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Abstract 

In the last few years, countries and commercial firms are increasingly interested in space 

activities for civil, military, and commercial purposes (Undseth et al., 2020). As it has 

been shown in NASA report (2019), investment in space program drives to significant 

economic benefits to the whole society. We propose the first methodological paper to 

empirically study the efficiency of satellite launches employing the Data Envelopment 

Analysis input-oriented technique. We show that overall average efficiency is quite low 

and that it can significantly be improved by studying subsamples of DMUs according to 

user, purpose, and class of orbit. The most relevant results can be achieved in the 

communications purpose cluster where the bias corrected efficiency scores tripled with 

respect to average efficiency level reached by overall estimates. Hence, the scope of 

satellites seems to affect the mission efficiency and, even more relevant, the future 

creation of debris.   
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1. INTRODUCTION 

In the last few years, countries and commercial firms are increasingly interested in 

space activities for civil, military and commercial purposes (Undseth et al., 2020). 

As it has been shown in NASA report (2019), investment in space programs 

drives to significant economic benefits to the whole society. Technology 

advancements needed for space exploration become applicable to several sectors 

such as agriculture, transport, energy and meteorology (OECD, 2020). For 

example, engineers working for NASA’s Jet Propulsion Laboratory developed a 

ventilator for coronavirus patients in just 37 days. More directly, space activities 

positively affect GDP, by creating employment and generating revenues (OECD, 

2019). To put things in perspective, during fiscal year 2019, NASA’s agency 

activities produced more than 64,3 billions of dollars in total economic output, 

supporting thousands of jobs nationwide1 (NASA Report, 2019).   

Space-based infrastructures are essential for citizens’ everyday lives. 

Nowadays, indeed, data resulting from space observation are used for weather 

forecasting, climate monitoring (Cheng et al., 2016) and, above all, 

telecommunications. For all these reasons, starting from the launch of Sputnik I, 

the use of Earth’s orbits has expanded globally (Liou and Johnson, 2016) mainly 

boosted by lower launch costs and foreseen returns. Since 2010, NASA has 

recorded on average roughly 80 launches per year (Liou, 2017). Specifically, 

lower orbits are overpopulated due to a considerable rise in constellation satellites, 

replacing single satellites (Chrystal et al., 2018). The accumulation of man-made 

objects, defined as orbital debris, dramatically challenges the long-term 

sustainability of space operations, posing considerable risks to human space flight 

and robotic missions (Liou and Johnson, 2016).  Beyond the already existing costs 

of satellites protection and mitigation, the costs resulting from accidental 

collisions with debris deserves special attention. First, collision generates 

additionally debris, leading to the so-called Kessler syndrome of self-generating 

collisions (Adilov et al., 2020). In fact, projections to simulate the future debris 

 
1 The Moon to Mars exploration program alone generated 69000 jobs nationwide (NASA Report, 

2019).  
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patterns show that after 2055, though assuming no further satellites launches, the 

satellite population will increase due to the generation of new collision fragments, 

exceeding the quantity of decaying debris (Liou and Johnson, 2016).  Second, not 

only satellites random collision with debris requires spacecraft replacement and 

triggers launch delays but, most important, it results in data loss with disastrous 

economic consequences for satellite communication (Undseth et al., 2020). For 

this reason, traffic management is becoming crucial to avoid collision and 

additional debris creation, increasing costs due to fuel consumption and delayed 

path of operational mission life. According to Christal et al. (2018), traffic 

management is one of the three existing alternatives to address debris collision 

risk, together with debris mitigation and remediation. While the former includes 

all guidelines which satellites follow to limit operational debris (e.g., Mejía-

Kaiser, 2020), the latter consists of still hypothetical measures to remove debris. 

Although many debris removal measures have been proposed and tested (e.g., 

Nishida and Kawamoto, 2011; Kibe, 2003), none of them is both technically 

practicable and economic viable (Hall, 2014). 

Based on the above, given the crowding of massive objects especially in low 

Earth orbit, satellites are always exposed to fatal collision risks (Wormnes et al., 

2013).  Christal et al. (2018) estimates the probability of collision as a function of 

spatial density, relative velocity, and collision cross-section. However, such 

probability is not linked to the launch costs. This represents a serious gap in the 

attempt at assessing the balance between revenues and costs related to launches of 

satellites or other publicly or privately funded space items. At the basis of each 

economic activity stands the relationship between revenue and cost or, to put 

differently, input and output leading to efficiency analysis. The pursue of high 

efficiency levels is the main goal of any organization. For, we believe that also in 

the space economy framework such aim should deserve a predominant attention 

to fill the existing gap.  

The most common approach to assess efficiency of any organization is the 

well-known Data Envelopment Analysis (DEA), a mathematical programming 

technique designed to evaluate the relative efficiency for a group of comparable 
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decision-making units (DMUs). The aim of DEA is to measure productive 

efficiency through the estimation of a frontier envelopment surface for all DMUs 

by using linear programming techniques. In doing so, DEA allows for the 

identification of best practices and for the comparison of each DMU with the best 

possible performance among the peers, rather than just with the average. Once the 

reference frontiers have been defined, it is possible to assess the potential 

efficiency improvements available to inefficient DMUs if they were producing 

according to the best practice of their benchmark peers. From an equivalent 

perspective, these estimates identify the necessary changes that each DMU needs 

to undertake in order to reach the efficiency level of the most successful DMU 

(Fried et al., 2008). In addition, whereas DEA is, at the beginning, run under the 

constant returns to scale, it can be reformulated to account for variable returns to 

scale as well (Banker et al., 1988).  

