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Abstract

Preferences over risky alternatives can be elicited by different methods, includ-

ing direct pairwise choices and willingness-to-accept valuations. The results are

frequently at odds, casting doubts on the foundations of economics. We develop a

stochastic choice model predicting when inconsistencies across elicitation methods

should occur, the type of anomalies to be expected, what determines their magni-

tude, and whether they uncover a bias or not. While some anomalies can be traced

back to individual biases, other apparent anomalies can occur in the absence of any

actual behavioral bias, as a consequence of regularities in stochastic choice, risk

attitudes, and experimental design. The model delivers new predictions that are

confirmed in five experiments on the classical preference reversal phenomenon. Our

novel empirical approach relies on utilities estimated out of sample, which allow us

to test the model and also show that the bias in willingness-to-accept valuations is

limited to long shots.
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1 Introduction

A preference elicitation anomaly occurs when two different but theoretically-equivalent

preference elicitation methods contradict each other. For example, a decision maker

might reveal a higher willingness to pay for option A than for option B, but then

actually choose B over A when given opportunity. The most prominent example in

the domain of risky choice is the classical preference reversal phenomenon (Lichtenstein

and Slovic, 1971; Grether and Plott, 1979; Tversky and Thaler, 1990), where monetary

valuations of gambles contradict risky choices. This anomaly has received enormous

attention in economics (e.g., Holt, 1986; Karni and Safra, 1987; Tversky et al., 1990;

Cubitt et al., 2004; Schmidt and Hey, 2004; Butler and Loomes, 2007), but it is just

one of many. Inconsistencies between preference elicitation methods abound, including

reversals between pricing and rating (Schkade and Johnson, 1989) and between certainty

and probability equivalents (Hershey and Schoemaker, 1985; Johnson and Schkade, 1989;

Delquié, 1993; Collins and James, 2015). They occur in multiple domains, ranging from

health utility measurements (e.g. Stalmeier et al., 1997; Bleichrodt and Pinto Prades,

2009; Oliver, 2013; Attema and Brouwer, 2013) to decision-making under ambiguity

(Maafi, 2011; Trautmann et al., 2011). The inconsistencies are robust, systematic, and

highly relevant for economic analysis, because individual and societal preferences are

often estimated on the basis of monetary valuations or similar constructs (see, e.g.,

Bateman et al., 2002 for a detailed discussion). Thus, if such measurements contradict

actual choices, welfare economics and most of normative economics would be on shaky

grounds. Moreover, discrepancies between elicitation methods are fundamentally at

odds not only with Expected Utility Theory, but with any preference-based theory of

decisions under risk assuming that decision makers’ preferences can be represented by

a stable utility function, including Cumulative Prospect Theory and Rank-Dependent

Utility.

In the present work, we develop and test a stochastic choice model that provides a

unified account of preference elicitation anomalies in risky choice, while also deriving

new testable predictions. This is accomplished by incorporating received insights on the

structure of errors from the stochastic choice literature, which also allows us to directly

model biases in choice and valuation. Specifically, we postulate a monotonic relation

between error rates and ‘strength of preference,’ captured by differences in certainty

equivalents. In the absence of a systematic bias, this implies that error rates should be

larger when differences in certainty equivalents are small.1

The model considers settings where preferences within pairs of alternatives are elicited

according to two different methods. To fix ideas, suppose they correspond to direct

choices and some kind of indirect evaluations (but the model encompasses any compari-

son across methods). Alternatives contain options of two well-differentiated types (e.g.,

1This property, which is a standard assumption in random utility models (McFadden, 2001), arises
from long-standing insights from psychophysics (Dashiell, 1937; Moyer and Landauer, 1967) and has
been recently demonstrated in the domain of decisions under risk (Alós-Ferrer and Garagnani, 2018).
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long-shots and moderate lotteries). Since choices and evaluations are stochastic, a num-

ber of discrepancies between the methods (reversals) is natural. A preference elicitation

anomaly arises if an asymmetry is observed, namely if the proportion of reversals of

one type systematically exceeds the proportion of reversals of the opposite type. For

instance, the classical preference reversal phenomenon reduces to the observation that

decision makers frequently choose moderate lotteries over long shots of similar expected

value, but then reveal a higher monetary valuation for the long shots, while the op-

posite reversals are rare. Hence the rate for the first kind of reversals (proportion of

pairs where the reversal occurs over all the pairs where the moderate lottery is chosen)

is much higher than the analogous rate for the second kind (Grether and Plott, 1979;

Tversky and Thaler, 1990). Such asymmetries have universally been taken as evidence

that reversals cannot be due just to random errors arising from stochasticity in choices,

elicited valuations, or both (e.g., Schmidt and Hey, 2004; Loomes, 2005).

