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Abstract

Analysing causality among oil prices and, in general, among financial and economic variables
is of central relevance in applied economics studies. The recent contribution of Lu et al.
(2014) proposes a novel test for causality— the DCC-MGARCH Hong test. We show that the
critical values of the test statistic must be evaluated through simulations, thereby challenging
the evidence in papers adopting the DCC-MGARCH Hong test. We also note that rolling
Hong tests represent a more viable solution in the presence of short-lived causality periods.

Keywords: Granger Causality, Hong test, DCC-GARCH, Oil market, COVID-19

JEL: C10, C13, C32, C58, Q43, Q47

1. Introduction

In a globalized economy, the study of spillovers among the prices of reference goods—
drivers of possible shocks to both the real economy and the financial markets— is of central
relevance. Oil prices represent one of these fundamental drivers, given their relevance in both
the real and the financial cycles. However, oil is traded in several mercantile exchanges and
with prices that reflect the different types of oil that can be extracted; classic examples are
Brent and theWest Texas Intermediate (WTI). In this setting, despite the fact that Brent and
WTI being perceived as reference prices for the market, the study of information transmission
among oil prices is relevant from an economic perspective in order to determine which price
is mostly impacted by shocks— for example, associated with the disruption or reduction of
the oil production or oil delivery— and how shocks are transmitted to other oil prices and
subsequently to oil-derived productions; examples, in this regard, examples are given by Lu
et al. (2014) and Caporin et al. (2019). Several studies have already addressed the issue of
spillover or causality among oil prices. Among many others, we cite Lin and Tamvakis (2001,
2004), Hammoudeh and Li (2004), Bekiros and Diks (2008), and Geng et al. (2017). Different
approaches have been considered for the analysis of the causality or spillovers, ranging from
the standard causality testing put forward by Granger (1969) to a variety of generalizations
including non-linear methods, quantile regression-based approaches, and wavelet transforms.

Email addresses: massimiliano.caporin@unipd.it (Massimiliano Caporin),
michele.costola@unive.it (Michele Costola)
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One the approaches that has recently received attention is included in Lu et al. (2014), in
which a novel testing procedure has been put forward in order to test for dynamic causality
among variables. The authors introduce a test combining the approach given by Hong (2001)
and Hong et al. (2009) for spillover testing employing the dynamic conditional correlation
(DCC) modeling strategy given by Engle and Sheppard (2001) and Engle (2002). In Lu
et al. (2014) the proposed test, called DCC-MGARCH Hong (henceforth, the DCC-Hong),
is used to assess the dynamic and contemporaneous spillover among different oil prices, the
futures prices of Brent and WTI, and the Dubai and Tapis spot prices, thereby revealing the
occurrence of relevant spillovers, both unidirectional and biderectional. The same testing
procedure has also been used in different settings. Jammazi et al. (2017b) adopt the DCC-
Hong test to study the causality between oil prices and stock markets at different time
scales, while Jammazi et al. (2017a) focus on the relationship between the stock markets
and interest rates. Kanda et al. (2018) analyze the causality between equity returns and
currency returns, and Sibande et al. (2019) consider the relationship between stock market
and unemployment; both studies focus on the UK and make use of a long time span involving
two centuries of data. Gupta et al. (2019) study causality between oil prices and the US
financial stress, and Coronado et al. (2020) correlate the US stock market and currency.
Bathia et al. (2021) focus on unemployment and currency returns in the UK, while Gupta
et al. (2021a) analyze the relationship between the US stock market movements and the
presidential approval ratings. Further, Gupta et al. (2021b) monitor the impact of a news-
based indicator of infectious diseases on the US treasury securities, while Zhang et al. (2021)
evaluate the spillover between Bitcoin prices and internet attention.

While the DCC-Hong test is appealing from the empirical viewpoint, the statistical prop-
erties of the test are not known. In fact, even the authors acknowledge that in order to
evaluate the null of absence of causality by using the DCC-Hong test statistic, the use of
critical values based on the Normal distribution represents a rough approximation to the
reality. By beginning from this observation, we provide a first contribution and obtain by
simulation the critical values of the DCC-Hong test statistic. Our analyses indicate that
the distribution of the test statistic (under the null hypothesis) is far from being Normal,
is characterised by a large right tail, and depends on both the unconditional correlation
between the analysed series and the sample size. Overall, we note that the use of Gaussian
critical values lead to an over-rejection of the null hypothesis. When moving to the power
of the test, the simulations we run compare the DCC-Hong to the rolling Hong test Hong
(2001), thereby highlighting that when the sample size is relatively small, the DCC-Hong
might be used, but when the sample larger than 200 observations, the rolling Hong test has
better power in identifying the presence of causality. Further, while both tests do have good
power in the presence of a strong causality between variables, the DCC-Hong has superior
performances in cases where the causality link has a reduced intensity.

Thus, the simulation evidence thus challenges the validity of the empirical analyses based
on the evaluation of the DCC-Hong test statistic and its comparison with Normal critical
values, beginning from those in the paper by Lu et al. (2014). Therefore, we proceed to
a replication of the evidence in Lu et al. (2014) and limiting our analyses to the causality
between the Brent and WTI futures prices. We show that by using the simulated critical
values, the evidence of causality dramatically reduces, and is focused on specific periods: the
Iraq invasion in 2003, at the peak of oil prices in 2006, following the European sovereign crisis
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in 2010, and after the production cuts during the Arab spring in 2011. On the contrary,
the use of the DCC-Hong with normal critical values identified a much striking presence
of causality which, unfortunately, is only apparent, due to the inappropriateness of the
approximation of the test statistic with the Normal distribution. We also complement the
replication with an analysis focused on a longer time sample, which also covers the COVID-
19 pandemic. Both the rolling Hong and the DCC-Hong test identify occurrences of causality
in the first part of 2020. In addition, the evaluation of the DCC-Hong test statistic over the
entire sample leads us to identify a further weakness of this approach: as the DCC-Hong test
is built on a set of estimated models, if the causality exists in limited periods of time, the
estimated models would not identify its presence because they will be driven by the more
relevant periods of non-causality. This calls for a rolling evaluation of the DCC-Hong test
which, however, would limit its relevance, as the construction of the DCC-Hong test would
become more computationally intensive than the simplest rolling Hong test. The only case in
which the DCC-Hong test would provide a valuable information is for time series of reduced
length.

