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Abstract 

This paper assesses the effect of extreme weather variability in predicting the impact on two 

agricultural crop-related variables: yield and production. We use a Markov-Switching time-

varying copula to describe the joint dependence structure between extreme weather variability 

and crops in East Africa during the period 1961-2018. Understanding the risk associated with 

weather variability on agricultural production is crucial, as mitigation, and even adaptation, can 

then be made more effective. Climate data are divided into regimes: higher and lower regimes. 

The abnormal or higher regime is the period during which the temperature exceeds a certain 

threshold, while the lower regime is the period during which the rainfall is below a certain 

threshold. The findings show that there is strong dependence between weather variability and 

crops, meaning an increase in temperature or a decrease in rainfall is associated with a decrease 

in crop yield or production. The dependence is more significant when weather variability 

moves into either regime compared to the normal condition. The dependency in the higher 

regime tends to be more significant. This highlights the need to formulate policies that consider 

crop improvement strategies such as genetic crops, irrigation, and adaption under carbon 

dioxide (CO2) fertiliser to mitigate the impact on food supply in the region. 
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1. Introduction  

Agriculture is one of the industries most affected by climate change, particularly extreme 

weather events (IPCC, 2012). In East Africa, for instance, agriculture is the most important 

sector, contributing up to 80 per cent of people’s main income, and  the livelihood of the 

population living in rural areas depends on it (Rapsomanikis, 2015). Such climate variability 

will have a devastating effect on agricultural products, as climate change induces food 

insecurity through extreme climate events (Xu et al., 2017). 

Agriculture contributes up to 40 per cent to the Gross Domestic Product (GDP) in East Africa 

(Runge et al., 2004). This sector is dominated by traditional smallholder mixed farming of 

livestock, food crops, fishing and aquaculture, and is characterised by low inputs of physical 

capital, fertilisers and pesticides (Eriksen et al., 2008). The major crops produced in this region 

are maize, rice, potato, banana, cassava, beans, vegetables, sugar, wheat, sorghum, millet and 

pulses. Agriculture is mainly rain-fed agriculture (FAOSTAT, 2011), making this region highly 

dependent on climatic conditions (Slingo et al., 2009). In addition, agriculture is increasingly 

affected by extreme events such as drought, floods and rainstorms (Zegeye, 2018). These can 

increase the opportunity cost through years of foregone consumption. 

The interaction between agriculture crops and climate anomalies is crucial for policy 

intervention. For instance, the agricultural insurance industry would want to understand 

whether or not to support farmers after experiencing losses due to weather extremes such as 

drought, or whether climate information  can be considered  to inform stakeholders about total 

revenue (Anderson et al., 2017). Insurance products can be used to transfer the risk of extreme 

weather events, to overcome the chronic problems of moral hazard, adverse selection, and other 

forms of asymmetric information that might affect the credit and insurance market. Still, for 

policymakers and farmers, water stress due to variability in rainfall might cause a delay in 

sowing, variability of the soil, or even change in crop management practices. In addition, due 

to people’s dependence on agriculture in low-income countries, households cultivate their 

crops during only one growing season per year, with increasing variability in the periodic 

changes from drought and flooding. These might cause harmful effects on crop yields due to 

the rainfed nature of agriculture in the region.  

This has pushed researchers to pay more attention to the dependency structure that exists 

between extreme weather events and agricultural outputs. An ‘extreme weather event’ refers 

to a hazardous weather condition that can provoke huge socio-economic losses (Funk, 2012; 

Lyon, 2014). Extreme weather events include excessive rainfall/floods (Hastenrath et al., 
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2010), deficient rainfall, drought (Lott et al., 2013) and abnormally high temperatures (Mearns 

et al., 1984; Teixeira et al., 2013; Asseng et al., 2015).  

The growing global interconnectedness and reciprocal interaction of economic and ecological 

systems may increase catastrophe susceptibility and risk. The global food system displays 

evidence of growing interconnectedness, as well as the potential for systemic risk. Due to the 

globalisation of the grain market, a food shortage or shock caused by drought in one or more 

major food-producing areas can result in a large increase in global food prices, putting food 

security at risk, especially in poorer nations (Gbegbelegbe et al., 2014). According to Von 

Braun (2008) and Mittal (2009), increased energy prices, shrinking world grain reserves, an 

increase in demand due to rising population and wealth, financial speculation in commodity 

markets, a decline in crop production due to decreased investment in agricultural research and 

development (R&D), and the use of grains for biofuel production are other factors that have 

contributed to the rapid rise in grain prices. Despite these factors, weather-related conditions 

in the agricultural sector are considered to be the major cause (Gaupp et al., 2017). Given that 

extreme weather events are projected to occur more frequently (IPCC, 2012), there is a need to 

better understand the implications of extreme weather events on agricultural output.  

The copula technique is an important tool used to study the dependence structure between 

climate variables and crop yield/production. When evaluating the dependency structure, using 

a copula function has several advantages. First, copulas allow us to describe marginal 

behaviour and dependency structure separately. Second, we can use a copula function to 

determine the degree of dependence, as well as the structure of the dependence. Because a 

linear correlation does not provide information about the tail dependencies, a copula allows for 

asymmetric dependence (Naifar, 2011). Applications of copulas are also found in other 

domains, such as finance (D’Amico and Petroni, 2018; Huynh et al., 2020), hydrology (Ghosh, 

2010; Madsen et al., 2014), meteorology and climatology (Lazaglou et al., 2019) and risk 

management (Luo and Shevchenko, 2009; Ghorbel and Trabelsi, 2014).  

In the agricultural sector, several studies have applied copula methods to understanding yield 

loss due to climate variability. For instance, Vedenov (2008) employed the Gaussian copula to 

estimate the joint distribution of corn yields at farm and county levels. He found that co-

movement between farm and county is observed in the lower tail of the distribution. Zhu et al. 

(2008) used the Gaussian and t-copula to capture the dependence structure between crop yield 

and prices, and found that there is dependence in the higher tail. 

Increasingly, copula methods have also been used to construct the joint probability distribution 

between crop yield and drought (Li et al., 2015; Madadgar et al., 2017; Ribeiro et al., 2019; 



4 
 

Leng and Hall, 2019). For instance, Madadgar et al. (2017) employed copula techniques to 

examine the probability responses of crop yield variability to a change in drought conditions 

during the growing seasons in Australia. Recently, Nguyen-Huy et al. (2017) investigated the 

effect of multi-synoptic-scale climate drivers the El Niño-Southern Oscillation (ENSO) and the 

Inter-decadal Pacific Oscillation (IPO) Tripole Index (TPI) on Australia's wheat belt. Vine 

copulas were constructed to understand the joint behaviour of wheat yield and different climate 

variables. When the bivariate copula model was considered, the results revealed enough 

evidence to support upper tail dependence, while trivariate copula forecasting ability showed 

that the accuracy of the prediction improves during La Niña. Nguyen-Huy et al. (2018) used 

12 large-scale climate drivers to investigate spatio-temporal influence on variability of wheat 

yield in five major states across Australia for the period 1983-2013. Vine copulas revealed that 

there is a statistically significant negative correlation between the Indian Ocean Dipole and 

anomalous wheat yields in the early stage of the crop.  

However, we realise that studies analysing the joint behaviour of climate-extreme variables 

and crop-related variables (price, production and yield) are rare. The study of Alidoost et al. 

(2019) is the only work found; it analyses the joint behaviour of climate-extreme indices with 

three crop-related variables (price, production and yield). The researchers used the C-vine 

copula and five families of the copula: Gaussian, Student-t, Clayton, Gumbel and Frank. The 

results confirm that copulas are adequate to describe multivariate dependencies, and can 

quantify the effect of extreme events and the uncertainty surrounding them. Studies such as 

Cannarozza et al. (2006) emphasise that changes observed in the precipitation regime directly 

impact agriculture, hydrology and ecosystems. Coupled with the climate-change risk due to 

increased temperature, this affects rainfall and seasonal patterns. Higher temperatures can also 

lead to increased evaporation, which reduces the available water. In general these changes in 

precipitation or extreme-weather events are characterised by asymmetric behaviour (Entriken 

and Lordan, 2012); thus, methods that accommodate the asymmetric behaviour observed in 

climate variables are suitable. The Clayton and Gumbel asymmetric Archimedean copulas, 

which exhibit greater dependence in the negative and positive tail respectively (Naifar, 2011; 

Zhang and Vijay, 2007), are particularly suitable – contrary to the Elliptical copulas, which 

accommodate mostly the elliptical distributions that are multivariate normal and Student-t 

distributions.  

