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Abstract

Independent Component Analysis (ICA) is a statistical method that transforms a set
of random variables in least dependent linear combinations. Under the assumption
that the observed data aremixtures of non-Gaussian and independent processes, ICA
is able to recover the underlying components, but a scale and order indeterminacy. Its
application to structural vector autoregressive (SVAR) models allows the researcher
to recover the impact of independent structural shocks on the observed series from es-
timated residuals. We analyze different ICA estimators, recently proposed within the
field of SVAR identification, and compare their performance in recovering structural
coefficients. Moreover, after suggesting an algorithm that solve the ICA indetermi-
nacy problem, we assess the size distortions of the estimators in hypothesis testing.
We conduct our analysis by focusing on distributional scenarios that get gradually
close the Gaussian case, which is the case where ICAmethods fail to recover the inde-
pendent components. In terms of statistical properties of the ICA estimators, we find
no evidence that a method outperforms all others. We finally present an empirical
illustration using US data to identify the effects of government spending and tax cuts
on economic activity, thus providing an example where ICA techniques can be used
for hypothesis testing.
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1 Introduction

The aim of this paper is to evaluate a set of methods that have been recently proposed

to achieve statistical identification of structural autoregressive (SVAR) models based on

non-Gaussianity. One of the most important and pursued objectives in macroeconomics

is to estimate the dynamic effect of an unexpected change in one variable, usually called

shock, on other variables. Since the seminal work of Sims (1980), the study of the joint

dynamics of the main macroeconomic aggregates has been conducted in the framework

of vector autoregressive (VAR) models. The latter have been proposed as an alternative

against large simultaneous equation models (Klein and Goldberger, 1955), which were

criticized for their large number of identifying and arbitrary restrictions. However, while

in forecasting (reduced-form) VAR models have been proven to be powerful tools, for

policy analysis one needs to deal with a structural model.

Specifically, in order to measure the effects of exogenous interventions on the system,

one needs to distinguish correlation from causation (Stock and Watson, 2017). This is

because the residuals of an estimated (reduced-form) VARmodel typically display cross-

correlations, which are induced by the contemporaneous causal relationships among

the variables that cannot be detected in the regression estimates. There are infinite

possibilities of linearly transforming the VAR model in order to get uncorrelated error

terms, corresponding to infinite observational equivalent structural models. Researchers

aim at finding the linear transformation that yields both uncorrelated (in some cases,

independent) and economically meaningful disturbances, whose effects can be studied

through impulse response analysis.

In the empirical macroeconomic literature, several identification criteria have been

proposed. Following Sims (1980) and Sims (1986), many empirical works have exploited

the Choleski decomposition of the covariance matrix of the VAR forecast errors. This

procedure provides an orthogonalization of the residuals by imposing a recursive scheme

on the contemporaneous causal structure, implicit in the ordering of the endogenous

variables. The decision on the sequence of the variables is of crucial importance but

sometimes loosely motivated. Economic theory or background knowledge may help

achieve identification by imposing (typically zero) restrictions on the contemporaneous

causal impact of one variable on another (Bernanke, 1986; Bernanke and Mihov, 1998;

Blanchard and Perotti, 2002). The reliability of the implied causal structure, however, can
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be hardly justified on the basis of mere a priori knowledge (Stock and Watson, 2001).

Alternative identification strategies are based on long-run restrictions, use of external

instruments (extraneous data in general), sign restrictions, and heteroskedasticity (seeKil-

ian and Lütkepohl, 2017; Stock andWatson, 2016, for an overview). External instruments

have been used, for example, by Gertler and Karadi (2015), who identify the unexpected

change in policy interest rate taking as instrument movements of futures prices around

policy announcements. Romer and Romer (2010) adopt a similar identification proce-

dure building a narrative series based on tax change announcements. Another popular

identification approach is based on sign restrictions (see Uhlig, 2005; Mountford and Uh-

lig, 2009). A specific feature of this approach is that the structural coefficients are set

identified, rather than point identified. It is also typical to rely on Bayesian methods

of inference, which in sign-identified models may introduce the problem of priors that

influence the posteriors of the structural coefficients (Kilian and Lütkepohl, 2017). Iden-

tification of SVAR models by heteroskedasticity is achieved by relying on the assumption

that the contemporaneous causal structure does not vary over time, but their covariances

change across regimes (Rigobon, 2003). These identification strategies have contributed,

at least to a certain extent, to make SVAR identification based less on restrictions guided

by theory and more on statistical properties of the data. Still, the picture of SVAR model

as a statistical tool capable to inferring causal effects from data is not yet well-grounded.

A recent stream of literature exploits directly certain statistical properties of the data,

namely the non-Gaussianity of the reduced-form VAR residuals, which results in many

estimations (Lanne and Lütkepohl, 2010; Lanne and Saikkonen, 2013; Lanne et al., 2017;

Lanne and Luoto, 2019; Gouriéroux et al., 2020). In this framework, linear combinations

of VAR disturbances can be recovered so to be not only uncorrelated, but also statistically

independent. This is possible by means of a purely data-driven statistical technique,

called Independent Component Analysis (ICA) (Comon, 1994; Hyvärinen, 1999; Eriksson

and Koivunen, 2004). Under the condition that the underlying structural shocks are

statistically independent and non-Gaussian, the SVARmodel is globally identified up to a

re-scaling and re-ordering of the shocks. Examples of SVAR models identified using ICA

are increasing anddelivering interesting insights (Moneta et al., 2013;Herwartz andPlödt,

2016; Capasso and Moneta, 2016; Gouriéroux et al., 2017; Guerini et al., 2018; Herwartz,

2018b; Maxand, 2018). Many algorithms for learning independent components from data
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have been proposed and applied, especially in the field of blind signal separation, neural

networks, feature extraction (Hyvärinen and Oja, 2000), as well as in fields which are

more closely related to economics like finance (Back andWeigend, 1997), causal inference

and structural modeling (Shimizu et al., 2006).

In this paper we evaluate a class of ICA-based methods, selectively focusing on those

that have been proposed within the field of SVAR identification, namely the fastICA algo-

rithm developed by Hyvärinen (1999) and employed by Moneta et al. (2013) and Guerini

et al. (2018); the minimization of the Cramer-von-Mises statistics proposed by Herwartz

and Plödt (2016); the pseudo-maximum likelihood estimator derived in Gouriéroux et al.