The remainder of the paper is organized in the following manner: Section 2 reviews the
Granger causality test given by Hong (2001) and Lu et al. (2014) and presents simulation
evidences. Section 3 replicates some of the evidence in Lu et al. (2014) and includes insights
on the causality on the period characterized by the diffusion of the COVID-19 pandemic.
Section 4 concludes the paper.

2. Time-varying causality testing approaches

Similarly to Lu et al. (2014), we first introduce the Hong (2001) causality test. Let us
denote by x1,t and x2,t the two series of interest and assume we are willing to evaluate if x1,t

causes x2,t using a sample of T observations. Hong (2001) proposes a test for causality that
generalizes the contribution of Cheung and Ng (1996). Hong (2001) indicates the introduc-
tion of a test for variance causality, building on the cross-correlation between two series of
centered squared standardized innovations obtained by fitting ARMA-GARCH models on
two time series. In our case, the focus is on mean causalityand, thus, we assume that the x1,t

and x2,t series have been pre-filtered by appropriate ARMA-GARCH models. Therefore, we
focus on their mean cross-correlation— that is, we do not square them.1 The Hong (2001)
test (hereafter, the Hong test) builds on the following statistic:

QH =
T
∑T−1

j=1 k2
(

j
M

)
ρ̂22,1 (j)− C1T (k)√

2D1T (k)
, (1)

where

1We filter out the conditional variance dynamic in order to be coherent with the approach put forward
by Lu et al. (2014) that eliminates the conditional variance dynamic before testing the null of zero cross-
correlation.
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C1T (k) =
T−1∑
j=1

(
1− j

T

)
k2

(
1

M

)
, D1T (k) =

T−1∑
j=1

(
1− j

T

)(
1− j + 1

T

)
k4

(
1

M

)
,

ρ̂22,1 (j) =

∑T
t=j+1 x2,tx1,t−j√∑T

t=j+1 x
2
1,t

√∑T
t=j+1 x

2
2,t

, k (z) = (1− |z|) I (|z| < 1) ,

and j,M > 0. Note that ρ̂22,1 (j) is the cross-correlation between x1,t−j and x2,t, where the
first term is lagged, and we adopt the Bartlett Kernel function k (z) (it must be noted that
other kernel functions can be used; see Hong, 2001). Finally, M is a lag truncation value
inducing zero contribution for cross-correlations having a lag j > M— that is only the
cross-correlations up to lag M contribute to the causality evaluation.

The Hong test statistic in 1 can be used to detect causality from x2,t to x1,t. A statistic
for detecting bidirectional causality is also available.

QBH =
T
∑T−1

|j|=1 k
2
(

j
M

)
ρ̂22,1 (j)− C2T (k)√

2D2T (k)
, (2)

where

C2T (k) =
T−1∑
|j|=1

(
1− |j|

T

)
k2

(
1

M

)
, D1T (k) =

T−1∑
|j|=1

(
1− |j|

T

)(
1− |j|+ 1

T

)
k4

(
1

M

)
.

The two test statistics have known asymptotic distributions, as derived by Hong (2001):

QH −→ N (0, 1) , QBH −→ N (0, 1) . (3)

For both test statistics, upper tail critical values must be used, as the rejection of the
null is associated with large positive values of the test statistic: when we observe non-null
and relevant cross-correlations, they are included, squared, in the test statistic.

In contrast to Lu et al. (2014), but coherently with Hong et al. (2009), we exclude the
contemporaneous cross-correlation from the evaluation of causality. This is a clear difference
between our approach and that of Lu et al. (2014), which might lead to a few differences in
the actual data analyses; further details on this aspect are provided in the following section.
The choice of excluding the contemporaneous correlation enables the detection of dynamic
causality links among variables which are simultaneously traded. In Lu et al. (2014), the
reader can find a discussion supporting the introduction of a variation of the Hong test
to account for instantaneous correlation when markets are characterized by asynchronous
trading; here, we do not consider such a possibility.2

Furthermore, similar to Lu et al. (2014), we apply the Hong test both at the entire sample

2In the following section, we also motivate our choice from an empirical perspective, when replicating Lu
et al. (2014) study.
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level as well as by resorting to a rolling procedure. In this case, the Hong test statistic is
evaluated on samples of size S < T , rolled forward by one observation at a time, thereby
leading to a total number of S−T test statistics (from sample [1, S] to sample [T−S+1, T ]).

Lu et al. (2014) propose a novel approach to causality detection, the dynamic conditional
correlation Hong test (or DCC-Hong). They motivate this addition to the literature due
to the possible shortcoming of using cross-correlations evaluated on a rolling window: the
lack of appropriate dynamic modeling of cross-correlations which makes them less reactive
to the most recent information from the market. Inspired by the work of Engle (2002),
where the author introduces the DCC as a more appropriate tool for correlation modeling,
Lu et al. (2014) propose propose the evaluation of the evolution of cross-correlations in a
dynamic manner. Mimicking the DCC model of Engle (2002), they suggest to first model
the covariance matrix of yt,j = [x2,t x1,t−j]

′ and call it Qt (j), as given below:

Qt = (1− αj − βj)R + αjyt,jy
′
t−1,j + βjQt−1, (4)

ri,l,t (j) = (1− αj − βj) r2,1 + αjxi,t−1xl,t−j−1 + βri,l,t−1 (j) , i, l = 1, 2 (5)

where R is the full-sample unconditional cross-correlation matrix (i.e. ones over the
main diagonal and the cross-correlations off-diagonal). Building on the model estimates,
they recover the cross-correlation by the following standardization

ρ2,1,t (j) =
r2,1,t (j)√

r1,1,t (j)
√
r2,2,t (j)

. (6)

The test statistics suggested by Lu et al. (2014) are then set equivalent to QH and QBH :

QDH,t =
T
∑T−1

j=1 k2
(

j
M

)
ρ̂22,1,t (j)− C1T (k)√

2D1T (k)
, (7)

and

QBDH,t =
T
∑T−1

|j|=1 k
2
(

j
M

)
ρ̂22,1,t (j)− C2T (k)√

2D2T (k)
. (8)

The use of the Bartlett Kernel in (7) and (8) allows the evaluation of only a small number
of DCC-like models (i.e. only M), thereby making the entire procedure computationally
feasible, even if more demanding than the rolling Hong ones. Given a sample of size T , the
DCC filter is applied 2M times, with 2M different lead/lag values for j (M varies from −M
to M , excluding the zero value). Then, the DCC filter yields 2M estimated paths for the
cross-correlations, thereby enabling the recovery of the test statistic for each point in time
from t = M + 1 to t = T −M . Such a feature of the DCC-Hong test makes it a proper
alternative to the use of the rolling Hong procedure.