Following the DEA approach, we will consider launched satellite as a DMU 

in order to estimate the efficiency of its life cycle. This requires gathering as many 

information as possible on each launch. Specifically, technical information on the 

kind of object launched, monetary information on launch and maintenance on 

orbit, information on the flow of revenue eventually originated or expected to 

from each item, any changes from the scheduled satellite’s duties during its life, if 

and when it has been hit by debris or other item, if and when it has produced 

debris, if the owner of the launched item is public or private body, the purpose of 

the item sent (e.g., commercial, military etc..). Likely important are the 

information regarding the existing debris at both LEO and GEO levels, focusing 

on their dimension, number and velocity. Gathering all the just described 

information would allow us to estimate the efficiency scores for each item and 

reporting the aspects to consider in order to increase the efficiency of future 

launches. Also, and maybe more relevant, by incorporating the data on debris, it 

may be possible to obtain estimates of ‘eco-efficiency’ pointing the best practices 

to adopt in order to account for both technical efficiency and eco-sustainability of 

space environment.  
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Such results may lead to relevant policy insights to space agencies involved 

in debris reduction activities and standard launching activity at the same time.   

The rest of the paper is organized as follows. Section 2 reviews the related 

literature. In Section 3, we describe methods and data, whereas Section 4 

discusses the results. Section 5 concludes the study. 

 

2. LITERATURE REVIEW 

To the best of our knowledge, little empirical research has been dedicated to the 

space debris problem. A three-dimensional debris model was developed by NASA 

using a MONTE CARLO approach to predict the development of future debris 

(Liou et al., 2004). Given the continuous collision and the deriving increasing 

production of debris, Christal et al. (2018) estimate the probability of collision for 

a satellite, dependent, among the other variables previously mentioned, on the 

number of debris. Specifically, debris collision risk, measured for all the phases of 

satellites life (i.e., from deployment to retirement, passing for operations), varies 

with the operational altitude, transit time, satellite’s manoeuvre capability but 

mainly with its exposure to the background population. Although the 

aforementioned study also focuses on the consequences of a collision, the 

environmental impact of the space activity is specifically addressed by ESA 

(Colombo et al., 2017).  

Notably, the European Space Agency successfully adopted Life Cycle 

Assessment methodology to assess the environmental footprint of the space 

projects, following their entire life cycle. A space debris indicator was defined as 

a function of casualty risk, orbital resource and debris risk. Additionally, the 

collision risk depends on the potential fragmentations of satellites and their 

probability to happen. The indicator is defined to drive preliminary mission design 

to reduce the satellites’ environmental impact.  

Missing from the reviewed studies, however, is any efficiency analysis of 

the space activity which we attempt to provide with the support of the DEA 
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technique, frequently used in other sectors. For example, Liang et al. (2006) 

measure supply chain efficiency in a seller-buyer context, developing numerous 

DEA models. The same approach is used by Grmanovà and Ivanovà (2017) to 

evaluate the efficiency of the banking sector in Slovakia. Another scenario where 

DEA approach resulted to be successful is solid waste management as shown by 

Marques and Simoes (2009) in the Portuguese context. Meng et al. (2016) 

highlight the ample scope of the well-known nonparametric technique, by 

providing a survey of all the empirical studies on China’s regional energy and 

carbon emission sector, published between 2006 and 2015.  In the same local 

context, Wang et al. (2016) assess the economic efficiency of the Chinese 

provincial museums. An extension of DEA is, instead, used by Falagario et al. 

(2011) to rank different bids in public procurement.  Still focusing on the public 

sector, Finocchiaro Castro and Guccio (2014) apply DEA to assess the technical 

efficiency of Italian judicial districts. Finally, airport performances are evaluated 

resorting to the DEA models by Merkert and Assaf (2015). A more 

comprehensive review of DEA applications is provided by Liu et al. (2012). As 

can be inferred from the reported literature, DEA’s most appreciated strength is 

the only need of identified inputs and outputs to be applied, regardless of the topic 

at hand. Also, it does not require any previous assumptions on specific production 

function, being in this case like a black box where pouring inputs to get outputs. 

Hence, we do believe we can use such technique to assess the efficiency of space 

items launching activity.  

 

3. METHODS AND DATA 

3.1 Methodological Framework 

Each effective private or public service provision, such as health, educational, 

defense and space service, benefits from the support of rigorous measurement 

techniques. Data Envelopment Analysis (DEA) is a mathematical programming 

technique designed to evaluate the relative efficiency for a group of comparable 

decision-making units (DMUs). The mathematical programming technique can 
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take several forms according to different criteria, so it can be oriented to minimize 

input values or maximize output.  

The DEA methodology calculates an efficiency frontier for a set of DMUs 

and the distance to the frontier for each unit. In the case of input-oriented 

approach, the distance (efficiency score) between the observed and most efficient 

DMU is the measure of the radial reduction in input for a given output. Our 

dataset calls for such approach, where for a given output level, the efficiency can 

be reached minimizing the inputs. Illustrating this point,2 consider n DMUs for 

evaluation; a DEA input-oriented efficiency score hi is calculated for each DMU, 

which solves the following program for i = 1,..., n using the constant returns to 

scale (CRS) assumption.3  

 

   

𝑀𝑖𝑛𝜆,𝜃𝑖                           𝜃𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜        𝑌𝜆 − 𝑦𝑖 ≥ 0
                             𝜃𝑖𝑥𝑖 − 𝑋𝜆 ≥ 0

                                𝜆 ≥ 0

   (1) 

xi and yi are the input and output, respectively, for the ith DMU; X is the matrix 

for the input, Y is the matrix for the output, and  is a nx1 vector of variables. The 

model (1) can be modified to account for variable returns to scale (VRS) by 

adding the convexity constraint e = 1 where e is a row vector with all elements 

unity, which distinguishes between Technical Efficiency (TE) and Scale 

Efficiency (SE).  