(2017); and the minimization of the distance covariance byMatteson and Tsay (2017). The

latter study shows how the distance-covariance method outperforms several ICA tech-

niques under several distributional scenarios. With a different focus, Herwartz (2018a)

undertakes a similar analysis, focusingmore on the discriminatory power of several iden-

tification schemes in detecting structural shocks embedded in a simple DSGE model for

the Euro Area. Our paper extends and completes the analysis by focusing on the sta-

tistical performances of the four methods mentioned above. Specifically, we study how

these methods perform when the distribution of the structural disturbances gets gradu-

ally closer to the full Gaussian case, which corresponds to the case in which the SVAR

model cannot be identified through ICA. We examine the different distributional scenar-

ios through a p-generalized normal distribution. The novelty of our study is that, after

suggesting an algorithm that solves the scale/order indeterminacy of the ICA model, we

are able to analyze the distribution of the parameter’s estimates derived under the dif-

ferent methods. Furthermore, we study the size distortions that arise when performing

statistical inference on the coefficients of the impact multiplier matrix.

The paper is organized as follows: Section 2 presents the framework of our study,

introducing the ICA-based SVAR model and the simulation exercise. Section 3 presents

and discusses the results of our assessment. Section 4 discusses an empirical investigation

in which the ICA-identified SVAR model is applied to study the effects of fiscal policy

(government spending and tax cuts), using the data by Blanchard and Perotti (2002).

Section 5 concludes.
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2 The framework

2.1 SVAR and ICA

The SVAR model we study has the general form

A0 yt � ct +

q∑
l�1

Al yt−l + εt , (1)

in which q is the lag length, y is a k × 1 vector of endogenous variables, εt is a k × 1

vector of exogenous structural shocks ε1t , . . . , εkt , Al is a k × k matrix of parameters

for 0 ≤ l ≤ q, ct is a k × 1 vector of constants, which may also include a deterministic

trend. (The analysis can also be easily extended to include exogenous variables.) We

assume the ε1t , . . . , εkt to be non-normally distributed (with at most one exception) and

to be mutually independent, i.e. f (ε1t , . . . , εkt) � f (ε1t) · . . . · f (εkt), where f (·) is the

probability density function. We also assume A0 to be invertible. The model is structural

because it is able to track the effect of statistically independent shocks on the endogenous

variables of the VAR model, a crucial feature that makes the researcher able to identify,

for example, the effect of a monetary or fiscal policy intervention.

The reduced-form representation implied by the structural model (1) is

yt � dt +

q∑
l�1

Bl yt−l + ut , (2)

where Bl � A−1
0 Al for 1 ≤ l ≤ q, dt � A−1

0 ct , ut � A−1
0 εt . Thus, we have that the

reduced-form residuals ut � (u1t , . . . , ukt) are linear mixture of the structural shocks εt ,

namely:

ut � B0εt ⇐⇒ εt � A0ut , (3)

where B0 � A−1
0 . Equation (3) is the model commonly studied in ICA, so that we refer

to it as the ICA model. Using the ICA jargon, we call B0 the mixing matrix, since it

linearly mixes the statistically independent components (i.e. shocks) ε1t , . . . , εkt , and A0

the unmixing matrix.

Let us denotewith a′i the rows of thematrix A0. Any ICAprocedure aims at estimating

the k-length weight vectors a′i for 1 ≤ i ≤ k, which yield ε1t , . . . , εkt as least dependent as

possible. As proved by Comon (1994, Th. 11) and Eriksson and Koivunen (2004, Th. 3)

(see also Gouriéroux et al., 2017), the independent components (shocks) are identifiable
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up to scale (including sign) and ordering. More precisely, the matrix A0 in the ICAmodel

(3) is identifiable up to the left multiplication by PD, where P is a permutationmatrix and

D a diagonal matrix with non-zero diagonal elements. Equivalently, B0 is identifiable up

to the right multiplication by D−1P′ (P′ is also a permutation matrix and D−1 a diagonal

matrix).

ICA algorithms usually consist of two stages: a preliminary whitening and the actual

ICA estimation. Whitening the data means to transform them so that they become

uncorrelated and with unit variance. Suppose that we have estimated ut and its non-

diagonal covariance matrix Σu . Whitening can be obtained through the spectral (also

called eigenvalue) decomposition or, as is popular in VAR analysis, via the Choleski

factorization ofΣu . Thewhitening transformation via the spectral decomposition consists

of left multiplying ut by (VΛ1/2)−1, where V is the matrix containing the eigenvectors of

Σu , andΛ is a diagonalmatrixwith the eigenvalues ofΣu on themaindiagonal. Whitening

through the Choleski decomposition consists of left multiplying ut by C, where C is the

Cholesky factor of Σu (this can be done for any ordering of the variables). Without loss

of generality, in this presentation of the ICA methods, we can directly assume that ut is

a vector of uncorrelated random variables (i.e. ut has already been whitened), so that

the matrix B0 in equation (3) is orthogonal. Thus, the second stage of ICA estimation

reduces to the problem of finding the rotation (orthogonal transformation) of the data ut

that delivers least dependent components εt .

We briefly review here four methods for ICA estimation, whose performance in

recovering the mixing/unmixing matrix of equation (3) we want to comparatively as-

sess.Although in addition to these four, more algorithms have been proposed in the

literature (see Cardoso, 1989; Hyvärinen, 2013), the approaches described below are good

representative of the ICA methods already discussed and applied in the econometric

literature.

1. FastICA. A set of fast and fixed-point algorithms were proposed by Hyvärinen

and Oja (1997, 2000) and Hyvärinen (1999). The fastICA approach is based on a fixed-

point iteration scheme for finding a maximum of the non-Gaussianity of a′i ut (for i �

1, . . . , k). It is called “fast” because it finds the maximally non-Gaussian components

with a cubic convergence speed. As a measure of non-Gaussianity fastICA adopts an

approximation of negentropy J(x), a notion grounded on information theory. For a
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continuous random variable (or vector) x with density f (x), negentropy is defined as

J(x) � H(xgauss)−H(x), where xgauss is aGaussian randomvariable (or vector) of the same

variance (covariance matrix) of x, and H(.) is the differential entropy function, i.e. H(x) �

−
∫

f (x) log f (x)dx. Such measure relies on the fact that a Gaussian random variable

entails the largest entropy among all random variables of equal variance (Shannon, 1949).

Hyvärinen and Oja (2000) also show that finding the most non-Gaussian directions a′i ut

(for i � 1, . . . , k) is equivalent to minimize the Kullback-Leibler divergence between the

joint density f (a′1ut , . . . , a′k ut) and the product of the marginal densities f (a′1ut) · . . . ·

f (a′k ut), which is a measure of mutual statistical dependence among the a′i ut ’s and is also

referred to as mutual information.