The most important insight arising from the model is that the overall proportion of

choices and evaluations in favor of one of the types of alternatives is a crucial determinant

of the rates of reversals. Consequently, a given experiment can itself be biased toward

one kind of alternatives, in the sense that they are chosen more frequently on average.

This can happen for reasons which are completely orthogonal to any behavioral bias of

the decision makers. For instance, the particular attitudes toward risk in the experi-

mental sample, or the selection of lottery pairs to fulfill certain criteria, will generally

result in a biased experiment. Strikingly, the model shows that preference elicitation

anomalies can occur even in the absence of any behavioral biases, that is, apparent, sys-

tematic anomalies where one reversal rate is predictably larger than the opposite rate

can be created experimentally out of thin air even though both elicitation methods are

equivalent (but noisy).

The model also predicts other anomalies, as the one underlying the classical prefer-

ence reversal phenomenon, as a consequence of strength of preference and a behavioral

bias in an evaluation method. We obtain comparative-statics results showing that a

stronger behavioral bias in evaluations exacerbates the anomalies, but the degree to

which an experiment is biased (toward the option chosen in the most frequent reversals)

has the opposite effect. In particular, the implicit assumption in the literature that in

the absence of an evaluation bias one should expect comparable rates of reversals is

incorrect. This assumption is only justified if additionally the experiment itself is also

unbiased. For example, if an experiment on the classical preference reversal phenomenon

is biased toward moderate lotteries, then in the absence of a behavioral bias the model

would predict the opposite of the preference reversal phenomenon.

To test the model’s predictions, and also to motivate and test the validity of the

model’s assumptions, we conducted five experiments (total N = 503) focused on the

classical preference reversal phenomenon, relying on a novel empirical approach which

includes utility estimations out of sample. The design provides empirical evidence not

previously available in preference reversal experiments. We find evidence for strength-
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of-preference effects both for actual choices and for imputed choices derived from the

comparison of elicited valuations. Our empirical tests then include the preference re-

versal phenomenon, the reversal of the phenomenon (which arises in the absence of any

behavioral bias), and novel predictions on the causal effects of a behavioral bias in valu-

ations and of biased experiments. Here, the estimated preferences become essential: On

the one hand, they serve as a natural scale to study the regularities in stochastic choice

that underlie the model. On the other hand, they allow us to test novel predictions of

the model, which link reversals to individual risk attitudes and to a bias in valuations

seen as a deviation from the own preferences.

Our experimental evidence also provides further insights. First, there is no general

overpricing bias in elicited monetary valuations. Instead, monetary valuations for mod-

erate lotteries are very accurate, which is at odds with the generalized impression in

the literature. In contrast, subjects dramatically overstate their monetary valuations for

long shots. That is, there is a systematic bias in subjects’ monetary valuations but it

is confined to one type of lotteries, namely long shots. This specific bias in monetary

valuations is shown to cause the classical preference reversal phenomenon. Strikingly,

we show that most preference reversal experiments in the literature were actually set up

in such a way that if there was no bias at all in monetary valuations, then the reversal of

the preference reversal phenomenon should occur. Because the expected values of both

lotteries within a pair are usually very similar in preference reversal experiments (but

long shots are riskier) and most subjects are risk averse, experiments in this domain

are often biased toward the moderate lotteries, in the sense that the latter are chosen

more frequently on average. This yields two important insights: First, the literature has

underestimated the extent of the preference reversal phenomenon for half a century, by

comparing it to an incorrect default (the equality of reversal rates). Second, the reversal

of the preference reversal phenomenon, which had been observed and considered a puz-

zle, is not the result of another bias in evaluations but rather the direct consequence of

stochastic choice and risk aversion (resulting in a biased experiment). Additionally, our

results allow us to encompass, clarify, and organize previous empirical findings which

were hard to interpret up to now.

Robustness analyses confirm that our results do not depend on the specific features of

our experimental design or of the estimation procedure. First, they do not obtain simply

because preferences estimated from choices (although out-of-sample) reflect other choices

more accurately than valuation decisions. In fact, the above results remain robust when

alternative utility functions are estimated from an independent set of imputed choices

derived from the comparison of elicited valuations (stated prices). The reason is simply

that there is no systematic bias between choices and monetary valuations in general, but

rather a bias in the valuation of long shots only. Second, the results obtain for different

utility functions and different estimation procedures. Third, the results obtain indepen-

dently of whether valuations are incentivized via an intuitive ordinal payoff method or
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a Becker-DeGroot-Marschak procedure. Fourth, the results are qualitatively unchanged

when willingness-to-pay valuations are used instead of willingness-to-accept valuations.