This study has two objectives. First, to investigate the joint behaviour of crop yield and 

production and climate variability in East Africa. This area is highly dependent on agriculture 

and dominated by small-scale rain-fed production. This paper is one of the first to model the 
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relation between crop yield, production and climate variables by making use of the time-

varying copula technique in East Africa. Afuecheta and Omar (2021) have been the only 

researchers to use copulas in Africa and East Africa to study the dependence structure of 

climate variability in temperature and precipitation with crops related variables (yield and 

production). The findings reveal that climatic factors and most of the crops variables 

(yield/production) show strong dependence. However, the researchers failed to account for a 

time-varying structure in their analysis. To remedy that, we propose the use of time-varying 

Archimedean copulas. 

Second, this paper assesses the impact of the extreme-weather events on agricultural output in 

East Africa by using rainfall and temperature, similarly to Afuecheta and Omar (2021). Most 

studies on climate variability in East Africa focus on rainfall rather than temperature (Shongwe 

et al., 2011; Anyah and Qiu, 2012; Nicholson, 2014). Contrary to Alidoost et al. (2019) and 

Afuecheta and Omar (2021), we argue that not all climate variability observed is harmful to 

agricultural outputs, but only when such variability exceeds a certain threshold. To study this, 

we consider a regime in which climatic factors produce extreme-weather events. A drought, 

for instance, is a period of time during which an area or region receives less rain than usual. 

However, it is impossible to tell when a drought will start. A drought may go unnoticed for 

weeks, months or even years before it is identified as a drought. Droughts may also end just as 

gradually as they began. They may occur in almost every climatic zone, including both high- 

and low-rainfall locations, and are usually caused by a decrease in the quantity of precipitation 

received over a long period of time, such as a season or a year. But droughts are exacerbated 

by high temperatures, high winds, low relative humidity, and the timing and features of rainfall, 

such as the distribution of wet days during crop growth seasons, rain strength and duration, and 

rain commencement and termination (Mishra and Singh, 2010).  

‘Evapotranspiration’ is understood as the total quantity of water returned to the atmosphere due 

to higher temperatures. The rate of evapotranspiration is affected by sunlight, humidity, 

temperature and wind. Soils can lose moisture and dry conditions can occur when 

evapotranspiration rates are high. However, in cold conditions and during overcast weather, 

evapotranspiration rates may be low enough to compensate for periods of below-normal 

precipitation, and drought may be mild or non-existent (Moreland, 1993). This means an 

increase in the temperature level can lead to soil losing moisture, and dry conditions. For that 

circumstance we consider a regime in which climatic factors (rainfall and temperature) produce 

extreme or abnormal weather events (such as drought) at times, and normal events otherwise. 

‘Abnormal’ is used to describe a period during which the temperature exceeds a certain 
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threshold or the precipitation is below a certain threshold. There is a gap in the literature 

regarding such regimes.  

Our results show that there is strong dependence between weather variability and crops. The 

dependence is more pronounced when weather variability moves into the abnormal regime 

compared to normal conditions, as high-temperature and water-stress episodes may cause 

significant crop-yield losses. Our findings also reveal that such dependence is persistent in all 

countries and across crop products.  

The rest of the paper is organized as follows: section 2 presents the model specifications, while 

section 3 describes the data and variables. Section 4 presents the results, and the last section 

concludes this report. 

 

2.  Methodologies  

2.1 Markov Switching Model  

To capture the time-varying dependence structure using copulas, a two-step approach is used, 

as in Patton (2006) and Mudiangombe and Muteba Mwamba (2019). In order to remove the 

effect of autocorrelation and heteroscedasticity in the data, the generalised autoregressive 

conditional heteroskedasticity (GARCH) type is considered. 

 

2.1.1 Glosten, Jaganathan and Runkle GARCH (1993) 

The GJR-GARCH (1,1) model can be expressed as follows: 

𝑟! = 𝜇 + 𝜀! = 𝜇 + 𝜎!𝜂!,                                                                                                              (1) 

𝜎!" = 𝛼# + 𝛼$𝜀!%$" + 𝛽𝜎!%$" + 𝛾𝜀!%$" 𝐼!%$,                                                                                   (2) 

where 𝐼& is the indication functions with this condition: 𝐼!%$=1 if 𝜀&%$ < 0 and 𝐼!%$ = 0 if 

𝜀&%$ ≥ 0 ,  			𝛼#>0, 𝛼$ ≥	0 and 𝛽	 ≥ 0  

to ensure a positive conditional variance 𝜎!", 𝛼$ + 	𝛽 < 1  

to ensure that unconditional variance 𝑣𝑎𝑟(𝜀!) = 𝛼#/(𝛼$ + 𝛽) is defined 𝜂!~𝑖. 𝑖. 𝑑. ℕ(0,1). 

 

2.1.2 Markov Regime Switching GJR-GARCH (MS-GJR-GARCH) 

As in Augustyniak et al. (2014), Bauwens et al. (2010) and Francq et al. (2001), the GJR-

GARCH(1,1) model can specified as follows:  

𝑟! = 𝜇'! + 𝜎!(𝑆$:!)𝜂!,                                                                                                                  (3) 

𝜎!"(𝑆$:!) = 𝛼#'! + 𝛼$'!𝜀!%$
" (𝑆!%$) + 𝛽𝜎!%$" (𝑆$:!%$) + 𝛾𝜀!%$" 𝐼!%$(𝑆$:!%$),                                (4) 
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where 𝜂!~𝑖. 𝑖. 𝑑. ℕ(0,1). For each point in time, the conditional variance is 𝜎! =

𝑣𝑎𝑟(𝑟!|	𝑟$:!%$,'":!$"),  

where 𝑟$:!%$ and 𝑆$:!%$ are vectors (𝑟$, ⋯ , 𝑟!%$) and (𝑆$, ⋯ , 𝑆!) respectively. 𝑆! is an 

unobserved ergodic time-homogeneous Markov chain process with k-dimensional discrete 

state space (𝑆! is assumed to take the integer values from 1 to k). The K x K transistion matrix 

of the Markov chain is defined by the transition probabilities {Pr	[𝑆! = 𝑗|𝑆!%$ = 𝑖]}*,&+$, . The 

vector 𝜃 = (G𝛼#,* , 𝛼$,* , 𝛽* , 𝛾*H*+$
, , {𝑝*&}*,&+$, ) represents the parameters of the model.  

 

2.2 Copula: definition and basic properties  

We consider a copula model to estimate the possible responses of crop yield and production to 

extreme climate events. To achieve this, we model the dependence between extreme climate 

events and crop yield or production using a copula function proposed by Nelsen (2007). Copula 

functions can model dependency between variables that do not follow the same distributions, 

including even non-normal distributions; thus accommodating non-linearity or underlying 

probability distributions.  

We define  copula as the n-dimensional distribution that forms a copula function, C. This 

function is limited in the interval [0,1]- with conditions that might be satisfied as follows: 

Ø A copula is an n-increasing function. 

Ø The copula function has margins	𝐶&, where 𝑗 = 1,2,⋯ , 𝑛, 𝐶&(𝑡) = 𝑡	for each 𝑡 in [0,1].  

