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Weather Shock, Agricultural Productivity and
Infant Health: A Tale of Environmental Injustice∗
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Abstract

We study how income shock affect due to weather shock causally impacts the birth out-
comes. We selected households depended directly on agriculture due to their extreme
vulnerability to temperature and rainfall shocks. We find large efficiency loss attributed
to weather shock for major food crops to the extent of 20%. However, we find that
access to technology provides resilience against weather shock, therefore, causing the
heterogeneity in vulnerability across farming households. Based on it, we designed
the agriculture-household model, which predicts that health outcomes of child is depen-
dent on income shock due to change in weather conditions. We tested the hypothesis by
introducing weather shock in the cropping season before the conception of child to elim-
inate the confounding effect of direct impact due to extreme weather conditions. We
find that weather shocks in cropping season, increases the likelihood of child mortality,
low birth weight, and birth size. We further find that access to technology, financial
tools, and economic security net reduces the impact of income loss due to weather
shock. Our results suggests that access to resilient capabilities leads to heterogeneous
impact across farmer households causing environmental injustice. Further, our find-
ings provide insights into the policy design for long term shift in weather patterns due
to climate change and stresses on the inequality in resilience against extreme weather
events
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1 Introduction

Fetal Origin hypothesis identifies income shock as an important component for the
maternal health and birth outcomes, especially in the settings of low income (Almond
& Currie, 2011). Multiple studies documented the dependence of birth outcomes on
economic status of the household, in the context of positive and negative income shocks
(Camacho, 2008; Amarante et al., 2016). Extreme weather shocks are considered as an
important determinant for income loss across climate vulnerable production units (Dell
et al., 2014, Somanathan et al., 2021) and health outcomes of newborns (Deschênes et
al., 2009) .However,limited empirical research examined the impact of income shock
due to extreme weather conditions at the fetal origin (Maccini & Yang, 2009; Hsiang &
Jina, 2014). Our paper shows that income loss due to weather shocks can deteriorate
the fetal conditions resulting into poor birth outcome. We isolated the confounding
effects of direct impact of extreme climate on health of newborns by assigning the
shock at cropping season preceding the conception of child. We further highlighted
the importance of agriculture technology, financial tools and economic safety nets as
capability enhancing factors against extreme weather conditions. Inferring from the
outcomes, we establish differential impacts due to variation in access to resilient fac-
tors against income and weather shock, henceforth, contributing to the vast literature
of environmental justice in development economics (Banzhaf et al., 2019)
In particular, we investigate the impact of income shock due to extreme weather condi-
tions amongst the household dependent on agriculture as the primary source of income.
We selected the farming household due to their maximum vulnerability to the weather
shocks in terms of income loss (Nordhaus, 2013). Further, our focus on the rural
settings of India is motivated by the concentration of excessive child mortality in the
region(Deaton, 2008; Drèze et al., 2020). Rural regions of India are primarily de-
pendent on agriculture for income which further determines the expenditure on child
health care (Jensen, 2000). With poorer health infrastructure in amalgamation with
low economic security net, any shock to agriculture income can deteriorate the birth
outcomes. Henceforth, investigation on the indirect linkage between weather shocks
and child health stipulates to be crucial. Furthermore, in the context of global rise in
temperature, it is essential to identify the impact of weather shocks and measure the
difference in the vulnerability.
How do weather shock impacts the production of major food crops? How does it
transmit to income shock leading to health outcomes of newborn? Does access to
agriculture technology reduces the impact? To study these questions we develop an
equilibrium model based on Agriculture-Household model. When the income of the
household and share of consumption depends on the agriculture production (due to
subsistence farming practices), the shock to production affect the expenditure on es-
sential commodities like health of children. Hence, in equilibrium, expenditure on
consumption and health including leisure time affects due to reduction in income due
to weather shock. Because of the limited access to other income sources and inef-
ficiency in market (markups as wedges between Marginal cost and price of inputs),
any loss in production, with prices of output held fixed, the expenditure on maternal
health can reduce 1. This may lead to poorer birth outcomes, causing higher likelihood

1With loss in income, the income pie reduces for household, hence, shifting the expenditure towards
essential goods. Health expenditures generally take toll due to lesser priority on health outcomes (Duf-
flo, 2000;Rosenzweig, 1990 ). Rosenzweig’s health care expenditure model explains the mechanism of
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of child mortality. Therefore, in equilibrium, weather shocks in the cropping season
preceding the conception of child and the birth outcomes are related, proceeding in
the same direction. Henceforth, any loss in production, with limited other income
sources and poor public health care services can reduce the likelihood of ”good” birth
outcomes.
To test the implications of our model, we examine the effects of rainfall and tem-
perature shocks, on the efficiency loss in the production of major food crops. We
also estimated the impact of adoption of resilient agriculture technologies as inputs
on reducing the impacts of extreme weather on production. We combine rainfall and
temperature data provided by NASA-GIS, USA, with the ICRISAT macros data to
estimate the loss in efficiency attributable to extreme weather. Our data expands
between year 1970 to 2011 across 640 districts of India. We adjusted for new district
formation in the last three decades by restricting to merge across 1970 district bound-
aries. Henceforth, to estimate the implications of income loss due to weather shock
on the birth outcomes, we combined the rainfall and temperature data at the district
level with DHS-India data. We used the information on child mortality, birth weight
and birth size for all the births occurred between 2010-16. We defined rainfall and
temperature shock as values less than 2Oth percentile or more than 80th percentile.
Our definition of weather shock is consistent with the previous works in impact of
extreme weather conditions (Deschênes & Greenstone, 2011; Corno et al., 2020). Our
main results indicate that, as predicted, extreme weather events reduces the efficiency
of major crop’s production. For rice production, the extent of efficiency loss is 20.2%
, whereas for wheat and maize the loss is 18.3% and 24.2%. Further, we estimated
the extent of loss in productivity of wheat and rice due to extreme weather conditions
during the respective months of cropping. We find that excessively high temperature
during the transplantation month for rice , that is, July, reduces the productivity by
10.7%, and excessively high rainfall during the sowing period, that is, May and June,
reduces the productivity by the margin of 12.7% and 6.7% respectively. Similarly, for
wheat, higher temperature during sowing months, that is, October and November,
reduces the productivity by 6-7% and lower rainfall in the harvest season reduces the
productivity by 16%, henceforth reducing the farmer’s income. However, the effects
are not uniform as the districts with access to technologies like irrigation and High
Yielding Variety seeds reduces the impact as they provide resilience against extreme
rainfall and temperature.
After establishing that extreme weather events, impacts the agriculture productivity
and efficiency, we examine an important implication of such phenomenon: poor birth
outcomes in agriculture based household. We examined the indirect impact of ex-
treme weather events on birth outcomes by matching the weather conditions in the
crop season preceding the conception of child. This eliminates the direct impact of
extreme weather events on fetal growth and causally estimate the impact of income
loss. We find that occurrence of extreme weather events, causing the income loss, leads
to increase in the child mortality in the range of 1.04% to 1.5% (depending upon the
shocks, such as extreme rainfall or extreme temperature). To understand the mecha-
nism of increased child mortality, we estimated the impact on birth size and weight,
signaling the fetal growth. We find that the birth weight and size is influenced by the
extremely High-Low temeperature and rainfall in the cropping season preceding the
conception. We eliminate any confounding effects occurring due to spatial heterogene-

income shock to compromise at child’s and maternal health
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ity and overall economic development of the state by introducing suitable fixed effects
in the econometric model.
We further studied the heterogeneity in impacts across households, differentiating with
respect to access to technology as inputs, financial tools, and economic safety nets.
First, with access to technology like irrigation, the impact of extremely low rainfall, re-
duces the child mortality by 3%. Second, households with access to safety net scheme
like Below Poverty Line (BPL) card reduces the child mortality in interaction with
extreme weather events by 1.8% to 3.38%. We also investigated the role of televi-
sion as resilience technology as it plays an important role in knowledge dissemination
about choice of crops, inputs, and weather events; also known as Extension Services in
Agriculture (Krishna & Naik, 2020). We find that access to television do reduces the
likelihood of child mortality caused due to income shock caused by extreme weather
events. This result established the existence of environmental injustice as the access to
resources makes one group lesser vulnerable compared to others for the same weather
shocks. Additionally, these results can be interpreted as the economic mechanism
causing the impacts. First, we show that access to simple technology like irrigation
can reduce the likelihood of child mortality, as it reduces the crop loss by reducing
the negative impact of weather on its productivity and efficiency. Second, access to
free ration/food scheme (or any lump sum transfer to household) allows household to
smoothen the consumption, ex post income shock. It allows household to continue the
optimal care for mother during the maternity period. These mechanisms also high-
lights the role of policy intervention to protect the vulnerable group as weather shocks
becomes more frequent due to climate change.
Our paper is related with three main strands of the literature of the economics. First,
how income shock determines the fetal origin (Van den Berg et al., 2006; Rosenzweig
& Wolpin, 1986)and weather shocks causing the income loss (Deschênes & Greenstone,
2011; Nordhaus, 2011; Rosenzweig & Udry, 2014), especially in developing countries
(Gupta et al., 2021; Costinot et al., 2016 ). There is only limited evidence about how
income loss due to weather shocks affect the health outcomes in the household (Mac-
cini & Yang, 2009. The existing literature suggests that weather shocks can directly
impact the fetal health, however evidence are scarce on the indirect effect. We con-
tribute to this literature by showing that, where agriculture is the primary source of
income, weather shocks can result in substantial loss to birth outcomes, including child
mortality, low birth weight, and size. These findings suggest that changing weather
conditions can shock the household ability to spend on maternal health, due to income
loss, causing distress in birth outcomes.
Second, this paper fits within the broad body of research in environmental justice which
focuses on the vulnerability to weather shocks and climate-based disaster originating
from social and economic inequality. Much of these studies focused on inequality in
exposure to air pollution and disparity in the benefits from regulations (Sadd et al.,
1999; Bento et al., 2015). A growing part of the literature has explored the influence
of weather shocks in forced migration across globe and livelihood loss associated with
it (Deschênes & Moretti, 2009; Kubik & Maurel, 2016). Additionally, studies shown
that economic activities like mining and hazardous industry have differential impacts
based on the spatial distribution of population based on economic and social status
(Viscusi & Hamilton, 1999; Martinez-Alier, 2001). In this paper, we show that weather
shocks can significantly affect the agriculture-based households with minimal resources
as inputs in production. The differential in impact is an example of how differential
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access to climate-resilient technologies, caused due to severe income inequality, can af-
fect the livelihood. Additionally, our findings show that availability of public-facilities
and economic security net can smoothen the consumption of household, vulnerable
to weather shocks. Hence, understanding the role of weather resilient factors can
contribute to policy for achieving environmental justice: for example, our framework
suggests that access to technology for farmers, free food, and extension services like
communication can minimize the impact of weather shocks on the consumption and
health outcomes.Our findings could not explore other climate adaptive tools like crop
insurance, storage rooms, transportation, and subsidies for technology due to limited
information. However, our findings emphasize on the role of adaptation capabilities
and environmental injustice due to income inequality between farmers.
Third, our results contribute to the large economic literature that investigates the role
of income shock to the household on health outcomes. Expenditure on maternal and
child health are sensitive to income of the household, specially the poorer households
(Bhalotra, 2007; Osendarp et al., 2021) . Henceforth, despite the ineffective social se-
curity policies in developing country setup, it creates a safety net against the economic
downturn due to income shock, preventing poor health outcomes (Lagarde et al., 2007;
Handa et al., 2016) . Additionally, adoption of modern technology in agriculture, re-
duces the vulnerability against weather shocks, hence, reducing the negative income
shock (Emerick et al., 2016). However, the access to technology is restricted to income
of the household in absence of subsidy to inputs, hence expanding the vulnerability to
a larger number of households in the developing country setup. We show that income
constraint reduces the adoption of technology, leading to higher losses in agriculture
production. Households facing tremendous loss, reduces the consumption of food crop,
leisure time, and health outcomes of income. We studied two period model, where the
income is gained at time before the conception of child, therefore, eliminating the di-
rect impact. The phenomenon has a long run implications for farm-based household
due to increasing frequency of weather shocks in amalgamation with poor infrastruc-
ture and slow pace of diffusion in agri-based technology in India and other developing
countries.
The remainder of paper proceeds as follows. Section 2 provides background information
on vulnerability of agriculture sector to weather shocks, negative income shock,differential
access to adaptation technologies, impact on child health, and environmental justice in
India. Section 3 illustrates the model. Section 4 describes the multiple datasets used
in the analysis, and Section 5 explains the empirical strategy. Sections 6 and 7 show
the main empirical results and provides robustness checks. Section 8 brings additional
results to explain the mechanisms. Section 9 concludes.