DEA is a well-established and useful technique for measuring efficiency in 

public sector activities.4 The reasons for the widespread use of DEA are 

 
2 For more details, refer to Coelli (1998), Fried et al. (2008).  
3 The acronyms CRS (constant returns to scale) and VRS (variable returns to scale) are often used 

with reference to the CCR and BCC models from the initials of the authors, Charnes et al. (1978), 

Banker et al. (1989).  
4 DEA technique has been applied to several fields besides justice, such as regulation of water 

companies (Thanassoulis 2000), local police force (Garcıa-Sanchez 2009), gas distribution 

industry (Erbetta and Rappuoli 2008), higher education (Johnes 2006), health (Hollingsworth et al. 
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summarized as follows: it can handle multiple inputs and outputs without a priori 

assumptions for a specific functional form of production technologies, it does not 

require a priori a relative weighting scheme for the input and output variables, it 

returns a simple summary efficiency measurement for each DMU, and it identifies 

the sources and levels of relative inefficiency for each DMU. However, some 

concerns should be addressed before the DEA is accepted as a routine tool in 

applied analysis. As DEA is an estimation procedure that relies on extreme points, 

it may be extremely sensitive to data selection, aggregation, and model 

specification. Typically, the selection of input and output variables is a major 

issue for efficiency measurements. The principal strengths of DEA, which include 

no a priori knowledge requirement for functional relationships, can be fully 

exploited under the premise that the input and output variables are relevant and 

sufficiently fair for all DMUs considered.  

Another problem common to DEA studies is the relatively small number, n, 

of DMU with respect to the dimensionality space d (i.e., the number of input and 

output variables in the efficiency analysis) and the reliability of the results from 

the DEA model. However, for a given sample size, the rate of convergence 

depends on the dimensionality space d.5 This issue clearly represents a potential 

limitation of our work that may be solved only when more data will be available. 

Notwithstanding this, we do believe that our paper represents a first sound step to 

the analysis of launches efficiency. Finally, it is well-known that the DEA 

estimator for technical efficiency described earlier is biased in its construction 

(Simar and Wilson 2000b). This bias may be relevant and certain bootstrap 

methods that correct such bias have been used to investigate the bias, variance, 

and confidence intervals in efficiency scores, which generates more reliable 

efficiency rankings (Simar and Wilson 1998, 2000a).  

 

 
1999; Tsekouras et al. 2010), heritage Authorities (Finocchiaro Castro et al. 2011) and care for the 

elderly sector (Borge and Haraldsvik 2009).  
5 For a numerical example of the tradeoff between sample size and number of inputs and outputs 

used for consistency, see Simar and Wilson (2008, p. 439).  
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3.2 Data 

Our sample has been built on the publicly accessible UCS Satellite Database 

of active satellites6 (https://www.ucsusa.org/resources/satellite-database) 

containing 3373 entries on the 01/01/2021. First, we selected the launches 

containing complete information on satellite’s expected lifetime (measured in 

years), Expectedlifetimeyrs, that represents our output. Once satellites with such 

missing data were removed, we searched for those variables chosen as input: the 

launch mass, Launchmasskg, and the mission cost, Cost. Whereas the former has 

been directly taken form the UCS database, the latter has been taken from 

different sources provided in the UCS Dataset (e.g., spaceflightnow.com).  

Hence, we restricted our dataset to 37 satellites, representing the DMUs 

under investigation. Table 1 provides a first description of sample composition. At 

a first glance, it appears that launches span on a quite wide period going from 

2006 to 2020, although most of launches took place in the last five years and that 

several countries or multinational agency have been involved in the launches 

forming the sample under study. In details, 8 countries (Argentina, Australia, 

Canada, France, Germany, India, South Corea and USA) are involved in the space 

activities and 2 international agencies (ESA and EUMETSAT). 

Moreover, the UCS dataset includes several additional basic information 

about the satellites and their orbits. Specifically, for each of the satellites it 

provides the country of owner, the users, and the purpose. For all of them, we 

built a set of dummy variables. For instance, considering the satellites’ purpose, 

we obtained five dummy variables (technology development, communication, 

earth science and earth observation and navigation), taking the value 1 whether 

the satellite is used for that specific purpose and 0 otherwise. Table 2 provides the 

summary statistics for the variables used in our dataset. 