The introduction of the DCC-like dynamic in the cross-correlations appropriately enables
the capturing of the dynamic evolution in the interdependence between two series. In this
setting, the DCC model might be seen as a filter, thereby enabling the detection of whether
a quantity of interest has a dynamic behaviour, even without adequately specifying a com-
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plete model. We note that this is in line with the arguments of Caporin and McAleer (2012)
for interpreting the DCC of Engle (2002) as a filter. Nevertheless, we emphasize that an
appropriate model yielding dynamic cross-correlations is a VAR model with time-varying
parameters (TVP-VAR). In fact, as the cross-correlation is a function of the model parame-
ters, if the latter are dynamic then the former is also dynamic. We will use this intuition in
the following section when designing the data-generating processes for our simulation study.

Building on heuristic arguments, Lu et al. (2014) suggest that the DCC-Hong tests (uni-
directional and bidirectional) might be roughly approximated by a standardized Normal
distribution under the null of the absence of causality. Lu et al. (2014) acknowledge that
deriving the asymptotic distribution of the DCC-Hong test is particularly complex. In fact,
under the null hypothesis, the βj are nuisance parameters. Within the DCC model, such
a situation requires specific procedures to test the null hypothesis of constant correlations,
as indicated out by Engle and Sheppard (2001). The impact of the nuisance parameters
under the null of constant correlation is also relevant in our case, as it corresponds to the
presence of nuisance parameters in the evaluation of dynamic cross-correlations. Moreover,
the influence of those nuisance parameters transmits to the dynamic cross-correlations and,
subsequently, to the DCC-Hong test statistic. Therefore, the use of a Normal distribution,
quoting Lu et al. (2014), enables only a rough judgment. We are aware that the derivation
of the asymptotic distribution of the test statistic is complex, but adequate knowledge of its
behavior is crucial for the appropriate use of the test. Therefore, in the following sub-section,
we shed light on the distribution of the test statistic proposed by Lu et al. (2014) by resorting
to a simulation study. This will allow us to recover simulated critical values under the null
hypothesis, and to contrast the critical values under the assumption of Normality.

2.1. A simulation study

The first objective of our Monte Carlo study, is the evaluation of the size and power of
the DCC-Hong test and to compare them with those of the (rolling) Hong test; for the latter,
both a full-sample estimation of the test statistic and a rolling evaluation scheme must be
taken into account. We consider different cases associated with alternative designs of the
data-generating process. In all cases, we do not include a conditional variance dynamic, as
our purpose is to test for causality in the mean of variables that have been pre-filtered with
an ARMA-GARCH process.3

Case 1. The first simulation set focuses on the size and power of the Hong and DCC-
Hong tests when the data generating process (GDP) is a VAR(1) model, namely[

x1,t

x2,t

]
=

[
µ1

µ2

]
+

[
ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

] [
x1,t−1

x2,t−1

]
+

[
ε1,t
ε2,t

]
(9)

We simulate the innovation term εt from a Gaussian density with unit variances and
correlation set to 0.5. In addition, for simplicity, we set the mean to be zero. Furthermore,
for the parameters driving the dynamic, we set the diagonal coefficients ϕ1,1 and ϕ2,2 to be
both equal to 0.5, while we always set ϕ2,1 = 0. The coefficient ϕ1,2 is used to introduce

3Unreported results for the data-generating processes with innovations that include a GARCH term in
the conditional variances provide results that are in keeping with those included in the present section.
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Granger-type causality in the relationship between the two variables of the model: a non-null
value implies causality from variable 2 to variable 1. The sample size of the simulated series
takes a value of 500, 1000, or 2000, while we run 1000 replications in all experiments. A
pre-sample of 1000 observations is introduced to avoid any dependence on starting values.
We test for causality using the Hong test with the Bartlett kernel and the value of M equal
to either 10 or 20. We report both the unidirectional tests as well as the bidirectional test.
In order to filter out the serial dependence from each simulated series, we fit a simple AR(1)
process and apply the Hong test on the innovations. For the Hong test, we evaluate the
cross-correlations using the entire time series of the innovations. For the DCC-Hong test,
we use the same M as for the Hong test and evaluate the test at the end of the sample.
Moreover, for both tests, we use critical values associated with a standardized normal.

Hong Norm. DCC-Hong Sim. DCC-Hong
T M ϕ1,2 2→ 1 1→ 2 1↔ 2 2→ 1 1→ 2 1↔ 2 2→ 1 1→ 2 1↔ 2
500 10 0 0.065 0.053 0.065 0.287 0.276 0.377 0.050 0.056 0.057
1000 10 0 0.053 0.055 0.060 0.281 0.293 0.383 0.055 0.050 0.052
2000 10 0 0.046 0.058 0.036 0.230 0.276 0.342 0.046 0.044 0.050
500 20 0 0.068 0.059 0.061 0.404 0.401 0.543 0.051 0.061 0.051
1000 20 0 0.044 0.052 0.040 0.399 0.399 0.548 0.051 0.045 0.052
2000 20 0 0.048 0.056 0.055 0.347 0.390 0.502 0.047 0.050 0.054
500 10 0.2 0.935 0.047 0.852 0.918 0.270 0.903 0.438 0.051 0.238
1000 10 0.2 1.000 0.046 0.997 0.992 0.264 0.987 0.832 0.042 0.615
2000 10 0.2 1.000 0.055 1.000 0.999 0.264 1.000 0.987 0.042 0.964
500 20 0.2 0.874 0.053 0.739 0.928 0.396 0.913 0.250 0.049 0.149
1000 20 0.2 0.997 0.052 0.985 0.992 0.383 0.987 0.611 0.037 0.341
2000 20 0.2 1.000 0.056 1.000 0.998 0.372 1.000 0.960 0.052 0.809

Table 1: Size and power of the Hong and DCC-Hong tests under the DGP of Case 1 at the
5% confidence level. For the DCC-Hong test, we report the size and power obtained from
normal critical values as well as for critical values recovered by simulations (with innovations’
correlation set to 0.5).