2. Distance Covariance. Matteson and Tsay (2017) propose to estimate the ICA

model by finding a matrix of loadings A0 such that the distance covariance among the

a′i ut ’s is minimized. Distance covariance as measure of statistical dependence between

random vectors was introduced by Székely et al. (2007).1 Matteson and Tsay (2017) define

an objective function to be minimized in function of θ, which is the vector of angles

defining a rotation matrix G(θ). Thus the problem consists in finding θ̂ such that the

dependence (measured in terms of distance covariance) among the ε1t , . . . , εkt that results

from G(θ̂)−1ut is minimized. Finally, the mixing matrix B0 is simply set to be equal to

G(θ̂). In this approach, it is convenient to write G(θ) as the product of k(k − 1)/2 distinct

forms of Givens rotation matrices. In the 2-dimensional case we have only one angle to

estimate:

G(θ) �

cos θ − sin θ

sin θ cos θ

 (4)

In the three dimensional case we have 3 angles

G(θ) �


cos θ1 − sin θ1 0

sin θ1 cos θ1 0

0 0 0



cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2



1 0 0

0 cos θ3 − sin θ3

0 sin θ3 cos θ3


(5)

For any k × k matrix we have then k(k − 1)/2 rotation angles to estimate.

3. Cramer-von-Mises distance. Herwartz and Plödt (2016) and Herwartz (2018a),

1Let x(1) and x(2) be a d1- and a d2-dimensional random vectors. Let | · | denote the Euclidean distance and
let ( .x(1) , .x(2)) and ( ..x(1) , ..x(2)) be iid copies of (x(1) , x(2)). Székely et al. (2007) define the distance covariance
between x(1) and x(2) asI(x(1) , x(2)) � E |x(1)− .

x(1) | |x(2)− .
x(2) |+E |x(1)− .

x(1) |E |x(2)− .
x(2) | −E |x(1)− .

x(1) | |x(2)−
..
x(2) | − E |x(1) − ..x(1) | |x(2) − .

x(2) |. I(x(1) , x(2)) � 0 if and only if x(1) and x(2) are independent.
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similarly to Matteson and Tsay (2017), define an objective function to be minimized in

function of θ and exploits the same decomposition of G(θ) in Givens matrices. But the

minimization criterion is different. The selected vector of angles θ̂, which implies least

dependent shocks, is the one that minimizes the value of the Cramer-von-Mises (CvM)

statistics, developed by Genest et al. (2007). Specifically, this test statistics quantifies the

distance between the empirical copula of the shocks vector εt � G(θ)−1ut and the implied

copula under mutual independence.

4. Pseudo-maximum likelihood estimator. This semi-parametric estimation method

was proposed by Gouriéroux et al. (2017). It consists of a pseudo maximum likelihood

(PML) estimator of the mixing matrix B0, which maximizes the pseudo log-likelihood

function, i.e. LT(B0) �
∑T

t�1
∑k

i�1 log gi(a′i ut), where gi(·)’s are probability density func-

tions, exploiting the condition that B0 is an orthogonalmatrix. Gouriéroux et al. (2017) de-

rive the asymptotic properties of the estimator, under possible specifications of log gi(εt),

but also assuming that some parts of the density functions may be misspecified.

2.2 Monte Carlo assessment

We study the performance of the just described ICA methods in estimating the model in

equation (3) with k � {2, 3} and T � {100, 200, 400}, where k is the number of variables

and T the sample size. The chosen set for k and T is due to the fact that we want to

replicate a VAR model that is as close as possible to those commonly found in applied

macroeconomics, where very long time series are seldom available to researchers. We

have in any case to restrict the analysis of the CvM method to relatively small sample

sizes (T > 500 is unfeasible, as Herwartz and Plödt (2016) point out), because the compu-

tational burden increases by an order of magnitude of O(T2kn), where n is the number

of iterations implemented to generate the distribution of the statistics under the null of

independence. We want to evaluate the performances of the ICA methods introduced

above when the shocks/independent components in εt , and consequently (a fortiori) their

linear combinations (ut), get gradually close to be normally distributed. In fact, it is

often the case in empirical applications that the reduced-form residuals of an estimated

VAR model turn out to be correlated and non-normal. But it may also be the case that

normality of some of the residuals is not fully and clearly rejected, so that the researcher

remains doubtful whether an ICA model can be legitimately applied for identification.
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We perform the analysis by exploiting the properties of a class of exponential dis-

tributions, namely the p-generalized normal distribution (Box and Tiao, 1962; Goodman

and Kotz, 1973): we let the underlying processes gradually approach to or diverge from

a Gaussian distribution. In this manner we can analyze how the ICA procedures behave

when the independent components diverge from normality both in the direction of a

super-Gaussian (leptokurtic) and a sub-Gaussian (platykutic) distribution. Often used

for robustness studies (Subbotin, 1923; Box and Tiao, 1962; Tiao and Lund, 1970), this

family of distributions has also been widely adopted in studies from different fields (e.g.

signal processing, audio/video encoding, face recognition, finance), in which data often

display non-Gaussian behavior (see Yu et al., 2012, for a review). Following the speci-

fication of Kalke and Richter (2013), a p-generalized normal distribution has a density

function f of the form:

g.norm � f (x , p) �
p1−1/p

2Γ(1/p) exp
[
− |x |

p

p

]
x ∈ R, p > 0, (6)

where Γ denotes the gamma function and p is a shape parameter that is informative

about the rate of decay of the density function. With p � 2, f (x , p) is a normal density

function. Given this value, as p decreases, the distribution becomesmore super-Gaussian,

as p increases it becomes more sub-Gaussian. Specifically, with p � 0.5, equation (6) is

the probability density function of a random variable with a Laplace distribution (a

super-Gaussian distribution), with p � 100 it corresponds to the case of a sub-Gaussian

distribution, i.e. the uniform distribution. The two limiting cases, p � 0 and p � +∞

correspond to a unit impulse function and to a real line, respectively.

In our Monte Carlo experiment, we let the parameter p vary over a range of 20 values,

15 points uniformly located on the interval {0.5, 3.5} and 5 on {4, 100}: for each of these

values we simulate k independent components2. As Figure 1 shows, for 0.5 < p < 3.5 the

shape of the distribution changes substantially, while for p ≥ 4 the sub-Gaussian nature

of the distribution is already pretty evident.