The paper is structured as follows. Section 2 presents our stochastic choice model

and provides a unified account of preference elicitation anomalies. Section 3 briefly re-

views the classical preference reversal phenomenon and paves the way for our empirical

application. Section 4 describes our experimental design and the utility estimation pro-

cedure. Section 5 presents our results for preference reversal experiments with unbiased

as well as biased evaluations and discusses how previous empirical findings are accounted

for in light of our results. Section 6 briefly summarizes a number of robustness anal-

yses. Section 7 concludes. The Supplementary Materials (Online Appendix) contain

additional details.

2 A Stochastic Choice Model for Preference Elicitation

Anomalies

In this section we develop a stochastic choice model for the analysis of preference elic-

itation anomalies. The model allows us to derive novel comparative static predictions,

that we test and confirm with our data in later sections.

Consider an experiment where a decision maker (DM) is asked to express her pref-

erences for a set D of K lottery pairs D = {(P1, $1), . . . , (PK , $K)}, using two different

elicitation procedures to which we refer as “choice” and “evaluation” for simplicity (but

can actually be arbitrary elicitation methods). Each pair is made out of lotteries of

two well-differentiated types, a P-bet lottery Pk and a $-bet lottery $k. For the formal

model, these categories are abstract, but we choose the names to make the application

to the preference reversal phenomenon in later sections transparent. For our purposes, a

DM can be characterized by a stochastic choice function ρc and a stochastic evaluation

function ρv such that for any lottery pair (P, $) the probability that the DM chooses P

over $ is given by ρc(P, $), and the probability that P is evaluated higher than $ is given

by ρv(P, $).

A preference reversal occurs for a pair (Pk, $k) if the preferences elicited from choices

and evaluations are inconsistent. There are two types of reversals. In a standard re-

versal (SR), the lottery Pk is chosen over $k but $k is evaluated higher than Pk. In a

non-standard reversal (NR) the lottery $k is chosen over Pk but Pk is evaluated higher

than $k. For a DM the likelihood to observe a standard reversal for a pair (Pk, $k) is

ρc(Pk, $k)(1 − ρv(Pk, $k)), whereas the likelihood to observe a non-standard reversal is

(1− ρc(Pk, $k))ρv(Pk, $k). The rate of standard (resp. non-standard) reversals in exper-

iments is computed as the number of standard (resp. non-standard) reversals divided
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by the number of P-choices (resp. $-choices). For a DM characterized by (ρc, ρv) the

expected rate of standard reversals in experiment D is

SR(D, ρc, ρv) =

K
∑

k=1

ρc(Pk, $k)
∑K

ℓ=1 ρc(Pℓ, $ℓ)
(1− ρv(Pk, $k)) (1)

and the expected rate of non-standard reversals in experiment D is

NR(D, ρc, ρv) =
K
∑

k=1

(1− ρc(Pk, $k))
∑K

ℓ=1(1− ρc(Pℓ, $ℓ))
ρv(Pk, $k). (2)

Now, suppose that in addition to (ρc, ρv) the DM is endowed with a utility function

u. For a pair (P, $), we denote the difference in certainty equivalents (CE) by

∆(P, $) = u−1(EU(P))− u−1(EU($))

where EU(P ) and EU($) denote the respective expected utilities. The idea is that

this difference may serve as an individual measure of preference strength with P being

chosen more frequently and evaluated higher than $ more often for larger values of

∆(P, $). Our stochastic choice model postulates that the functions ρc and ρv can be

written as monotonically increasing functions of CE differences. That is, we assume

that the propensity to choose or evaluate a P-bet over a $-bet is increasing in the

difference between their CEs, ∆(P, $). We say that a DM exhibits strength-of-preference

(SoP) effects if ρc and ρv can be written as increasing functions of ∆(P, $). Thus, a DM

exhibiting SoP effects is characterized by (ρc, ρv, u) and, hence, the expected reversal

rates (1) and (2) can be written as functions of the CE differences ∆k = ∆(Pk, $k),

SR(D, ρc, ρv, u) =

K
∑

k=1

ρc(∆k)
∑K

ℓ=1 ρc(∆ℓ)
(1− ρv(∆k)) (3)

and

NR(D, ρc, ρv, u) =

K
∑

k=1

(1− ρc(∆k))
∑K

ℓ=1(1− ρc(∆ℓ))
ρv(∆k), (4)

respectively.

