Trades (Lit and Dark) VS Quotes (NBB and NBO) in natural-time (1-sec).

coef. s.e.

Lit.L1 1.437e-04 .657e-03

DL1 6.543e-04 1.734e-03

NBBL1 5.341e-03 4.788e-03

NBOL1 4.342e-03 5.576e-03

Lit.L2 1.243e-04 1.752e-03

DL2 2.011e-02* 1.411e-03

NBBL2 1.536e-02* 3.256e-03

NBOL2 2.758e-02* 5.735e-03

Lit.L3 1.435e-03 2.545e-03

DL3 3.534e-04 5.324e-03

NBBL3 5.342e-02* 5.641e-03

NBOL3 -3.903e-03 5.340e-03

Lit.L4 2.634e-03 1.743e-03

DL4 1.132e-03 1.659e-03

NBBL4 -3.478e-02* 4.342e-03

NBOL4 5.757e-03 5.673e-03

Lit.L5 8.722e-04 1.395e-03

DL5 5.380e-04 1.270e-03

NBBL5 3.257e-03 3.369e-03

NBOL5 1.410e-03 1.577e-03

Lit.L6 1.641e-03 1.231e-03

DL6 -7.458e-04 2.649e-03

NBBL6 4.458e-02* 3.249e-03

NBOL6 2.131e-02 3.543e-03

Lit.L7 2.265e-03 2.598e-03

DL7 -3.791e-04 1.774e-03

NBBL7 2.548e-03 2.213e-03

NBOL7 5.179e-02* 2.541e-03

Lit.L8 3.331e-03 1.944e-03

DL8 1.293e-03 3.242e-03

NBBL8 -2.187e-02 4.948e-03

NBOL8 2.216e-02* 3.572e-03

Lit.L9 6.393e-03 7.361e-03

DL9 3.221e-03 3.346e-03

NBBL9 5.261e-02* 2.288e-03

NBOL9 9.795e-02* 4.541e-03

Lit.L10 5.135e-03 6.231e-03

DL10 1.3534e-03 1.476e-03

NBBL10 1.199e-02* 5.673e-03

NBOL10 4.175e-04 2.430e-03

a1 3.322e-04* 1.025e-04

a2 9.190e-06* 3.904e-06

a3 -3.265e-05 6.534e-06

∗p < 0.05

coef. s.e.

4.042e-05 2.194e-03

1.236e-03 4.145e-03

4.221e-02* 6.351e-03

-7.041e-03 7.683e-03

1.254e-04 2.392e-03

5.323e-04 1.295e-03

2.294e-02* 2.432e-03

2.415e-02* 5.128e-03

4.135e-03 5.696e-03

6.124e-04 2.416e-03

2.970e-02 5.369e-03

-2.502e-02* 3.979e-03

-4.223e-04 1.246e-03

5.031e-04 1.285e-03

3.752e-02* 7.943e-03

-3.612e-02* 4.986e-03

1.241e-03 1.612e-03

6.277e-04 1.343e-03

3.529e-02* 5.391e-03

-1.231e-02* 2.924e-03

3.446e-04 1.245e-03

7.288e-04 1.432e-03

4.425e-02* 3.355e-03

4.542e-02* 4.123e-03

1.348e-04 1.762e-03

-6.131e-04 2.678e-03

3.741e-03 5.316e-03

1.148e-03 4.982e-03

4.235e-03 2.548e-03

-1.753e-03 1.432e-03

3.021e-03 5.129e-03

-2.672e-03 2.135e-03

1.906e-03 1.958e-03

1.837e-03 1.398e-03

5.241e-03 6.464e-03

3.211e-03 3.987e-03

5.798e-03* 2.498e-03

2.211e-03 5.126e-03

3.645e-05 5.198e-03

-4.131e-02 4.860e-03

-2.151e-04 1.156e-04

-3.283e-05 4.244e-05

7.174e-06 6.642e-05

coef. s.e.