  

 
6 The Union of Concerned Scientists is a national nonprofit organization founded more than 50 

years ago by scientists and students at the Massachusetts Institute of Technology. For more details, 

see https://www.ucsusa.org/about 

https://www.ucsusa.org/resources/satellite-database
https://www.ucsusa.org/about
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Table 1 – Sample composition 

 

DMU Name of Satellite, Alternate Names Current Official Name of Satellite 
Country/Org of 

UN Registry 
Date of Launch 

1 Prox-1 (Nanosat 7) Prox-1 USA 25/06/2019 

2 
Calipso (Cloud-Aerosol Lidar and Infrared 

Pathfinder Satellite Observation) 
Calipso France 28/04/2006 

3 Aeolus Aeolus ESA 22/08/2018 

4 Buccaneer RMM Buccaneer RMM Australia 18/11/2017 

5 CSG-1 (COSMO-SkyMed Second Generation) CSG-1 NR (12/20) 18/12/2019 

6 FalconEye-2 FalconEye-2 NR (12/20) 02/12/2020 

7 CSO-2 (Optical Space Component-2) CSO-2 NR (12/20) 28/12/2020 

8 Galileo FOC FM10 (0210, Galileo 13, PRN E01) Galileo FOC FM10 NR 24/05/2016 

9 Galileo FOC FM20 (0220, Galileo 24) Galileo FOC FM20 NR 25/07/2018 

10 Badr 7 (Arabsat 6B) Badr 7 NR 10/11/2015 

11 BulgariaSat-1 BulgariaSat-1 NR 23/06/2017 

12 GEO-Kompsat-2B GEO-Kompsat-2B South Korea 18/02/2020 

13 
GOES 17 (Geostationary Operational 
Environmental Satellite GOES-S) 

GOES-S USA 01/03/2018 

14 Göktürk 1 Göktürk 1 NR 05/12/2016 

15 
Grace Follow-on-1 (Gravity Recovery and Climate 

Experiment Follow-on-1) 
Grace Follow-on-1 USA 22/05/2018 

16 
Grace Follow-on-2 (Gravity Recovery and Climate 

Experiment Follow-on-2) 
Grace Follow-on-2 USA 22/05/2018 

17 GSAT-11 GSAT-11 India 04/12/2018 

18 GSAT-15 GSAT-15 India 10/01/2015 

19 GSAT-18 GSAT-18 India 05/10/2016 

20 Icesat-2 Icesat-2 USA 15/09/2018 

21 Intelsat 30/DLA 1 Intelsat 30/DLA 1 NR 16/10/2014 

22 Intelsat New Dawn (Intelsat 28) Intelsat New Dawn NR 22/04/2011 

23 Iridium Next SV 102 Iridium Next 102 USA 14/01/2017 

24 Jason 3 Jason 3 USA 17/01/2016 

25 MetOp-C (Meteorological Operational satellite) MetOp-C EUMETSAT 06/11/2018 

26 NOAA-20 (JPSS-1) NOAA-20 USA 18/11/2017 

27 
PRISMA (PRecursore IperSpettrale della Missione 

Applicativa) 
PRISMA NR (12/20) 22/03/2019 

28 RCM-1 (Radar Constellation Mission 1) RCM-1 Canada 12/06/2019 

29 
SAOCOM-1A (Satélite Argentino de Observación 
Con Microondas) 

SAOCOM-1A Argentina 07/10/2018 

30 Sentinel 1B Sentinel 1B ESA 25/04/2016 

31 Sentinel 2B Sentinel 2B ESA 06/03/2017 

32 Sentinel 5P (Sentinel 5 Precursor) Sentinel 5P ESA 13/10/2017 

33 Sentinel 6 (Michael Freilich) Sentinel 6 NR (12/20) 21/11/2020 

34 Sky Muster 2 (NBN-1B) Sky Muster 2 Australia 05/10/2016 

35 South Asia Satellite (GSAT 9) South Asia Satellite India 06/05/2017 

36 
TerraSAR-X 1 (Terra Synthetic Aperture Radar X-
Band) 

TerraSAR X 1 Germany 15/06/2007 

37 TESS (Transiting Exoplanet Survey Satellite) TESS USA 18/04/2018 

 

Source: our elaboration on data provided by UCS; NR: the satellite has never been registered with the United 

Nations. ESA: European Space Agency; EUMETSAT: European Organisation for the Exploitation of 

Meteorological Satellites  
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Table 2 - Summary statistics 

 

VARIABLES Obs. Mean St.Dev. Min Max 

usa 37 0.189 0.397 0 1 

france 37 0.0270 0.164 0 1 

australia 37 0.0541 0.229 0 1 

nr 37 0.324 0.475 0 1 

southcorea 37 0.0270 0.164 0 1 

india 37 0.108 0.315 0 1 

canada 37 0.0270 0.164 0 1 

argentina 37 0.0270 0.164 0 1 

germany 37 0.0270 0.164 0 1 

agency 37 0.135 0.347 0 1 

joint 37 0.108 0.315 0 1 

multinational 37 0.0541 0.229 0 1 

civil 37 0.0270 0.164 0 1 

government 37 0.595 0.498 0 1 

commercial 37 0.162 0.374 0 1 

mixed 37 0.135 0.347 0 1 

techologydevelopment 37 0.0541 0.229 0 1 

earthscience 37 0.0541 0.229 0 1 

earthobservation 37 0.541 0.505 0 1 

navigation 37 0.0541 0.229 0 1 

communication 37 0.270 0.450 0 1 

leo 37 0.622 0.492 0 1 

geo 37 0.297 0.463 0 1 

meo 37 0.0541 0.229 0 1 

longitudeofgeodegrees 37 10.57 48.54 -137 145 

perigeekm 37 366.6 306.1 1.301 825 

apogeekm 37 380.3 317.1 1.324 829 

eccentricity 37 0.0269 0.157 0 0.953 

inclinationdegrees 37 60.12 43.59 0 98.70 

periodminutes 37 770.3 1,482 92.40 8,758 

launchmasskg 37 176.2 293.8 1.060 860 

drymasskg 5 238.9 329.6 1.283 678 

powerwatts 5 224.2 275.6 4.800 550 

expectedlifetimeyrs 37 8.899 4.908 0.250 20 

cost 37 2.036e+09 3.711e+09 6.000e+07 1.280e+10 

 