2 Background

In this section, we discuss the consequences of weather shocks on agriculture around
the world, with special focus on developing country’s setup. Additionally provide in-
sights into the differential impacts due to variation in the capability to minimize the
shock.
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2.1 Weather shock and Agriculture Productivity

Studies in economics find agriculture to be the most sensitive to weather shock and im-
pacts the livelihood of a large section of population, mostly dependent on agriculture
in developing countries. This may lead to a potential threat to national food security
and hard push towards poverty line. Literature in environmental economics, finds
significant loss to major crops due to extreme temperature and rainfall in India and
other developing countries. The extend of loss ranges between 3% to 5%, especially
for food crops like wheat and rice (Gupta, 2017; Stern, 2006). Global projections by
Stern Review and IPCC report finds that crop loss will lead to severe hunger, partic-
ularly in the developing countries. However, the projections and impact assessment
for weather shocks are bound to uncertainty due to econometric complexities arising
from non-linear nature of mathematical relationship. Further, the sensitivity of impact
is dependent on the choice of fixed effects, therefore, causing additional complexity.
Recent literature on econometric strategy finds mixed result for impact of weather
shock on productivity of food crops, driven by choice of fixed effects and region of
study (Deschênes et al.,2009 ; Nordhaus, 1994; Gupta et al., 2017). Henceforth, the
estimation of impact of small term weather shocks and long term climate change re-
mains a puzzle, however, there is an agreement on the impacts on economic growth,
specially agricultural sector (Shukla et al., 2019; Dell et al., 2009). We contribute to
this literature by measuring the efficiency loss in production attributed to short term
weather shocks, particularly, for rice, wheat, and maize. We assumed simplistic Cobb-
Douglas production function and utilized the stochastic frontier model with gamma
distribution, as suggested by Greene, 1998 which allowed higher flexibility in terms of
parameters (Greene, 1998). We further studied the impact of weather shock to each
months in the cropping season, therefore, identified the vulnerable stages in the crop
growth. Our econometric strategy combined the framework of Ricardian (Nordhaus
et al., 1994) and fixed effect panel model (Deschênes et al., 2009). Our approach
to evaluate the impact of weather shocks on agriculture productivity provides a new
framework, which allows for monthly evaluation and better prediction for inefficiency.

2.2 Differential mitigation capabilities and extent of income
shock

Mitigation strategies plays key role in reducing the impact of weather shock, such as
technology (Carter, 1997), trade (Costinot et al., 2016), and crop-switching (Blanc et
al., 2017). For technology, carbon fertilization is proved to be effective in increasing
the yields of major food crops, specially, rice, wheat, and soybean (Nordhaus, 2013).
Trade models studied the adaptation to long-term weather shocks using the frame-
work of Ricardian model. The Ricardian trade model stated that each region should
specialize in the production activities which are most suited to their environment, and
engage in trade to fulfill the requirements of other goods. Long term weather shocks
may shift the productivity of some crops to selected regions of the world, hence adop-
tion of efficient bilateral and multi-lateral trade can reduce the overall food shortage.
However, the differentiability to adopt can induce inequality in the impact of weather
shocks. This phenomenon is studied in the economic literature utilizing the frame-
work of environmental justice. It states that the socio-economically weaker sections
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of society are more vulnerable to the wrath of extreme weather conditions. From the
perspective of Macro-impact, developing and under-developed countries faces higher
losses in the event of weather shock due to minimal availability of resources. We ex-
tended the notion of environmental justice by studying the household-level variation
in impacts, utilizing the inherent income inequality amongst the farmers (Reardon et
al., 2000; Himanshu et al., 2013). We studied the adaptation capabilities as function
of access to modern agriculture technology like irrigation, financial tools like saving
accounts in banks, and economic security nets. Variation in access to resilient fac-
tors generate gradient in the income shock, leading to heterogeneous consumption
smoothening. Henceforth, we designed theoretical model to understand the impact
on health outcomes of newborns in farm-based households. Empirical results suggest
that farm-households with minimal resources are significantly more vulnerable to in-
come shock, caused due to loss in production, attributed to weather shock. Our work
extended the notion of environmental justice to indirect impacts amongst the most
vulnerable groups.

3 The Model

In this section, we defined the statistics to measure the weather shock. Further we
develop a simple equilibrium model to study how weather shock culminate to health
outcomes of newborns via income loss. We show under what assumptions, access to
technology and social security net, reduces the impact, hence leading to inequality for
income shock.

3.1 Metrics for weather shock

We utilized the framework of weather measurement by Deryugina & Hsiang where it
is described as joint probability distribution over a number of climate variables. We
defined the state of weather as multivariate distribution, denoted by the vector X :

X = {temperature, rainfall, humidity}

where X is extracted randomly from a multivariate distribution function fx().
Hence, we defined weather outcome as probabilistic metric, however, attached no para-
metric distribution to it. The parametric functional distribution is not required as we
aim to introduce a metric for weather shock, non-parametrically.
We defined the weather shock as the statistical distance. The statistical distance mea-
sures the difference between the average weather outcomes to realized weather. Farther
the distance, the extent of extremity increases. Unlike Euclidean measure of distance,
statistical distance adjusts for the variation and co-variation between variables in a
multivariate problem. Hence, we used the Mahalanobis distance (Mahalanobis, 1936),
as the metric, to measure the weather shock. It is a scale invariant metric, which
measures the distance between a point, say xεR3, origination from the multivariate
distribution fx(), and the mean of the distribution (µ). The distance is adjusted for
variation in each random component, by adjusting with variance-covariance matrix,
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Ω. The statistical distance, defined as, Λ,

Λ(X,µ) =
√

(X − µ)TΩ−1(X − µ)

where Λ 2 measures the distance of weather outcome (set of components)from the
mean. Since, mean weather patterns varies by months and location, we add super-
script {i, t} to denote month (t) and location (i). Henceforth, we will use Λit to denote
the extent of weather shock and utilize in the household-level equilibrium model.

3.2 Setup for Agriculture-Household Model

There is a unit mass of households with agriculture as primary source of income and
expects child-birth. Maternal and child health-care expenditure depends on the income
attributed to profits from cropping season corresponding to period of child conception.
Each household decides the share of expenditure on market consumption, subsistence
consumption, leisure, and maternal-child health-care. We design the equilibrium with
two different specifications; first, Cobb-Douglas utility with Cobb-Douglas technology
function, second, CES utility and technology function.
Specifications for Scenario 1,
Preferences- Households have non-constant return to scale Cobb-Douglas utility, de-
pend upon subsistence consumption (c), market consumption (m), newborn health
outcomes (h), and leisure (l).

U(.) = cγ1mγ2hγ3lγ4

Income- Household earn income from agriculture production (y) adjusted for sub-
sistence consumption and cost of production (K) , lump sum transfer (τ), and wages
(W ) from non-household labor supply (z).

I = Py(y − c)−K + τ +Wz

Production Function- Households produce food crops assuming Cobb-Douglas non-
constant returns to scale function. Input demands include land (θ), technology from
other sectors (xj), where j denotes sector, and labor (L). Production function is
specified with productivity gain from each input and vulnerability to weather shock
(λ).

y = (Aθθ
λαθ

)β1(ALL
λαL

)β2
∏N
j (Ajxj

λαj
)βj

Cost- We assume inefficient markets, therefore, introduce markups (µs), with the prices
of inputs.

K = rθ(1 + µθ) +WL(1 + µL) +
∑N
j=1 Pj(1 + µj)xj

2Assuming the multivariate distribution to be Multivariate Normal, then Λ follows a special gamma
distribution, known as Chi-Square distribution. However, we are measuring it without assigning any
distribution to weather, as it restricts the estimation.
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3.3 Optimal choice of inputs under weather conditions

Optimal allocation for inputs are based on the price, resilience against weather shock
and the extent of weather shock3. On solving the partial equilibrium for proft maxi-
mization, we get the allocation as (Proof in Appendix)

xj∗ = βjPiyi/Pj(1 + µj)
θ∗ = β1Piyi/r(1 + µθ)
L∗ = β2Piyi/W (1 + µL)

The allocation in the imperfect market states that higher markups on the technology,
land, and labor influences the choice of inputs, for a given amount of output. Outputs
are influenced by the productivity adjusted for weather conditions and sensitivity
towards it, hence any change in the λ will induce producers/farmers to adopt better
technologies. However, higher prices will inhibit the adoption of weather-resistant
inputs, causing differential loss of productivity. Henceforth, under the circumstances,
farmer may exit the market or face reduced profits. Additionally, by increasing the
price, a farmer may reduce losses, however, differential impact across farmers will not
allow the price rise. The profit equation states dependence on weather shock, higher
shocks, reduces profit, however differentially, depends on access to resilient inputs.

π = Py[
Aθ
λαθ

AL
λαL

∏ Aj
λαj

]1/β1+β2+
∑

βj −K

Further cost minimization problem finds that unit cost of produce depends on the
weather shock, where the unit cost is expressed as (Proof in the Appendix),

K = A−1(1 + µ)λαL+αθ+
∑

αjrβ1W β2
∏
P
βj
j

where A is geometric mean of individual input’s productivity and µ is geometric mean
of markups charged by input providers.
Proposition 1 - Signification deviation from mean weather conditions reduces the over-
all productivity. The effects vary according to the accumulated capital of farmers and
the markups charged by the input suppliers. Cost of production increases following
the power law, with respect to extreme weather conditions and sensitivity of inputs.
Proof: See Appendix
The goal of the proposition is to show whether adverse weather conditions affect the
profits of farmers or increases the overall cost of producing equal amount of outputs.
In particular, adaptability to extreme conditions depends on the accumulated wealth,
hence small holder farmers will bear the maximum cost of weather shocks. It predicts
that cost of the production will increase as extreme rainfall and temperature will force
farmers to adopt high-end technologies with minimal vulnerability. However, the price
of technology and imperfect markets will be a major barrier for wider acceptance.
Further, it finds that labor requirements will also increase as their productivity is
compromised amidst the extreme weather conditions (Somanathan et al., 2021).

