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Abstract

Many variables that social and economic researchers seek to analyze
through regression analysis violate normality assumptions. A standard
remedy in that case is the logarithmic transformation. However, taking
logarithms is not always sufficient to restablish model assumptions. A
more general approach is to determine a family of transformations and
to estimate the adequate parameter of such a transformation. This can
also be done in mixed effects models, which can account for unobserved
heterogeneity in grouped data.

When the analyzed data is gathered from a complex survey whose
design is informative for the model - which is difficult to exclude a priori
- a bias on the transformed linear mixed models can occur. As the bias
affects the transformation parameter, too, the distortion to the parameters
in the population is even more problematic than in standard regression.

In standard regression, survey weights are used to account for the de-
sign. To the best of our knowledge, none of the existing algorithms allows
to include survey weights in these transformed linear mixed models. This
paper adapts a recently suggested algorithm to include survey weights to
Box-Cox or dual transformed mixed models. A simulation study demon-
strates the need to account for informative survey design.

1 Introduction

Already in the 1960s, Box and Cox [1964] found that transformations of depen-
dent variables help to meet the assumptions of regression modeling, in particular
the conditional normality assumption. They introduced the so called Box-Cox
transformations, a family of functions from which one is chosen for the transfor-
mation of the dependent variable. Using maximum likelihood (ML) estimation,
the optimal choice of the transformation parameter is an optimization problem.

Gurka et al. [2006] extended that framework from linear models to linear mixed
models (LMMs). Rojas-Perilla et al. [2017] used the methodology in a popular



application of mixed models, the small area estimation (SAE) framework. Both
authors demonstrate the applicability of the data transformations on mixed
models on real world examples. While Gurka et al. [2006] use a data from a
clinical study of pulmonary disease, which might not be subject to extrem survey
designs, Rojas-Perilla et al. [2017] use data of the consumer and expenditure
survey in Mexico. Even after conditioning on the explanatories, income and
wealth data are seldomly normally distributed, thus requiring transformation for
an adequate regression analysis. In addition, national population surveys rarely
rely on a simple random sample of the population, there is rather a complex
survey design with oversampling of subgroups of interest. For the estimation
of summary statistics, the design is easily accounted for by the use of survey
weights. In regression analysis, this is more difficult as we will outline in the
next section. On the other hand, the assumptions, under which the design can
be ignored [Pfeffermann, 1993], are often too restrictive to be assumed valid in
real data application. Therefore, there is need to develop an algorithm that can
take into account the survey design, especially in the case of (non-normal) mixed
models. Burgard and Dérr [2018] have introduced a MCEM-algorithm that does
so for generalized linear mixed models. This algorithm can be adapted to data-
driven transformations of the dependent variable as well. However, problems
due to the transformation occur and must be accounted for.

In the next section, the statistical problem is formulated, both under classi-
cal statistical modeling and later on accounting for the survey design as well.
Then, the optimization problem is outlined and the adjusted MCEM algorithm
described. Following this section, the esitmation of standard errors is briefly dis-
cussed. The algorithm is then checked under several simulation scenarios: First,
its reliability under the statistical model is confirmed replicating the simulation
study from Gurka et al. [2006]. The need for survey-weighting will be demon-
strated using another simulation study leaned on Burgard and Dérr [2018]. The
final section concludes.

2 Statistical formulation of the model under sur-
vey sampling

To each unit i of a finite population U = {1,..., N}, a vector of characteris-
tics (yi,x!,z] )T € RTPT4 is attributed. The value y; is considered to be a
realization of the following statistical model:

Y, =xIB+2]G+e; (2.1)
Y; = h(Yi; A) (2.2)
ei~N(0,0%) VieU (2.3)
G ~ N(0,%) (2.4)

Like Box and Cox [1964], Gurka et al. [2006] and Rojas-Perilla et al. [2017], we
assume that the family of (back-)transformations, {h(-,A),A € A} is known a
priori although the specific value of A is not. Note that this set-up is to some



extent more general than the set-up given in Gurka et al. [2006] and Rojas-
Perilla et al. [2017] because we do not require the random variable G to have
a diagonal covariance matrix ¥. Furthermore - though in a different context
- this data generating process (DGP) - is also more general than that given
in Burgard and Dérr [2018]: There, Y; was assumed to follow a law from the
exponential family and the link function A is explicitly known. G is referred to
as random effect, € is the idiosyncratic error and 3 is the fixed effects vector.
Common families of transformation are the Box-Cox transformation [Box and

Cox, 1964]

y -1
BN (0,00) =R, bl =4 HAED Ry o)
logy,if A=10

Rojas-Perilla et al. [2017] also considers the dual transformation [Yang, 2006]

Y-y
hi(0,00) >R, hlga =4 2 HEAZ0nmy (g
logy, if A\=0

However, both A and —\ yield the same transformation. We can thus restrict
the transformation to A > 0.