Table 1 confirms the good size and power of the Hong test, which is in keeping with the
evidences in Hong (2001). The size and power are not affected by the sample size and are
only slightly impacted by the choice of M . On the contrary, when using the standardized
normal quantiles, as in Lu et al. (2014), the DCC-Hong test is characterized by a clear
oversize, which only marginally decreases with an increase in the sample size. Moreover, the
size evidently reduces when M increases.

However, while for the Hong test, the asymptotic distribution has been derived in Hong
(2001), for the DCC-Hong only heuristic arguments have been used to support the use of
a standardized normal as an approximation. In Figures (1) and (2), we report the Kernel
density estimates of the DCC-Hong test statistics (for two unidirectional tests and for the
bidirectional test) corresponding to the simulations under the null hypotheses used in Table
1. The plot clearly reveals that the test statistic does not possess a standard Normal density.
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We note a clear asymmetry and a very thick right tail. Moreover, by increasing the value of
M , the deviation from the Gaussian increases. Such evidence gives rise to the oversize noted
in Table 1. Therefore, our simulations suggest that the derivation of the proper asymptotic
distribution of the test statistic might represent a challenging topic for research. In fact,
asymptotic results are not yet available for the DCC model of Engle (2002), an aspect
that makes the asymptotic analysis on the DCC-Hong test rather complex. Furthermore,
following our discussion in the previous section, the non-standard form of the test statistic
distribution could be a by-product of the presence of nuisance parameters in the DCC filter.

In keeping with the literature on testing in the presence of nuisance parameters, we
recover critical values for the test by running simulations under the DGP of this first case.
Given the presence of a large right tails in the kernel densities of Figures (1) and (2), we
run 10,000 replications in order to recover critical values. Table 2 reports the simulated
critical values for selected values of M , from the sample size T , of the correlation between
the innovations, ρ, and for various confidence levels.

The differences between the critical values reported in table and the quantiles of the
normal is striking. In addition, the distribution of the test statistics depends on the level of
unconditional correlation between the series. Moreover, it appears that the distribution of
the test statistic is impacted by the sample size. Our hypothesis is that this depends on the
relevance of the upper tail of the test statistic, thereby requiring longer samples and a large
number of simulations (larger than the one we adopt) to adequately measure the critical
values. A further possibility, is that by adopting a longer time series, the estimation of the
filter (i.e. of its parameter) underlying the DCC-Hong test is more precise with a longer
sample.

The difference in the test statistic distribution from the normal hypothesized by Lu
et al. (2014) challenges their findings and sheds additional light on the performances of the
DCC-Hong test. In fact, by re-evaluating the DCC-Hong test size and power under Case
1 and using the simulated critical values, we do note that the test has an appropriate size
(obviously) and its power properties are reasonable, even though the power of the Hong test
is higher. The over-rejection that characterized the DCC-Hong test when using Gaussian
quantiles has an impact not only on the evidence in Lu et al. (2014), but an all the studies,
cited in the introduction, that adopt it.

Apart from the need to use simulated critical values, the simulation above already shows
evidence that caution must be exercised in the use of the DCC-Hong testing approach, as the
critical values depend on a number of elements. In the settings considered above, the power
of the DCC-Hong test is in line with that of the Hong test. Moreover, the performances
of the Hong test when the underlying cross-correlation functions are evaluated on a shorter
window are discussed under the following case.

Case 2. In this second simulation set, we conduct a simple assessment of the appropri-
ateness of the Hong and DCC-Hong tests when the causality changes over time in a simple
way— that is with a structural break in the parameters. In detail, the DGP is equivalent to
that of Case 1, but for parameter ϕ1,2 which takes a value of 0 up to the middle of the sample
and a value of 0.2 or 0.7 afterwards. We maintain all the other settings as in Case 1 with
the addition of a second implementation for the Hong test. In fact, apart from evaluating
the test on the full residuals sample, we also evaluate the test by focusing on the last 100
observations. This is in line with the specification adopted by Lu et al. (2014) and will allow
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T = 500 T = 1000 T = 2000
M ρ α 2→ 1 1→ 2 1↔ 2 2→ 1 1→ 2 1↔ 2 2→ 1 1→ 2 1↔ 2
10 0 0.1 4.42 4.19 5.41 4.35 4.72 5.59 4.29 4.44 5.48
10 0 0.05 6.67 6.49 7.55 6.84 6.98 7.96 6.58 6.91 8.02
10 0 0.01 13.42 13.55 13.65 14.76 15.65 15.55 15.82 16.22 15.90
10 0.25 0.1 4.29 4.16 5.30 4.43 4.57 5.62 4.22 4.32 5.28
10 0.25 0.05 6.62 6.40 7.51 6.67 6.94 8.03 6.53 6.58 7.97
10 0.25 0.01 13.71 13.68 13.41 14.27 15.46 15.58 15.54 14.37 15.47
10 0.5 0.1 3.97 3.90 4.94 4.12 3.94 5.03 4.06 3.99 5.04
10 0.5 0.05 6.14 6.02 7.15 6.24 6.30 7.38 6.19 6.43 7.43
10 0.5 0.01 12.88 12.47 13.39 14.13 13.28 14.88 14.30 14.37 15.06
10 0.75 0.1 3.56 3.53 4.42 3.56 3.46 4.59 3.47 3.49 4.48
10 0.75 0.05 5.54 5.53 6.72 5.77 5.51 6.94 5.64 5.57 6.89
10 0.75 0.01 12.27 12.05 13.55 12.89 12.03 14.16 13.62 12.30 15.06
20 0 0.1 5.62 5.53 6.89 5.86 5.83 7.33 5.71 5.56 7.10
20 0 0.05 8.03 7.97 9.16 8.55 8.57 10.12 8.53 8.41 9.88
20 0 0.01 14.61 14.71 15.16 16.78 16.58 17.52 16.08 17.65 17.53
20 0.25 0.1 5.58 5.45 6.79 5.77 5.57 6.99 5.83 5.69 7.14
20 0.25 0.05 8.04 7.99 9.31 8.31 8.15 9.72 8.42 8.33 9.71
20 0.25 0.01 15.03 14.92 15.27 15.60 16.66 17.05 16.34 15.77 16.60
20 0.5 0.1 5.38 5.32 6.60 5.40 5.38 6.79 5.36 5.32 6.74
20 0.5 0.05 7.68 7.67 9.00 7.85 7.68 9.10 8.03 7.89 9.51
20 0.5 0.01 14.58 14.69 15.68 14.76 15.25 16.17 15.45 15.84 17.02
20 0.75 0.1 5.09 5.03 6.44 5.07 5.07 6.55 5.07 4.95 6.51
20 0.75 0.05 7.37 7.32 9.08 7.49 7.26 8.96 7.82 7.50 9.58
20 0.75 0.01 14.71 14.36 16.66 15.23 14.59 16.72 17.15 16.13 19.60