3The αs are the sensitivity of each unit of inputs to weather shocks, defined through Mahalanobis
distance λ. Zero sensitivity signifies nil vulnerability to weather shock, the values vary between [0,∞]
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3.4 Extreme Weather, Income Shock, and Newborn Health
Outcomes

Post establishing the income loss due to weather shock, we switch to household utility’s
maximization. The optimal allocation yield an important relationship between health
outcomes and loss in agriculture due to weather shock. This also establishes the impor-
tance of weather resistant technologies to reduce the impact. However, agri-household
models assume that consumption is not completely dependent on the agriculture out-
put due to access to labor markets beyond household farms. Generalized results, with
strong correlations between consumption and production, provides simultaneity, which
results in higher complexity to estimate the parameters. We are following the gener-
alized approach where perfect labor and input market is not assumed. Previously, we
introduced markups to model the imperfect market.
The utility maximization yielded relationship between child health outcomes and in-
direct impact of weather shock via income loss, can be specified as:

H = γ3[Pyy +W (l − z) + τ/Ph(1− γ1)]

Comparative Statics for Health outcome states the relationship between change in
health of child with respect to change in agriculture output. Additionally, health
outcomes are also function of wages and outside household labor supply.

∂h
∂λ

= ∂h
∂y

∂y
∂λ

Proposition 2 - The health outcome of newborn is indirectly related to weather shock
through production loss in season preceding the conception of child.
Proof- Detailed Proof in Appendix
This proposition predicts the impact on child health due to production loss in cropping
season before the conception of child. Choice of duration for production shock is very
critical, as the, weather shock during pregnancy can result in direct effect to the fetal
growth, hence, difficult to isolate the indirect effect. This proposition also states that
access to weather resistant inputs play key role in smoothening the expenditure on ma-
ternal and fetal health, however, from Proposition 1, we proved that cost of production
also increases. Hence access to perfect market for output is important to compensate
for the increased input cost. It presents a trade-off between loss in production and
higher input cost in the context of weather shock. In developing countries like India,
access to output, input and , labor markets is not equally distributed amongst the
farmers (Manjula, 2021). Further, the health state function emphasize on the lump
sum transfer (τ) to the farmers. Access to financial tools like banking services reduces
the inefficiency in the transfer, hence, improving the overall economic state of the
household, specially, during the income shock occurring due to loss in production.
Further we investigate the equilibrium with CES utility and Production function. De-
tail proof in Appendix.
Utility function

U = (γ1c
σ/(σ−1) + γ2M

σ/(σ−1) + γ3h
σ/(σ−1) + γ4l

σ/(σ−1))σ−1/σ

And, Production function,

y = (
∑
βjx

η/η−1
j + β1θ

η/η−1 + β2L
η/η−1)η−1/η
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4 Data and Descriptive Statistics

In this section, we describe the sources of data that we exploit to test the main pre-
dictions of our model in the context of India. All data sets used in the analysis are
summarized in the Appendix B.

4.1 Agriculture Productivity data

In order to establish loss in efficiency in production of major food crops due to ex-
treme rainfall and temperature, we utilized the panel data consisting of information
on production of major crops at the district level. The panel data is provided by Inter-
national Crops Research Institute for the Semi-Arid Tropics (ICRISAT), spanning for
five decades between 1966-2011. The data set is known as ICRISAT-Macros, where
the detailed information on crop production, prices, inputs usage, labor demand, and
wages are provided at the district level. This data adjusts for the changing bound-
aries of districts in the five decades by superimposing the collected data on the 1960
district level map. This provided continuous and comparable data, resulting into a
balanced panel. Rainfall and Temperature data is merged to the ICRISAT-Macros at
the district level for the period between 1966-2011. We utilized the information on
production for three major food crops, that is, wheat, rice, and maize for estimating
the inefficiency associated with weather conditions in each month of cropping season.

4.2 Birth Outcome data

Our main data source is the Demographic and Health Survey (DHS). DHS are nation-
ally representative, household level surveys, carried out in the developing countries.
For analysis in India, we utilized the National Family Health Survey-IV for 2015-16
available at district level. It provides information for birth outcomes and child mor-
tality for 650 districts, born between 2010 to 2016. Due to absence of geo-coded data,
we merge the rainfall and temperature shock at the district level.
In the survey, the information on woman’s pregnancy history and child mortality is
collected retrospectively during the woman’s interview: women are asked to recall age
at birth, month, and year of child birth. Additionally, the survey collects information
on birth size and weight. Birth size is based on the memory whereas birth weight is
collected from the birth cards, provided in the institutional birth. Hence, informa-
tion on birth weight is biased towards those families who can afford birth at clinic
or hospital. We adjusted for the bias in the model specification, discussed in details
in the subsequent sections. Further, information on women is restricted to the age
group 15-49, which is the fertility age group for woman. The birth history of women is
restricted to ever married sample, which may lead to bias, but we expect not to cause
significant bias. Trends in child mortality vary in the time period 2010-16, which is
adjusted in the model specification.
Prior empirical evidence has indicated that income shock is associated with child mor-
tality and poor health outcomes of newborn (Case et al., 2002; Roseinzweig & Schultz,
1983; Lindo, 2011). More generally, income shock to the household may reduce the
consumption of food, health expenditure, and leisure time attributed to the budget
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constrain. This increases the dependency on the lump-sum transfer and public pro-
vision of health infrastructure in the region. We aim to understand the mechanism
of income shock associated with weather shock. Since, agriculture-based households
are most vulnerable to weather shock, with respect to income loss. We focus on the
regions producing food crops as it determines the subsistence of level consumption.
Finally, our sample consists of 11,422 births across food crop producing districts. We
estimated the infant mortality across the agriculture household based on the posses-
sion of land size. Higher mortality is observed in the farming households with land
size less than 1 acre. The mean birth weight and size is higher in small and marginal
farmers 4.

4.3 Weather Data and Construction of Weather Shocks

To examine how household economic conditions attributed to the weather shock affect
the child mortality, where we follow an approach that is widely used in the environ-
mental economics (Deschênes et al., 2009). We used local variation in the rainfall and
temperature as a proxy for weather conditions. Extreme rainfall and temperature is
an exogenous event that has meaningful effects on the productivity of crops, which
affects the budget constraint of household dependent on agriculture. Droughts, floods,
and heat waves destroy the crops, specially, to those who do not have access to climate
resilient technology and other financial tools. Non-access to savings and crop insurance
constraints the budget of household.
To construct a measure of extreme weather events, we use rainfall and temperature
data produced by the National Aeronautics and Space Administration (NASA)- GIS.
The data contains meteorology and solar related parameters enumerated from mon-
itoring and innovation energy system. The system provides access to daily average
data which is geo-coded. The resolution for data for a specific site is 0.5*0.5 degree.
The meteorological data being provided by the assimilation models. It utilizes the
observations from Modern Era Retrospective-Analysis for Research and Application
(MERRA-2) and GEOS 5.12.4. We extracted the data using R-studio. We designed
an algorithm utilizing the spatial tools provided in the R-library. Due to lack of geo-
coded data in the DHS-India, we merge the data at the district boundaries level.
The existing economic literature implements a wide variety of methodologies to con-
struct measures of rainfall and temperature shocks. Here, we adapt an approach used
by Deschênes et al., 2009 and define extreme rainfall and temperature for each district
as observations above or below the 10th percentile. We average the daily weather ob-
servations at the month level as the birth information is provided at month-year level
in the DHS. The definition of extreme weather utilized in the paper is appropriate
for the research objectives. First, our rainfall and temperature shock, has significant
impact on crop yields. Second, the measure of weather shocks is extreme observations
of temperature and rainfall, defined using the local conditions for each district. These
events are likely to influence the crop productivity, hence reducing the income of the
agri-based households. Utilizing the distribution of temperature and rainfall at the
district level, all districts are likely to experience equal probability and considered as
i.i.d.Although, each district is equally likely to have experienced weather events in

4Categorization of farmers is based on the possession of land size. Classification is suggested by
Government of India
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a given month-year, rainfall and temperature varies over time, so our identification
comes from timing of shocks. However, weather events influence the birth outcomes
directly. To eliminate the direct impacts, we merged the weather shock at the crop-
ping season preceding the conception of birth. Here, we indirectly measure the weather
shock causing income loss causing the poor birth outcomes.

5 Empirical Strategy

We adopted twofold empirical strategy. First, we estimated the efficiency loss in the
production due to extreme temperature and rainfall. Thereafter, we determine the role
of climate resistant technologies in reducing the impact of weather shocks on major
food crop’s productivity. Second, post establishing the impact of extreme weather on
crop productivity, we examined the indirect impact of weather shocks on the birth
outcomes of agri-based households, via the income loss. We discuss our econometric
specification below. We also discusses the threat to identification strategy in estimat-
ing the causal relationship between weather shocks (resulting in income loss) to poor
birth outcomes. Additionally, we explored the roles of selected technology inputs, fi-
nancial services and economic safety net in compensating for the income loss.

5.1 Specification for measurement of efficiency loss

To measure the extent of inefficiency attributed to weather conditions, we utilized
stochastic frontier model which measures the productivity gap. The stochastic fron-
tier model is based on the premise that no production unit can achieve the maximum
technological frontier and the deviation from it is attributed to the inefficiencies as-
sociated with each unit (Greene, 1990; Belotti et al., 2013). In our specification, we
are interested in the extent of inefficiencies caused by the weather conditions. We
conducted separate assessment for each crop and measured the inefficiency with re-
spect to the rainfall and temperature in each month on respective cropping season.
Our empirical model is a Cobb-Douglas Production function with controls for state
level variation and state-specific trends in productivity. The model specification is as
follows:

logyit = β1θit + β2  Lit + vit − uit

where the logyit is log transformation of production at district i at time t, θit and  Lit
are log transformation of land and labor force in the agriculture sector. uit is the is
technical inefficiency which is expressed as the linear function of extreme rainfall and
temperature. The functional specification is :

uit = δzit + ωit

Here zit corresponds to the incident of extreme rainfall and temperature observed at
each month of cropping season. ωit is the random variable distributed as truncated
normal with zero mean and variance σ2.
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We adopted single stage Maximum Likelihood Estimation following the framework
utilized by Mastromarco & Ghosh, 2009. This approach corrects for the flaws in the
two stage MLE framework.