A distribution F of dimension p, with the distribution marginal	𝐹&, the function copula can be 

written as follows: 

𝐹O𝑧$, ⋯ , 𝑧.Q = 𝑐(𝐹$(𝑧$),⋯ , 𝐹.O𝑧.Q)                                                                                     (5) 

where 𝐶 represents the copula function that links the marginal distributions, 𝐹&O𝑧$, ⋯ , 𝑧.Q, 

𝐹$(𝑧$) and 𝐹.O𝑧.Q are the joint distribution: the marginal distribution of the variable 𝑧$and the 

marginal distribution of the variable 𝑧. respectively, with 𝑗 = 1,⋯ , 𝑝, when all marginal 

distributions are continuous. The copula function can be written as follows: 

𝑐O𝑘$, ⋯ , 𝑘.Q = 𝐹(𝐹$%$(𝑘$),⋯ , 𝐹.%$O𝑘.Q)                                                                              (6) 

Then 𝑧 = 𝐹$%$(𝑘$),⋯ , 𝐹.%$, therefore the copula density will be as follows: 

𝑐O𝑘$, ⋯ , 𝑘.Q =
/(1"$"(,"),⋯,1%$"4,%5)

6&'"
% /&1&

$"(,&)
                                                                                          (7) 

There are two families of copula the elliptical and the Archimedean copulas; but our study 

focuses on the Archimedean Clayton and Gumble copulas. The Clayton copula is an 
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asymmetric Archimedean copula that displays greater dependence in the negative tail than in 

the positive tail, while the Gumble copula exhibits greater dependence in the positive tail. This 

is crucial given the nature of climate variables, which tend to show asymmetric behaviour. 

 

2.3 Dynamic Archimedean Copulas  

Engle's (2002) theory was adjusted by Patton (2006) for modelling bivariate time-varying for 

Archimedean copulas, based on an ARMA procedure. As proposed by Patton (2006a), over a 

sample for the practical procedure of copula remains static; while in Kendall's tau, the 

transformed copula parameters vary in the process of the evolution equation, expressed as: 

 𝛿7 = Λ(𝜛 + 𝛼"𝛿7%$ + 𝛼$
$
$#
∑ X𝑘$,7%& − 𝐾",7%$X$#
&+$ )                                                (8) 

where Λ is the logistic transformation; and then Λ(𝑡) = (1 + 𝑒%!)%$ and is allowed to keep, at 

all times, the order of the parameters of the Clayton copula, 𝛿7 ∈ [0,1] and (𝑘$7,𝑘"7), as are 

the observations at time y. The dynamic process restricted to a bivariate application is applied 

by Patton (2006a) via the absolute difference term X𝑘$,7%& − 𝑘",7%&X called forcing variables. 

When there is impeccable positive dependence, this absolute difference is close to zero and 

entrains the parameter 𝛼$ to be negative. 

 

3.  Data description  

Data points for this study were sourced from FAOSTAT (FAO, 2011) from 1961 to 2018. We 

collected annual data for yield and production for most cash crops in the three countries in East 

Africa (Kenya, Tanzania and Uganda). We collected data on the yield and production for 12 

agricultural products: banana, cassava, coffee, maize, potato, rice, sorghum, soybeans, sugar, 

sweet potato, tea, and wheat – unlike Alidoost et al. (2019), who used only potato – as different 

products might respond differently to weather extremes. Rather we considered these 

agricultural products similarly to Adhikari et al. (2015), who reviewed the impact of climate 

change on 14 strategic crops in eight sub-Saharan Africa countries. Afuecheta and Omar (2021) 

is another study that considers more than one agricultural product. 

However, according to Abraha-Kahsay and Hansen (2016), climate change variability in 

temperature and precipitation during a specific season is more harmful to agricultural output 

than the annual variations observed in precipitation and temperature. To capture the changes 

taking place in the crucial growing season, the temporal disagreement statistical technique was 

considered, for transforming low-frequency (annual) data to high-frequency (monthly) data. 

The other reason for expanding the sample size is to obtain reliable results that avoid sample 
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bias. The study considers the temporal disagreement method proposed by Denton (1971). To 

smooth the yield and production data, the logarithmic yield and production sequences are 

obtained similarly to Xiang-dong et al. (2019), by the following expression:  

  ∆𝑂* = ln	(𝑂! 𝑂!%$a )                                                                                                                   (9) 

where = 1,⋯ , 𝑛 ; 𝑂! being the observation at time 𝑡 and 𝑂! being the corresponding 

logarithmic yield or production of the agricultural products. Table1 presents the descriptive 

statistics for the 12 agricultural products considered in this study.  

 

Table 1: Summary of descriptive statistics for yield and production of agricultural products  
Kenya                         

Yield Banana Cassava Coffee Maize Potato Rice Sorghum Soybean Sugar C S. Pot Tea Wheat 

Mean 0.095 0.052 0.008 0.075 0.115 0.057 0.119 0.001 0.041 0.137 0.062 0.091 

Std dev  0.099 0.054 0.007 0.117 0.108 0.113 0.103 0.028 0.124 0.135 0.082 0.149 

Skewness 3.496 4.925 2.472 5.167 3.157 6.973 2.503 -2.656 7.394 4.09 3.727 5.682 

Kurtosis 31.273 39.504 18.326 36.314 30.081 59.726 16.419 11.362 64.337 46.822 15.496 43.705 

J. Berra 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 

Production 
            

Mean 0.068 0.061 0.04 0.104 0.081 0.042 0.075 0.001 0.084 0.053 0.057 0.126 

Std dev  0.107 0.054 0.027 0.128 0.064 0.041 0.056 0.049 0.18 0.05 0.082 0.265 

Skewness 5.237 3.007 3.523 4.894 2.687 4.071 2.121 -2.751 6.052 3.034 4.103 7.378 

Kurtosis 37.006 28.217 38.702 42.393 25.782 38.511 13.923 18.818 47.429 26.916 20.633 67.526 

J. Berra 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.83 0.829 0.829 0.829 0.829 

Tanzania 
            

Yield 
            

Mean 0.025 0.1 0.107 0.032 0.106 0.075 0.024 0.014 0.096 0.059 0.055 0.055 

Std dev  0.018 0.098 0.271 0.105 0.093 0.215 0.076 0.028 0.286 0.194 0.128 0.153 

Skewness 1.748 1.823 5.074 8.426 3.326 5.866 7.732 4.982 7.458 6.315 5.53 6.67 

Kurtosis 12.158 7.114 30.907 79.292 23.307 40.56 67.763 31.798 64.04 44.707 38.551 52.298 

J. Berra 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 

Production 
            

Mean 0.018 0.044 0.072 0.021 0.051 0.107 0.068 0.055 0.057 0.044 0.091 0.019 

Std dev  0.037 0.099 0.182 0.05 0.11 0.01 0.166 0.069 0.128 0.05 0.086 0.04 

Skewness 7.023 5.485 4.984 5.905 5.798 2.806 5.231 2.702 4.592 3.321 3.753 4.935 

Kurtosis 58.031 37.525 29.848 41.011 38.333 9.839 31.161 14.444 24.736 21.241 35.067 30.56 

J. Berra 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 

Uganda  
            

Yield 
            

Mean 0.001 0.001 0.001 0.001 0.001 0.001 0.001 -0.001 -0.01 0.001 0.001 -0.001 

Std dev  0.032 0.041 0.052 0.033 0.031 0.032 0.057 0.067 0.79 0.059 0.019 0.08 

Skewness -2.851 -0.43 -1.769 -2.099 -3.681 -0.908 -0.124 -1.093 6.252 -0.023 -1.516 0.242 

Kurtosis 20.373 12.26 21.888 12.648 23.04 10.684 4.929 16.09 152.788 8.778 7.592 7.475 
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J.Berra 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 

Production 
            

Mean 0.001 0.001 0.006 -0.008 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 

Std dev  0.017 0.062 0.042 0.218 0.031 0.02 0.062 0.022 0.023 0.029 0.03 0.053 

Skewness -6.454 -0.338 -1.049 -5.28 -3.681 -6.957 0.01 -5.139 -3.698 -0.793 -2.862 -1.833 

Kurtosis 57.61 3.447 8.169 163.17 23.04 63.48 2.527 37.303 31.421 4.997 29.908 12.535 

J. Berra 0.829 0.829 8.169 0.829 0.829 0.829 0.829 0.831 0.829 0.829 0.829 0.829 

Note: S. Pot stands for sweet potato and sugar C. for sugar cane  

 

The findings reveal that the yield and production of wheat have the highest standard deviation, 

while sugar cane and coffee record the highest standard deviation in Tanzania for yield and 

production respectively. Uganda records the highest standard deviation for sugar cane and 

maize for yield and production respectively. The skewness coefficient that measures the 

asymmetric behavior in the distribution is positive for Kenya and Tanzania for both yield and 

production, while Uganda has non-positive asymmetric distribution, indicating the presence of 

the longer left-hand tail distribution for both yield and production. Jarque-Bera coefficients for 

all countries confirm that the normality assumption is rejected, implying that the yield and 

production data are not normally distributed, and suggesting that assuming joint normality may 

produce misleading results. The findings also reveal that the highest mean is achieved by sweet 

potato (yield) and wheat (production) in Kenya, followed by coffee (yield) and rice 

(production) in Tanzania; while the lowest mean value is observed in Uganda. We considered 

the Climate Research Unit (CRU) to be the main source of climate data, as did Barrios et al. 