We split our Monte Carlo experiment into two different designs: a General Assessment

and a Specific Assessment. The former, inspired by Matteson and Tsay (2017), aims at

measuring the average performance of the four ICA methods in estimating the mixing

matrix B0, across random entries of the same matrix. Each Monte Carlo replication m

2We use the R-package rpgnorm (Kalke, 2015).
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0.5 1 2 4 100

−2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0

0.0

0.3

0.6

0.9
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ity

shape parameter 0.5 1 2 4 100

Figure 1: Kernel density estimates on data generated from the p-generalized normal
distribution for different values of the shape parameter p (0.05, 1, 2, 4,100): with p � 0.5
super-Gaussian (Laplace), p � 2 Gaussian, p � 100 sub-Gaussian (uniform).
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generates a random ICA model u(m)t � B(m)0 ε(m)t , where the components ε(m)t follow the p-

generalized normal distribution (equation 6) with covariance matrix equal to the identity

matrix, and B(m)0 is a random k × k mixing matrix with condition number 1 ≤ K(B(m)0 ) ≤

2, simulated with the R-package ProDenICA (Hastie and Tibshirani, 2010)3. Given the

indeterminacy of the ICA model, namely its identification only up to column scale/sign

and permutation of B0 (as mentioned in the previous sub-section), Matteson and Tsay

(2017) suggest to measure the performance of the ICA methods with a metric, proposed

by Ilmonen et al. (2010), that is invariant to this indeterminacy. Such measure is defined

as follows:

D(B(m)0 , B̂(m)0 ) �
1√

k − 1
inf | | C B̂(m)0

−1
B(m)0 − Ik | |F (7)

where B(m)0 is the randommatrix generated at replication m, B̂(m)0 is its estimate, C � P±D+,

where P± is any k × k signed permutation matrix and D+ is any k × k diagonal matrix

with strictly positive diagonal element, and | |.| |F is the Frobenius norm4. The lower the

index, the closer the estimate B̂(m)0 to the true value B(m)0 . We refer to this measure as the

“Ilmonen index”.

The Specific Assessment aims at evaluating how well the ICA methods perform in

identifying the structural impulse response of a SVARmodel, using different realizations

of the same data generating process, for a given mixing matrix B0. This also allows us to

also compare, among each other, theMonte Carlo distributions of the parameter estimates

derived by the four ICA methods and to analyze their statistical properties. The chosen

mixing matrices for k � {2, 3} are, respectively:

B0 �


1.14 −0.38

0 1.26

 , B0 �


0.9 0.15 0.65

−0.75 1.13 0.22

0.21 −0.53 1.5


. (8)

Thus, in the case of two variables, we have an essentially triangular mixing matrix, while

for k � 3 we have a full matrix (all non-zero entries). This allows us to cover both a

recursive and non-recursive mechanism of shocks’ transmission. As mentioned in the

previous sub-section, an ICA algorithm, which delivers a mixing (or unmixing) matrix,

3The condition number of a matrix B, K(B), measures the “well-behavior” of B, namely the extent to
which the solution x of the linear system Bx � c changes with the respect to changes in c (see e.g. Horn and
Johnson, 2012, ch. 5.8). IfK(B) � 1 the matrix B is said to be perfectly conditioned.

4A signed permutation matrix is like a permutation matrix, with exactly one non-zero element for each
row and column, but its non-zero elements are +1 or -1.
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is not sufficient for full identification, since the mixing matrix is identified up to the right

multiplication of DP (D is any diagonal matrix with all non-zero in the main diagonal

and P is any permutation matrix). For all four ICA methods, we propose here a unique

criterion to address this scale-sign-ordering problem. This criterion relies inevitably on

a priori assumptions, which can be justified on some general considerations that are free

from any economic-theoretic argument.

The first general consideration is that in SVAR analysis it is uncontroversial to expect

that a structural shock is going to affect mostly, at least in its immediate response, the

variable is referring to and by which is labelled. A monetary policy shock, for instance,

is likely to have a bigger contemporaneous impact (measured as a variable’s percentage

change in response to an impulse as large as the shock’s standard deviation) on the interest

rate — the usual monetary policy instrument — than other variables (e.g. GDP, inflation,

etc.), which can be affected by the monetary policy shock only via the monetary policy

instrument. Another general, but related, consideration is that, since we are interested

in the impulse response function, the standard deviation of the shock can be always

normalized to one by dividing each shock for its standard deviation and multiplying

each column of B̂0 (the estimated mixing matrix) by the same number — i.e. by right

multiplying B̂0 by D � diag(σε1 , . . . , σεk )— with no effect on the estimate of the impulse

responses. Finally, the sign of the impact is a matter of labelling convention: for example,

if we decide to study the effect of a contractionary monetary policy shock, we want the

effect of the interest rate instrument to be positive, while if we study the effect of an

expansionary monetary policy shock, we want the same effect to be negative, so that we

can change the sign of the column of the mixing matrix corresponding to the monetary

policy shock accordingly. In general, we are interested in the positive effects of economic

shocks.

This means that we should expect that, after having normalized the mixing matrix B0

so that the structural shocks have unit variance, the maximum entries, in absolute value,

of each column of B0 do not appear on the same row. The data generating processes

specified in equation (8) satisfy this characteristic. But, of course, we cannot exclude a

priori the possibility that in an empirical mixing matrix a row contains more than one

column-maxima. We then suggest an identification procedure to solve the indeterminacy

of the ICAmodel, which deals also, in its last step, with the possibility of column-maxima
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lying on the same row. We call this procedureMaxFinder, and it consists of the following

steps:

1. Given the observed (estimated through a VAR model) reduced-form residuals ut ,

apply an ICA algorithm and obtain an estimate of the mixing matrix B̂0, of the

unmixing matrix Â0, and the independent components ε̂t with Σε � I.

2. Find the column permutation of B̂0 such that, each column, has diagonal entries

which are greater than off-diagonal’s. Call this matrix Bid � B̂0P, where P is a

permutation matrix.

3. If step 2 fails, the matrix Bid is obtained by applying step 2 of LiNGAM (Shimizu

et al., 2006). Such matrix is the column-permuted version of B̂0 that minimizes

the quantity 1/∑i |̂bii |. Be aware that, potentially step 2 and step 3 deliver the

same matrix. However, if the ICA algorithm does not deliver a matrix which has

a maximum for each column that enters at different rows, then step 3 is applied

in order to heavily penalize those column permutations that imply low entries (in

absolute value) on the main diagonal of Bid

The next section shows the results of our Monte Carlo experiments.