5.2 Specification for estimating the interaction effect of ex-
treme climate and technology diffusion

We adopted the ”New Approach” suggested by Deschênes et al., 2007. This approach
improves upon the Hedonic model suggested by Nordhaus et al., 1994, which specified
the model as cross-section which constrained the time variability in weather conditions.
This new approach can be specified as:

logyjst = α+
∑N

1 βiWjsti +
∑N

1 πiWjsti ∗ Irrigjst +
∑N

1 πiWjsti ∗HY Vjst + δj +φst + εjst

The subscript j, s, t, i represents jth district, sth state, t year and ith month. The
outcome variable yjst is production per unit land allocated in district j, state s and
year t. Wjsti represents Temperature and Precipitation. Temperature variable was
constructed by generating tertiles for each district , where the 1st and 3rd tertile is
low and high temperature. For precipitation, low and high is defined as less than
−1σ and more than 1σ respectively for each district. Irrigjst and HY Vjst represent
fraction of total cultivated land irrigated and using HYV seeds respectively. δj and
φst are district and state-by-year fixed effect. Our interest of parameters are βis and
πis. Choice of Months (N) is based on season for Kharif and Rabi crops in India.
The econometric specification includes key fixed effects which controls for the time
and space related changes in the production mechanism, which may confound the
main results. First, it includes district level fixed effects which absorbs the time-
invariant district-specific determinants of productivity for a given food crop. Second,
it also includes year indicators that control for the average annual changes in all dis-
tricts with respect to time. We also tested the model with state-year fixed effects to
eliminate any policy level changes which may influence the gradient of productivity.
Third, we included time variation in the occurrence of extreme rainfall and temper-
ature which enables the model to predict the effect of long-term changes in weather
pattern. Further, we improve upon the new approach by including month-level varia-
tion in weather patterns and interaction with technologies which provides resilience to
the crops. Inclusion of month-level variation in extreme temperature and rainfall en-
abled us to estimate the impact at various stages in cropping season. We identified the
key months which affect the output. It suggested the mechanism about how weather
shock functions with respect to agriculture productivity. We were also interested in
understanding the role of technologies as a weather-resistant inputs. The interaction
terms yielded the requirement for technology diffusion as a measure for long-term re-
sistance against climate change.

5.3 Specification for estimating the indirect impact of weather
shock on the birth outcomes

The duration of interest is the cropping season before the conception of child, the
time when the farmer gains income from the sales of food based and crops and save a
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share for future consumption. This income determines the farmer’s ability to spend on
maternal and child health-care needs during the pregnancy period in absence of efficient
labor market and lump-sum transfer to household. In our analysis we study both these
cases and estimate the health function of child following up on the Rosenzweig, 1983
model.
We convert our data into birth-year panel format. Hence, a household with n births in
k years, contributes nk observations to the sample: one observation for each birth until
the period of data collection. We merge these data with our rainfall and temperature
data in a manner that it coincides with the cropping season before the conception of
birth. For example, if a child is conceived in the month of November in 2012, the
temperature and rainfall information are related to the months of Kharif crop, that
is, from May to October as it is the cropping season preceding the conception. The
choice of duration for introducing income shock is based on idea that weather shock can
compromise the budget constraint of farmers in India, who are primarily dependent
on the production of food crops for income.
Utilizing on the birth-year panel data, we estimated the probability of infant mortality
for a child i born in household h in time period t at district d situated in state s. The
econometric specification is as follows:

Hiphtds =
∑2
j=1 βjTjd(t−1)s +

∑2
k=1 ∆kRjd(t−1)s + Ωh + ωp + Trendss + εiphtds

The dependent variable Hiphtds is the binary coded variable where 1 signifies death of
the child born at t and zero otherwise. Since we are interested in the infant mortality,
our focus is on deaths happened before 12 months of age. The variables Tjd(t−1)s and
Rjd(t−1)s are the multiple category variables stating the distance from mean tempera-
ture and rainfall for the district d. Ωh is the household fixed effects which controls for
the household invariant characteristics such as religion, caste, and assets. ωp is par-
ents related fixed effects controls for idiosyncratic characteristics of parents, specially,
mother’s health status and care during pregnancy and post-pregnancy. Trendss is
the trend variable, controlling for overall growth in the health related outcomes in the
state s. We estimated the regression with standard errors clustered at the district-year
level to allow for serial correlation in the error term, and show robustness (Abadie et
al., 2017).
With the estimation of weather shock at district level for a given cropping season, the
hazard to infant survival is identified within-location and within-year-of-conception.
The key identifying assumptions is that weather shock will in the period before con-
ception will indirectly affect the health outcomes of newborn via income loss. The
exogenous nature of weather shocks are very important as they enabled causality.
There are many unobservables that can influence the birth outcomes. The inclusion
of Trends variable strengthened the estimates as it controls for all state-level policy in
regards to weather shocks may confound the results.
Further to understand the mechanism, we utilized the similar econometric approach to
estimate the impact on birth weight and size. Birth weights are only reported for those
who delivered in a hospital or clinic, no data for in-house delivery, which required cor-
rection for selection bias. We adopted two-stage Heckman model, where in first stage
we predicted the inverse mills ratio and multiplied in the second stage, to adjust for the
selection bias. Last, we interacted the main econometric specifications with resilient
technology inputs and social security program to understand the variation in hazard
with respect to access.
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5.4 Threat to Identification

A potential threat to our identification is the direct effect of weather shocks on mater-
nal and child health. To eliminate the direct effect, we introduced the weather shock
before conception of child. This may cause additional issues as the income gained in
the cropping season during the pregnancy is not considered in the econometric strat-
egy. However, we introduced the weather shock at the cropping season 6 months before
birth to account for income missed out in the robustness check, but the direct effect
in this framework cannot be eliminated. Further, we merged the weather shock in
the current location, which could be detrimental as the mother might be residing in
different location during child birth. Meanwhile, the evidence suggests that father’s
income is important determinants of birth outcome and survival. Further, a farmer can
allocate the land to different crops in a cropping season. Unavailability of information
on land share allocation compelled us to assume the uniformity in crop plantation.
We corrected for the crop selection by selecting the districts where a particular food
crop is grown. However, food crops like rice, wheat, and maize are grown all across
India as they constitute the main staple food. Our identification is also subject to
threat from household labor force distribution including the leisure. Since, time uti-
lization information is not provided in the data, we proxy it with occupation status
of the households. We selected households dependent on agriculture for income. We
also controlled for the employment status of the mother, however, the workforce par-
ticipation rate for women in rural India is minuscule and concentrated mostly in the
household with marginal farmers.

6 Empirical Results

Our results examine the loss of efficiency attributed to the extreme weather events
in the cropping season, role of technology in reducing the crop damage and how it
transfers to the agri-culture based households as income loss. Further, we emphasize
on the indirect effect by estimating the infant mortality function in India.

6.1 Efficiency loss attributed to weather conditions

Table 2 reports our first set of results: the loss in efficiency due to weather conditions
for major food crops. We report the the summary statistics for inefficiency separately
for rice (Column 1), wheat (Column 2), and Maize (Column 3). Consistent with
our model regarding the production function and literature on impact of weather
shock on crop production, extreme rainfall and temperature during the months of
cropping season for each food crop resulted in significant loss to the efficiency. In
case of rice production, mean efficiency loss attributed to weather shock is 20.2% with
maximum loss observed at 98.4%. Higher efficiency loss is found for maize, which is,
24.%. Compared to the major food crops, the efficiency loss is minimal for wheat.
We also obtained positive coefficients for extremely high temperature and rainfall
during the months of transplantation and harvesting for rice. However, for wheat, the
negative coefficients are observed for extremely high temperature during plantation
and extremely low rainfall at harvest period. For maize, the negative coefficients are
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reported for extremely low temperature and high rainfall during the months of winter.
Unlike rice and wheat, maize is grown throughout the year in India. These results are
the foundation for subsequent sections, where we discuss about the interaction effect
with weather resistant inputs and impact on birth outcomes due to income loss for
farming households.

6.2 Productivity loss and interaction effect

Tables 3a-3d report the impact of extreme temperature and rainfall during the months
of cropping season for rice and wheat respectively. Further, we explored the interaction
effects with weather resilient inputs, Irrigation and HYV seeds. The regression results
control for district level controls and state-year controls as suggested by the new ap-
proach. Main results are reported in the column 3 for all Tables 3a-3d as they have the
appropriate specifications. For rice productivity, high temperatures during the month
of July, August, and September (Growth and Harvest period) reduces the productivity
by 10.7%, 6.02% , and 12.5%. However, on interaction with share of irrigated land and
usage of HYV seeds, the impact either reduces to statistically insignificant or increases
the productivity, with exception with low temperature, as irrigation cannot provide
resilience to it. For wheat, high temperature during the month of October, November,
and March decreases the productivity by 5.96%, 6.84%, and 6.55%. Interaction with
irrigation nullify the impact, however, with HYV seeds, low temperature the impact
remains intact. Lower temperature reduces the productivity, although, statistical sig-
nificance is slim.
Table 3b and 3d report the impact on rice and wheat productivity due to rainfall
shock. For rice, excessive rainfall in May reduce the productivity by 12.7 %, whereas,
low rainfall in the harvest months of August and September, destroys the crop and
productivity shrinks by 11.9% and 14.6%. Interaction with Irrigation shows that dur-
ing low rainfall, it increases the productivity by 10.5%, hence enabling farmers to
adapt during the transplantation period. Similar results are found during the harvest
month when the precipitation level is low. For wheat productivity, lower rainfall in
the months of December and March, that is, growth and harvest period, lowers the
productivity by the margin of 18.5% and 16.1% respectively. Access to irrigation fa-
cilities and HYV seeds nullify the impact of extreme weather shocks, however, none of
them are effective against the excessive rainfall or flood situation.

6.3 Indirect impact of adverse weather conditions on child
mortality

A dramatic consequence of loss in productivity and efficiency in food crop production
is infant mortality in the farming households, which is arguably one of the important
risks in India’s health-care conditions (Deaton, 2008). In addition to its maternal and
child health consequences, infant mortality is associated with long-term trauma and
excessive fertility in the developing countries settings (Büchi, 2007; Murthi, 1995).
These effects multiply in the absence of adaptation capabilities, henceforth, causing
differential impacts. In our sample, 45.29 births results in mortality before completion
of one year in the marginal farmer’s household, whereas the mortality rate is 36.57
amongst large farmers. Documenting the indirect impact of loss in production due to
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weather shocks is important as our findings are likely to have long term consequences
on the maternal and child health of vulnerable households, especially in context of
climate change.
We study the impact of extreme rainfall and temperature occurrence on the birth
survival of the household. We eliminated the direct impact of extreme weather on
birth outcomes by inducing the weather shock before the conception of child. We
also document the differential impacts across the farming households with respect to
adaptation capabilities and access to social security net. We understand that extreme
weather events can impact the non-farming households in the rural India, hence, we
studied the overall impact on rural infant survival, to show excessive risk for farm-
based households. Table 4 reports the impact of Extremely low and high temperature
and rainfall on child mortality. In Model 3 which has the best econometric specifica-
tion, shows that extremely low and high temperature increases the likelihood of child
mortality by 1.19% and 1.04%. Further, extremely high precipitation leads to higher
likelihood of child mortality by 1.48%. Impact assessment on overall rural area, we
find, statistically weaker association with extreme weather events.

7 Mechanisms: Adverse Birth Outcomes and Het-

erogeneity in adaptation across farming house-

holds

In this section, we study the underlying mechanisms of our main results, hence whether
weather shocks affects the fetal growth, causing adverse birth outcomes leading to
higher child mortality. We do so by examining the impact of weather shocks during
pre-conception period on likelihood of low birth weights and size. Additionally, we
examined the heterogeneity in the impacts across differently capable households. This
exercise is relevant to highlight the average effects that we have documented so far
mask a substantial amount of heterogeneity across farm-based households, with some
group exhibiting significantly larger responses to extreme temperature and rainfall.
Ergo, we underline the environmental injustice in the context of developing country
setup.