(2008) and Abraha-Kahsay and Hansen (2016). The monthly data for temperature and 

precipitation are calibrated into the GRJ-GARCH (1,1) specification to take into account time-

varying variability, as well as the asymmetric behavior of these climate variables.  

Table 2 displays the outputs for rainfall using the GJR-GARCH model. This is contrary to Tol 

(1996), who pioneered the use of ARCH and GARCH models to model the mean and 

conditional variance of temperature, which depends linearly on the conditional variances of 

previous temperatures and prediction errors.  

We relax the symmetric assumption of the ARCH-GARCH (1,1) and use the model that 

accommodates the asymmetric and fat tail distributions. Others studies, such as Franses et al. 

(2001) also used quadratic GARCH to model temperature, while Romilly (2005) used the 

seasonal ARIMA-GARCH (1,1) to model temperature. For that, we consider the GRJ-GARCH 

(1,1); Panel B in Table below 2 presents the output of the GJR-GARCH (1,1). Log-likelihood, 

the Akaike Information Criterion (AIC), and Schwarz's BIC were computed to compare 
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models, and the findings are reported in Panel C. All the information criterion coefficients point 

in favour of the GJR-GARCH (1,1).  

 

Table 2: ARMA-GJR-GARCH parameters  
   Temperature      Precipitation   

 
Kenya 

 
Tanzania 

 
Uganda 

 
Kenya 

 
Tanzania Uganda 

 
Panel A:  

            

 
Param P-V  Param P-V  Param P-V  Param P-V  Param P-V  Param P-V  

constant  0.00 0.00 -0.01 0.00 0.00 0.49 0.49 0.00 0.44 0.16 0.20 0.00 

AR(1) 0.11 0.00 0.15 0.00 0.71 0.00 0.81 0.00 0.50 0.00 0.83 0.00 

MA(1)  0.20 0.00 0.24 0.00 -0.97 0.00 -0.84 0.00 -0.27 0.05 -0.89 0.00 

Panel B 
            

𝛼! -0.05 0.00 -0.12 0.00 -0.02 0.00 0.48 0.00 0.51 0.00 -0.07 0.11 

𝛽" 0.19 0.00 0.31 0.00 0.00 1.00 0.21 0.08 0.20 0.61 -0.30 0.00 

𝜆" 0.99 0.00 0.98 0.00 1.00 0.00 0.78 0.00 0.22 0.40 0.74 0.00 

𝜆"∗  0.01 0.00 -0.03 0.00 0.03 0.00 -0.39 0.00 0.09 0.56 0.06 0.45 

skew 0.79 0.00 0.95 0.00 1.10 0.00 3.76 0.00 5.04 0.00 2.18 0.00 

shape  31.72 0.21 21.77 0.16 13.79 0.02 2.19 0.00 3.14 0.00 3.43 0.00 

Panel C 
            

eGARCH 
            

LL 2751.61 
 

2549.76 
 

2899.98 
 

-1760.6 
 

-1649.85 
 

-1297.5 
 

AIC -3.98 
 

-3.68 
 

-4.19 
 

2.56 
 

2.40 
 

1.89 
 

BIC -3.95 
 

-3.65 
 

-4.15 
 

2.60 
 

2.44 
 

1.93 
 

iGARCH 
            

LL 2752.64 
 

2543.95 
 

2902.08 
 

-1791.1 
 

-1690.32 
 

-1324.8 
 

AIC -3.98 
 

-3.67 
 

-4.19 
 

2.60 
 

2.46 
 

1.93 
 

BIC -3.96 
 

-3.65 
 

-4.17 
 

2.63 
 

2.48 
 

1.96 
 

GJR-GARCH 
           

LL 2753.70 
 

2583.80 
 

2903.23 
 

-1790.4 
 

-1651.35 
 

-1324.7 
 

AIC -3.98 
 

-3.73 
 

-4.19 
 

2.61 
 

2.40 
 

1.93 
 

BIC -3.94 
 

-3.69 
 

-4.16 
 

2.64 
 

2.44 
 

1.97 
 

sGARCH 
            

LL 2753.68 
 

2545.55 
 

2903.22 
 

-1790.6 
 

-1652.06 
 

-1324.8 
 

AIC -3.98 
 

-3.67 
 

-4.19 
 

2.60 
 

2.40 
 

1.93 
 

BIC -3.95 
 

-3.64 
 

-4.16 
 

2.64 
 

2.43 
 

1.96 
 

Panel A: Mean equation parameters ARMA (p,q), Panel B: Variation equation parameters 

GJR-Garch, Panel C: Information Criteria for Garch model selection 

 

In the context of climate change, we can imply that any disturbances, such as temperature 

change, create subsequent temperature disturbances that require time to settle down to 

reasonably normal conditions. As a result, certain summers may be considerably hotter and 
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longer than is typical, while other occurrences (such as rainfall shortages) may be stronger and 

last longer than usual. The uneven variance of heteroscedasticity of variables such as 

temperature and precipitation may take on an autoregressive structure, causing their conditional 

variance to be dependent on previous variances.  

Coefficients of the conditional standard deviation are positive and significant for temperature, 

and negative and significant for precipitation. We are implying that an increase in temperature 

is associated with an increase in temperature volatility. This is also true for precipitation, where 

a change in rainfall pattern is associated with rainfall variability. Most of the conditional mean 

and variance coefficients are significant. The asymmetric coefficients are significant, 

confirming the presence of more variability in the tail of the distribution meaning more 

variabilities are observed in temperature in the high tail or higher regime, while such tendencies 

are observed in the lower regime for precipitation. More precipitation or less of the same 

magnitude, for instance, may have an unequal effect on the yield and production of crops in 

East Africa.  

Table 3 below reports the estimates of the transition matrix for temperature and precipitation. 

It shows that neither of the two regimes is permanent, as all the parameters of the transition 

probability matrix are less than one. 

 

Table 3: Transition probability  

 

Regime 1 

Temperature 
     

 
Kenya  

 
Tanzania  

 
Uganda 

 

 
Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 

Regime 1 0.7554 0.1608 0.7613 0.2389 0.6207 0.1190 

Regime 2 0.2446 0.8392 0.2387 0.7611 0.3793 0.8810 

 

Regime 2 

Precipitation  
     

 
Kenya  

 
Tanzania  

 
Uganda 

 

 
Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 

Regime 1 0.8752 0.1651 0.8520 0.2376 0.8677 0.1464 

Regime 2 0.1248 0.8392 0.1480 0.7624 0.1323 0.8677 

 

The estimated coefficients for Tanzania are the only coefficients that are almost equally likely 

to remain in either state or regime when there is variability in temperature. Other regime 
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systems for temperature and precipitation tend to remain in one state more than the other. For 

instance, precipitation variability has a higher likelihood of remaining in the second regime 

than in the first, while the opposite is observed for temperature. The probability of temperature 

switching from regime 1 (normal) to regime 2 (abnormal) is relatively stable; but once shifted 

into a regime, temperature tends to remain there for significant time. This causes soil to lose 

moisture, for instance, and the development of dry conditions in these countries. This implies 

that a higher probability infers that two regimes (either higher or lower) are highly persistent. 

Figure 1 below reinforces the presence of two regimes in the variability of temperature and 

precipitation.  

 

   Kenya: Temperature                                                 Tanzania: Temperature                              

  
Uganda: Temperature                                                    Kenya: Precipitation 
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Tanzania: Precipitation                                                      Uganda: Precipitation                                          

 
Figure 1: Transition probabilities plots for both regimes  

 

Figure 1 also shows that there is more variability in temperature in the higher regime, while 

there is more variability in precipitation in the low regime. This is in line with the literature. 