Source: our elaboration on data provided by UCS 
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Table 3 – Users, purpose and class of orbit 

 
DMU Users Purpose Class of Orbit 

1 Civil Technology Development LEO 

2 Government Earth Science LEO 

3 Government Earth Observation LEO 

4 Military/Civil Technology Development LEO 

5 Military/Government Earth Observation LEO 

6 Military Earth Observation LEO 

7 Military Earth Observation LEO 

8 Commercial Navigation/Global Positioning MEO 

9 Commercial Navigation/Global Positioning MEO 

10 Government Communications GEO 

11 Commercial Communications GEO 

12 Government Earth Observation GEO 

13 Government Earth Observation GEO 

14 Military Earth Observation LEO 

15 Government Earth Observation LEO 

16 Government Earth Observation LEO 

17 Government Communications GEO 

18 Government Communications GEO 

19 Government Communications GEO 

20 Government Earth Science LEO 

21 Commercial Communications GEO 

22 Commercial Communications GEO 

23 Government/Commercial Communications LEO 

24 Government Earth Observation LEO 

25 Government/Civil Earth Observation LEO 

26 Government Earth Observation LEO 

27 Government Earth Observation LEO 

28 Government Earth Observation LEO 

29 Government Earth Observation LEO 

30 Government Earth Observation LEO 

31 Government Earth Observation LEO 

32 Government Earth Observation LEO 

33 Government Earth Observation LEO 

34 Commercial Communications GEO 

35 Government Communications GEO 

36 Government/Commercial Earth Observation LEO 

37 Government Space Science Elliptical 

 

Source: our elaboration on data provided by UCS 
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Table 4 – Inputs and output 

 

DMU 
INPUTS OUTPUT 

Launch Mass (kg.) Cost in US $ million Expected Lifetime (yrs.) 

1 70.00 185.00 0.25 

2 587.00 298.00 3.00 

3 1367.00 550.00 3.00 

4 4.00 11300.00 5.00 

5 2205.00 110.00 5.00 

6 1180.00 407.00 5.00 

7 3565.00 1500.00 10.00 

8 723.00 8000.00 12.00 

9 715.00 11700.00 12.00 

10 5500.00 128.00 15.00 

11 3669.00 235.00 15.00 

12 3379.00 650.00 10.00 

13 5211.00 11000.00 15.00 

14 1060.00 300.00 7.00 

15 600.00 430.00 5.00 

16 600.00 430.00 5.00 

17 5854.00 650.00 15.00 

18 3164.00 128.00 12.00 

19 3404.00 153.00 15.00 

20 1515.00 1000.00 3.00 

21 6220.00 250.00 15.00 

22 3000.00 250.00 15.00 

23 860.00 3000.00 15.00 

24 553.00 364.00 5.00 

25 4084.00 4000.00 5.00 

26 2294.00 1600.00 7.00 

27 550.00 143.00 5.00 

28 1430.00 900.00 7.00 

29 1650.00 600.00 5.00 

30 2300.00 157.00 7.00 

31 1130.00 150.00 7.00 

32 820.00 284.00 7.00 

33 1192.00 1000.00 5.00 

34 6405.00 153.00 15.00 

35 2230.00 60.00 12.00 

36 1230.00 250.00 5.00 

37 362.00 337.00 20.00 

 

Source: our elaboration on data provided by UCS 
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Additional relevant satellites characteristics are reported in Table 3. Data 

show that most of the satellites (62%) are in the low earth orbit (LEO), 5% in 

medium earth orbit (MEO), 30% in Geostationary Earth Orbit (GEO) and the 

remaining 3% in Highly Elliptical Orbit (HEO). Satellites’ use can be divided in 

governmental (59%), civil (3%), military (8%), commercial (16%) or mixed 

(13%). Regardless of the orbit (with the only exception of MEO, where there are 

only commercial satellites) their largest employment is for governmental 

purposes. Finally, as far as their purpose is concerned, the largest part of the 

satellites localized in LEO (78%) are developed for Earth Observation, whereas 

most of the satellites localized in GEO (82%) are developed for Communication.  

Table 4 reports the values of the three variables included in our DEA model 

for each DMU. As previously mentioned, launch mass and cost values are used as 

inputs, while the satellites’ expected life is considered as output. DMU are 

ordered according to their expected life from the smallest to the largest.  

As we can observe, data are very heterogeneous across DMUs. This issue 

can be also noted looking at Table 5 referring to the average values of the sample. 

Launch mass (expressed in kilos) goes from 4 to 6405, mission costs (millions of 

dollars) go from 60 to 11700, while expected lifetime varies from four months to 

20 years. Data heterogeneity is also shown by the high standard deviations for 

both inputs and output.   

 

 

Table 5 – Sample statistics 

 

Statistics 
INPUTS OUTPUT 

Launch Mass (kg.) Cost in US $ million Expected Lifetime (yrs.) 