7.1 Impact on birth outcomes

Table 4a and 4b reports the consequences of extreme rainfall and temperature on
birth weights and size. Exploiting the information on birth weight and size in the
pregnancy history of women, we find significant increase in the risk of low birth weight
and size in the region. Column three of table 4a reports the causal relationship, stating
that, both extremely low and high temperature during the cropping season preceding
the conception of child, increases the risk of low birth weight by 4.75% and 2.56%.
Similarly, with extremely high precipitation, the impact increases the likelihood of low
birth weight by 4.29%. The results shows the increased risk for fetal undergrowth,
hence, increasing the likelihood of mortality. We utilized the fetal origin hypothesis to
design the mechanism for understanding the excessive mortality. Our results follows
from the theoretical model which finds loss in income either through loss in production
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or increased cost of input baskets. Fixed real prices of food crops in market disables
the farmers to revise the price to absorb the income shock, hence inefficient markets
burdens the farm-based households (Ray, 2005).

7.2 Heterogeneity in impacts by household adaptation capa-
bilities

In our model, resilient technologies as input and social security program are adapta-
tion pathway for households affected by extreme weather events. Empirically, we have
tested our model by interacting the weather events with access to input technology
and food security program to understand the heterogeneity as a mechanism to ex-
plain the excessive child mortality attributed to weather shocks. Further we discuss
the role of each capability enhancing tool on the basis of coefficients reported in table 5.

7.2.1 Irrigation

We utilized the information on acres of land irrigated collected for each farm-based
household during the survey. We converted it into fraction of total area irrigated and
interacted with the extreme temperature and rainfall in the econometric model. We
show that households with higher fraction of land irrigated reduces the likelihood of
child mortality in the extreme weather events. We find that in cases of Extremely low
temperature, high temperature and high rainfall shrinks the likelihood of child mor-
tality by 3.8%, 3.9%, and 4.5%. Access to irrigated land implies that additional water
preserves the crop in extreme temperatures. In case of extremely high rainfall, one
possible explanation is that higher share of irrigation implies higher income which may
act as an resilient factor against flash floods. Higher wealth enables access to maternal
and child health care and, smoothen the migration to ensure safety (Hirovonen, 2016).

7.2.2 Access to formal credit markets and savings

Other adaptation factor is the development of local area banking services as it provided
household options for saving and credit, which can smoothen the health expenditure on
maternal and child health care during the income shock. One example is the positive
impact of nationalization of banks in India, causing reduction in poverty, especially
in rural areas. We utilize the information on whether the household owns a savings
account in a formal bank. Access to savings account enables credit and other insurance
services. We define the access to banking services as dummy variable, where 1 iden-
tifies households with savings account. We show that interaction of savings account
with extreme temperature and rainfall reduces the likelihood of child mortality by
3.7%, 2.4% , and 3.9%. The results also highlights the burden on the households who
do not have access to banking services as they are susceptible to excessive mortality
attributed to weather shock to productivity.
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7.2.3 Consumption Smoothening through price-discounted food ration

An implication of our theoretical model is that the lump-sum transfers to the house-
hold increases the health outcomes of newborns. India’s program on providing food
products to the households at cheaper rate compared to market prices is aimed to re-
duce hunger in the country. The program requires household to be below poverty line,
however, mis-allocation of program resulted in beneficiaries from richer households
as well, especially in rural areas (Bardhan & Mookherjee, 2011). The importance of
provision for cheaper food is illustrated by our paper. We used the information on
possession of BPL cards, which is the eligibility criteria to be a potential beneficiary.
We find that access to BPL cards reduces the child mortality in the household under
all the four extreme weather conditions. It establishes the role of lump-sum transfer
as predicted by our model.

7.2.4 Safety net against health shocks

Households are vulnerable to health related shocks where access to health insurance
can smoothen the consumption and reduces the burden on budget (Morduch, 1995).
We tested the role of health insurance in reducing the impact of income shock due to
extreme weather. We did not find any significant advantage to those enrolled in insur-
ance policy, however, interaction with extreme low rainfall reduce the child mortality.
The results are not significant, violating the prediction of model, may be explained
from low diffusion rate of health insurance in India.

7.2.5 Communication as extension services to reduce impact of weather
shocks

Extension services such as communication about optimal agriculture strategies enables
the farmer to plan the production process (Aker, 2011). Effective knowledge dissem-
ination plays a key role in improving the productivity in agriculture sector. Ergo,
access to communication tools such as television results in advantage for farmers, spe-
cially with frequent weather shocks, as it enables the production process. We tested
the hypothesis by interaction of access to television with extreme weather conditions.
We find that child mortality reduces with all extreme weather conditions by a signifi-
cant margin. We assumed that household had access to television during the weather
shocks as the information is not collected retrospectively.

8 Conclusions

The findings presented in the paper indicate that in developing countries where farmers
depends on the predictability of weather conditions for realizing maximum productiv-
ity, weather shocks can lead to significant income shock resulting into health hazard of
newborns. It also establishes the role of climate resilient inputs, development of bank-
ing services, and social security net (or lump sum transfer) in reducing the income
shock, hence, resulting in heterogeneous effects across farm-based households. The
heterogeneity also highlights the risk of environmental injustice with imperfect goods
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and labor markets amalgamated with poor maternal and child health care facilities.
We believe these results can speak directly to the recent developments in the litera-
ture of climate change economics: our findings suggest that extreme weather conditions
shrinks the income capacity of farmers, leading to lesser expenditure on maternal and
health care, therefore causing poor health outcome for child. We find that access to
multiple resilience factors can protect the household from short-term impacts. Hence,
it underlines the importance of diffusion of technology and other economic services, as
it alarmingly causing heterogeneity in impacts. Our results shows that not all house-
hold are equally susceptible to weather shocks, therefore, results in selected poverty
for significantly large populations. Across the globe, people witness the impact of
climate change in forms of drought, flash floods or cyclones. As the impact intensi-
fies further, more households will slip into the poverty trap, causing massive health
hazard in the form of excessive child mortality. Universal access to crop-insurance,
afford-ability of climate inputs, and improvement in the goods and labor market with
respect to efficiency is critical to protect the households from major income shocks due
to frequent adverse weather events. An interesting avenue for future research lies in
understanding the long-term impacts of uncertain weather conditions by introducing
dynamic equilibrium model. Our findings highlight the transmission of weather shocks
to income and extending upto child survival in the vulnerable households. Therefore,
assessment of long term impacts is essential as we are heading towards the 2 degree
warming mark based on the Intergovernmental Panel for Climate Change reports.
In sum, designing successful policies to enable farmers to mitigate the impact of
weather shocks and its heterogeneity- a goal that has received increasing attention
at the global politics and grassroots movements- requires understanding of the eco-
nomic mechanisms and the role of technology in minimizing the negative effect. More
generally, our findings point to the importance of policy to mitigate the impact of
climate change as the weather shocks are occurring more frequently.
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Deschênes, O., & Greenstone, M. (2011). Climate change, mortality, and adaptation:
Evidence from annual fluctuations in weather in the US. American Economic Journal:
Applied Economics, 3(4), 152-85.
Deschenes, O., & Moretti, E. (2009). Extreme weather events, mortality, and migra-
tion. The Review of Economics and Statistics, 91(4), 659-681.
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9 Appendix: Omitted Proofs

In this we document the profit maximization, cost minimization and household utility
maximization for Cobb-Douglas and CES utility function.

A.1: Proof of the Proposition 1

A.1.1 Cobb Douglas Technology with variable returns to scale

maxπ = Py(
Aθθ
λαθ

)β1(ALL
λαL

)β2
∏N
j (Ajxj

λαj
)βj− (rθ(1+µθ)+WL(1+µL)+

∑N
j=1 Pj(1+µj)xj)

...equation(1)

Differentiating equation (1) with respect to θ , L, and xj, we get,

Py
βj
xj
y = Pj(1 + µj)

Py
β1
θ
y = r(1 + µθ)

Py
β2
L
y = Pj(1 + µL)

Replacing the values in production function, the profit function yields,

Py[
Aθ
λαθ

AL
λαL

∏ Aj
λαj

]1/β1+β2+
∑

βj −K

Cost Minimization
For unit output y, we solve the equilibrium to compute the cost equation

minK = rθ(1 + µθ) +WL(1 + µL) +
∑N
j=1 Pj(1 + µj)xj − ζ(Pyy − Py)

Differentiating with respect to θ, L, and xj,

rθλαθ (1+µθ)
Aθβ1

= ζPyy...1
Pjxjλ

αj (1+µj)

Ajβj
= ζPyy...2

WLλαL (1+µL)
ALβ2

= ζPyy...3

Solving θ and xj in terms of L and replacing in y = 1,

L = (
λαL
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)β1(
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)β2

∏
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)βj(

r(1 + µL)

W (1 + µL)

β2
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Replacing the value of L in 3, we get the Price equation, hence K,

Py = (
λαLW (1 + µL)

AL
)β2
λαLr(1 + µL)

AL
)β2

∏ λαjPj(1 + µj)

Aj
)βj
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A.1.2 Constant Elasticity of Substitution (CES) Technology

maxπ = Py(
∑
βj(

Ajxj
λαj

)η−1/η + β1(
Aθθ
λθ

)η−1/η + β2(
ALL
λL

)η−1/η)η/1−η −∑
Pjxj(1 + µj)−

WL(1 + µL)− rθ(1 + µθ)

Differentiating with respect to θ, L, and xj,
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Replacing the values in production function y,

y = (
∑

βηj (
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)1−η+βη1 (

W (1 + µL)λαL

AL
)1−η+βη2 (
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αθ

Aθ
)1−η)ηPy1− η

Replacing the y in profit equation π yields the maximum profit.
Using the cost minimization criteria (as shown for Cobb-Douglas case), the price Py
is computed as,

Py = (
∑

βηj (
λαjPj(1 + µj)

Aj
)1−η + βη1 (

λαLW (1 + µL)

AL
)1−η + βη2 (

λαθr(1 + µθ)

Aθ
)1−η)1/1−λ

A.2: Proof of the Proposition 2

Assuming Cobb-Douglas utility function,

U = cγ1Mγ2H
γ3lγ4 − ζ(Py(y − c) +Wz − Pyc− PMM −K − PHH −Wl)

Differentiating with respect to c, M , H,l, and zeta,

c = γ1PHH
γ32Py

M = γ2PHH
γ32PM

l = γ4PHH
γ3W

Replacing the value of c, M , and l in the budget constraint to obtain the health func-
tion,

H = γ3[Pyy +W (l − z) + τ/Ph(1− γ1)]

For CES economy, the utility maximization equation is,

U = (γ1c
σ/(σ−1) + γ2M

σ/(σ−1) + γ3h
σ/(σ−1) + γ4l

σ/(σ−1))σ−1/σ-
δ(Py(y − c) +Wz − Pyc− PMM −K − PHH −Wl)
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On differentiating with respect to c, M , H,l, and δ, and expressing in terms of H,