For instance, Ongama and Chen (2017) emphasised that even though there was an increase in 

temperature in 1960, a sudden increase was also observed around 1994, with the highest 

warming rate of 0.05°C per year in 1990. Omondi et al. (2013) reported a significant reduction 

in total rainfall quantity and an increase in wheather extremes in East Africa. The low part of 

Figure 1 also confirms the trend, with more variability, when precipitation variability passes 

into regime 2. Kenya and Tanzania show more variability in the lower regime than Uganda, 

while almost the same variability in temperature is observed in the higher regime in Tanzania.  

 

4. Discussion of the results  

This section empirically analyses the dependence structure between extreme weather variables 

and crop yield and production. Table 4 below reports the estimates of the pair yield and 

precipitation variability in the left tail dependence parameters of the time-varying Clayton 

copula in the lower regime. We notice that almost all parameters are significant, showing that 

the relationship influencing the extreme weather events is interconnected with the crop yield. 

The findings reveal that a larger parameter, 𝜔d, indicates a higher degree of dependency in the 

variability in yield of agricultural products and precipitation variability in the low regime. The 

results show large values, indicating a higher level of co-movement. The dependence 
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parameters are positive, implying that an increase in precipitation variation coincides with or 

accounts for the change in the yield crops, with a high likelihood of contagion effect among 

crops. For instance, the higher and most significant values are observed for products such as 

banana, maize, potato and wheat, while the lowest is recorded for products such as tea and 

wheat in Kenya.  

 

Table 4: Estimated parameters of the time-varying Clayton copula in the lower regime for yield  

   
Kenya 

 
Tanzania 

 
Uganda 

 
𝜔d       0.9519 (0.3550) 0.3810 (0.2397) 0.2450 (0.1085) 

Banana 𝛼$    -0.8658 (0.3673) -1.0322 (0.3092) -0.7676 (0.2284) 

 
𝛼"    2.2927 (0.8376) 0.9787 (0.4188) -1.0214 (0.3429) 

 
𝜔d       0.8558 (0.3761) 0.4241 (0.4213) 0.5352 (0.2189) 

Cassava 𝛼$    -0.6259 (8.4018) -0.6653 (0.4274) -0.7329 (0.2270) 

 
𝛼"    -1.9164 (3.8527) -1.4792 (1.1538) -1.7216 (0.6003) 

 
𝜔d       0.6206 (0.2033) 0.4359 (0.0929) 0.3673 (0.2873) 

Coffee 𝛼$    -1.4294 (0.8143) -0.8203 (0.1768) -0.6926 (0.1711) 

 
𝛼"    -1.1558 (0.3721) 1.4913 (0.0319) 1.1032 (0.7580) 

 
𝜔d       1.3137 (0.3493) 0.6118 (0.0018) 0.5284 (0.2116) 

Maize 𝛼$    -0.6032 (0.2832) -1.4534 (0.0232) -0.2871 (0.1589) 

 
𝛼"    3.3020 (0.9659) 0.5482 (0.0023) 1.7410 (0.4643) 

 
𝜔d       0.9224 (0.4534) 0.1061 (0.3273) 0.5059 (0.0075) 

Potato 𝛼$    0.7238 (2.0323) 0.7462 (0.2108) 0.6878 (0.0102) 

 
𝛼"    -1.9062 (1.1114) 1.6508 (0.6347) 1.7447 (0.0020) 

 
𝜔d       0.7462 (2.0604) 0.5061 (0.0018) 0.3206 (0.0053) 

Rice 𝛼$    -1.4129 (0.5343) -1.1918 (0.7847) -0.5984 (0.0098) 

 
𝛼"    1.6505 (1.1742) 0.0223 (0.0172) 1.5461 (0.0048) 

 
𝜔d       0.8007 (0.2373) 0.5638 (0.1541) 0.3598 (0.1922) 

Sorghum 𝛼$    -0.4187 (0.7015) -0.8239 (0.1801) -0.8232 (0.2767) 

 
𝛼"    -1.6741 (0.6530) 1.7731 (0.2713) 1.1500 (0.4871) 

 
𝜔d       0.2950 (0.0981) 0.6175 (0.5757) 0.1945 (0.0224) 

Soybeans 𝛼$    -1.3622 (0.3292) -0.1746 (0.2258) -1.5817 (0.2199) 

 
𝛼"    -1.2554 (0.2758) -1.7790 (1.3305) -0.6911 (0.3472) 

 
𝜔d       0.2677 (0.5378) 0.5527 (0.3169) 0.5963 (0.2849) 
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Notes: estimated parameters of time-varying Clayton copula with the dependence parameters and their standard 

errors in parentheses. 

 

Bananas grown in Kenya using both traditional and contemporary propagation methods. (refer 

to Kabunga et al. 2012). Because a banana plant produces only about 5 to 20 suckers throughout 

its lifespan, the traditional technique of propagating bananas via suckers is a relatively sluggish 

procedure that results in poor yield. Furthermore, using banana suckers as planting materials 

allows pests and illnesses to proliferate, which is a major disadvantage of this traditional 

technique of propagation, resulting in Kenya's low yields for most of the products. However, 

we can infer from our results that extreme weather events account for the reduction in crop 

yield. It can also be attributed to the inability to utilise clean seeds, fertilisers, fungicides and 

irrigation, all of which have been blamed for Kenya's low yields. According to Wang’ombe 

and Van Dijk (2013), the most effective method to increase potato yield in Kenya is to use 

clean seeds, followed by irrigation, fungicides and fertilisers. The adoption rate for using clean 

seeds is the lowest, with only 4.5 per cent of the responder sample utilising them. Irrigation 

adoption was similarly modest, at 23 per cent, although fungicides and fertilisers were widely 

used, at 92 per cent and 96 per cent respectively.  

Still, according to the same article, the adoption of the four innovations more than doubled 

yields, although the total quantity remained less than half of the leading world producers' 40 

tons per hectare for crop products such as soybeans that have low dependence on rainfall. For 

soybeans to resume normal growth, farmers need two to three inches of rain in the week 

following the important growth phase, under the drought street scenario (Ellsworth, 2002). 

Sugar 𝛼$    -0.6667 (0.3268) -0.6601 (0.1874) -0.3160 (0.2002) 

 
𝛼"    1.0914 (1.1538) 1.7899 (0.7449) 2.1617 (0.7903) 

 
𝜔d       0.8011 (0.4338) 0.0001 (0.0025) 0.2222 (0.1350) 

S. potato 𝛼$    0.7834 (0.7338) -1.1474 (0.1861) -0.7922 (0.1840) 

 
𝛼"    -1.7145 (0.9905) -0.0098 (0.0023) -0.7537 (0.3721) 

 
𝜔d       0.0962 (0.0023) 0.1827 (0.0478) 0.2242 (0.0280) 

Tea 𝛼$    -1.0701 (0.0260) -1.5844 (0.4593) -1.5460 (0.1935) 

 
𝛼"    0.7335 (0.0079) 1.0279 (0.2368) 0.7659 (0.0105) 

 
𝜔d       1.4254 (0.5257) 0.3035 (1.7747) 0.2861 (0.0085) 

Wheat  𝛼$    -0.3828 (0.1466) -1.0327 (2.6727) -0.7027 (0.0210) 

 
𝛼"    -4.0125 (1.4375) 0.991 (4.2544) 1.1728 (0.0063) 



17 
 

Maize, sugar, cassava, rice and soybeans are products that show more dependence in Tanzania 

and Uganda, while tea and sweet potato show less dependence.  

There is high risk of a contagion effect from extreme rainfall events. The degree of persistence 

tends to be higher in Kenya, compared to the coefficients in Tanzania and Uganda. The reason 

might be that Kenya is a more drought-prone area due to high seasonal and annual variability 

over time and space. Results are in line with Mpelasoka et al. (2018) and Nicholson et al. 

(2018). However, the variability in yield might also come from the price, capacity, and 

irrigation technique employed during drought periods to avoid crop loss, the machines used, 

and fertilisers. For instance, Quiroga et al. (2011) reported that irrigated crops do not show 

evidence of the significant impact of water stress on yield. It should be noted that the production 

of any crop can increase if irrigation is intensified, but  this can also lead to an increase in the 

rate of environmental degradation (Kang et al., 2009). 