1.022e-05 3.938e-03

2.256e-03 4.275e-03

6.721e-02* 2.311e-03

-4.021e-03 2.612e-03

1.254e-04 5.363e-03

3.321e-04 1.465e-03

1.235e-02* 3.231e-03

3.766e-02* 3.122e-03

4.726e-03 7.468e-03

5.118e-04 1.444e-03

2.995e-03 2.311e-03

-1.534e-02* 4.877e-03

4.223e-04 7.252e-03

2.027e-04 2.145e-03

3.752e-02* 7.248e-03

1.312e-02* 5.216e-03

-2.461e-03 7.362e-03

1.578e-04 1.343e-03

2.193e-02* 1.121e-03

1.283e-02* 2.857e-03

3.446e-04 2.441e-03

5.856e-04 3.352e-03

2.448e-02* 2.255e-03

4.542e-03 4.123e-03

-1.877e-04 2.741e-03

3.742e-04 4.621e-03

1.511e-03 2.834e-03

1.148e-03 2.927e-03

5.336e-03 5.851e-03

-1.633e-03 3.212e-03

7.017e-03 4.189e-03

-2.654e-03 2.234e-03

1.346e-03 2.158e-03

1.292e-03 1.688e-03

4.245e-03 6.934e-03

3.216e-03 4.517e-03

4.741e-03* 1.192e-03

1.912e-03 1.1367e-03

3.645e-05 4.931e-03

-2.131e-02 4.860e-03

-2.151e-03* 1.156e-04

1.283e-04* 4.244e-05

3.572e-06 4.421e-05

coef. s.e.

2.472e-05 2.738e-03

1.466e-03 1.879e-03

3.921e-02 4.314e-03

1.127e-03* 5.315e-03

2.356e-04 4.123e-03

3.991e-04 2.368e-03

1.812e-02* 2.251e-03

2.896e-03 2.852e-03

1.714e-03 4.256e-03

5.118e-04 1.444e-03

2.111e-03 3.115e-03

4.334e-02* 2.337e-03

1.223e-04 2.255e-03

3.487e-04 3.169e-03

2.232e-02* 4.253e-03

1.312e-02* 2.216e-03

5.128e-03 1.442e-03

2.836e-04 1.974e-03

1.287e-03 2.321e-03

3.532e-03 5.321e-03

3.499e-03 2.541e-03

5.856e-04 3.652e-03

2.448e-02* 2.735e-03

3.943e-03 3.121e-03

3.117e-04 1.241e-03

1.242e-04 2.731e-03

2.238e-03 3.887e-03

2.147e-03 1.267e-03

4.341e-03 4.723e-03

4.633e-04 2.743e-03

1.615e-02* 6.719e-03

1.754e-03 1.633e-03

2.948e-03 3.278e-03

1.292e-03 1.688e-03

4.235e-03 4.738e-03

2.234e-03 7.313e-03

5.741e-02* 6.298e-03

1.114e-03 2.444e-03

1.236e-05 3.951e-03

3.276e-02 2.410e-03

2.151e-03* 2.287e-04

2.227e-05 4.211e-05

5.489e-04* 3.771e-05
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Table 7: Participants VS SIP timestamps in natural-time (1-sec).

coef. s.e.

NBBpartL1 -0.163 0.161

NBOpartL1 -0.123 0.0989

NBBsipL1 0.171 0.161

NBOsipL1 0.135 0.0988

NBBpartL2 -0.131 0.177

NBOpartL2 -0.0835 0.109

NBBsipL2 0.111 0.177

NBOsipL2 0.0534 0.109

NBBpartL3 -0.0982 0.176

NBOpartL3 0.0482 0.108

NBBsipL3 0.101 0.176

NBOsipL3 -0.0427 0.108

NBBpartL4 0.111 0.175

NBOpartL4 0.0462 0.107

NBBsipL4 -0.108 0.175

NBOsipL4 -0.0422 0.107

NBBpartL5 -0.107 0.174

NBOpartL5 -0.0249 0.106

NBBsipL5 0.115 0.173

NBOsipL5 -0.0155 0.106

NBBpartL6 -0.0601 0.172

NBOpartL6 -0.0318 0.104

NBBsipL6 0.0616 0.173

NBOsipL6 0.0354 0.104

NBBpartL7 -0.00157 0.170

NBOpartL7 -0.0732 0.103

NBBsipL7 -0.000990 0.170

NBOsipL7 0.114 0.103

NBBpartL8 -0.0686 0.168

NBOpartL8 0.0554 0.102

NBBsipL8 0.0688 0.168

NBOsipL8 -0.0526 0.102

NBBpartL9 0.0134 0.165

NBOpartL9 -0.0513 0.101

NBBsipL9 -0.0125 0.165

NBOsipL9 0.0542 0.101

NBBpartL10 -0.0704 0.161

NBOpartL10 0.000351 0.0989

NBBsipL10 0.0715 0.161

NBOsipL10 -0.00350 0.0988

a1 -0.0207 0.0775

a2 -0.0621 0.108

a3 0.0207 0.0775

∗p < 0.05

coef. s.e.