3 Results

3.1 General assessment

Before presenting our results from the Monte Carlo experiments, we discuss some prac-

tical issues related with the implementation of the different algorithms. Both fastICA

and distance covariance (DCov) optimize a non-linear, locally convex objective function.

FollowingMatteson and Tsay (2017), we use a Latin hypercube sampling of 500 parameter

values, corresponding to the rotation angles 0 < θ < 2π of the Givens rotation matri-

ces defined in equations (4) and (5); we then select the initialization that minimizes the

metric proposed in equation (7). As mentioned in section 2.1, the CvM approach relies

on the minimization of the Cramer-von-Mises distance between the empirical copula of

the shocks vector ε̂t � G(θ̃)−1ût and the implied copula under the hypothesis of mutual

independence between the shocks. The term ût refers to the VAR estimated reduced-form

residuals, while θ̃ in its initial formulation (Herwartz and Plödt, 2016) is taken from a
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uniform grid of 29 rotation angles on the interval {0, 2π}: in the k-dimensional case this

implies testing the hypothesis of independence for 29k vectors of rotation angles. We

adopt instead a more efficient search that exploits the Differential Evolution algorithm

for global optimization (Price et al., 2006)5. The PML approach does not require any

initialization because we use pseudo-likelihood functions that satisfy the condition, de-

rived in Gouriéroux et al. (2017) and Hyvärinen et al. (2001), under which the estimates

correspond to a maximum of the asymptotic optimization problem.

Figure 2 displays the Ilmonen index, as specified in equation (7), averaged across 500

Monte Carlo replications, for different values of k, T and p. This shows the performance

of the four ICA methods when the full Gaussianity (p � 2) of the independent structural

shocks is approached, for k � 2 (upper part of the figure) and k � 3 (bottom part), and for

T � 100 (left part of the figure) andT � 400 (right part). As shown in Figure 8 in appendix,

the case in which T � 200 is not qualitatively different. As expected, when the εt ’s are not

statistically different from being normally distributed (shaded areas in the four panels of

Figure 2), all themethodologies score bad (themetric is high). However, in averageDCov is

consistently better than the others all over the range of the values of p, both in the two and

three dimensional case and regardless the sample size. CvM instead is dominated in all

scenarios, while fastICA and the PML estimator are almost equivalent, with slightly better

performance of the former when the sample size is small. As the latter increases, all the

methods tend to score equal, the further being the independent components distributed

from Gaussianity, both in the direction of super- and sub-Gaussianity. DCov seems to

be the most robust when normality is approached. The results are compatible with and

complementary to those in Matteson and Tsay (2017), where the ICs follow different

families of distributions, both symmetric and asymmetric. Here instead we are interested

in understanding the performances of ICA as we get closer to the full-Gaussian case.

3.2 Specific assessment

Having analysed the average performance of the four ICA methods, we turn now to

study how well they perform when they are applied to recover the impact multiplier

(mixing) matrix of a SVAR model. As mentioned in section 2.2, we focus on a specific

data-generating process. We artificially generate data ut from the ICA model in equation

5The algorithm is adapted from the R-package svars (Lange et al., 2018).
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Figure 2: Ilmonen index (y− axis), averaged across 500 Monte Carlo replications, for
different ICA models in which εt follow a p-generalized normal distribution, with p (x−
axis) varying from the super-Gaussian (p < 2) case, to the Gaussian (p � 2), and sub-
Gaussian (p > 2) case. Shaded area where normality is not rejected at 10% (on the basis
of the Jarque-Bera test). Values below the dashed lines corresponds to estimated mixing
matrices significantly different from a pure random at 5% significance level

(3) with shocks’ covariance matrix Σε � I, ct � 0k , and A0 � B−1
0 , where B0 is specified in

equation (8) for k � 2, 3. Both specifications of B0 satisfy the condition that the maximum

entry (in absolute value) of each column never appears on the same row. As mentioned

in section 2.2, this assumption mirrors a common feature in SVAR analysis, namely the

fact that each structural shock tends to be mostly (contemporaneously) correlated with

the variable in the system that is referring to and is labelling with.

We apply the four ICA methods on the artificial ut . We then apply the MaxFinder

identification algorithm described in section 2.2, so to solve the indeterminacy that affects

the ICAmodel.6 We then assess the performance of the ICAmodel in this specific exercise

6The column-ordering problem, i.e. the labeling of the shocks recovered from ICA has rarely been
addressed within the ICA literature on signal processing. However, in SVAR analysis, it plays a crucial role
as it is necessary to identify the structural shock and its contemporaneous impact on the other variables.
Lanne et al. (2017) suggest an algorithm that leads to a unique impact matrix among those belonging to
the same equivalent class. We have explored other column-orderings algorithms, e.g. the column/sign
permutation that minimizes the Frobenius norm between the estimated matrix and the true one. Results are
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by using a variation of the Ilmonen index: differently from equation (7), the index here

measures the error between B̂0 and the knownmatrix B0 (this time fixed overMonte Carlo

iterations, as specified in equation 8). Note that B̂0 is here column-permuted and scaled

according theMaxFinder criterion. Hence, the similarity metric is now defined as

D(B0 , B̂0) �
1√

k − 1
| |B̂0

−1
B0 − Ik | |F (9)

Figure 3 shows the Ilmonen index, as specified in equation (9), averaged across Monte

Carlo replications, for different values of the parameter p, which determines the degree

of “Gaussianity” of the independent components εt . Overall, the results resemble those

shown for theGeneral Assessment: CvM is dominated in all scenarios; the fourmethods are

almost equivalent when the independent components are highly super- or sub-Gaussian;

DCov performs better when Gaussianity is approached as well as when the sample size

increases (T � 400). However, the latter shows a concerning variability when the distri-

bution of the shocks is sub-Gaussian. Despite the large number of initializations (500),

this result may suggest that the objective function that DCov solves is highly non-linear,

so to imply a relatively higher uncertainty of the estimates: in fact, in some cases, the

performance is not different to the case in which the full Gaussianity (p � 2) of εt ’s is

simulated.

Although there are several measures of ICA performance proposed in the literature

(see Nordhausen et al., 2011, for a review), those metrics, like the one proposed in equa-

tions (7) and (9), are not informative about the distributional properties of the parameters’

estimates. As for any estimator, such properties are relevant when performing statistical

inference: in our specific design, they are informative about the distribution of the entries

of the mixing matrix B0. Ultimately, these distributional properties may shed light on

the contemporaneous causal relationships among the endogenous variables of the VAR

system. Therefore, we study the Monte Carlo distribution of the errors between the en-

tries b̂i j of the estimated mixing matrix B̂0 and the entries bi j of the known matrix B0 (for

i , j � 1, . . . , k).