We note that the negative adjustment coefficients captured by 𝛼$ are significant, meaning a 

significant variation in dependence over time. The degree of persistence captured by 𝛼" is 

mostly positive and significant, meaning that the variation observed in the dependence 

parameters tends to persist over time. Figures 2 and 3 below report that crop yield and 

production variations are common when dry circumstances prevail, and the crop has shown 

significant fluctuation over the last several decades. Figure 2 shows plots of the yield and 

production of the dependence structure of agricultural products with rainfall during the lower 

regime for Kenya. The results confirm that that the dependence structure between yield and 

precipitation variabilities under drought stress tends to be significant and persistent over time. 

Overall, precipitation variability during the lower regime may explain the agricultural yield 

variations.  
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Figure 2: The conditional lower tail dependence of time-varying  Clayton Copula in lower 

regime in Kenya 

T 

his relationship remains true for all crops; however, there are some differences in their 

strengths. Some products show less variability but are still very dependent over time, due 

mainly to the rain-fed nature of the agriculture sector in the region – in line with previous 

research, which found that precipitation has greater influence on rice and soybeans than on 
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wheat and maize (see Lobell and Field, 2007). There is also a greater influence on coffee and 

sweet potato. It is crucial to note that the extreme weather variability reported cannot explain 

a substantial percentage of yield or production variance, because there are numerous additional 

factors that influence variability; soil fertility, disease and pests, for example, may have a 

detrimental impact on crop output quantity and yield. This has been documented by a number 

of studies, including Feng et al. (2018).  

For example, the region's total cereal output fell by almost 8% in 2019 because of lower 

harvests in countries such as Tanzania, Uganda and Kenya, due to extreme early season 

dryness, unpredictable weather, and insect assaults (FAO, 2020). Nonetheless, these findings 

suggest that the existence of a drought episode does not always predict a loss in production; 

but they do highlight the necessity for re-evaluating drought consequences by employing a 

probabilistic approach. Figure 3 below shows plots of the yield and production of the 

dependence structure of agricultural products and the temperature during the higher regime. 
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 Figure 3: The conditional upper tail dependence of the time varying Gumbel copula in the 

higher regime. 



21 
 

The overall variation in the yield and temperature can be explained by the drought conditions 

observed when the temperature increases. Because of the increased temperature stress on the 

major grain crops, the projected air temperature rises for the rest of the twenty-first century 

imply that grain yields will continue to decline for the key crops (see Hatfield et al., 2011). The 

impact of the increase in temperature tends to be greater than the impact of the decrease in 

rainfall. Table 5 below shows the estimated time-varying Gumbel copula revealing the right 

tail dependency in the higher regime for yield and temperature variability.  

 

Table 5: Estimated parameters of the time-varying Gumbel copula in the higher regime for 

yield 
Country Param 

 
Kenya 

 
Tanzania 

 
Uganda 

 
𝜔"       0.52570 (0.20830) 1.67190 (0.11630) 0.66210 (0.20800) 

Banana 𝛼(    -0.94470 (0.34750) -0.77410 (0.10030) -0.09310 (0.00830) 

 
𝛼)    1.19740 (0.45770) 1.44430 (0.19190) 1.12360 (0.13130) 

 
𝜔"       1.43490 (0.62180) 1.64200 (0.14740) 1.42800 (0.13830) 

Cassava 𝛼(    -0.46070 (0.07599) -0.76350 (0.12990) -0.44450 (0.10860) 

 
𝛼)    -2.39370 (0.53940) 1.61590 (0.21460) -1.80270 (0.14670) 

 
𝜔"       0.40970 (4.18600) 1.77680 (0.28100) 1.09570 (0.13320) 

Coffee 𝛼(    -0.80880 (3.69210) -1.00360 (0.26350) -0.29400 (0.12600) 

 
𝛼)    1.09270 (1.22500) 1.39900 (0.17560) -1.47810 (0.11580) 

 
𝜔"       1.16620 (0.84710) 1.68100 (0.13660) 1.39870 (0.11480) 

Maize 𝛼(    -0.40200 (0.77260) -0.74250 (0.11670) -0.52940 (0.10680) 

 
𝛼)    2.00420 (0.31670) 1.82260 (0.30420) 1.50570 (0.17470) 

 
𝜔"       1.43510 (1.08660) 1.78430 (0.09890) 2.20800 (0.14240) 

Potatoes 𝛼(    -0.74660 (0.95210) -0.62180 (0.06180) -1.48260 (0.18920) 

 
𝛼)    1.42490 (0.39800) 1.93240 (0.18980) 1.19150 (0.10690) 

 
𝜔"       0.74420 (0.52880) 1.00890 (0.00110) 1.42110 (0.14210) 

Rice 𝛼(    -1.08970 (0.38160) -1.19010 (0.00130) -0.49430 (0.11880) 

 
𝛼)    0.88290 (0.44300) -0.06600 (0.00010) -1.52340 (0.11690) 

 
𝜔"       2.63500 (0.10930) 1.55880 (0.30610) 1.13850 (0.13230) 

Sorghum 𝛼(    -1.78560 (0.25350) -0.59640 (0.25900) -0.46440 (0.13220) 

 
𝛼)    -2.01260 (0.33580) -1.92860 (0.19960) 1.24380 (0.13160) 

 
𝜔"       1.43800 (0.26100) 1.75130 (0.08900) 1.47610 (0.12130) 

Soybeans  𝛼(    -1.66970 (0.21350) -0.59150 (0.05320) -0.54070 (0.09600) 

 
𝛼)    0.80480 (0.15090) 2.12450 (0.26890) 0.43680 (0.13250) 

 
𝜔"       1.43800 (0.26100) 1.61730 (0.07050) 0.85870 (0.01370) 

Sugar  𝛼(    -1.66970 (0.21350) -0.73200 (0.08260) -1.10400 (0.01770) 
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𝛼)    0.80480 (0.15090) 1.54040 (0.13670) 0.54070 (0.09600) 

 
𝜔"       0.73990 (0.58270) 1.71180 (0.16030) 1.08770 (0.13620) 

S. potato  𝛼(    -1.10270 (0.42440) -0.91500 (0.16280) -0.32730 (0.12470) 

 
𝛼)    -1.02220 (0.45040) 1.20630 (0.19100) 1.33950 (0.11070) 

 
𝜔"       1.85370 (0.18950) 1.62960 (0.13260) 1.36680 (0.17190) 

Tea 𝛼(    -0.85120 (0.20660) -0.65400 (0.11300) -0.55030 (0.14710) 

 
𝛼)    2.58010 (0.41900) -1.83270 (0.22250) -1.49170 (0.14510) 

 
𝜔"       1.78480 (0.31180) 1.73560 (0.13140) 1.46000 (0.08940) 

Wheat  𝛼(    -0.91900 (0.30070) -0.78610 (0.11480) -0.51450 (0.07360) 

 
𝛼)    -2.06160 (0.25080) 1.76410 (0.17490) 1.75000 (0.15390) 

Notes: estimate parameters of time-varying Gumbel copula with the dependence parameters and their standard 

errors in parentheses 

 

In the higher regime, 𝜔d parameters are also mostly positive and significant, expressing the pair 

dependence co-moves for these agriculture products and the temperature variation. However, 

the magnitude of the coefficient of dependence increases for most of the products, meaning an 

increase in temperature harms agricultural products. This is in line with Hulme et al. (2001), 

who forecast a significant rise in mean temperature and precipitation, as well as a significant 

increase in weather variability. This increase in the temperature has the potential to have a 

significant impact on agricultural production reduction and on livelihoods throughout the 

region (see Jagtap and Chan, 2000). According to Zhao et al. (2017), every degree Celsius 

increase in world mean temperature will lower global wheat yields by 6.0 per cent, rice yields 

by 3.2 per cent, maize yields by 7.4 per cent and soybean yields by 3.1 per cent without CO2 

fertilisation, successful adaptation and genetic improvement. As there are also some positive 

effects, the results are very diverse between crops and geographical locations.  