Table 2: Simulated critical values for the DCC-Hong test under the null hypothesis and the
data-generating process of Case 1. The values are based on 10.000 simulations for different
levels of the unconditional correlation, M , and confidence levels.
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Figure 1: Kernel density estimate of the DCC-Hong test statistics (in blue) for different
sample sizes under the data-generating process of Case 1 with M = 10; results based on
1000 experiments. Dashed black is used for the standardized Normal density.
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Figure 2: Kernel density estimate of the DCC-Hong test statistics (in blue) for different
sample sizes under the data-generating process of Case 1 with M = 20; results based on
1000 experiments. Dashed black is used for the standardized Normal density.
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us to validate the use of a rolling approach for the Hong test when the causality relation-
ship changes after an external event (which causes a break in the relation between the two
series). Moreover, this second specification for the Hong test will allow us to compare its
performances to the DCC-Hong which, by construction, dynamically adapts to the evolution
of the series: by using a shorter window for the Hong test evaluation, we induce the test
statistic to be more reactive to possible changes in the time series.

Hong : Full Hong : 100 DCC-Hong
T M ϕ1,2 2→ 1 1→ 2 1↔ 2 2→ 1 1→ 2 1↔ 2 2→ 1 1→ 2 1↔ 2
500 10 0.2 0.350 0.052 0.238 0.375 0.061 0.287 0.278 0.056 0.185
1000 10 0.2 0.618 0.050 0.456 0.363 0.061 0.277 0.515 0.048 0.403
2000 10 0.2 0.926 0.052 0.853 0.360 0.082 0.277 0.765 0.046 0.665
500 20 0.2 0.240 0.055 0.168 0.287 0.065 0.224 0.176 0.039 0.115
1000 20 0.2 0.489 0.057 0.361 0.293 0.074 0.204 0.366 0.055 0.242
2000 20 0.2 0.851 0.061 0.705 0.312 0.060 0.218 0.654 0.053 0.505
500 10 0.7 1.000 0.048 0.997 0.999 0.069 0.998 0.995 0.063 0.991
1000 10 0.7 1.000 0.049 1.000 0.999 0.066 0.996 1.000 0.042 1.000
2000 10 0.7 1.000 0.056 1.000 0.999 0.079 0.998 1.000 0.045 1.000
500 20 0.7 0.996 0.053 0.990 0.999 0.075 0.988 0.988 0.055 0.957
1000 20 0.7 1.000 0.060 1.000 0.996 0.072 0.987 0.998 0.055 0.997
2000 20 0.7 1.000 0.062 1.000 0.998 0.073 0.994 1.000 0.055 1.000

Table 3: Size and power of the Hong and DCC-Hong tests under the DGP of Case 2. For
DCC-Hong, we adopt simulated critical values with the innovation correlation set to 0.5.

We begin by focusing on the size of the tests— that is, we consider the causality from
variables 1 to 2, which is absent in all simulations, irrespective of the break. These results are
in line with those of Case 1, both for the Hong and DCC-Hong tests. The results related to the
power are interesting. In fact, when the causality is stronger (ϕ1,2 = 0.7) both specifications
of the Hong test as well as the DCC-Hong test have very good power. In contrast, for mild
causality (ϕ1,2 = 0.2), both tests suffer due to a decrease in power. Moreover, the power
varies both with the sample length and the value of M . For the Hog test, when the sample
size is relatively small— that is 100 observations— the power is limited, being approximately
30% for the case when M = 20 and somewhat larger for M = 10; this evidence challenges the
use of the Hong test within a rolling scheme. In contrast, when focusing on the entire sample
results for the Hong test and the DCC-Hong, we observe a larger power for the former, for
all sample sizes and values of M . This evidence suggests that the Hong test performances
are better when longer time series are available, while the DCC-Hong could be adopted with
shorter time series to confirm the evidence of the Hong test.

Case 3. This last DGP is coherent with a smoother but continuous variation in the
parameters driving the causality. We simulate time series from a time-varying parameters
VAR (TVP-VAR) model defined in the following manner:
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[
x1,t

x2,t

]
=

[
µ1

µ2

]
+

[
ϕ1,1,t ϕ1,2,t

ϕ2,1,t ϕ2,2,t

] [
x1,t−1

x2,t−1

]
+

[
ε1,t
ε2,t

]
(10)

ϕ1,1,t

ϕ1,2,t

ϕ2,1,t

ϕ2,2,t

 =


ϕ̄1,1

ϕ̄1,2

ϕ̄2,1

ϕ̄2,2

+ ρ




ϕ1,1,t−1

ϕ1,2,t−1

ϕ2,1,t−1

ϕ2,2,t−1

−


ϕ̄1,1

ϕ̄1,2

ϕ̄2,1

ϕ̄2,2


+ σ


η1,1,t
η1,2,t
η2,1,t
η2,2,t

 ,

where the time-varying autoregressive parameters follow independent AR(1) processes
with the same variance level, σ, for the evolution of AR parameters (ηi,j,t is zero mean
and unit variance i.i.d. noise). The parameter vector Φ̄ contains the the unconditional
level of the time-varying parameters. We consider several cases for the model parameters
by combining different levels of persistence of time-varying AR parameters (the value of
ρ), thereby nearing a random walk dynamic which is often used in empirical applications,
different levels of the parameters’ innovation variance, and different unconditional levels of
the time-varying parameter ϕ̄1,2 to induce causality; the value of ϕ̄2,1 is always set to 0, while
ϕ̄1,1 = ϕ̄2,2 = 0.5. We note that these settings induce causality at the unconditional level
(on the parameters) but the existence of causality might become less evident (or stronger)
due to the time-varying evolution of the model parameters. The time-varying nature of the
parameters also make the GDP coherent with the intuition that leads to the DCC-Hong
test: it induces time-varying cross-correlation functions. Similar to the previous cases, we
consider three different sample sizes, with T = {500, 1000, 2000}; two different levels for M ,
either 10 or 20; and the three tests for causality (two unidirectional and one bidirectional).
Finally, for the Hong test, we run it by considering the entire sample size as well as last 100
or 200 observations only.