For ease of notation, we summarize Y := (Y1,...,Yy) and y describes a realiza-
tion of Y. For a random effects realization G = v, we define n; := x? 3+z~. In
addition, denote by p the distinct elements of the covariance matrix X. For some
realizations G = ~, Y; = §; (and in consequence, Y; = y;, y; = h(§i, M), i € U,
the statistical model formulated by (2.1) to (2.4) leads thus to the conditional
density of g; and y;:

1
i) = s e 5z = )?) - Fatrip) 2.)
and
1 dh=(y;, A
Frimrib ) = e (- ) - S foip) (28)

The joint log-likelihood of the observed data and the random effect realization
is thus

N 1
LLy, 7B, 0% p, ) = =N log (V21 ) =7 log(0?) — log (det £) = 77 S 71y +

=:A =:B
—(g; — mi)? dh™Hyi, \)
— 1] —_— 2.
; ooz Tlog O, (2.9)
=:C

Note that term C has the shape of a total of the finite population. If only a
sample s C U of the units is available, where s is the realization of a random
sample S with probability law S ~ Pp (‘survey design’), a common estimator
for a finite population total is the Horvitz-Thompson estimator (HT) [Horvitz



and Thompson, 1952]. If all groups, to whom an element of « is attributed, are
represented in s, the HT of the joint likelihood (2.9) is

N .
— N 1 W
LL(y,7,S;8,0% p.\) = iz Bs(0) log(c?) — log (det ) — %’YTE*I'H

i]lg(i) ;- (@202")2 +log (W)) 1A
- z (2.10)

where w; are the design-weights, i.e. the inverse inclusion probability w; =
Pp(i € S)~!. The HT is known to be design-consistent under fairly general
conditions on Pp [Chauvet, 2014]. If not every element of v has an attributed
unit in the sample s, the HT estimator in (2.9) cannot be evaluated.

In that case, if a plug-in version of (2.9) is used, the term C' (cf. Equation
2.12) scales up to a population estimator whereas the subvector v, and the
corresponding covariance matrix ¢ are only representants of a hypothetic pop-
ulation of size |s| =: n. This means, the plug-in version for B, B, (Equation
2.11), has not an adequate size relative to C. In that case, the design weights
should be rescaled such that they sum up to n instead of N. In that way, the
size relation of terms

By := —logdet X — %7?2;175 (2.11)

and
O - Le(i — (7 —ni)? 1 Oh™yi, \) 919
-—; (@) - w; - T+0g oy (212)

for the S-sample joint log-likelihood is the same as the relation between B and
C in the finite population log-likelihood. In the following, we assume that the
design weights w; are appropriately scaled and do not differentiate between ~
and ~y,.

3 Maximization of the Likelihood

3.1 EM-Algorithm

Remember that + is not observable. A common solution for only partially
observed data is the EM-algorithm [Dempster et al., 1977], that is optimization

of Eqg (Z\E(y,S;p, Aly, S, pk,)\k) and then iteratively setting the maximizer
(,BkJth,%H,pkH,)\kH) instead of its predecessor. We get the expected HT



log-likelihood conditional on some (,@, o 5\) and y as

p,
EG (E‘\C(y7s;ﬁﬁo—27p’)\)|y7S7B75-2?ﬁ75\>:

N
_ %/ ((Z 15(3) wl> log(63) + 7T§]—17> m(ly, S: 8,52 b, A) dy+
i=1

R4

N 1
Z]ls(i) -w; - log (%8(51,)\)) - %log (detX(p)) +a (3.1)

where m denotes the conditional density of « given the observable data y in
sample S. The EM-algorithm for the set-up of linear mixed models with data
transformation is summarized in Algorithm 3.1. Note that the (expected) con-

Algorithm 3.1 EM-Algorithm for LMMs under Transformation

Require: Start values 1y, Ao, k=0
while Convergence criterion is not met do

Calculate Eg (ZZ(y, S;B,02p, MY, By 02, P )\k)
Maximize Eq (ZZ(y, S; 8,02, p, MY, Brs 02, Pres )\k> and set

(ﬁkdrl» Ul%+17 pk+1a )\k+1) = argmax EG (‘C'C(Y7 S; P, >‘)|y7 Sv /Gkv 0131 Pk )\k)

k+—k+1
end while

centrated log-likelihood is separable in the parameters p and A, which simplifies
the maximization.