Such high dependency on agricultural products to weather extreme events is detrimental, as 

high temperature increases water stress. Hence there is an urgent need to put mitigation 

strategies in place to reduce fuel emissions to cap global warming at 1.5°C (see IPCC, 2018). 

In addition, mitigation strategies tend to be more expensive for most developing countries as 

they do not have the appropriate technologies. Developing a cropping system in East Africa 

that is more resilient to hotter growing seasons and more extreme temperature events seems to 

be an inevitable necessity. This would reduce losses in yield and production for many crops 

across this region. Results are in line with Lobell et al. (2011), who noted that most key crops 

such as maize and wheat have recorded yield losses due to high growing-season temperatures. 

The adjustment and the degree of the persistence parameters are found to be significant during 
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the higher regime. The repeat impact of higher temperature can have an effect on soil quality 

and soil moisture, since temperature and quantity of water are vital physical elements for crop 

growth. Insufficient water and inadequate temperature conditions can hinder crop growth, 

particularly at the early phases of development, such as during seed germination (see Helms et 

al., 1996).  

For instance, for each increase of 1°C in temperature, the yield of products such as mustard, 

wheat, soybean, groundnut and potato will decrease by three to seven per cent (Agrawal, 2009). 

This is because seed yields are very sensitive to brief episodes of hot temperature, particularly 

when these episodes coincide with the stage of crop development. The effect of temperature 

variability impact tends to be persistent in all countries and across products, as almost all the 

coefficients (𝛼") are significant. The magnitude coefficients of dependence variation and 

persistence tend to increase over time and across all the countries.  

 

5. Movement of tail dependence in the lower regime for variability 

Annexure 2 reports the tail dependence of the time-varying Clayton copula in the lower regime 

on variability in yield and production of agricultural products. Annexure 2 presents the 

evolution of the lower tail dependence, with more fluctuations of the pair agricultural products. 

Remarkable fluctuation is seen for almost the period under investigation, confirming that the 

presence of continual extreme weather events such as drought impacts crops. Lyon (2014) 

noted that events such as drought have occurred more often in the East Africa region. In this 

case, the lack of water leads to inadequate water supply for crops and animals. Drought has a 

devastating effect on life and livelihoods in general, which might lead to food insecurity, 

malnutrition, epidemics, and human migration. This is in line with Ribeiro et al. (2019), who 

reported that in general, yield anomalies and drought conditions are related. Droughts and other 

extreme weather occurrences pose a significant threat to agricultural systems, particularly in 

rain-fed areas, and are important sources of risk for agricultural systems (Ben-Ari et al., 2016; 

Hernandez et al., 2017).  

Policymakers should implement measures that tend to reduce the likelihood of the agricultural 

system continuing to rely on rainfall only. Irrigation enhances economic returns in developing 

countries, and can boost agricultural output by up to 400 percent (Khan et al., 2006). However, 

irrigation might have undesirable environmental impacts. About one-third of the irrigated areas 

in the globe have decreased production, driven by poorly managed water systems (FAO, 1998). 

For instance, approximately 50% of Asia's total freshwater resources are taken up by rice 
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cultivation (Barker et al., 2001). Approaches adopted to resolve environmental concerns should 

keep to the economically viable and the environmentally sustainable.  

 

6. Movement of tail dependence in the higher regime of volatility 

Annexure 2 also reports the tail dependence in the higher regime of yield and production for 

the three countries considered in this study. The figure shows that the movement of the upper 

tail dependence parameters of agricultural products and temperature shows more fluctuations 

when the temperature exceeds a certain threshold. This implies that more harm is caused when 

the variability exceeds a certain level, because of interconnectivity. Studies such as Hatfield 

and Prueger (2015) recognised that the major impact of an increase in temperature is observed 

during the reproductive phase. The study also recognised that maize yield is reduced by as 

much as 80 to 90% when the temperature moves above the normal temperature regime. Hatfield 

et al. (2011) added that crop productivity is reduced by 5% if the temperature increases by less 

than 1°C but can reach up to 50% reduction. Pettigrew (2008), Schlenker and Robert (2009) 

and Lobell and Field (2007) also concluded in their findings that reduction in crop yield is 

associated with increase in temperature. We also concluded that when the variability exceeds 

a certain threshold, and that increase is persistent for some time, the variation in yield and 

temperature due to dry conditions will be more significant.  

 

7. Conclusion  

In the East Africa region, agriculture is characterised by a small-scale farming system that 

relies on rain-fed and traditional practices. This paper intended to examine the dependence 

structure between weather variability and the crop-related variables yield and production, after 

the variability has exceeded a certain threshold. To achieve this, the paper employed a Markov-

ARMA-GARCH time-varying copula to describe the joint dependence structure between 

extreme weather variability and crops in East Africa during the period 1961-2018. We collected 

data for 12 crops from FAOSAT, and weather-related variables from the Climate Research 

Unit (CRU). To obtain the threshold beyond or below which any variability in weather-related 

variables cause a harmful impact on crop yield or production, the Markov switching process 

was considered. Two families of Archimedean copula were used: a Clayton copula to capture 

the low regime, while a Gumbel copula describes the dependence in the higher regime. Copula 

techniques offer more flexibility in describing even complex and non-linear dependencies. 

Projections of crop productivity reduction under a scenario of climate change is  5% with 

temperature increases of less than 1°C (refer to Hatfield et al., 2011). 
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The results reveal a significant dependence pair structure in both regimes, implying the co-

movement in the pair of the variations in agricultural products and weather extremes. This 

implies that there is a spillover risk.  Thers is a presence of higher dependence among crop 

yields and production variations with the change in the climate variables. The coefficients 

indicating the degree of dependency in extreme weather variables and the crop-related 

variables show a higher level of co-movement, but there is more sensibility in the higher 

regime. We find evidence of dependency over time, as well as the contagion effect of the crop-

related variables. The effects of the weather's extreme variability tend to be transmitted to other 

agricultural products. 

As climate change will make current crops unsuitable for use in the future, a transition to heat-

tolerant and drought-resistant crops will be required to ensure food security. Crop output is 

limited by crop type and planting area, soil degradation, growing environment, and water 

availability throughout the growing season. Water availability and agricultural output will 

decline in the future as temperatures rise and precipitation varies.  

The results of this study show the benefits of the time-varying copula approach in dealing with 

climate variables as a lower and higher tail so the variability caused by climate-related variables 

can be accounted for. That is, if the marginal temperature and rainfall are not normally 

distributed (asis the case in this study), the multivariate model used is more likely to downplay  

the risk faced by the agricultural sector, as in this case it is a rain-fed one. The time-varying 

copula is built with the capacity to provide information about the degree or magnitude of crop 

dependency on climate variables if the dependency varies over time and the effect is persistent. 

Such inputs are crucial for policymakers in the agricultural sector. They can design policies 

based on the sensitivity and severity of the effect of weather variables on crops. Crops that are 

more resistant, such as sweet potato, should receive less attention compared to cereals such as 

maize or rice. Total agricultural output will improve if irrigated regions are extended; 

technology intended to reduce water waste,  genetically-modified crops, irrigation, and 

adaption under carbon dioxide (CO2) fertiliser must be used to mitigate the impact on food 

supply in the region. 
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Annexure  1:  Estimated  parameters of time-varying Clayton and Gumbel copula for 

production 

 

Table A1: Estimate parameters of the time-varying Clayton copula in the lower regime for 

production   

   
Kenya 

 
Tanzania 

 
Uganda 

 
𝜔%       1.1352 (0.3358) 0.4353 (0.5311) 0.3573 (0.2876) 

Banana 𝛼"    -0.5586 (0.2510) -1.3376 (0.9685) -0.8354 (0.2526) 

 
𝛼$    -2.6662 (0.7550) -0.8385 (0.9967) 1.1958 (0.6465) 

 
𝜔%       0.7727 (0.4189) 0.8551 (0.1923) 0.3616 (0.2757) 

Cassava 𝛼"    -1.1043 (0.9209) -0.0387 (0.0619) -1.0229 (0.8080) 

 
𝛼$    -1.6341 (0.9817) -1.9202 (0.4429) 1.1538 (0.7729) 

 
𝜔%       0.2784 (2.7902) 0.4083 (0.0431) 0.2608 (0.0105) 