When the data do not unconditionally reveal the the existence of causality, both the
Hong and DCC-Hong test exhibit good size properties which are not affected by different
parameter settings nor by varying the size of the sample adopted for the evaluation of the
test statistics.

Moving to the simulations assessing the power, we note again that both tests have appro-
priate power when the causality is stronger (ϕ1,2 = 0.7); this result is confirmed for different
sample sizes, different values of M , and different parameters settings. On the contrary, when
the causality is mild (ϕ1,2 = 0.2), we obtain results similar to those of Case 2. In fact, when
focusing on the entire sample, the Hong test has better power than the DCC-Hong test,
improving with the sample size and not much affected by the parameters settings. On the
contrary, for small sample sizes, the power is relatively low, and worse than that of the DCC-
Hong test. For the latter, the power increases with the sample size and is only marginally
affected by the simulation settings, apart from a decrease with increasing M . We note that
the simulations we provide also provide certain guidelines on the sample size at which the
Hong test begins to have better power than the DCC-Hong test. In fact, when focusing on
the results based on 200 observations and comparing them to the power of the DCC-Hong
based on 500 observations, we note that the former has better power. Thus, we believe that
with 200 observations and more, the power of the Hong test is higher than the power of the
DCC-Hong test.
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We link this evidence both to the test performances and to the DGP we consider, where
causality is present at an unconditional level in the parameters: this might be better captured
with longer samples. On the contrary, when samples are shorter, the parameters’ dynamic
impacts the test performances. This is coherent with the fact the power reduces when the
causality is not strong ( ¯ϕ1,2 = 0.2), while for ¯ϕ1,2 = 0.7 both tests have very good power
levels.

The simulation result highlights the difficulties associated with the use of the Hong test
within a rolling exercise, due to its low power when the causality is not strong and the rolling
sample has a limited length. In this case, the DCC-Hong could be used as it has appropriate
size and better power, when correct critical values are adopted. In contrast, when the sample
size is larger than 200 observations, the Hong test has better power and is preferred.

3. Causality between oil prices: the case of Brent and WTI

In this section, we replicate some of the empirical evidence included in Lu et al. (2014).
Specifically, we focus on the use of the rolling and DCC Hong tests and consider the two
references indexes for the global crude oil markets: the West Texas Intermediate (WTI)
crude oil and the Brent crude oil. In contrast to Lu et al. (2014), we do not jointly evaluate
the causality between future prices, the WTI and Brent prices mentioned earlier, and spot
prices, Dubai and Tapis spot prices, adopted in Lu et al. (2014). In fact, we prefer to avoid
combining prices of different nature in the analyses, that is— on the one hand we do have
a financial contract, while on the other hand we have a price derived from the exchange of
large physical amounts of oil.

We downloaded the daily closing WTI and Brent futures prices from Bloomberg (CL1
Comdty and CO1 Comdty, respectively) from January 2002 to September 2021. Then, we
computed the returns as xi,t = log(Pi,t)− log(Pi,t−1), where i = {WTI,BRENT}. The analy-
sis involves two periods: i) The period from 3 January 2002 to 19 March 2012, as considered
in Lu et al. (2014); and ii) the entire period from 3 January 2002 to 2 September 2021,
which also encompasses the outbreak of the COVID-19 pandemic. The former is included
to highlight the differences in the test outcomes due to the introduction of contemporaneous
term in the equations of the Rolling and DCC-Hong tests performed in Lu et al. (2014).4

The descriptive statistics of returns of WTI and Brent are included in Table 6.
With regard to the first period, the returns show some discrepancies with respect to

Lu et al. (2014). This could be attributed to the use of different data providers. In both
samples, the mean of returns is small, the standard deviation is high, and the returns are
not normally distributed, as shown by the Jarque-Bera test. This is also highlighted by the
negative skewness and the large kurtosis. The augmented Dickey-Fuller (ADF) test reveals
that the returns are stationary and the Box-Pierce statistics on the lag 5 and 10 confirms
the presence of serial correlations.5 Once again, data confirms that the ARMA-GARCH
model represents an appropriate choice to account for the presence of heteroscedasticity and
autocorrelations in the oil returns.

4In their work, the authors include the case j = 0, which corresponds to contemporaneous correlations.
5We have also performed the ADF test on the log prices. The test does not reject the null hypothesis of

a unit root in both WTI and Brent for both periods.
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Returns WTI Brent WTI Brent
(I) (II) (III) (IV)

Mean 0.063 0.068 0.024 0.024
Maximum 16.410 12.707 31.963 19.077
Minimum -13.065 -10.946 -34.542 -27.976
Standard deviation 2.427 2.196 2.637 2.262
Skewness -0.022 -0.118 -0.478 -0.579
Kurtosis 7.171 5.754 28.054 16.026
JB 1929.676 847.656 134367.663 36554.987

[0.0010] [0.0010] [0.0010] [0.0010]
ADF -53.254 -55.110 -72.636 -73.606

[0.0010] [0.0010] [0.0010] [0.0010]
Q(5) 21.571 24.511 45.805 12.122

[0.0006] [0.0002] [0.0000] [0.0332]
Q(10) 27.741 35.086 48.889 18.985

[0.0020] [0.0001] [0.0000] [0.0405]
Observations 2662 2662 5130 5130

Start 03-Jan-02 03-Jan-02 03-Jan-02 03-Jan-02
End 19-Mar-12 19-Mar-12 03-Sep-21 03-Sep-21

Table 6: Descriptive statistics for returns of WTI and Brent.

Notes: Columns I and II includes the descriptive statistics from from 3 January 2002 to 19 March 2012, the
same period considered in Lu et al. (2014). Columns III and IV includes the full-sample from 3 January
2002 to 2 September 2021. JB refers to the Jarque-Bera normality test, ADF to the Dickey-Fuller unit root
test, while Q(5) and Q(10) are the Box–Pierce statistics for 5th and 10th order serial correlations; values in
[] are t-values. For the ADF test we use the standard specification without drift and trend components.