The EM-algorithm is known to converge to a stationary point of the log-likelihood.
Neither the finite population log-likelihood nor its sample analogue (2.10) are
strictly concave in A, thus there are several local minima possible. The EM-
algorithm thus must be started with several different initial vectors (pgy, Ag) in
order to assure global optimality. Furthermore, Gurka et al. [2006] and Suga-
sawa et al. [2015] state for the Box-Cox transformation that h=! only achieves
approximate normality (even without recurring to a sampling process Pp) be-
cause the transformation does not map into the complete real line unless A = 0.
Instead of the ML estimator, Sugasawa et al. [2015] recommends a moment esti-
mator that reduces the skewness of the residuals which should equal zero under
the model assumptions. Other alternative estimators to maximum likelihood
(ML) for A are discussed in Rojas-Perilla et al. [2017]. However, their software
implementation becomes more difficult (in contrast to that of Sugasawa et al.
[2015]).

3.2 Monte-Carlo Integration

The integral in Equation (3.1) is hard to evaluate analytically. Therefore, an
alternative is Monte-Carlo (MC) integration: In each E-step, the random effect



G is drawn from the distribution M with density m several times, plugged into
the joint HT log-likelihood (2.10) and then the outcomes of LL are averaged.
This procedure has been proposed for generalized LMMs in McCulloch [1997],
Booth and Hobert [1999] and — for the case of survey sampling — in Burgard
and Dorr [2018]. This leads to the MCEM Algorithm 3.2. The number of

Algorithm 3.2 MCEM-Algorithm for LMMs under Transformation

Require: Start values 1y, Ao, k=0, By € N
while Convergence criterion is not met do
Sample By, times G ~ M(-|y, S; By, 0%, Prs Mk,
denote by =, the b-th realization.
Calculate

—~ MC
‘Cﬁk (y7S /87 7p7 . 7Z££ y ’7b7S /37 7P7 )

Maximize E/\Ek (y,S 3,02, p, ) and set

—~ MC
(ﬂk+17‘713+1ypk+17)\k+1) = argmaXEEk (y7S /6’ ) Ps )

Increase Byt > By
k< k+1
end while

MC samples By must increase during the estimation process in order to assure
convergence of the MCEM toward the traditional EM algorithm [Booth and
Hobert, 1999, Neath et al., 2013] Sampling from M is not trivial, though. Given
Y, the random effects are not normally distributed anymore. The conditioning
on S complicates this step even more. Hence, we discuss MC-sampling in order
to approximate M in the following.

3.3 Importance Sampling

According to Bayes’ Theorem, we have that m equals the joint density of Y
and G divided by the marginal density of Y. As the random effects are not
observable, any sampling design Pp in practice can only depend indirectly on
~ via y. In addition, the design may also depend on auxiliary information
x, z or others. These are omitted here for brevity. Theoretically, however,
the survey sampling can also depend on -, which is a common way to design
informativity in simulation studies [Pfeffermann et al., 1998, Rabe-Hesketh and
Skrondal, 2006]. In that case, the following analysis can only be considered to
be approximative. We note for Pp(S|y, ) = Pp(S|y) that the marginal density



of Y and S,

1 1
f(y,S;8,0%, p,\) = PD(S|Y)'/Rq Joma?  /2mdetsip)

N ~
1 B —(§: —x{B—2[7)* Oh™" (i, A
- exp <2’YTE(P) 17)~exp<§ Y Bon) 1ol )>d'y

P 202 y;
=: Pp(Sly) - fy (v, U; B,0°, p, \) (3.2)

can be splitted like above and thus Pp(S|y) cancels out in

_ Iy U'ﬁ, 0%, p, A)
[y, U;B,02,p,7)
X exp (log fY(y) v, U7 /6., 027 P, )\)) . (34)

The exponent in Equation (3.4) is estimated design-consistently through the
HT log-likelihood (2.10). Up to a normalizing constant,

m(yly,S; 8,0, p,A) =

(3.3)

m(3ly. S, 8,0% p,\) o< exp (LL(y, 7. 5: B,0%, p, \)) (3.5)

is a design-consistent estimator of m. This estimator allows us to contrast
random realizations v,, b = 1,..., B from a proposal distribution to be discussed
in the next paragraph with an estimator of the true sampling distribution m.