C = (γ1PH
γ3Py

)σH

M = ( γ2PH
γ3PM

)σH

l = (γ4PH
γ3W

)σH

Replacing in the budget constraint we get the health state function,

H =
Pyy −K +Wz + τ

P σ
H((γ1/γ3)σP 1−σ

y + (γ2/γ3)σP
1−σ
M + (γ4/γ3)σW 1−σ
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Tables and Figures 

 

Table 1a: Birth Outcomes and natal care in agri-based households, 

2015  

  LBW LBS IMR# ANC IB 
 

Farm Size      
 

Marginal 17.48 14.17 45.29 70.88 72.57 
 

Small 16.71 14.88 38.77 72.61 73.63 
 

Semi Medium 17.92 14.37 40.91 64.00 74.11 
 

Medium 17.62 13.8 35.99 65.07 74.91 
 

Large 17.13 13.09 36.57 64.89 77.19 
 

Prob>F 0.237 0.000 0.005 0.000 0.000 
 

Irrigated land      
 

Yes 16.74 13.82 36.44 68.07 77.28 
 

No 17.85 13.62 38.95 64.03 72.5 
 

Prob>t 0.167 0.371 0.000 0.000 0.000 
 

Bank Account      
 

Yes 17.33 13.33 40.29 64.66 77.73 
 

No 19.55 18.59 46.87 43.06 56.2 
 

Prob>t 0.000 0.000 0.000 0.000 0.000 
 

Water Pump      
 

Yes 16.95 12.67 34.52 72.06 84.63 
 

No 17.67 14.85 42.38 60.22 73.28 
 

Prob>t 0.001 0.000 0.000 0.000 0.000 
 

Health Insurance      
 

Yes 16.10 14.06 34.38 72.98 78.41 
 

No 17.83 14.62 42.34 60.12 74.33 
 

Prob>t 0.001 0.003 0.000 0.000 0.000 
 

Cooking Fuel      
 

Clean 15.95 11.62 27.89 77.91 89.76 
 

Unclean  18.41 15.73 47.85 54.74 68.86 
 

Prob>t 0.000 0.05 0.000 0.000 0.000 
 

Note: 1. Abbreviations: LBW (Low Birth Weight); LBS (Low Birth Size); IMR (Infant mortality 

Rate); ANC (Ante natal check-up); IB (Institutional Birth). 2. Definitions: .# IMR is defined as 

number of deaths in the period 0-364 days of birth per 1000 live births.LBW is birth weight 

under 2500 grams; LBS is self-reported by the mother; ANC: Complete ANC check-up is defined 3 

or more visits to health centre during pregnancy; IB is birth in healthcare centres .# IMR is 

defined as number of deaths in the period 0-364 days of birth per 1000 live births. 

 

 

Table 1b: Access to resilience factors by land size, 2015-16   
  Marginal Small Semi Medium Medium Large Prob>F 

Irrigated land 59.29 58.86 56.53 60.42 66.47 0.000 

Bank Account 93.07 91.07 88.57 89.37 91.16 0.094 

Water Pump 7.05 9.97 11.22 16.19 25.36 0.000 

Health Insurance 12.46 13.13 19.41 19.11 18.04 0.000 

Clean Cooking Fuel 76.79 79.02 83.58 82.61 79.09 0.006 
Note: The numbers are expressed in percentage. Marginal, small, semi-medium, medium and, large are defined according 

to the land size in hectares. The criteria is as follows: marginal (<0.1 hectare), small (1-2 hectare), semi-medium (2-4 

hectare), medium (4-10 hectare), and large (>10 hectare) 

 



Table 2: District level summary statistics for rice, wheat, and maize  

  1961-70 1971-80 1981-90 1991-00 2001-11 

Rice       
Total Production ('000 tons) 117.07 146.26 201.04 262.27 292.39 

 160.32 193.67 265.14 351.1 401.25 

Total Area ('000 hectares) 118.11 125.64 132.13 137.63 139.67 

 149.03 155.45 159.14 167.89 169.8 

Fraction irrigated 0.327 0.428 0.456 0.458 0.494 

 1.39 0.39 1.1 1.66 2.44 

Price (Rs. Per quintal) 34.3 47.96 87 136.21 257.9 

 60.76 85.18 150.59 307.31 541.61 

Wheat      
Total Production ('000 tons) 55.93 89.72 150.63 210.84 241.52 

 103.69 155.14 269.91 369.32 426.96 

Total Area ('000 hectares) 49.23 64.27 76.16 83.54 88.63 

 50.73 60.04 85.16 78.22 90.19 

Fraction irrigated 0.379 0.571 0.699 0.733 0.973 

 1.29 0.74 0.35 0.96 11.65 

Price (Rs. Per quintal) 61.08 90.82 155.45 351.37 570.5 

 47.48 68.02 110.33 262.09 466.54 

Maize      
Total Production ('000 tons) 17.09  17.64  22.04 30.11 48.35 

 31.04  31.93 40.56 55.29 93.42 

Total Area ('000 hectares) 16.62 17.40  17.13  18.35  23.15 

 27.58 28.18  28.91 32.03 39.50 

Fraction irrigated 0.205 0.227 0.245 0.248 0.264 

 0.46 0.36 0.43 0.35 0.47 

Price (Rs. Per quintal) 35.77 57.22 88.16 231.08 388.17 

  34.82 60.09  89.85  212.49  345.91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 1: Change in spatial pattern of Precipitation and Rainfall between 1961 to 2011 for the month 

of September. September is selected as it coincides with cropping season of Rice, Wheat , and Maize.  

 



 

Table 2: Maximum Likelihood Estimates of Stochastic Frontier Cobb-Douglas 

Production Function  

  

Log(rice 

Quantity) 

Log( wheat 

Quantity) 

Log(maize 

Quantity) 
 

Frontier    
 

log area 1.0451*** 1.0761*** 1.0114*** 
 

 (0.005) (0.005) (0.004) 
 

log fertilizer 0.1673*** 0.1971*** 0.1522 
 

 (0.002) (0.002) (0.003) 
 

σu 1.8731*** 1.4403** 2.993*** 
 

 (0.172) (0.3522) (0.244) 
 

σv 0.1828*** 0.1741 0.284*** 
 

 (0.003) (0.003) (0.004) 
 

λ 10.241*** 8.278*** 10.534*** 
 

 (0.172) (0.351) (0.245) 
 

Estimated 

Inefficiencies    

 

Mean 0.202 0.183 0.242 
 

SD 0.156 0.135 0.139 
 

Min 0.017 0.03 0.003 
 

Max 0.984 0.946 0.974 
 

Data Source: ICRISAT Macros 

Production frontier is defined as function of land and fertilizer. Labor is considered as constant. 

Distribution of inefficiency 𝑢 is distributed as Truncated normal with covariates as monthly 

temperature and precipitation. Months are selected based on cropping season, namely, Rabi and 

Kharif. Kharif Months: May to September; Rabi: September to March. Rice is planted in Kharif 

season, wheat in Rabi, and Maize in both seasons. Area is defined in hectares. Fertilizer is measured 

in Tonnes. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 3a: Effects of Temperature on rice productivity 

 (1) (2) (3) 

VARIABLES Model 1 Model 2 Model 3 

 

Main Effect 

May 

   

low 0.00228 -0.0151 0.000839 

 (0.00988) (0.0175) (0.0249) 

high 0.00274 0.00866 0.0320 

 

June 

(0.00958) (0.0166) (0.0253) 

low -0.0145* 0.0193 -0.00476 

 (0.00875) (0.0164) (0.0204) 

high 0.00109 0.00610 0.0200 

 

July 

(0.0108) (0.0190) (0.0280) 

low 0.0127 0.0255* 0.0336 

 (0.00866) (0.0152) (0.0214) 

high -0.0283*** -0.0720*** -0.107*** 

 

August 

(0.0101) (0.0196) (0.0309) 

low -0.00831 -0.0129 -0.0237 

 (0.00766) (0.0139) (0.0181) 

high -0.0240** -0.0714*** -0.0602** 

 

September 

(0.00967) (0.0180) (0.0256) 

low 0.0130 0.0284** 0.0323* 

 (0.00802) (0.0145) (0.0185) 

high -0.0456*** -0.0834*** -0.125*** 

 (0.00889) (0.0163) (0.0239) 

Irrigated  0.189*** 0.165*** 

  (0.0409) (0.0559) 

HYV seeds   0.155*** 

 

Interaction with Irrigation 

May 

  (0.0512) 

low*Irrigated  0.0353 0.0832*** 

  (0.0224) (0.0305) 

high*Irrigated  -0.0101 0.0188 

 

June 

 (0.0206) (0.0279) 

low*Irrigated  -0.0733*** -0.100*** 

  (0.0219) (0.0290) 

high*Irrigated  -0.00962 -0.0352 

 

July 

 (0.0230) (0.0318) 

low*Irrigated  -0.0163 -0.0457 

  (0.0205) (0.0283) 

high*Irrigated  0.0752*** 0.0185 

 

August 

 (0.0237) (0.0325) 

low*Irrigated  0.00689 0.0114 



  (0.0189) (0.0249) 

high*Irrigated  0.0773*** 0.115*** 

 

September 

 (0.0231) (0.0329) 

low*Irrigated  -0.0260 -0.0257 

  (0.0190) (0.0264) 

high*Irrigated  0.0625*** 0.0575* 

 

Interaction with HYV seeds 

May 

 (0.0219) (0.0305) 

low*HYV   -0.0625* 

   (0.0354) 

high*HYV   -0.0509 

 

June 

  (0.0342) 

low*HYV   0.0630** 

   (0.0307) 

high*HYV   0.0264 

 

July 

  (0.0390) 

low*HYV   -0.000330 

   (0.0331) 

high*HYV   0.0956** 

   (0.0406) 

August 

low*HYV 

  0.0153 

   (0.0284) 

high*HYV   -0.0559 

   (0.0363) 

September 

low*HYV 

  -0.0285 

   (0.0295) 

high*HYV   0.0547 

   (0.0353) 

Constant 0.283*** 0.164*** 0.0763** 

 (0.0106) (0.0257) (0.0375) 

    

Observations 10,232 8,867 6,635 

R-squared 0.847 0.849 0.851 

Note: Temperature variable is defined as: low(0-25th percentile), high(75th-100th 

percentile) for each month. Irrigated variable is fraction of total land irrigated and 

HYV seeds is fraction of total land with HYV seeds being used. The estimates are 

based on district level production data from 1970-2011.  