Table 1 shows the four central moments that characterize the distribution of b̂i j − bi j ,

in four representative scenarios: (i) when the independent components εt have a strong

super-Gaussian behavior (p � 0.5); (ii) whenGaussianity is closer but the εt are still either

available upon request.
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super-Gaussian (p � 1.5) or (iii) sub-Gaussian (p � 2.5); (iv) when the εt follow an almost

uniform distribution (p � 100). For k � 3, only the upper left block’s parameters are

considered. In almost all cases, the estimates are negatively biased and their distribution

is skewed to the left (a result compatible with those of Gouriéroux et al., 2017). As

expected, in those scenarios where full Gaussianity is closer, the bias is more negative

and the uncertainty of the estimates gets larger; the same holds when the dimension

of the system (k � 3) increases. For almost all parameters’ estimates, in the extreme

distributional scenarios (p � 0.5, 100), all the methods score relatively equal; in the cases

close to the full-Gaussianity scenario, fastICA has a smaller bias and variance when the

independent components are super-Gaussian, whilstDCov seems to deliver better results

when the independent components are sub-Gaussian;CvM scores better in very few cases.

Finally, we evaluate the performance of the four ICA methods when statistical in-

ference is conducted on the basis of a bootstrap procedure. Specifically, we compare

bootstrap-based inference with the results derived from the pseudo-maximum likelihood

approach. We expect that the former, derived in Gouriéroux et al. (2017) and drawn on

asymptotic approximations, outperforms the bootstrap procedure, which we adopt since

we do not know the asymptotic distribution of the estimate of B0’s entries under fastICA,

DCov and CvM. This should at least happen for large sample sizes. A small number of ob-

servations, however, may favour inference not based on asymptotic properties. Moreover,

the comparison is interesting because it allows us to assess, from an another perspective,

which method is more robust when the full-Gaussianity case is approached, in which, as

stressed throughout the paper, ICAmethods fail to recover the independent components.

The exercise is conducted in the following way. Again, we run a Monte Carlo exercise

where we generate data from a ICA model with mixing matrix as specified in equation

(8) and with shocks εt p-generalized-normally distributed, for different values of p and

sample size T � 400. For each Monte Carlo replication m � 1, . . . , 500 we estimate B̂0

using one of the four ICA methods with theMaxFinder criterion.

For the PML method we derive σ̂i j , i.e the estimate of the standard deviation of b̂i j

(for i , j � 1, . . . , k), from the asymptotic covariance matrix of the mixing matrix found in

Gouriéroux et al. (2017). On the basis of this, we build the (1 − α)-confidence interval

Cm(α) � [b̂i j − φα/2σ̂i j , bi j + φα/2σ̂i j], (10)
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with φα/2 being the α/2-quantile of the standard normal distribution. We do this for each

Monte Carlo replication m, to which it corresponds a specific estimate B̂0, with specific

entries b̂i j (which we do not to index here with m just for simplicity) and corresponding

confidence intervals Cm(α), and for each i , j in 1, . . . , k. Finally, we calculate the frequency

at which the true value bi j (entries of the matrices specified in equation 8) falls in Cm(α)

across Monte Carlo replications. We should expect that the frequency of observing the

true value bi j in the confidence interval is equal to α.

As mentioned above, for the other three ICAmethods we do not know the asymptotic

distribution and therefore a bootstrap approach is necessary. Given the computational

constraints of the exercise, we implement the warp-bootstrap, proposed by Giacomini

et al. (2013), where it is shown that it is sufficient to have one bootstrap replication for

each Monte Carlo run to obtain a reliable approximation of the statistics under analysis.

The confidence interval is then built, for each i , j in 1, . . . , k, in the following way:

Cm(α) � [b̂(m)i j − q̂i j(α/2), b̂(m)i j − q̂i j(1 − α/2)], (11)

in which q̂i j(α) is the α-quantile of the empirical distribution (across Monte Carlo

runs) of b̂(m)∗i j − b̂(m)i j , where b̂(m)∗i j is the estimate of the (i , j) entry of B0 obtained at the

(unique) bootstrap draw corresponding to theMonte Carlo run m, and b̂(m)i j is the estimate

of the (i , j) entry of the mixing matrix B0 at the Monte Carlo run m. We then compute the

frequency atwhichCm(α) contains the truevalue bi j across theMonteCarlo replications. If

the bootstrap procedure is consistent, we should then expect that the frequency at which

the bootstrap-based confidence interval contains the true value (i.e. its the empirical

coverage 1 − α̂) to be exactly equal to 1 − α, the nominal coverage.

Table 2 shows the results of the simulation exercise for values of (1 − α) � {0.99, 0.95,

0.90, 0.75, 0.50}. The first result is that bootstrap-based confidence intervals of the main

diagonal elements (b11 , b22) built underDCov estimation tend to containmuchmore often

than expected the true value of the parameter (α̂ < α). The small sample properties of

PML and fastICA ensure, instead, smaller size distortions.

For what concerns other parameters’ estimates, testing procedures based both on

PML and on bootstrap methods remarkably display lower size distortions and fastICA

seems to have lower size distortion than DCov under all the distributional scenarios.

Surprisingly, the empirical coverage of fastICA estimator seems to be closer to the nominal
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coverage (1 − α) even when compared with PML-based inference, especially in the case

the independent components follow sub-Gaussian distributions. However, as stated in

Gouriéroux et al. (2017), the choice of the pseudo-likelihoods does indeed matter for the

asymptotic accuracy of the PML estimator. Overall, the performance of CvM is poorer.
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Figure 3: Ilmonen index (y- axis), as specified in equation (9) and averaged across 500
Monte Carlo replications, for different ICA-SVARmodels with fixedmixingmatrix (equa-
tion 8), in which εt follow a p-generalized normal distribution, with p (x-axis) varying
from the super-Gaussian (p < 2), to the Gaussian (p � 2), and sub-Gaussian (p > 2) case.
Shaded area where normality is not rejected at 10% (on the basis of the Jarque-Bera test).
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4 Empirical application

In this section we discuss a macroeconomic application of the ICA approach to SVAR

analysis with the aim of showing its practical potentials and challenges, having taken

into account the results of the previous section. A conspicuous stream of literature has

attempted to estimate, quantify and identify the effects of monetary and fiscal policy

interventions on main macroeconomic aggregates in many developed countries. After

the 2007 financial crisis triggered what economists and policy makers referred to as the

Great Recession, a fresher interest in fiscal policy emerged. At the same time, the efficacy

of a puremonetary policywas questioned. In spite of unconventionalmeasures,monetary

policy has struggled to push the economyout of a low-growth and stagnant-prices regime,

in a situation of a prolonged zero-lower-bound scenario. Given the reappraisal of fiscal

policy, the question on the size of multipliers has become again highly disputed.