Furthermore, we can approximate the density of 4 around its mode v, due to
the second order Taylor approximation

LL(y,~.8;8,0% p,\) = LL(y, 7o, S; 8,02, p. \)—

L) CH) ey ) (36)

where H is the Hessian of £L evaluated at Y. Thus, around ~,, G is ap-
proximately normal with mean «, and covariance matrix H. This means that
a possible proposal distribution for the importance sampling is N(~v,, —H 1)
[Pinheiro and Bates, 1995]. Note that the mode and the Hessian for the pro-
posal need to be updated in each E-step k due to the dependence on the current
parameter estimates (3,03, py, \k), see the sample distribution in Algorithm
3.2.

The importance weight w}® of random sample b can then be approximated by

exp (Eﬁ(y 5, 5: 8,02, p, ))

oM = :
’ exp (=3 (v, — ¥0) T (—H) (v — Vo)) 3.7
~MC
W= b (3.8)

These are the self-weighted importance weights in order to circumvent the calcu-
lus of the normalizing constant [Owen, 2013]. Self-weighting yields cancellation

of E/Z—components that do not depend on -, such as det > and
P
PO ]ls(i)wiahai;y“)‘), which reduces the computational effort.



The MC-estimator of Equation (3.1) is thus

o (EL(y. 5:8,0% p Ny, 5. B,5%, . A) = Zw CLL(y, v, 5:B.0% p. )
(3.9)

The MCEM algorithm under importance sampling is summarized in Algorithm
3.3. For the optimization with respect to 7, ;, via the Newton algorithm, though,

Algorithm 3.3 MCEM-Algorithm using Importance Sampling for LMMs under
Transformation

Require: Start values B, 02, py, Ao, k =0, Bp € N
while Convergence criterion is not met do
Find

70,k = a‘rg max ‘C"C(Ya 7a Sa /6k7 UI%) plm )\k)
vy

Calculate Hy — the Hessian of LL evaluated at Yo, and B, 02, Proy Mk
Sample By, times G ~ N (g, —Hy),

denote by =, the b-th realization.

Calculate the importance weights

exp (‘E‘\C(Y77b7 Sv /Bkvo']%a P> Ak))

oMo _
exXp (—l(’Yb - ’70,k)T(—Hk)(’Yb - ’Yo,k))
~MC
MC “p
Yoo TB -mo

b=1%p
Calculate
./ ~MC
Eg (‘CEk (y7S /67 apa ) = 72"‘} ﬁ‘C ya’vaS Ba ) Py )

—~ MC
Maximize LL;, (y,S 8,02, p, ) and set

—~ MC
(ﬁk+1702+1apk+17)\k+1) = argmaxﬁﬁk (y,S IB? o, p, )

Increase Biy1 > By
k+—k+1
end while

the inverse Hessian in each optimization step would be needed. In addition, for
the sampling of G, a square root of the Hessian would be necessary to multiply
a standard normal vector by this matrix in order to get the correct covariance
structure. The calculus of both is a computational burden. Therefore, we
suggest like in Burgard and Dorr [2018], to use the approximate BFGS algorithm
suggested in Powell [1987] that generates as a by product a matrix C' such that
cCcT =—-H1



The traditional EM-algorithm increases the likelihood in each iteration step.
However, this property gets lost by the stochastic approximation of the integral
in the E-step. An implementation of the suggested algorithm thus needs to

track the estimates of Eg(ﬁﬁ) in order to assure that the random noise does not
disturb to much the optimization process. Burgard and Dérr [2018] found that
algorithm 3.3 (adapted to generalized linear mixed models) works reasonably
well for the linear case. However, tracking of the iterations became necessary
under the mixed logit regression due to noise.