-0.0236 0.181

-0.189 0.110

0.0369 0.181

0.196 0.110

0.0654 0.198

0.0468 0.123

-0.0577 0.198

-0.0427 0.123

0.0578 0.197

0.103 0.122

-0.0556 0.197

-0.0972 0.121

0.0542 0.196

0.0590 0.120

-0.0511 0.196

-0.0555 0.120

-0.189 0.194

-0.153 0.119

0.199 0.194

0.0793 0.119

-0.0665 0.193

-0.0341 0.116

0.0700 0.193

0.0361 0.116

-0.0555 0.191

-0.0142 0.115

0.0577 0.191

0.00996 0.115

-0.0441 0.188

-0.137 0.114

0.0463 0.188

0.138 0.114

0.0119 0.185

-0.0687 0.113

-0.00987 0.185

0.0680 0.113

-0.0389 0.181

0.00211 0.110

.0405 0.180

-0.00721 0.110

-0.1266 0.0868

-0.00182 0.121

0.126 0.0868

coef. s.e.

0.0651 0.161

-0.129 0.0986

-0.0565 0.161

0.141 0.0988

-0.0754 0.177

-0.0822 0.109

0.0554 0.177

0.0516 0.109

-0.0390 0.176

0.0505 0.108

0.0420 0.176

-0.0446 0.108

0.143 0.175

0.0558 0.107

-0.140 0.175

-0.0517 0.107

-0.0923 0.174

-0.0263 0.106

0.100 0.174

-0.0141 0.106

-0.0337 0.172

-0.0368 0.104

0.0353 0.172

0.0404 0.104

0.00923 0.170

-0.0769 0.103

-0.0118 0.170

0.118 0.103

-0.0680 0.168

0.0574 0.102

0.0682 0.168

-0.0545 0.102

0.0146 0.165

-0.0533 0.101

-0.0136 0.165

0.0563 0.101

-0.0750 0.161

-0.00763 0.0989

0.0761 0.161

0.00455 0.0989

-0.0153 0.0775

0.0604 0.108

0.0153 0.0775

coef. s.e.

-0.0137 0.181

0.0275 0.110

0.0271 0.181

-0.0213 0.110

0.0827 0.199

0.0232 0.123

-0.0749 0.199

-0.0190 0.123

0.0542 0.198

0.0655 0.122

-0.0519 0.198

-0.0591 0.122

0.0572 0.196

0.0317 0.120

-0.0540 0.196

-0.0281 0.120

-0.176 0.195

-0.101 0.119

0.187 0.195

0.0272 0.119

-0.0691 0.193

-0.0583 0.117

0.0727 0.193

0.0604 0.116

-0.0650 0.191

-0.0411 0.115

0.0671 0.191

0.0370 0.115

-0.0428 0.188

-0.169 0.114

0.0450 0.188

0.170 0.114

0.0149 0.185

-0.0900 0.113

-0.0129 0.185

0.0893 0.113

-0.0440 0.181

-0.0203 0.110

0.0459 0.181

0.0152 0.110

0.0555 0.0869

-0.00220 0.122

-0.0555 0.0869
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Table 8: Participants VS SIP timestamps in event-time .
coef. s.e.