Mean 2180.59 1693.30 8.90 

St. Dev. 1830.43 3245.08 4.91 

Max 6405.00 11700.00 20.00 

Min 4.00 60.00 0.25 

 

Source: our elaboration on data provided by UCS 
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4. RESULTS  

Unfortunately, the available data are quite partial, and this represents a potential 

limitation to the analysis. As already mentioned, the available data moved us to 

choose satellite mass and mission cost as inputs and satellite expected life as 

output. Thus, it is reasonable to opt for an input-oriented estimation model, being 

more consistent with the objective of the analysis. The rationale for such choice is 

the following. For a given expected lifetime, the less resources in terms of mass 

launched into space and mission economic resources employed, the more efficient 

the satellite is.  

This feature is relevant under a different point of view. A smaller mass 

implies fewer debris caused in the occurrence of collision. Hence, minimizing 

satellites’ mass may positively affect the attempts at reducing the number of 

debris, and increasing the satellites’ expected lifetime. In our estimate each 

satellite represents our DMU. In all our estimates we will employ the well-known 

DEA estimator, put forward by Charnes et al. (1978), measuring the efficiency in 

terms of Farrell (1957) input distance functions, which are the reciprocals of the 

Shephard (1970) input efficiency measures. Then, for a point contained within the 

convex hull of the reference observations the returned efficiency scores will be 

between 0 and 1. Larger is the efficiency score higher is the efficiency of DMU. 

Furthermore, we assume constant returns to scale (CRS). As already explained, 

DEA approach has, however, several problems that need to be addressed to obtain 

correct estimates. In particular, to account for possible bias in the estimates and 

the presence of outliers, we will also perform the bootstrap confidence interval for 

efficiency estimates (Simar and Wilson, 2000). Table 6 reports the efficiency 

estimates for each DMU. Column 2 shows the original efficiency scores; columns 

3 and 4 provide the bias and bias-corrected efficiency scores. Columns 5 and 6 

report the 95 % confidence intervals for the bias-corrected efficiency scores. As it 

can be seen, the value reported in the second column fall beyond the upper bound 

of the confidence intervals, revealing the presence of bias in the estimates. Both 

the levels of bias and bias corrected estimates significantly vary across the DMUs. 
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The greatest difference between the original and the bias-corrected efficiency 

scores is 0.40525 (DMU 4). 

 

Table 6 – Efficiency estimates 

 

DMU DEA Eff. scores Bias Bias corrected Eff. scores 
Lower bound  

(95% confidence) 

Upper bound 

(95% confidence) 

1 0.06381 0.01591 0.04790 0.03948 0.06177 

2 0.16021 0.03106 0.12915 0.10548 0.15665 

3 0.08411 0.01490 0.06922 0.05634 0.08217 

4 1.00000 0.40525 0.59475 0.51151 0.89707 

5 0.34105 0.07630 0.26475 0.21726 0.32728 

6 0.18485 0.03132 0.15353 0.12564 0.18092 

7 0.10348 0.01863 0.08485 0.06914 0.10101 

8 0.27878 0.06706 0.21172 0.17453 0.26373 

9 0.27167 0.06618 0.20549 0.16951 0.25740 

10 0.58594 0.17058 0.41536 0.34434 0.56186 

11 0.55024 0.11220 0.43804 0.36269 0.52920 

12 0.20399 0.03367 0.17031 0.14224 0.19874 

13 0.05163 0.01320 0.03843 0.03181 0.04971 

14 0.33851 0.05608 0.28243 0.23162 0.33092 

15 0.19188 0.04381 0.14807 0.12079 0.18571 

16 0.19188 0.04381 0.14807 0.12079 0.18571 

17 0.25568 0.04556 0.21011 0.17811 0.24680 

18 0.61885 0.15163 0.46722 0.38364 0.59014 

19 0.69108 0.16137 0.52971 0.43423 0.66144 

20 0.04913 0.01058 0.03855 0.03140 0.04819 

21 0.39443 0.09698 0.29745 0.24427 0.37546 

22 0.58867 0.11165 0.47702 0.40156 0.56604 

23 0.30963 0.07575 0.23389 0.19239 0.30032 

24 0.22488 0.04835 0.17653 0.14378 0.22055 

25 0.02215 0.00619 0.01596 0.01338 0.02096 

26 0.07202 0.01610 0.05592 0.04555 0.07024 

27 0.49844 0.08212 0.41632 0.34228 0.48623 

28 0.12677 0.02671 0.10006 0.08149 0.12443 

29 0.12650 0.02171 0.10479 0.08568 0.12356 

30 0.39720 0.07933 0.31787 0.26422 0.38336 

31 0.55215 0.09545 0.45670 0.38665 0.53406 

32 0.37113 0.06292 0.30821 0.25219 0.36302 

33 0.08360 0.02183 0.06177 0.05143 0.07903 

34 0.49020 0.14310 0.34710 0.28808 0.46826 

35 1.00000 0.29892 0.70108 0.58762 0.92050 

36 0.26905 0.04427 0.22478 0.18719 0.26184 

37 1.00000 0.28250 0.71750 0.60350 0.92805 

Source: our elaboration on data provided by UCS 
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Looking at Table 7, the average values are displayed. The efficiency scores 

go from 0.71750 to 0.01596, showing a remarkably high degree of heterogeneity 

among DMUs. Also, the mean efficiency score across the sample is 0.2611, 

showing that on average inputs could be reduced altogether by roughly 74% to get 

full efficiency. Overall, the efficiency decreased slightly with a mean drop of 

slightly more than 8%.  