3.4 Maximization

In general, maximization must be simulatneously over the complete parameter
vector (3,02, p, \). However, note that estimated expectation Eg(ﬁﬁ) is sepa-
rable into a random effect part and a fixed effects part. Thus, optimization over
p can be separated from that of the other model parameters and we have

B
M=) vy (3.10)
b=1

in any M-step. For the fixed effects component, we can use a concentrated
likelihood approach that was discussed in Spitzer [1982] and Hyde [1999] be-
cause it might happen that the full likelihood estimation problem is not well
conditioned. For the first order conditions for maxmimizing Eq(LL), we get

8EG(EZ) B & MC al . Ui — szﬁ — ziT7b —
o ;wb ;]15(2) w; g x; =0 (3.11)
aEG(Z‘Z) _i Mci]l () . (gi_xfﬂ_Z;Wb)Q_
Oo? a — “b P S8 - Wi 204
SN L) w1
e =0 (3.12)
OEG(LL) A moN-q o ~(Gi —xFB—2lv) Oh\(yi,))
an ,;wb ;HS(Z) v o2 o
N
. O*h™(yi; N)
D (i) - wi——— =0 (3.13)
i1 ayza)\

Solving Equations (3.11) and (3.12) yield for given A (noting that §; = h=1(y;; \))

N N o ol 2
B = (Z Ls(7) 'wiXiXiT> (Z Lg(i) - wi - x; - <371 -z Zwéwcm’>>
=1 = ! (3.14)

and

B N . ~ P
52 = 3" o iy 1) v (5 = x[By — aly,)" (3.15)
N . : '
b=1 > izt Ls(i) - w;



This gives the concentrated MC-integrated log-likelihood

N )
& (7 im1 Ls(d) -wi
Eq (ﬁﬁ(%S;)\)) Y= 28(2) Y log 63+
N
h= (v,
Z 15(i)w; log (5’8(yyz,/\)> + const (3.16)
i=1 i
which is maximized by the solution A to
N _ 2 B _
72]1 (i) - w; - (i — %7 By — 20 2y Wi ) Oh 1(%‘;)\)+
v AR 52 B
N
*h(yis A)
1g(i) - w; - —=—222 =0 . 3.17
2 Ms(i) wis =5 oy (3:17)

Note the similarity between Equation (3.16) and the concentrated log-likelihood
derived in Hyde [1999]: Hyde [1999] goes beyond the concentrated likelihood
derived in Spitzer [1982], but does not analyze mixed models under transfor-
mation so that he needs not use the expected log-likelihood and therefore, his
definition of the fixed effects estimator (3.14) and (3.15) differ slightly.

For an iterative solution to (3.17) via the Newton algorithm, derivatives with
respect to A in Equation (3.17) must also be taken for B » and 63 in the second
order differentiation, i.e. the derivative of (3.17). The log-likelihood is not
strictly concave in A and thus an iterative estimation process must evaluate
E¢(LL) in order to assure maximization.

4 Standard Error Estimation

In order to make inference on the superpopulation model, standard error esti-
mators of ¥ := (3,52, p, \) are required. Standard inference on the estimated
model parameters given A underestimates the true variance because the vari-
ability of A is ignored [Gurka et al., 2006]. A large sample variance estimator is
based on the information matrix of the log-likelihood and provides the Cramér-

Rao lower bound [Rao, 1992].

The observed data Fisher information I, is the expected difference between the
expected complete data Hessian and the expected outer product of the complete
data gradient [Louis, 1982]. Although Louis [1982] gives this lower bound for the
traditional EM-algorithm without MC-integration, Booth and Hobert [1999] use
that result for a stopping rule of their MCEM-algorithm. Having the importance
sample from the final EM-step, the evaluation of the MC-estimator

Iy = Fg (vifﬁ - vwﬁ(w&)T) : (4.1)

where Vi indicates the matrix of second order derivatives of the HT log-
likelihood with respect to the model parameters, is not so difficult: For each

10



simulated 7, b = 1,..., B, the derivatives of the complete data log-likelihood
is evaluated, multiplied by the importance weight wé” ¢ and cumulated. In ad-
dition, note that the matrix of second order derivatives is block-diagonal for

(AB",6%)7 and p.

Burgard and Dérr [2018] show that the provided MC-standard error estimators
by the Fisher information underestimate the standard errors observed in Monte-
Carlo studies on generalized LMMs. Our simulation studies in Section 6 show
that sometimes already the point estimation of LMMs under transformation is
so problematic that standard error estimators that do not account for bias in
the point estimators can only fail.

5 Model Predictions under Survey Sampling

In some cases, the interest of the analyst will not lie on the inference from the
superpopulation model but on prediction from the statistical model. Such an
example is small area estimation [Rao, 2003]. Whilst the empirical best predictor
in the linear case can be derived from the mode 4 of the joint log-likelihood
given the estimator (ﬁ,&z, D, 5\) [Rao, 2003, chapter 5], this is not necessarily
the case when the link function h in (2.1) does not equal the identity. Such an
example are binary data where the logit link is applied and a linear regression
is run on the linear predictor. Rao [2003, chapter 9] shows that in this case, the
expectation conditional on the observed data does not equal the mode and the
former is appropriate for prediction.