 

 

 

 

 

 

 



Table 3b: Effects of Temperature on wheat productivity 

 (1) (2) (3) 

VARIABLES Model 1 Model 2 Model 3 

 

Main Effect 

October 

   

low -0.00306 0.00959 0.0123 

 (0.00741) (0.0199) (0.0241) 

high -0.00879 -0.0565** -0.0596** 

 

November 

(0.00730) (0.0223) (0.0292) 

low -0.0162** -0.0391* -0.0104 

 (0.00760) (0.0234) (0.0314) 

high -0.0235*** -0.0932*** -0.0684** 

 

December 

(0.00755) (0.0249) (0.0322) 

low 0.0208*** 0.0637*** 0.0530** 

 (0.00700) (0.0213) (0.0266) 

high -0.00393 -0.0258 -0.00612 

 

January 

(0.00745) (0.0216) (0.0295) 

low 0.00502 0.0119 -0.00415 

 (0.00746) (0.0209) (0.0247) 

high -0.00246 -0.0256 -0.0263 

 

February 

(0.00822) (0.0218) (0.0295) 

low -0.00395 -0.0160 -0.0349 

 (0.00906) (0.0218) (0.0269) 

high -0.0148* 0.0217 0.0246 

 

March 

(0.00827) (0.0233) (0.0318) 

low 0.0214** 0.0478** 0.0476* 

 (0.00909) (0.0221) (0.0275) 

high 0.000230 -0.0377 -0.0655** 

 

April 

(0.00951) (0.0243) (0.0308) 

low 0.00610 0.0477** 0.0633** 

 (0.00852) (0.0208) (0.0265) 

high 0.000718 0.0306 0.0226 

 (0.00913) (0.0218) (0.0277) 

Irrigated  0.413*** 0.380*** 

  (0.0531) (0.0668) 

HYV seeds   0.168*** 

 

Interaction with Irrigation 

October 

  (0.0483) 

low*Irrigated  -0.0140 -0.00980 

  (0.0236) (0.0318) 

high*Irrigated  0.0546** 0.0387 

 

November 

 (0.0267) (0.0353) 

low*Irrigated  0.0403 0.0307 

  (0.0268) (0.0366) 

high*Irrigated  0.0861*** 0.0229 

 

December 

 (0.0283) (0.0403) 

low*Irrigated  -0.0535** -0.0317 

  (0.0253) (0.0334) 

high*Irrigated  0.0242 0.00557 



 

January 

 (0.0254) (0.0357) 

low*Irrigated  -0.0145 -0.00481 

  (0.0245) (0.0322) 

high*Irrigated  0.0331 0.0433 

 

February 

 (0.0258) (0.0360) 

low*Irrigated  0.00604 -0.00544 

  (0.0256) (0.0320) 

high*Irrigated  -0.0363 -0.0239 

 

March 

 (0.0262) (0.0376) 

low*Irrigated  -0.0359 2.03e-05 

  (0.0260) (0.0351) 

high*Irrigated  0.0502* 0.0748** 

 

April 

 (0.0280) (0.0371) 

low*Irrigated  -0.0438* -0.00585 

  (0.0243) (0.0349) 

high*Irrigated  -0.0326 -0.0221 

 

Interaction with HYV seeds 

October 

 (0.0250) (0.0351) 

low*HYV   -0.0123 

   (0.0270) 

high*HYV   0.0173 

 

November 

  (0.0332) 

low*HYV   -0.0254 

   (0.0317) 

high*HYV   0.0372 

 

December 

  (0.0336) 

low*HYV   -0.0160 

   (0.0276) 

high*HYV   -0.0222 

 

January 

  (0.0354) 

low*HYV   0.0255 

   (0.0314) 

high*HYV   -0.00466 

 

February 

  (0.0297) 

low*HYV   0.0306 

   (0.0289) 

high*HYV   -0.0223 

 

March 

  (0.0321) 

low*HYV   -0.0538* 

   (0.0292) 

high*HYV   0.0295 

 

April 

  (0.0310) 

low*HYV   -0.0617* 

   (0.0334) 

high*HYV   -0.0114 

   (0.0346) 

Constant 0.392*** 0.0854** -0.0537 

 (0.0106) (0.0424) (0.0613) 

    



Observations 9,452 8,092 5,544 

R-squared 0.867 0.885 0.889 

Note: Temperature variable is defined as: low(0-25th percentile), high(75th-100th 

percentile) for each month. Irrigated variable is fraction of total land irrigated and 

HYV seeds is fraction of total land with HYV seeds being used. The estimates are 

based on district level production data from 1970-2011.  

Table 1c: Effects of precipitation on rice productivity 

 (1) (2) (3) 

VARIABLES Model 1 Model 2 Model 3 

 

Main Effect 

April 

   

low 0.0416*** 0.0864*** 0.0817 

 (0.0140) (0.0298) (0.0558) 

high -0.0164* -0.0271 -0.0236 

 

May 

(0.00974) (0.0169) (0.0337) 

low 0.0176 0.0412** 0.0355 

 (0.0109) (0.0192) (0.0319) 

high -0.0324*** -0.0881*** -0.127*** 

 

June 

(0.0123) (0.0219) (0.0450) 

low -0.0309*** -0.0794*** -0.0358 

 (0.00942) (0.0176) (0.0316) 

high 0.0143 0.0319** 0.0694*** 

 

July 

(0.00896) (0.0158) (0.0255) 

low -0.00661 -0.0352* 0.0238 

 (0.00958) (0.0191) (0.0350) 

high -0.00818 -0.0190 -0.0487 

 

August 

(0.00959) (0.0165) (0.0319) 

low -0.0368*** -0.0950*** -0.119** 

 (0.0110) (0.0215) (0.0534) 

high 0.0235*** 0.0366** 0.0675*** 

 

September 

(0.00838) (0.0149) (0.0240) 

low -0.0487*** -0.102*** -0.146*** 

 (0.0118) (0.0219) (0.0457) 

high 0.00839 0.0345** 0.0256 

 (0.00727) (0.0141) (0.0259) 

Irrigated  0.180*** 0.140*** 

  (0.0328) (0.0541) 

HYV seeds   0.0994*** 

 

Interaction with Irrigation 

April 

  (0.0348) 

Low*Irrigated  -0.0702* -0.0759 

  (0.0399) (0.0624) 

High*Irrigated  0.00587 -0.0143 

 

May 

 (0.0240) (0.0390) 

Low*Irrigated  -0.0162 -0.0338 



  (0.0273) (0.0481) 

High*Irrigated  0.100*** 0.106*** 

 

June 

 (0.0273) (0.0408) 

Low*Irrigated  0.0967*** 0.103*** 

  (0.0231) (0.0357) 

High*Irrigated  -0.0465** -0.0646** 

 

July 

 (0.0221) (0.0314) 

Low*Irrigated  0.0630** 0.105** 

  (0.0261) (0.0425) 

High*Irrigated  0.0372 0.0595* 

 

August 

 (0.0227) (0.0324) 

Low*Irrigated  0.102*** 0.141*** 

  (0.0272) (0.0448) 

High*Irrigated  -0.0368* -0.0581* 

 

September 

 (0.0209) (0.0312) 

Low*Irrigated  0.109*** 0.227*** 

  (0.0296) (0.0463) 

High*Irrigated  -0.0424** -0.0270 

 

Interaction with HYV seeds 

April 

 (0.0195) (0.0293) 

low*HYV   0.0189 

   (0.0574) 

high*HYV   0.00536 

 

May 

  (0.0422) 

low*HYV   0.00618 

   (0.0401) 

high*HYV   0.0475 

 

June 

  (0.0503) 

low*HYV   -0.0775** 

   (0.0392) 

high*HYV   -0.0541* 

 

July 

  (0.0316) 

low*HYV   -0.114** 

   (0.0464) 

high*HYV   0.0236 

 

August 

  (0.0377) 

low*HYV   0.0114 

   (0.0630) 

high*HYV   -0.0123 

 

September 

  (0.0328) 

low*HYV   -0.00308 

   (0.0519) 

high*HYV   -0.00420 

   (0.0324) 

Constant 0.270*** 0.153*** -0.0427 



 (0.00522) (0.0173) (0.0316) 

    

Observations 10,232 8,867 5,135 

R-squared 0.848 0.850 0.830 

Note: Precipitation is standardized and defined as: low( -5 to -1), high(1 to 5) for 

each month. Irrigated variable is fraction of total land irrigated and HYV seeds is 

fraction of total land with HYV seeds being used. The estimates are based on 

district level production data from 1970-2011.  

 

 

Table 3d: Effects of precipitation on wheat productivity 

 (1) (2) (3) 

VARIABLES Model 1 Model 2 Model 3 

 

Main Effect 

October 

   

low -0.00569 -0.0841* -0.0592 

 (0.0135) (0.0456) (0.0512) 

high -0.00706 0.0466* 0.0667** 

 

November 

(0.00820) (0.0252) (0.0316) 

low 0.0102 0.102* 0.0644 

 (0.0226) (0.0621) (0.0702) 

high -0.0251** -0.0248 -0.000757 

 

December 

(0.0102) (0.0277) (0.0347) 

low -0.117*** -0.0845 -0.185** 

 (0.0375) (0.0778) (0.0889) 

high 0.0223** 0.106*** 0.0813** 

 

January 

(0.00930) (0.0249) (0.0316) 

low 0.0147 -0.0897* -0.0441 

 (0.0117) (0.0509) (0.0580) 

high 0.0111 0.0231 0.000297 

 

February 

(0.00762) (0.0249) (0.0303) 

low -0.00354 0.00210 0.0475 

 (0.0131) (0.0370) (0.0558) 

high -0.00523 -0.0225 -0.0144 

 

March 

(0.00873) (0.0226) (0.0299) 

low -0.0242 -0.134*** -0.161** 

 (0.0180) (0.0482) (0.0631) 

high 0.00921 -0.00286 -0.0357 

 

April 

(0.00824) (0.0252) (0.0324) 

low 0.0426** 0.0747* 0.0561 

 (0.0167) (0.0427) (0.0526) 

high 0.00275 -0.0358 -0.0418 

 (0.00854) (0.0240) (0.0269) 

Irrigated  0.439*** 0.426*** 

  (0.0306) (0.0368) 



HYV seeds   0.124*** 

 

Interaction with Irrigation 

October 

  (0.0248) 

low*Irrigated  0.104* 0.0697 

  (0.0554) (0.0664) 

high*Irrigated  -0.0605** -0.0443 

 

November 

 (0.0306) (0.0390) 

low*Irrigated  -0.149 -0.134 

  (0.0968) (0.109) 

high*Irrigated  0.00244 0.00182 

 

December 

 (0.0332) (0.0437) 

low*Irrigated  -0.0611 -0.166 

  (0.127) (0.223) 

high*Irrigated  -0.111*** -0.153*** 

 

January 

 (0.0290) (0.0468) 

low*Irrigated  0.127** -0.00237 

  (0.0554) (0.0800) 

high*Irrigated  -0.0268 -0.0129 

 

February 

 (0.0295) (0.0374) 

low*Irrigated  0.00297 -0.0306 

  (0.0418) (0.0637) 

high*Irrigated  0.0225 -0.00181 

 

March 

 (0.0256) (0.0354) 

low*Irrigated  0.124** -0.125 

  (0.0607) (0.122) 

high*Irrigated  0.00883 0.0473 

 

April 

 (0.0301) (0.0469) 

low*Irrigated  -0.0519 -0.0414 

  (0.0670) (0.0877) 

high*Irrigated  0.0566* 0.0250 

 

Interaction with HYV seeds 

October 

 (0.0290) (0.0400) 

low*HYV   0.000700 

   (0.0589) 

high*HYV   -0.0480* 

 

November 

  (0.0289) 

low*HYV   0.0628 

   (0.0912) 

high*HYV   -0.0458 

 