Coffee 𝛼"    -1.5132 (6.5837) -0.6304 (0.0678) -1.3157 (0.0535) 

 
𝛼$    -0.5558 (5.6131) 1.6094 (0.0108) -0.8429 (0.0024) 

 
𝜔%       1.1461 (0.3936) 0.5577 (0.4683) 0.6685 (0.2201) 

Maize 𝛼"    -0.6708 (0.3132) -0.6131 (0.2825) -0.5893 (0.1396) 

 
𝛼$    -2.9882 (0.9809) 1.9559 (1.1529) 2.1868 (0.5918) 

 
𝜔%       1.2067 (0.2622) 0.9961 (0.2219) 0.5059 (0.0075) 

Potato 𝛼"    -0.5952 (0.4155) -1.1762 (0.2672) -0.6878 (0.0102) 

 
𝛼$    -2.7488 (0.6011) -2.0914 (0.4602) 1.7447 (0.0020) 

 
𝜔%       0.9960 (0.4494) 0.4284 (0.0034) 0.3897 (0.2021) 

Rice 𝛼"    -0.7257 (0.5343) -0.7775 (0.0060) -0.8737 (0.2257) 

 
𝛼$    -2.6471 (1.1299) 1.4960 (0.0009) 1.1494 (0.4387) 

 
𝜔%       1.1038 (0.2031) 0.3494 (0.1831) 0.3836 (0.1727) 

Sorghum 𝛼"    -0.3875 (0.1656) -0.8453 (0.2475) -0.8640 (0.2488) 

 
𝛼$    -2.5294 (0.4563) 1.1019 (0.4327) 1.1934 (0.4155) 

 
𝜔%       0.3382 (0.0015) 0.0799 (0.0397) 0.3197 (0.0046) 

Soybeans 𝛼"    -1.2491 (0.0091) -1.0684 (0.5986) -0.5907 (0.0087) 

 
𝛼$    1.2176 (0.0094) 0.4809 (0.2607) 1.3755 (0.0042) 

 
𝜔%       0.4647 (0.2854) 0.7033 (0.0565) 0.5522 (0.2036) 

Sugar 𝛼"    -1.0930 (0.5487) -0.6403 (0.0520) -0.6457 (0.1220) 

 
𝛼$    1.2971 (0.7374) 2.2295 (0.0335) 1.8809 (0.5054) 

 
𝜔%       1.4013 (0.4093) 0.3978 (0.0575) 0.4500 (0.2539) 

S. potato 𝛼"    -0.5577 (0.2143) -0.6990 (0.1022) -0.5537 (0.1495) 

 
𝛼$    -3.2187 (0.9690) 1.3053 (0.0008) 1.4225 (0.5730) 

 
𝜔%       0.0399 (0.0004) 0.5683 (0.2754) 0.4315 (0.2554) 

Tea 𝛼"    -1.1133 (0.0114) -0.6607 (0.1393) -0.9697 (0.5933) 

 
𝛼$    0.5867 (0.0043) 1.8007 (0.5884) 1.5674 (0.7996) 

 
𝜔%       1.2667 (0.5610) 0.4929 (0.0198) 0.3388 (0.2530) 

Wheat  𝛼"    -0.5592 (0.2940) -0.8768 (0.0353) -1.0511 (0.2386) 

 
𝛼$    -3.3273 (1.5121) 1.5277 (0.0119) 1.0043 (0.4802) 
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Notes: estimates parameters of time-varying Clayton copula with the dependence parameters and their standard 

errors in parentheses 

 

Table A2: Estimates parameters of the time-varying Gumbel copula in the higher regime for 

production 

   
Kenya 

 
Tanzania 

 
Uganda 

 
𝜔%       1.0338 (0.4407) 1.7011 (0.1245) 1.0460 (0.1293) 

Banana 𝛼"    -0.3472 (0.0870) -0.7324 (0.0991) -0.2628 (0.1145) 

 
𝛼$    1.5637 (0.3142) -1.5567 (0.1591) -1.4445 (0.1420) 

 
𝜔%       0.4405 (0.0419) 1.672 (0.1394) 1.4280 (0.1383) 

Cassava 𝛼"    -0.8753 (0.3514) -0.6059 (0.0952) -0.4445 (0.1086) 

 
𝛼$    -1.2371 (0.5569) -2.1389 (0.2745) 1.8027 (0.1467) 

 
𝜔%       0.8974 (0.0142) 1.6927 (0.1297) 0.7798 (0.1444) 

Coffee 𝛼"    -1.1916 (0.0069) -0.7077 (0.1136) -0.0598 (0.0368) 

 
𝛼$    0.8746 (0.1046) 1.7525 (0.1864) 1.3975 (0.1571) 

 
𝜔%       1.3591 (0.2224) 1.1344 (0.0529) 1.3987 (0.1148) 

Maize 𝛼"    -0.4275 (0.1948) -1.2906 (0.0528) -0.5294 (0.1068) 

 
𝛼$    -2.5429 (0.3175) -0.0809 (0.0158) 1.5057 (0.1747) 

 
𝜔%       1.7601 (0.3234) 1.7274 (0.0804) 0.9175 (0.0208) 

Potatoes 𝛼"    -0.7781 (0.3094) -0.8590 (0.0829) -1.1732 (0.0105) 

 
𝛼$    2.2078 (0.3379) -2.1825 (0.2263) -0.3845 (0.1308) 

 
𝜔%       1.6597 (0.2192) 1.7400 (0.1180) 1.4306 (0.1013) 

Rice 𝛼"    -0.7831 (0.2143) -0.7007 (0.0839) 0.4399 (0.0836) 

 
𝛼$    1.8916 (0.2052) -1.7440 (0.2480) 1.6088 (0.1250) 

 
𝜔%       1.2243 (0.0047) 2.1533 (0.0801) 1.3013 (0.1152) 

Sorghum 𝛼"    -1.4501 (0.0028) -1.3634 (0.1327) -0.4768 (0.1090) 

 
𝛼$    -0.4230 (0.0153) 1.5226 (0.1124) -1.4558 (0.1294) 

 
𝜔%       1.8207 (0.2552) 1.0256 (0.0541) 1.4761 (0.1213) 

Soybeans 𝛼"    -0.9456 (0.2228) -1.1987 (0.0529) -0.5407 (0.0960) 

 
𝛼$    1.3632 (0.1526) -0.0799 (0.0168) 0.4368 (0.1325) 

 
𝜔%       1.4380 (0.2610) 1.1066 (0.0518) 0.8587 (0.0137) 

Sugar 𝛼"    -1.6697 (0.2135) -1.2737 (0.0529) -1.104 (0.0177) 

 
𝛼$    0.8048 (0.1509) -0.0658 (0.0195) 0.0827 (0.1265) 

 
𝜔%       1.2614 (0.6669) 1.7180 (0.1244) 2.2281 (0.2099) 

S. potato 𝛼"    -0.4966 (0.6515) -0.8790 (0.1200) -1.5720 (0.2400) 

 
𝛼$    -1.7521 (0.2452) 1.3149 (0.1582) 1.6625 (0.1460) 

 
𝜔%       1.9489 (0.1238) 0.9762 (0.0463) 1.5501 (0.1068) 

Tea 𝛼"    -0.8514 (0.1383) -1.1553 (0.0631) -0.4862 (0.0771) 

 
𝛼$    -2.6365 (0.3475) -0.0848 (0.0991) 1.8627 (0.1788) 

 
𝜔%       1.1234 (0.5083) 1.6654 (0.1219) 1.1569 (0.1090) 

Wheat  𝛼"    -0.4105 (0.0828) -0.7375 (0.1090) -0.3966 (0.1049) 

 
𝛼$    1.7357 (0.2478) -1.6342 (0.1729) -1.2671 (0.0982) 
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Annexure 2:  Reports the conditional lower and upper tail dependence of time varying 

Clayton and Gumble copulas for both regimes 

 

 
Figure A1: Graphs for yield and rainfall using Clayton copula for Tanzania 
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Figure A2: Graphs for yield and temperature using Gumbel copula for Tanzania 
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Figure A3: Graphs for yield and rainfall using Clayton copula for Uganda 
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Figure A4: Graphs for yield and temperature using Gumbel copula for Uganda 

 