Focusing on the empirical literature, Barro (1981) and, more recently, Ramey (2011)

attempt to overcome the identification problem by relying on narrative series of military

buildups, so to identify an anticipated and exogenous increase in government spending.

Blanchard and Perotti (2002) for the US and Ilzetzki et al. (2013) for 44 countries, estimate

elasticities of tax revenues to output in a quarter so to purge out the contemporaneous

effect of output on government revenues. They also use institutional knowledge to insert

zero contemporaneous impact restrictions. Recently, Auerbach andGorodnichenko (2012)

have identified exogenous spending shocks as those not foreseen by US professional

forecasters. Batini et al. (2012) analize the effects of government expenditure and revenues

increase for themain developed economies by relying on the Choleski decomposition and

so imposing a recursive causal order on the variables included in the VAR. Mountford

and Uhlig (2009), instead, in a Bayesian VAR framework with sign restrictions, identify

spendingand tax shocks as those that increase thefiscal variableswhile beinguncorrelated

to economic activity and monetary policy.

ICA offers the opportunity to statistically test identifying restrictions (not limited to

those that are over-identifying) on the coefficients of the impact (mixing) matrix. We

consider here the very influential work of on fiscal policy by Blanchard and Perotti (2002),

BP henceforth. BP estimate a three-variable VAR model of public spending, tax revenues

and aggregate output. The SVAR model is identified through assumptions based on

institutional knowledge: public spending does not respond to output in the quarter,
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while tax revenues do. Moreover, BP set the contemporaneous response of taxes to

output on the basis of an outside estimate of the cyclical sensitivity of net taxes. Finally,

they impose two alternative restrictions on the contemporaneous relationship between

tax revenues and public spending, corresponding to two different models: in the first

model a tax shock has an immediate effect on spending, but a spending shock does not

have an immediate effect on tax revenues (except an indirect one through GDP), in the

second model the other way around.

Despite the plausibility of the identification strategy, it is important to test such restric-

tions, at least for two reasons: (i) as Caldara and Kamps (2017) show, the use of plausible

range of estimated elasticities may lead to dynamical responses and fiscal shocks that

significantly differ in size and persistence; (ii) the authors are not able to distinguish

the contemporaneous relationship between government spending and tax revenues and,

consequently, whether a tax shock has an immediate effect on spending.

Table 3 shows the impact coefficients, derived in BP, under the unit-normalization of

the direct contemporaneous effects, i.e. the impact (mixing) matrix has been normalized

so that it displays only ones on the main diagonal. Since, as mentioned, BP use two

different models in function of the different contemporaneous impacts between spending

and taxes, we display both of them in the table. Note that, in terms of zero-entries, the

only difference between the two models is the (1,2) entry. In the second model (right

panel) the tax shock has a non-zero effect on spending but the spending shock has still a

non-zero effect on tax because of the causal chain from G to Tax via GDP.

G ordered first Tax ordered first

εg εtax εgdp ε
g
t εtax

t εgdp

G 1.00 0.00 0.00 1 -0.05 0.00
Tax 0.16 1.00 2.18 0.33 1.00 2.18
GDP 0.18 -0.15 1.00 0.15 -0.16 1

Table 3: Impact coefficients in Blanchard and Perotti (2002)

We estimate a three-variables VAR model using the same data as in BP (quarterly

US data 1960-1997). The objective of the exercise is two-fold: (i) using our Maxfinder

algorithm, to globally identify via the ICA model an independent shock in government

spending and tax increase and estimate their dynamic responses on economic activity;

(ii) to test the validity of restrictions proposed by BP, relying on the results on statistical
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inference obtained in Section 3.2.

For the analysis, we estimate a reduced-form VAR model analogous to equation (2),

namely

yt � C + βt +
q∑

l�1

Bl yt−l + BQ
l (Q1 + Q2 + Q3)yt−l + ut (12)

where C is k × p matrix of deterministic terms, β is a trend coefficient, yt is the vector of

endogenousvariables, Q1, Q2,Q3 are quarter dummies, Bl andBQ
l are coefficientmatrices,

and ut is k-dimensional vector of reduced-form residuals. In our case k � 3 and q � 4, as

in BP. Also following BP, in C we formalize the constant, a series of deterministic terms,

as well as current and lagged values of the endogenous variables interacted with quarter

dummies7. In line with the setting of the ICA model, we assume that the reduced-form

residuals are a linear combination of statistically independent components, as specified

in equation (3). As in BP, we have

yt � (Gt , TAXt ,GDPt)′ (13)

where yt is a vector that contains the logarithm of real per capita values of government

spending, taxes and GDP, observed in U.S. from 1960:Q1 to 1997:Q4. After estimation,

the VAR is stable with no-serial autocorrelation. Moreover, as Figure 4 suggests, only

for the spending’s reduced-form residual, uG
t , the Jarque-Bera test does not reject the

null hypothesis of normality, so that ICA can be applied, since a single exception to

non-Gaussianity is allowed in the ICA model.

Table 4 reports the estimates b̃i j of the entries bi j of the mixing matrix B0, estimated

with the four ICA methods and identified by applying our MaxFinder scheme. The

estimates b̃i j are the median of 500 estimates obtained by 500 bootstrap replications of the

equation (12) model (through replications of ut), with confidence intervals derived as in

Hall (1992):

CI(α) �
[
b̃i j − q∗(1−α/2) , b̃i j − q∗α/2

]
(14)

where q∗(1−α/2) and q∗
α/2 are the (1−α/2) and α/2-quantiles of empirical distribution of the

7The series of deterministic terms include a time trend, quarter dummies plus a current and four-period
lagged dummy for 1974:Q2 (when a large tax cut has been observed). When estimating the IRFs instead,
closely following BP, we drop from the specification the non-linear terms Q• yt−l . The purpose of this
exercise is to drop any serial correlation from the residuals, upon which the structural analysis is conducted.
Our analysis departs from the original specification only because it excludes a quadratic time trend. Since
the variables are logs of per capital value, it seems a reasonable choice. However, this choice does not change
the nature of results in both settings.
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root (b̂∗i j − b̃i j), with (b̂∗i j being the estimate of bi j from the bootstrap replication). For sake

of comparison, we normalize all the coefficients so that each structural innovation has a

unit contemporaneous impact on the log of the variable that refers to.