December 

  (0.0371) 

low*HYV   0.372*** 

   (0.131) 

high*HYV   0.0842* 

 

January 

  (0.0477) 

low*HYV   0.0879* 



   (0.0492) 

high*HYV   0.0143 

 

February 

  (0.0321) 

low*HYV   -0.0444 

   (0.0536) 

high*HYV   0.0169 

 

March 

  (0.0340) 

low*HYV   0.303*** 

   (0.112) 

high*HYV   0.0141 

 

April 

  (0.0437) 

low*HYV   -0.0154 

   (0.0546) 

high*HYV   0.0417 

   (0.0383) 

Constant 0.384*** 0.0635*** -0.0661** 

 (0.00388) (0.0232) (0.0312) 

    

Observations 9,452 8,092 5,544 

R-squared 0.867 0.884 0.889 

Note: Precipitation is standardized and defined as: low( -5 to -1), high(1 to 5) for 

each month. Irrigated variable is fraction of total land irrigated and HYV seeds is 

fraction of total land with HYV seeds being used. The estimates are based on 

district level production data from 1970-2011.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4: Marginal Impact of Extreme Weather Shocks on Child Mortality 

 Child Mortality amongst agriculture based HHs Overall Rural 

Area 

VARIABLES Model 1 Model 2 Model 3 Model 4 

 

Temperature 

    

Extremely Low 0.0370*** 0.0186*** 0.0119** 0.00357 

 (0.00463) (0.00557) (0.00568) (0.00356) 

Extremely High 0.0336*** 0.0165*** 0.0104** 0.00592* 

 

Precipitation 

(0.00426) (0.00509) (0.00519) (0.00337) 

Extremely Low 0.0280*** 0.0146*** 0.00984* 0.00570* 

 (0.00473) (0.00525) (0.00529) (0.00340) 

Extremely High 0.0424*** 0.0217*** 0.0148*** 0.00608* 

 (0.00417) (0.00530) (0.00547) (0.00346) 

State Fixed Effects 

Household Fixed Effects 

Individual Fixed Effects 

No 

No 

No 

No 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Observations 11,544 11,077 11,077 26,382 

R-squared 0.044 0.054 0.060 0.059 

Note: First three models estimate the marginal impact of extreme weather shocks on likelihood 

of child mortality amongst the Agriculture dependent household with different specifications for 

fixed effects. Model 4 shows the marginal impact for the overall Rural area, which comprises 

Non-Agriculture dependent Household.  

Extreme evets are defined as follows: Extreme Low- up to 30th percentile and Extreme High: 

More than 70th percentile.  

 

Table 4a : Marginal Impact of Extreme Weather Shocks on low birth weight 

 Low Birth Weight Agriculturally Based Household 

VARIABLES Model 1 Model 2 Model 3 

 

Temperature 

   

Extremely Low 0.138*** 0.0661*** 0.0475*** 

 (0.0103) (0.0119) (0.0122) 

Extremely High 0.118*** 0.0436*** 0.0256** 

 

Precipitation 

(0.00951) (0.0112) (0.0116) 

Extremely Low 0.0827*** 0.0271** 0.0132 

 (0.0103) (0.0113) (0.0114) 

Extremely High 0.146*** 0.0659*** 0.0429*** 

 (0.00917) (0.0117) (0.0122) 

Household Fixed Effects 

Individual Fixed Effects 

State-year Trends 

No 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Observations 7,349 7,134 7,134 

R-squared 0.144 0.172 0.179 

Note: The estimates are corrected for selection bias in birth weight reporting. 

The data is available for those who received birth card post-delivery. We 

adopted two-stage Heckman selection model, where the bias in reporting is 

linear function of state fixed effects. Choice of covariate in the first stage is 

based on the facilities provided by state, which varies, as health is a matter of 

State jurisdiction.   

 



 

Table 4b: Marginal Impact of Extreme Weather Shocks on low birth weight 

 Low Birth Size Agriculturally Based Household 

VARIABLES Model 1 Model 2 Model 3 

 

Temperature 

   

Extremely Low 0.108*** 0.0491*** 0.0224*** 

 (0.00796) (0.00280) (0.00595) 

Extremely High 0.100*** 0.0472*** 0.0282*** 

 

Precipitation 

(0.00760) (0.00252) (0.00544) 

Extremely Low 0.0888*** 0.0386*** 0.0206*** 

 (0.00824) (0.00260) (0.00518) 

Extremely High 0.116*** 0.0518*** 0.0263*** 

 (0.00720) (0.00276) (0.00565) 

Household Fixed Effects 

Individual Fixed Effects 

State-year Trends 

No 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Observations 10,290 14,190 23,873 

R-squared 0.124 0.136 0.150 

Note: Birth size is based on recall basis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5: Adaptation tools and marginal impact on child mortality 

  Likelihood of Child Mortality in Agriculture HHs 

VARIABLES 

 

 

     

Extremely Low Temp*Bank Account  -0.0371***    

  (0.0108)    

Extremely High Temp*Bank Account  -0.0242**    

  (0.0102)    

Extremely Low Rainfall*Bank Account  -0.0163    

  (0.0104)    

Extremely High Rainfall*Bank Account  -0.0398***    

  (0.0103)    

Extremely Low Temp*Fraction Irrigated -0.0388***     

 (0.0137)     

Extremely High Temp*Fraction Irrigated -0.0398***     

 (0.0128)     

Extremely Low Rainfall*Fraction Irrigated -0.0215     

 (0.0132)     

Extremely High Rainfall*Fraction Irrigated -0.0435***     

 (0.0128)     

Extremely Low Temp*BPL   -0.0189*   

   (0.0106)   

Extremely High Temp*BPL   -0.0324***   

   (0.0101)   

Extremely Low Rainfall*BPL   -0.0326***   

   (0.0102)   

Extremely High Rainfall*BPL   -0.0339***   

   (0.0102)   

Extremely Low Temp*Health Insurance    -0.0211  

    (0.0142)  

Extremely High Temp* Health Insurance    -0.0216  

    (0.0133)  

Extremely Low Rainfall* Health Insurance    -0.0272**  

    (0.0136)  

Extremely High Rainfall* Health Insurance    -0.0110  

    (0.0134)  

Extremely Low Temp*Television     -0.0374*** 

     (0.0106) 

Extremely High Temp* Television     -0.0257** 

     (0.0100) 

Extremely Low Rainfall* Television     -0.0220** 

     (0.0102) 

Extremely High Rainfall* Television     -0.0312*** 

     (0.0101) 

State Trends 

Individual Fixed Effects 

Household Fixed Effects 

Husband Fixed Effects 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Observations 7,313 11,422 11,422 11,422 11,422 

R-squared 0.052 0.053 0.054 0.051 0.052 

Note: Fraction of irrigated land is continuous variable, computed as irrigated land/total land; Choice of 

adaptation tools is based on capability to reduce crop loss, smooth household consumption, and transmit 

information. BPL cards ensures access to free raw food provided by government. It also involves cash transfers. 

Savings accounts enable HH to save money from their income, which may come handy in situation of crop loss. 

Health insurance protects the HH from out-of-pocket expenditure and covers the cost of child delivery, ante-

natal, and post-natal care. Television transmits information regarding the cropping methods and knowledge to 

adapt in weather shocks, provided as Extension services by Government of India.  



Appendix B-Variation in Temperature and Rainfall 

Table B.1: Decadal Variation- fraction of  extreme temperature instances      

  Low Temperature High Temperature 

 1961-70 1971-80 1981-90 1991-00 2001-11 1961-70 1971-80 1981-90 1991-00 2001-11 

January 14.67 17.5 12.24 19.24 15.82 8.46 11.64 20.92 14.3 17.18 

February 27.34 22.84 16.72 14.62 8.43 22.07 9.85 12.27 10.35 26.21 

March 18.29 21.16 24.03 15.97 6.4 15.38 13.68 14.45 18.22 22.36 

April 18.7 11.74 16.22 21.81 7.78 11.48 23.59 8.93 16.19 20.01 

May 11.75 22.56 24.41 14.34 6.64 11.83 19.99 16.69 15.54 10.5 

June 15.2 21.38 10.21 13.45 20.18 15.45 11.84 14.55 22.52 18.32 

July 10.77 24.01 15.98 9.21 6.32 16.03 8.33 14.44 12.99 20.78 

August 15.92 22.52 11.89 17.5 5.97 8.94 10.68 12.42 19.43 24.78 

September 21.36 24.33 14.21 14.44 7.46 16.86 13.04 18.29 8.26 23.5 

October 23.07 11.05 21.56 15.23 6.93 11.19 21.63 10.96 15.15 19.18 

November 27.4 23.4 19.5 11.67 4.33 11.89 25.08 5.33 14.62 18.6 

December 24.62 23.62 8.76 17.06 3.4 10.06 10.6 12.41 7.8 26.89 

 

 

 

Table B2: Decadal Variation in  percentage of  extreme precipitation instances     

  Low Precipitation High Precipitation 

 1961-70 1971-80 1981-90 1991-00 2001-11 1961-70 1971-80 1981-90 1991-00 2001-11 

January 6.33 2.31 3.77 1.07 5.29 13.2 8.64 17.75 18.43 6.66 

February 4.79 3.21 3.45 1.92 5.36 9.29 13.88 14.24 12.74 15.43 

March 3.14 2.6 2.29 0.71 1.61 12.42 8.22 14.83 12.01 10.8 

April 5.21 4.41 5.98 5.34 3.68 4.42 12.45 13.44 11.85 13.25 

May 8.52 10.17 6.4 7.72 5.07 6.69 13.8 21.49 11.24 15.82 

June 15.86 12.06 12.67 14.45 11.58 12.37 25.55 12.24 11.64 17.75 

July 12.49 13.8 15.79 15.22 18.85 15.09 18.96 18.22 11.36 13 

August 16.45 13.01 14.37 17.36 16 19.71 20.89 17.18 11.77 10.6 

September 16.33 15.05 15.16 12.84 13.29 15.09 17.4 18.03 9 17.04 

October 14.2 6.4 11.24 4.84 6.89 10.24 17.53 13.48 17.93 11.54 

November 3.73 3.45 3.63 1.85 1.15 7.63 18.07 12.27 15.33 6.6 

December 2.13 1.1 0.46 1.39 0.86 13.67 10.64 15.98 16.43 3.82 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Table B3: Percentage of high-low precipitation-temperature instances 

  Hh Hl Ll Lh p-value 

January 15.75 15.5 12.94 21.27 0.002 

February 6.38 20.01 6.14 27.97 0 

March 5.41 50.47 3.14 41.18 0 

April 4.72 39.41 2.84 39.65 0 

May 1.91 50 2.17 47.99 0 

June 2.71 46.68 1.06 41.23 0 

July 2.71 29.88 2.58 42.05 0 

August 3.27 31.25 3.12 39.99 0 

September 2.93 35.93 3.13 43.91 0 

October 4.54 33.17 5.82 33.62 0 

November 23.56 15.41 22.25 12.43 0 

December 12.66 16.73 9.79 16.78 0.044 

Hh: High precipitation high temperature, Hl: High precipitation low 

temperature, 

 Ll: Low precipitation low temperature, Lh: Low precipitation high temperature 

p-value of the chi-square statistics    
 

 