The Best Prediction (BP) for an unobserved unit 4 is the expectation of Y;
conditional the realizations for units in U and the sample S that returns the
minimal mean squared error:

By ((Yi — h(n:(3)); M)?|Y =, 5) (5.1)

which means that the conditional expectation Ey (Y;|Y = y) = Ey (h(Yi; M)|Y =
v, S) is required. If h = id, this is the EBLUP of the classical LMM. Otherwise,
note that by Equation (3.3), the density m includes the Jacobian of the trans-
formation h~! for the already observed data and thus is not necessarily normal.
Hence, by the definition of the variance, it is known that (5.1) is minimal if and
only if

Ey(Yi[Y =y,5) =h(m:(¥)) (5.2)

and the solution 4 to the implicit function (5.1) is not trivial. It is easier to

)
calculate directly the conditional prediction (5.2):
By (Y =y,8) = By (hOD)IY =y, 5)
:/ h (xiT,B +z!7; )\) -m(vly,S;8,0%, p,\)dy . (5.3)
Ra

Sakia [1990] suggests for an ANOVA Box-Cox model without survey sampling
a second order Taylor approximation of Y; around the marginal predictor of Y;,

11



namely x7'3. Sakia [1990] employs m(~|7), which is normal in that case, and
therefore simplifies calculation. However, if the integration dimension ¢ is large,
integration approximation becomes inaccurate and thus the approximation of
Ey (Yi|Y =y,U) gets worse. Furthermore, normality of m is not assured under
a complex survey design.

Rojas-Perilla et al. [2017] use a parametric bootstrap to get an estimator of
the conditional expectation. Their simplified algorithm is only applicable to
random intercepts models and under survey designs that maintain the normality
of Y =1y.

On the other hand, Monte-Carlo realizations of G and importance weights from
the last E-step are available and thus yield as empirical Monte-Carlo best pre-
dictor (in our case, also conditional on the survey realization S = s)

1

Egi|Y =y, 8 =s) =h(n:7) = 5 > h(x[B+2[7; ) - w)' . (5.4)

B
b=1

Noting that the importance sampling would also be possible if 3,02, p, A were
known and/or S = U, the suggestion yields a more flexible predictor. However,
under a non-informative survey design, the predictor is less efficient than the
parametric bootstrap estimator suggested in Rao [2003] and Rojas-Perilla et al.
2017).

6 Application to Simulated Data

In a first step, we mimic the simulation outlined in Burgard and Dérr [2018] in
order to study the estimation algorithm’s behaviour under Box-Cox and dual
transformations (rather than GLMMs).

6.1 Simulation Study
6.1.1 Replication of Gurka et al. [2006]

Data Generating Process As the suggested Algorithm 3.3 is novel in the
context of mixed models under data transformations, we first validate its perfor-
mance in a model-based simulation study. We therefore replicate the simulation
scenario described in Gurka et al. [2006]. Gurka et al. [2006] have extended the
known Box-Cox transformations in linear regression to the case of mixed mod-
els. Furthermore, they suggest a scaling procedure of the input data in order
to apply standard mixed model estimation programs given a transformation
parameter X\. They use these scaled input data and a restricted ML (REML)
approach combined with a line search for the optimal X in their simulation study.
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The DGP of Gurka et al. [2006] is described as follows:

i/d,i :5+2'I1,d,i+z2,d,i+Gd+5i7 i=1,...,5 (61)
GdNN(O,O.5), d=1,...,100 .
&, ~ N (0,0.5) (6.3)
V-1
Yo, = X A €{0,05,1} . (6.4)
logYy;, A=0

Actually, the data have a panel structure, d is interpreted as one unit that is

observed at five equally spaced time intervals named 2 q,; = % and 1,4, =

21,4 is a once realized Bernoulli variable with success probability 0.5.

Gurka et al. [2006] assume in addition a missing completely at random (MCAR)
nonresponse mechanism and delete in average about 20 % of the observations.
The nonresponse mechanism is orthogonal to the DGP and thus does not af-
fect the estimation procedure. Thus, the nonresponse mechanism only reduces
the sample size which impacts the variability of the point estimators but not
their expectation. We therefore do not implement the nonresponse mechanism.
We simulate 1,500 Monte-Carlo runs. Deviations from the reported results in
Gurka et al. [2006] are attributed to the not implemented nonresponse, different
numbers of MC-replications and other software implementations.