17

Electronic copy available at: https://ssrn.com/abstract=3941778



For the evaluation of causality, we follow Lu et al. (2014) in setting the lag truncation
value, M = 10, in the use of the Bartlett kernel and in fixing the rolling subsample size for
the rolling Hong tests, set to S = 100. In contrast with Lu et al. (2014), we do not include
the contemporaneous causality. Lu et al. (2014) support such a choice as a consequence of
the asynchronicity in the trading; we believe that such a choice is inappropriate given that
the two future prices are recovered from exchanges based in the US and, therefore, can be
safely treated as synchronous.6

With regard to the period considered in Lu et al. (2014), Figure 3 presents the unidirec-
tional rolling Hong test from WTI to Brent (Brent ← WTI, first panel), the unidirectional
rolling Hong test from Brent to WTI (Brent → WTI, second panel), and the bidirectional
rolling Hong test (Brent↔WTI, third panel). The 1% normal quantile critical value for the
rejection of the null hypothesis (no-tail causality) is indicated by the dashed red line. The
Brent-WTI spread is reported at the bottom of the figure.

The unidirectional Brent ← WTI reveals that there are three statistically significant
causality episodes from WTI to Brent. The first is a short-lived episode in mid-2006 when
crude oil experienced an all-time record. The second episode occurred after May 2010 when
crude oil prices dropped due to concerns about the economic growth in the European Union
given the sovereign debt crisis in the peripheral countries. The last episode involves oil
production cuts in February 2011 during the Arab Spring in Libya, Egypt, Yemen, Syria,
and Bahrain.

The unidirectional Brent → WTI exhibits two statistically significant causality episodes
from Brent to WTI. The first episode occurred during the invasion of Iraq in 2003. At that
time, the country owned one of the largest oil reserves. The second episode refers to the cuts
in oil production cuts during the Arab Spring as previously discussed.

The bidirectional Brent ↔ WTI indicates the three statistically significant causality
episodes discussed for the unidirectional cases. The first is the invasion of Iraq in 2003.
The second episode concerns the European sovereign debt crisis in May 2010. The third
episode refers to the Arab spring in February 2011. As shown in Figure 1 in Lu et al.
(2014), their values for the test statistic are considerably higher due to the contemporaneous
correlation included in the rolling Hong tests. In this case, the role played by comovements
is predominantly and is further clarified below for the case of the DCC-MGARCH.

Figure 4 presents the results for the DCC-MGARCH Hong tests. In addition, the dashed
black line indicates the 1% simulated critical values according to the study performed in
Section 2.1. It is worth noting that the simulated critical value is considerably higher than
the one expressed by the normal quantile—that is, the black dashed line is well above the
red dashed line.

Table 7 presents the rejection rate of the null hypothesis of no-tail causality for the DCC-
MGARCH Hong test according to the Normal critical value (first column) and the simulated
critical value (second column). As is evident, the rejection rate of the null hypothesis with
the 1% normal quantile critical value is considerably higher than the one of the simulated
critical values.

For the case of Brent ← WTI, the rejection rate is 100% for the normal quantile critical

6There is only a one-hour delay between the times in Chicago and New York.
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Figure 3: Rolling Hong tests with between Brent and WTI as in Lu et al. (2014).

Notes: The unidirectional rolling Hong test from WTI to Brent (first), the unidirectional rolling Hong test
from Brent to WTI (second), and the bidirectional rolling Hong test. The dashed red line indicates the
1% normal quantile critical value. The forth panel includes the Brent-WTI spread. The period under
consideration is from 3 January 2002 to 19 March 2012 as in Lu et al. (2014). The rolling sample size is
equal to 100. 19
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Figure 4: DCC-MGARCH Hong tests between Brent and WTI as in Lu et al. (2014).

Notes: The unidirectional DCC-MGARCH Hong test from WTI to Brent (first), the unidirectional DCC-
MGARCH Hong test from Brent to WTI (second), and the bidirectional DCC-MGARCH Hong test. The
dashed black (red) line indicates the 1% simulated (normal quantile) critical value. The forth panel includes
the Brent-WTI spread. The period under consideration is from 3 January 2002 to 19 March 2012 as in Lu
et al. (2014). 20
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α = 1% Normal Simulated
Brent ← WTI 100.00% 0.11%
Brent → WTI 6.09% 0.57%
Brent ↔ WTI 33.72% 0.30%

Table 7: The rejection rate of the null hypothesis of no-tail causality for the DCC-MGARCH
Hong tests according to the 1% normal critical value (first column) and the 1% simulated
critical value (second column).

Notes: The unidirectional DCC-MGARCH Hong test from WTI to Brent (first row), the unidirectional
DCC-MGARCH Hong test from Brent to WTI (second row), and the bidirectional DCC-MGARCH Hong
test (third row). The period under consideration is from 3 January 2002 to 19 March 2012, as in Lu et al.
(2014).

value, while it is 0.11% for the simulated quantile. This clearly leads to contrasting con-
clusions regarding the rejection of the null hypothesis and represents the key point of our
exercise. The difference between the rejection rates of the two critical values is also visible for
Brent→WTI and Brent↔WTI. The two cases show a rejection rate of 6.09% (0.57%) and
33.72% (0.30%) using the normal (simulated) quantile critical value, respectively. The sim-
ulated quantile critical value provides a number of statistically significant causality episodes
and this is in line with the one for the rolling Hong test, even if the timing is not fully
aligned. Clearly, the different timing also depends on the selected rolling subsample size.7

For example, there are two further significant causality episodes for Brent→WTI and Brent
↔ WTI that are not detected in the rolling Hong test. The first concerns the oil embargo
issued by Iraq in April 2002 and involved exports of approximately 1.5 million barrels of
oil a day (1 million only to the US). The second involves a dispute between OPEC and the
George W. Bush administration in March 2008 regarding the causes of the increase in oil
prices.

Even in this case, the values for the test are considerably lower than the ones reported
in Lu et al. (2014). Figure 5 presents the estimated dynamic conditional correlations, which
range from -M to M with M = 10. The dashed red line indicates the contemporaneous
correlation, the j = 0 case, included in the Hong test by Lu et al. (2014).

It is evident that the discrepancy in the results is due to the contemporaneous correlation
included in the Hong test by Lu et al. (2014). The dynamic of the bidirectional test of Lu
et al. (2014) (solid green line in Fig. 5 of the paper) is almost identical to the contempo-
raneous correlation depicted in our figure. As discussed above, we do believe that it does
not represents an appropriate choice, since as contemporaneous correlations measure the
comovements of two crude oil commodities that are synchronously traded in the US market.
This is also confirmed by the difference in magnitude of the correlations. The dynamic con-
temporaneous correlation is, on average, 0.86 while the lead/lag correlations are, on average,
close to zero.