NBBpartL1 -0.0664* 0.00495

NBOpartL1 0.0256* 0.00653

NBBsipL1 -0.136* 0.0129

NBOsipL1 0.0213* 0.00946

NBBpartL2 -0.290* 0.0220

NBOpartL2 0.121* 0.0148

NBBsipL2 0.225* 0.0206

NBOsipL2 -0.0642* 0.0119

NBBpartL3 -0.265* 0.0208

NBOpartL3 0.180* 0.0128

NBBsipL3 0.150* 0.0192

NBOsipL3 0.106* 0.0102

NBBpartL4 -0.159* 0.0194

NBOpartL4 0.225* 0.0114

NBBsipL4 0.119* 0.0172

NBOsipL4 -0.0309* 0.00981

NBBpartL5 -0.181* 0.0177

NBOpartL5 0.0286* 0.0106

NBBsipL5 0.230* 0.0161

NBOsipL5 -0.116* 0.00937

NBBpartL6 -0.274* 0.0166

NBOpartL6 -0.0054 0.0102

NBBsipL6 0.175* 0.0143

NBOsipL6 -0.00723 0.00747

NBBpartL7 -0.196* 0.0150

NBOpartL7 0.0824* 0.00900

NBBsipL7 0.133* 0.0136

NBOsipL7 -0.0307* 0.00644

NBBpartL8 -0.409* 0.0143

NBOpartL8 -0.0261* 0.00780

NBBsipL8 -0.0284* 0.0114

NBOsipL8 -0.145* 0.00462

NBBpartL9 -0.0295* 0.0121

NBOpartL9 0.133* 0.00662

NBBsipL9 -0.194* 0.00824

NBOsipL9 0.120* 0.00384

NBBpartL10 -0.0938* 0.00902

NBOpartL10 0.204* 0.00605

NBBsipL10 -0.0328* 0.00432

NBOsipL10 -0.0357* 0.00321

a1 0.0277* 0.0170

a2 0.211* 0.0229

a3 -0.0576* 0.0169

∗p < 0.05

coef. s.e.

0.0270* 0.00394

-0.147* 0.00520

0.0895* 0.0103

0.288* 0.00753

-0.0218 0.0175

-0.161* 0.0118

0.0995* 0.0164

0.149* 0.00954

-0.160* 0.0165

-0.115* 0.0102

0.106* 0.0153

0.0834 0.00817

-0.122* 0.0155

-0.0924* 0.00910

0.163* 0.0137

-0.185* 0.00782

-0.0764* 0.0141

0.138* 0.00848

0.101* 0.0128

0.108* 0.00746

-0.193* 0.0132

-0.00701 0.00818

0.00975 0.0113

-0.0801* 0.00595

0.00729 0.0119

-0.0518* 0.00717

-0.0120 0.0108

0.0718* 0.00513

-0.111* 0.0114

-0.0255* 0.00621

0.0199 0.00914

0.0181* 0.00367

-0.00468 0.00966

0.0744* 0.00527

0.0455* 0.00656

0.0166* 0.00306

-0.165* 0.00718

-0.0343* 0.00482

0.0901* 0.00344

-0.000353 0.00256

-0.108* 0.0135

0.149* 0.0182

0.119* 0.0135

coef. s.e.

0.898* 0.00192

-0.0342* 0.00254

-0.694* 0.00505

0.0682* 0.00368

0.0542* 0.00860

0.0828* 0.00578

-0.0100* 0.00803

-0.0366* 0.00467

-0.00294 0.00810

0.0505* 0.00500

-0.0404* 0.00749

-0.0276* 0.00399

0.0394* 0.00758

0.0212* 0.00445

-0.0287* 0.00672

0.00825 0.00382

0.0194* 0.00690

0.0197* 0.00415

-0.0412* 0.00628

-0.00764 0.00365

0.0351* 0.00648

0.0139* 0.00400

0.00381 0.00557

0.00857* 0.00291

-0.009088 0.00584

0.00439 0.00350

0.00218 0.00531

-0.0101* 0.00251

-0.00439 0.00560

-0.00534 0.00304

0.00631 0.00447

-0.000240 0.00180

-0.0411* 0.00472

0.000521 0.00258

-0.0131* 0.0032

-0.0199* 0.00149

0.0163* 0.00351

0.00888* 0.00236

-0.0297* 0.00168

0.0174* 0.00125

-0.152* 0.00662

0.643* 0.00892

0.147* 0.00661

coef. s.e.

0.00584 0.00273

0.488* 0.00360

0.125* 0.00714

-0.740* 0.00521

0.0668* 0.0121

-0.0930* 0.00818

-0.0283 0.0113

-0.0823* 0.00660

0.0275 0.0114

0.1701* 0.00707

0.0879* 0.0106

0.0926* 0.00565

0.0185 0.0107

-0.194* 0.00630

0.0345* 0.00951

-0.0720* 0.00541

-0.00956 0.00976

0.0455* 0.00587

0.121* 0.00889

0.0209* 0.00516

-0.127* 0.00916

0.00524 0.00566

-0.00535 0.00788

-0.0450* 0.00412

-0.0291* 0.00827

-0.0370* 0.00496

-0.0393* 0.00751

0.0391* 0.00355

-0.01377* 0.00792

0.0130* 0.00430

0.0149* 0.00632

0.0111* 0.00254

-0.0150* 0.00668

0.0527* 0.003650

0.0305* 0.00454

0.0280* 0.00212

-0.0543* 0.00497

-0.0253* 0.00333

0.0685* 0.00238

-0.00813* 0.00177

0.859* 0.00937

-0.165* 0.0126

-0.851* 0.00935
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