Results As implementation of the estimation method introduced in Gurka
et al. [2006], we estimate the transformed model (6.2) with the R-package 1me4
[Bates, 2011] using restricted ML. Like Gurka et al. [2006] and Rojas-Perilla
et al. [2017], we rescale the dependent variable by the geometric mean of the ja-
cobians in order to apply standard statistical software. The resulting restricted
ML criterion is a function of the transformation parameter and optimized us-
ing optimize() (the R-package emdi [Kreutzmann et al., 2018] uses the same
procedure). The results of the replication are summarized in Figures 6.1 to 6.4.
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We find that the proposed Algorithm 3.3 yields similar results like the method
of Gurka et al. [2006] for the transformation parameter. The random effects
variance is estimated with a smaller bias in average. However, there is a bias in
the fixed effects estimator that increases with A. This bias translates to a biased
residual variance, too. Note, however, that the quantiles for the fixed effects are
similar to that of Gurka et al.’s method. Therefore, the biased mean seems to
be a result of outliers — those outliers do not affect the estimation of A and 03
because the latter two are directly estimated from the likelihood whereas — due
to the concentrated likelihood approach — the fixed effects and residual variance
estimators are functions of \.

6.1.2 Simulation Study under Sample Randomization

Validity under the DGP In a second step, we generate data from the
process described from Equations (6.5) to (6.9) in oder to assess the consistency
under another statistical model, before going on to part three of our simulation
study, that seeks to underline the importance of survey weights to account
for the sampling randomization and uses the same DGP, too. We generate
k=1,...,1500 finite populations under the following statistical model:

Yai= (Bo+ Gao) +xi- (B +Gan1) +ei, i=1,...,200 (6.5)
(Go’d> ~ MVN (0, (0“ "12>> . d=1,...,25 (6.6)
Gl,d 012 022
gi ~ N(0,0%), o?=1 (6.7)
Yai=h(Yai,\), Xe€{0.3,1.5} (6.8)
(=1 )=
h(-,A) € { SR . (6.9)

The variance components of the random effects are thus p = (011, 012, 022)T =
(3,1,4)T and B = (Bo, 81)" = (20,2)7. We then apply Algorithm 3.3 to the
generated data without any sub-sampling from the finite population (that is, in
this step, we do not have a sampling randomization Pp and s = U and w; =1
for all i € U). After the Algorithm’s performance under the DGP is validated,
we introduce sampling randomization.

Results under the DGP  We summarize again the results of the simulation
study in Boxplots 6.5 to 6.8. Results for the dual transformation are similar and
presented in the appendix. Interestingly, the bias in the fixed effects does not
appear in this simulation study — another indicator that for there were outliers
in the previous simulation study. Rather, the introduced estimators perform
better than those of Gurka et al. [2006]. This is especially striking for the
random effects variance components. The tendency to yield better estimates
for p can already be found in the previously discussed replication study.

Validity under the Design A common simulation set-up for sample infor-
mativity is to make the inclusion probabilities a function of the random effects

16
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[Pfeffermann et al., 1998, Rabe-Hesketh and Skrondal, 2006]. However, given
the assumption Pp(Sly,~) = Pp(S|y) argued for in Equation (3.2), this set-up
would only be approximatively correct. We thus recur to the following sampling
mechanisms.
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The randomization process is similar to that described in Burgard and Dorr
[2018]: The X; > 0 ¢ € U are only realized once and used throughout in each
simulation run. As a non-informative sampling under the model, we choose a
mps sampling design with the inclusion probability for unit ¢ proportional to
the auxiliary, m; o z;. For the informative sampling, we set m; o< f(g;) where
f is a monotonic decreasing function in its argument. The sample size is fixed
and equals 200, and is drawn from a finite population U, |U| = 2000 generated
like in Equations (6.5) to (6.9). That is, we oversample units with negative
residuals. Precisely, we have

16, if g, < =2
4, if ; € [-2,0)
R — R, €)= . . 6.10
f Je) 1, ife; €10,2) (6.10)
0.25, else

Without accounting for the sampling design, the estimator 5\, which aims at the
restablishment of normality assumptions, will correct for the small values that
are oversampled even for an underlying skewed distribution. Thus, the estimator
is assumed to be biased, though the sign is a priori unclear and depends on the
other parameters of the DGP. \’s bias in turn has an impact on the estimation of
both fixed effects (B, 1) = (20,2) and the variance components p = (3,1,4)7
and 02 = 1. Hence, without accounting for the (under the model) informative
survey-design, the restricted ML-estimators are presumably biased.