 

 

Table 7 – Summary statistics of the efficiency estimates 

 

Statistics DEA Eff. scores Bias corrected Eff. scores 
Lower bound 

(95% confidence) 

Upper bound 

(95% confidence) 

Mean 0.34442 0.26110 0.21681 0.32817 

St. dev 0.26621 0.18682 0.15709 0.24635 

Min 0.02215 0.01596 0.01338 0.02096 

Max 1.00000 0.71750 0.60350 0.92805 

 

Source: our elaboration on data provided by UCS 

 

Figure 1 reports the Kernel density estimates of the efficiency scores that 

rely on the reflection method (Simar and Wilson 2008). The results are not 

significantly different from those reported in table 6.  

 
Figure 1 – Kernel density of the DEA efficiency estimates 

 
Source: our elaboration on data provided by UCS 
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The presence of bias in the original efficiency scores reported in Table 6 

could be further investigated by decomposing the sample according to 

homogeneous characteristics of satellites. To do so, the following tables cluster 

the efficiency estimates according to user, purpose, and class of orbit. Table 8 

reports the DMUs clustered by user. In more than half of the observations the 

Governments are the user with an average bias corrected efficiency score of 

0.2628, with a small bias of 0.0798. 

 

 

Table 8 – Efficiency estimates by User 

 
User Obs. Mean DEA Eff. scores St. Dev. Mean Bias corrected Eff. scores St. Dev. 

Civil 1.0000 0.0638  0.0479  

Commercial 6.0000 0.4290 0.1360 0.3295 0.1133 

Government 22.0000 0.3426 0.2915 0.2628 0.2112 

Government/Civil 1.0000 0.0222  0.0160  

Government/Commercial 2.0000 0.2893 0.0287 0.2293 0.0064 

Military 3.0000 0.2089 0.1193 0.1736 0.1003 

Military/Civil 1.0000 1.0000  0.5947  

Military/Government 1.0000 0.3410  0.2648  

Whole sample 37.0000 0.3444 0.2699 0.2611 0.1894 

 

Source: our elaboration on data provided by UCS 

 

 

Differently, Table 9 refers to the clustering by satellites’ purpose. In this 

case, there are two main groups. The first and more numerous is related to earth 

observation scope (54% of the sample) showing an average bias corrected 

efficiency score of 0.1799, with a very small bias of 0.0419. The second group 

refers to communications purpose showing an average bias corrected efficiency 

score of 0.4117, with a quite relevant bias of 0.1368. 
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Table 9– Efficiency estimates by purpose 

 
Purpose Obs. Mean DEA Eff. scores St. Dev. Mean Bias corrected Eff. scores 

St. 

Dev. 

Communications 10.0000 0.5485 0.2114 0.4117 0.1473 

Earth Observation 20.0000 0.2218 0.1511 0.1799 0.1257 

Earth Science 2.0000 0.1047 0.0785 0.0839 0.0641 

Navigation/Global Positioning 2.0000 0.2752 0.0050 0.2086 0.0044 

Space Science 1.0000 1.0000  0.7175  

Technology Development 2.0000 0.5319 0.6620 0.3213 0.3867 

Whole sample 37.0000 0.3444 0.2699 0.2611 0.1894 

 

Source: our elaboration on data provided by UCS 

 

 

Finally, Table 10 regards the cluster according to the class of orbit of the 

satellites. Also in this cluster, there are two main groups. The first one refers to 

LEO, showing an average bias corrected efficiency score of 0.1928, with a quite 

small bias of 0.0577, whereas the second cluster refers to GEO reporting an 

average bias corrected efficiency score of 0.3720, with a remarkable bias of 

0.1217. 

 

 

Table 10 – Efficiency estimates by class of orbit 

 
Class of orbit Obs. Mean DEA Eff. scores St. Dev. Mean Bias corrected Eff. scores St. Dev. 

GEO 11.0000 0.4937 0.2603 0.3720 0.1854 

LEO 23.0000 0.2505 0.2192 0.1928 0.1494 

MEO 2.0000 0.2752 0.0050 0.2086 0.0044 

Elliptical 1.0000 1.0000  0.7175  

Whole sample 37.0000 0.3444 0.2699 0.2611 0.1894 

 

Source: our elaboration on data provided by UCS 

 

Looking in depth at the results reported by previous Tables, it seems reasonable to 

perform new estimates focusing only on the most homogeneous groups of DMUs 
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to mitigate the bias. Thus, the following Tables report the efficiency estimates for 

the subsamples referring to earth observation and communications.  

Table 11 reports the efficiency estimates for the subsample of satellites 

whose purpose is communications. The results show a quite remarkable increase 

in the average bias corrected efficiency scores of the subsample moving from 

0.4117 to 0.5275. Also, the bias has significantly decreased from 0.1368 to 

0.0970. It, thus, appears that we have been able to somehow mitigate the negative 

effect of DMU’s heterogeneity on efficiency levels.     