Finally, Figures 6 and 7 include the results for the entire sample according to the rolling
Hong and the DCC-MGARCH Hong tests, respectively. The dynamic of both Hong tests

7In Appendix Appendix A, we show that by selecting S = 200 the dynamic of the test changes.
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Figure 5: Estimated dynamic conditional correlations using the DCC model given by Engle
(2002).

Notes: The DCC model provides 2M + 1 estimated paths for the cross-correlation, which range from -M
to M with M = 10. The dashed red line indicates the contemporaneous correlation, which represents the
j = 0 case included in the Hong test by Lu et al. (2014). The period under consideration is from 3 January
2002 to 19 March 2012.

show a further statistically significant causal episode in June 2020, after the outbreak of
COVID-19. Notably, the WTI experienced a negative price for the first time in history.

Table 8 presents the rejection rate of the null hypothesis of no tail causality for the DCC-
MGARCH Hong test according to the Normal critical value (first column) and the simulated
critical value (second column). Moreover for the entire sample, the rejection rate of the null
hypothesis is considerably lower for the simulated critical values.

α = 1% Normal Simulated
Brent ← WTI 4.32% 0.04%
Brent → WTI 1.53% 0.06%
Brent ↔ WTI 2.99% 0.06%

Table 8: The rejection rate of the null hypothesis of no-tail causality for the DCC-MGARCH
Hong tests according to the 1% Normal critical value (first column) and the 1% simulated
critical value (second column).

Notes: The unidirectional DCC-MGARCH Hong test from WTI to Brent (first row), the unidirectional
DCC-MGARCH Hong test from Brent to WTI (second row), and the bidirectional DCC-MGARCH Hong
test (third row). The period under consideration is from 3 January 2002 to 2 September 2021.

It is worth noting that the DCC-MGARCH Hong tests provide different results for the
subsample period from 3 January 2002 to 19 March 2012. As depicted in Figures 4 and
7, the value of the test is, on average, lower in the entire sample estimates with respect to
the value obtained in the subsample estimates. In the former, the only significant causality
episode is detected during the outbreak of COVID-19.

Smaller values of the statistic are yielded by lower dynamic conditional correlations ob-
tained in the entire sample. If the causality represents short-lived periods, the identification
of the significant episodes based on cross-correlations will fade away with the increase in T ,
since the estimated parameters of the DCC-GARCH model will be driven by periods of weak
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Figure 6: Rolling Hong tests between Brent and WTI for the entire sample.

Notes: The unidirectional rolling Hong test from WTI to Brent (first), the unidirectional rolling Hong test
from Brent to WTI (second), and the bidirectional rolling Hong test. The dashed red line indicates the
1% normal quantile critical value. The forth panel includes the Brent-WTI spread. The period under
consideration is from 3 January 2002 to 2 September 2021. The rolling sample size is equal to 100.
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Figure 7: DCC-MGARCH Hong tests between Brent and WTI for the entire sample.

Notes: The unidirectional DCC-MGARCH Hong test from WTI to Brent (first), the unidirectional DCC-
MGARCH Hong test from Brent to WTI (second), and the bidirectional DCC-MGARCH Hong test. The
dashed black (red) line indicates the 1% simulated (normal quantile) critical value. The forth panel includes
the Brent-WTI spread. The period under consideration is from 3 January 2002 to 2 September 2021.
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dependence.
To preserve the identification of these transitory episodes, a rolling evaluation scheme

of the DCC-Hong test should be adopted. Appendix B presents the rolling DCC-Hong
tests for the entire sample and shows that short-lived episodes are also detected. However, a
rolling DCC-Hong test would be more computationally intensive and a simple rolling Hong
test would represent a more viable solution.

4. Conclusion

We show that the test statistic suggested by Lu et al. (2014) to detect causality has a
non-standard distribution whose critical values must be recovered by simulations. Moreover,
utilizing a Monte Carlo study, we show that a rolling application of the test proposed by
Hong (2001) appears to be more appropriate with longer time series. Using simulated critical
values, we replicate some of the evidence in Lu et al. (2014), thereby revealing striking
differences in the detection of causality. Our results challenge the evidence reported in other
studies that adopted the approach put forward by Lu et al. (2014).

Acknowledgments: the first author acknowledges financial support from Italian Min-
istry of University and Research project PRIN2017 HiDEA: Advanced Econometrics for High
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Appendix A. Rolling Hong test with a subsample size equal to 200.

In this section, we perform the rolling Hong tests with the subsample size S = 200.
Figures A.8 and A.9 show the unidirectional rolling Hong tests and the bidirectional rolling
Hong test for the period considered in Lu et al. (2014) and the entire sample The period
under consideration is from 3 January 2002 to 2 September 2021.
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Figure A.8: Rolling Hong tests with between Brent and WTI as in Lu et al. (2014).

Notes: The unidirectional rolling Hong test from WTI to Brent (first), the unidirectional rolling Hong test
from Brent to WTI (second), and the bidirectional rolling Hong test. The dashed red line indicates the
1% normal quantile critical value. The forth panel includes the Brent-WTI spread. The period under
consideration is from 3 January 2002 to 19 March 2012 as in Lu et al. (2014). The rolling sample size is
equal to 200.
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Appendix B. Rolling DCC-MGARCH Hong test with a subsample size equal
to 100.

In this section, we perform the rolling DCC-MGARCH Hong tests with the subsample
size S = 100. Figures B.10 show the unidirectional rolling DCC-MGARCH Hong tests and
the bidirectional rolling DCC-MGARCH Hong test from 3 January 3 2002 to 2 September
2021.
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Figure A.9: Rolling Hong tests between Brent and WTI for the entire sample.

Notes: The unidirectional rolling Hong test from WTI to Brent (first), the unidirectional rolling Hong test
from Brent to WTI (second), and the bidirectional rolling Hong test. The dashed red line indicates the
1% normal quantile critical value. The forth panel includes the Brent-WTI spread. The period under
consideration is from 3 January 2002 to 2 September 2021. The rolling sample size is equal to 200.
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Figure B.10: Rolling DCC-Hong tests between Brent and WTI for the entire sample.

Notes: The unidirectional rolling DCC-MGARCH Hong test from WTI to Brent (first), the unidirectional
rolling Hong test from Brent to WTI (second), and the bidirectional rolling Hong test. The dashed red line
indicates the 1% normal quantile critical value. The forth panel includes the Brent-WTI spread. The period
under consideration is from 3 January 2002 to 2 September 2021. The rolling sample size is equal to 100.
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