In order to underpin the importance of survey weights under informative sam-
pling, we estimate the statistical model with and without survey weights. The
unweighted estimation is an application of Gurka et al. [2006].
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Non-informative Design Like it was outlined in the previous section, the sur-
vey weights do not add any additional information to the statistical model of the
finite population. Hence, it is not surprising that the results resemble those un-
der the DGP, see Figures 6.9 to 6.12. Again, results for the dual transformation

are similar and reported in the appendix.
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Informative Design Finally, we present results for the regression parame-
ter estimators when the data is gathered from a survey under a complex and
informative design. The corresponding boxplots are Figures 6.13 to 6.16. In-
terestingly, we find that the estimated transformation parameter is estimated
unbiasedly for both, the weighted and unweighted regression (cf. Figure 6.13).
For the variance components, in contrast, the bias already found in the non-
informative design (for A = 1.5) has aggravated. However, the bias is more
extreme when the survey design is not accounted for.
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The impact of survey weighting, though, is obvious for the estimation of the
fixed effects and the residual variance - parameters that were estimated unbi-
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asedly under a non-informative design (cf. Figures 6.12 and 6.10). For these
estimators, bias can at least be reduced using the suggested survey weights, for
A = 0.3, it is even removed. This is a striking argument to account for survey
design in regression analysis, be it for causal inference, where especially the
slope parameter 3; matters, or predictive analysis.

7 Numerical Aspects

The MCEM-algorithm does not necessarily increase the log-likelihood in each
iteration step [Booth and Hobert, 1999]. In the simulation studies, we noticed
that the MCEM algorithm is much unstabler for the LMM under Box-Cox and
dual transformations than for GLMMs. Like for the binary case in Burgard and
Dorr [2018], we keep track of the estimated expected log-likelihood in order to
prevent the algorithm to exit the environment around an optimum.

Furthermore, we observed that a good choice of starting values is more impor-
tant than for the GLMM case because the log-likelihood is not globally concave.
This also holds for the inital guess of the square root of —H ! and the optimal
4 in Powell’s [1987] algorithm. Therefore, we first optimize the log-likelihood
without survey weights and use the resulting model parameter estimates as
starting values for the MCEM-algorithm.

1

For the square root of —H ™" and the mode 4, we start in each MCEM-step
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Powell’s [1987] gradient descent algorithm with

B
Yo = Zwé\lcﬁ’b (7.1)
b=1
and
_1\Y/2 1
(B = 1 72
VA LL(yo)l

where ||V7£/\£(70) || is the Eucledian norm of the gradient of LL with respect to
the random effects « given the current parameter estimates. Note that the con-
ditional expectation (7.1) depends on the importance sample of random effects
in a given Monte-Carlo E-step and that the importance weights also depend on
the current parameter estimates, please confer Algorithm 3.3.

8 Discussion

In this paper, we have modified the Monte-Carlo EM-algorithm elaborated in
Burgard and Dérr [2018] for application to Box-Cox and dual transformations in
LMMs under survey sampling. In a simulation study, we studied the feasability
of the introduced algorithm and showed the importance to incorporate survey
design in regression analysis. At least for a small to moderate number of random
effects, we found that the computational effort is manageable and the results
are competitive to the established, unweighted estimators.

There are still numerical challenges in the algorithm and with a look on opti-
mization, it would be desirable to find methods that turn the proposed MCEM
algorithm more stable and less sensitive to the starting values. Perhaps, a better
(and computationally feasible) proposal density for the Monte-Carlo integration
could improve the estimation results.

We think that the proposed algorithm has the potential to become an impor-
tant estimation method in regression analysis: Many variables of high (micro-)
economic interest such as income, wealth or returns of sales are skewed and this
property needs an adequate handling in regression analysis. Furthermore, most
of these variables are gathered in surveys with a complex sample design such
as the German Socio-Economic Panel, the Italian Survey on Household Income
and Wealth, the American Consumer Expenditure Survey or the international
Household Finance and Consumption Survey. Our simulation study suggests
that weighting could be a good way to account for such designs.
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Figure C.2: Estimated Residual
Variance — Dual Transformation —
Informative Design
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Figure C.4: Estimated Fixed Effects — Dual Transformation — Informative
Design
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