 

 

Table 11 – Efficiency estimates for subsample of communications satellite 

 

DMU DEA Eff. scores Bias Bias corrected Eff. scores 
Lower bound 

(95% confidence) 

Upper bound 

(95% confidence) 

10 0.58594 0.08253 0.50341 0.41777 0.58131 

11 0.74190 0.06870 0.67320 0.59130 0.73556 

17 0.45157 0.04037 0.41120 0.36209 0.44631 

18 0.69867 0.07830 0.62037 0.53771 0.69188 

19 0.80943 0.08465 0.72479 0.62933 0.80406 

21 0.44433 0.05018 0.39415 0.34126 0.43950 

22 0.89641 0.07965 0.81676 0.71793 0.88714 

23 1.00000 0.24053 0.75947 0.62411 0.97554 

34 0.49020 0.07069 0.41950 0.34904 0.48502 

35 1.00000 0.17386 0.82614 0.70412 0.98085 

Mean 0.71185 0.09695 0.61490 0.52747 0.70272 

St. Dev 0.20372 0.05866 0.16205 0.14045 0.19860 

Min 0.44433 0.04037 0.39415 0.34126 0.43950 

Max 1.00000 0.24053 0.82614 0.71793 0.98085 

 

Source: our elaboration on data provided by UCS 

 

Differently, Table 12 shows the efficiency estimates referred to the 

subsample of satellites whose purpose is earth observation. In this case, the 

average bias corrected efficiency score has tripled from 0.1799, as reported in 

Table 8, to 0.5401, whereas keeping the bias at a very low level (0.0835). As said 

before, running estimates on subsample to keep heterogeneity at minimum has 

dramatically helped in boosting bias corrected efficiency levels.  
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Table 12 – Efficiency estimates for subsample of Earth Observation satellite 

 

DMU DEA Eff. scores Bias Bias corrected Eff. scores 
Lower bound 

(95% confidence) 

Upper bound 

(95% confidence) 

3 0.24140 0.02644 0.21497 0.18596 0.24009 

5 0.97403 0.17063 0.80339 0.65915 0.96499 

6 0.46610 0.05916 0.40694 0.35063 0.46197 

7 0.30856 0.03278 0.27577 0.23897 0.30728 

12 0.39190 0.06996 0.32194 0.27273 0.38185 

13 0.31664 0.02223 0.29440 0.25893 0.31592 

14 0.72642 0.12025 0.60616 0.52385 0.71503 

15 0.91667 0.07035 0.84631 0.74029 0.91419 

16 0.91667 0.07035 0.84631 0.74029 0.91419 

24 0.99458 0.08024 0.91434 0.80185 0.99104 

25 0.13467 0.00976 0.12492 0.11003 0.13436 

26 0.33566 0.02612 0.30954 0.27073 0.33462 

27 1.00000 0.18481 0.81519 0.70669 0.96590 

28 0.53846 0.04489 0.49357 0.43385 0.53635 

29 0.33333 0.03989 0.29345 0.25283 0.33127 

30 0.95541 0.17755 0.77787 0.64491 0.93983 

31 1.00000 0.21967 0.78033 0.66558 0.97141 

32 0.93902 0.11851 0.82052 0.70647 0.93146 

33 0.46141 0.03417 0.42724 0.37609 0.46021 

36 0.52120 0.09186 0.42934 0.36444 0.50687 

Mean 0.62361 0.08348 0.54012 0.46521 0.61594 

St. Dev 0.30033 0.06048 0.25344 0.21734 0.29523 

Min 0.13467 0.00976 0.12492 0.11003 0.13436 

Max 1.00000 0.21967 0.91434 0.80185 0.99104 

 

Source: our elaboration on data provided by UCS 

 
5. CONCLUSION 

 

 

Space activities are becoming crucial for many areas such as meteorology, 

navigation, communication and earth observation. For this reason, most countries 

are increasingly investing in the space sector to improve their space launching 

capabilities. The subsequent rising number of active satellites, responsible for the 

accumulation of orbital debris, challenges the space sustainability. Therefore, 

many studies address the problem, proposing possible solutions to debris creation. 

However, although some authors also attempt to estimate the probability of debris 

collision risk, none of them consider the satellites’ characteristics and launch cost 
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(and more generally mission cost) which may instead be a key factor for an 

efficiency analysis. Our study tries to fill this gap, providing an efficiency analysis 

of the satellites’ life cycle, by using a Data Envelopment Analysis technique. 

Specifically, by using a subsample of the UCS Satellite Database, we consider 37 

satellites, launched between 2006 and 2020, as our Decision-making units, their 

launch mass and mission cost as inputs and finally their expected life expressed in 

years as output, for our input-oriented approach. Also, the mean efficiency score 

across the sample is 0.2611, showing that on average inputs could be reduced 

altogether by roughly 74% to get full efficiency. In second step, satellites are 

clustered according to their users, purposes and class of orbit respectively, to 

account for data heterogeneity. Then, the efficiency analysis is conducted for two 

subsamples referred to their purposes: earth observation and communications. As 

for the former, the results show a quite remarkable increase in the average bias 

corrected efficiency scores of the subsample moving from 0.4117 to 0.5275. Also, 

the bias has significantly decreased from 0.1368 to 0.0970. Focusing on the latter, 

the average bias corrected efficiency score triples from 0.1799 to 0.5401, whereas 

keeping the bias at a very low level (0.0835). Hence, it appears that the satellites 

whose purpose is communications are those where inputs are more efficiently 

employed, keeping the expected lifetime constant. In conclusion, results show that 

running estimates on subsample to keep heterogeneity at minimum significantly 

allows to boost bias corrected efficiency levels. However, our results should be 

read with caution. Several limitations affect our study being the main problem the 

reduced available sample set due to multiple missing variables in the UCS 

Database. Notwithstanding this, we do believe that our paper represents the first 

step in the efficiency analysis of satellites’ launches, posing the attention on the 

problem of future debris creation.  
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