For PML and fastICA, the Maxfinder algorithm does not deliver a maximum for each

column on different rows. However, the column permutation that penalizes low absolute

values on the main diagonal (step 3) delivers an interesting result: we have identified

two independent shocks that increase taxes and government spending the most, and a

third shock that increases substantially output and taxes. Moreover, this configuration

is compatible with Table 3 derived in BP. Given the results, we can label the first (ε1)

and the second (ε2) shock as a spending and tax shock, respectively. All the methods

deliver a positive and significant impact coefficients of spending on GDP (with exception

of CvM where none of the estimated coefficients seems to be statistically different from

zero). From PML and fastICA we get an estimate of a positive and statistically significant

contemporaneous response of the third shock on tax revenues, but which is substantially

lower than BP’s estimate of the GDP shock on tax revenues. At the same time from the

same method we get a non-significant impact of ε3 on G, which is consistent with one of

the BP’s zero restriction if ε3 is interpreted as the GDP shock. Overall, the ICA-estimated

tax shock (ε2) seems not to have a significant impact on both spending and GDP (except

for the DCov estimate). This result about spending is in tune with the zero-restriction of

the model 1 in BP (zero impact from tax shock to G). Finally, coefficients estimated under

CvM do not appear to be significant and DCov’s seem more difficult to interpret. Given

the results of our assessments in the previous section, we tend to rely more on the higher

precision and the better empirical coverage of PML and fastICA estimators.

After estimating structural shocks and identified the impact coefficients via ICA, we

can now compute the impulse response functions and compare them with those implied

by the BPmodel, shown in Figure 5. We first comment the impulse responses to a positive

public spending shock, shown in Figure 6. The response of output is clear and statistically

significant, both at impact and within the first year. Figure 7 instead, shows the responses

to an independent positive shock in tax revenues. All methods show that the effects of

independent tax shocks are negative in the long run, which is a finding consistent with

BP. However, all ICA-methods (except DCov) show non-significant effect on the impact

and in the short run, which is at odds with the finding by BP.
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Figure 4: Distribution (upper panels) and q-q plots (bottom panels) of reduced-form
residuals, where also p-values of the Jarque-Bera (JB) test are reported.

This illustrative exercise has shown that a purely data-driven identification procedure

of VAR models is possible and, with careful modeling decisions, can lead to convincing

conclusions based exclusively on statistical properties of the data. The BP identifying

restrictions are plausible not only because of institutional knowledge and insights from

economic theory: they are also present in the data and the ICA model supports them,

at least as regards the zero restrictions of the BP’s first model (G ordered first). On the

contemporaneous relation between tax revenues and public spending, our results suggest

that it is public spending the first mover and its immediate impact on taxes is positive.

In partial contrast to BP’s results, our estimated impulse response functions suggest that

a fiscal policy guided by public spending has a clearer effect on economic activity than a

fiscal policy guided by tax revenues.
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PML f astICA
ε1 ε2 ε3 ε1 ε2 ε3

Gt 1 −0.06 −0.12 1 −0.09 −0.10
TAXt 0.47 1 1.07∗∗∗ 0.62 1 1.14∗∗∗
GDPt 0.24∗∗∗ 0.002 1 0.25∗ −0.01 1

DCov CvM

Gt 1 0.08 −0.33∗ 1 −0.05 −0.001
TAXt −0.27 1 0.21 0.39 1 0.79
GDPt 0.34∗∗ 0.13∗ 1 0.19 0.04 1

Estimate falls in 64% (*), 90% (**), 95% (***) confidence interval

Table 4: Estimates of the contemporaneous impacts coefficients from ICA models. The
entries of the mixing matrices are calculated using the bootstrap-median with the corre-
sponding confidence intervals
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Figure 5: Impulse response functions estimated by Blanchard and Perotti (2002). The
upper panel shows the responses of the three variables to a spending shock (on G). The
bottom panel shows the responses to a tax-revenue shock (on Tax). Dashed lines denote
an equal-tailed 68% confidence interval
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Figure 6: Impulse response functions of a positive public spending shock from different
ICA estimation methods. The upper and the lower dashed lines represent respectively
the 84% quantile and the 16% quantile of the bootstrap estimates.
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Figure 7: Impulse response functions of a positive tax shock fromdifferent ICA estimation
methods. The upper and the lower dashed lines represent respectively the 84% quantile
and the 16% quantile of the bootstrap estimates.
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5 Conclusions

In this paper we assess, through Monte Carlo experiments, the performance of four ICA

techniques (fastICA, DCov, CvM , PML) that have been recently used in SVAR analysis.

We specifically study the cases of structural disturbances following distributions that

are approaching normality, where the ICA model by construction cannot recover the

independent components. The method based on distance covariance seems to be, on

average, the most performing when the shocks’ distributions are relatively close to be

Gaussian.

We also consider the distributions of the mixing matrix coefficients, which is the

matrix that identifies a SVAR model and contains the simultaneous interactions of the

variable of the system. In this context, we suggest the implementation of an identification

scheme that searches for those column permutations of the mixing matrix such that its

main diagonal elements reflect, as close as possible, the condition according to which

the structural shock hits with greatest magnitude the variable is referring to. Our Monte

Carlo studies show that, as the dimensionality of the system increases, uncertainty in the

estimates increases, as well as their negative bias.

We also analyze the ICA methods’ performance in statistical inference. Specifically,

we have considered size distortions when testing the significance of the coefficients of

the mixing matrix, comparing the performances of maximum likelihood versus bootstrap

based inference. The DCov method, despite being relatively accurate on average, shows

concerning variability. In the statistical inference exercise, on the other hand, the method

basedon thePMLand fastICA estimators show lower sizedistortions andabetter empirical

coverage in almost all distributional scenarios.

Finally, an empirical application on fiscal policy highlights that a purely data-driven

procedure such as ICA may help the researcher to test the significance of identifying

restrictions or to suggest where to insert the latter. In particular, our exercise shows that

the ICA model cannot reject the identification scheme implemented in Blanchard and

Perotti (2002).
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Figure 8: General Assessment of ICA methods when n � 200, k � 2 (left panel) and k � 3
(right panel)
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Figure 9: Specific Assessment of ICA methods when n � 200, k � 2 (left panel) and k � 3
(right panel)
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