We say that a DM is unbiased (in evaluations) if ρv(∆) = ρc(∆) for all ∆, that is,

there is no bias in evaluations relative to choice. On the other hand, we say that a DM

exhibits a $-bias (P-bias) in evaluations if ρv(∆) < ρc(∆) (ρv(∆) > ρc(∆)) for all ∆.

Of course reversals of both types will still occur independently of whether the DM is

biased or not due to the fact that both choices and evaluations are stochastic. If a DM

is unbiased, it follows immediately that the proportion of P-choices for a set of lotteries

D, denoted by πc(D) = 1
K

∑K
k=1 ρc(∆k), equals the proportion of evaluations in favor of

P, denoted by πv(D) = 1
K

∑K
k=1 ρv(∆k). However, whether P is chosen more frequently

than $ or vice versa depends on both the individual characteristics of the DM, that is,
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ρc and u, and the set of lotteries D used in the experiment. We say that an experiment

D is biased toward P-bets ($-bets) for a DM if πc(D) > 1
2 (πc(D) < 1

2), that is, P-bets

($-bets) are chosen more frequently. Note that an experiment might be biased although

there is no behavioral bias at the DM level.

It is now easy to show that there is a direct link between the ratio of the standard

and non-standard reversal rates and the quantities discussed above. Specifically, using

(3) and (4) we obtain that

SR(D, ρc, ρv , u)

NR(D, ρc, ρv , u)
=

(

∑K
ℓ=1(1− ρc(∆ℓ))

)

·∑K
k=1 ρc(∆k)(1 − ρv(∆k))

(

∑K
ℓ=1 ρc(∆ℓ)

)

·∑K
k=1(1− ρc(∆k))ρv(∆k)

=
(1− πc(D))

πc(D)

[

∑K
k=1 ρc(∆k)− ρc(∆k)ρv(∆k))

∑K
k=1 ρv(∆k)− ρc(∆k)ρv(∆k)

]

which simplifies to

SR(D, ρc, ρv, u)

NR(D, ρc, ρv, u)
=

1− πc(D)

πc(D)

[

πc(D)− 1
K

∑K
k=1 ρc(∆k)ρv(∆k)

πv(D)− 1
K

∑K
k=1 ρc(∆k)ρv(∆k)

]

(5)

We will consider two types of anomalies that refer to asymmetries between the rates

of standard and non-standard reversals. We say that a DM exhibits a type-1 anomaly

if NR(D, ρc, ρv, u) > SR(D, ρc, ρv, u), that is, there is an asymmetry between reversal

rates with more non-standard than standard reversals. Analogously, we say that a

DM exhibits a type-2 anomaly if SR(D, ρc, ρv, u) > NR(D, ρc, ρv, u), that is, there is

an asymmetry between reversal rates with more standard than non-standard reversals.

The classical preference reversal phenomenon corresponds to a type-2 anomaly.

2.1 Unbiased Evaluations

In this subsection, we consider the case of an evaluation method such that the DM has no

bias in evaluation relative to choice (ρv = ρc). We show that the ratio between standard

and non-standard reversals is decreasing in the proportion of P-choices, πc(D). This im-

plies that a completely unbiased DM can produce both types of anomalies depending on

πc(D), which is determined by the decision maker’s risk attitude (as captured by u) and

the properties of the lottery pairs used in experiment D. Specifically, an experiment that

is biased toward P-bets (πc(D) > 1
2) leads to a type-1 anomaly, whereas an experiment

that is biased toward $-bets (πc(D) < 1
2) leads to a type-2 anomaly. Hence, both types

of anomalies may arise as a consequence of individual characteristics of the DM (which

are not a bias), SoP effects in stochastic choice, and the specifics of the experiment, even

in the absence of any behavioral bias.

We first give the intuition of how our stochastic choice framework can explain type-

1 and type-2 anomalies. This is illustrated in Figure 1. The key insight is that the

comparison of standard and non-standard reversal rates hinges upon conditioning on

6



−1 0
0

0.5

1.0

ρv ρc

∆k

ρv(∆k)

NR(∆k | $)

SR(∆k | P)

∆ −1 0
0

0.5

1.0

ρv ρc

∆k

ρv(∆k)

NR(∆k | $)

SR(∆k | P)

∆

Figure 1: Unbiased evaluations.

the actual choice of either a P-bet or a $-bet. For concreteness, fix a lottery pair (Pk, $k)

with CE difference ∆k. Then, conditional on Pk being chosen, the likelihood to observe

a standard reversal for (Pk, $k) is simply the likelihood that $k is evaluated higher than

Pk, which is SR(∆k | P) = 1−ρv(∆k). Analogously, conditional on a $-bet being chosen

the likelihood to observe a non-standard reversal is NR(∆k | $) = ρv(∆k).

Figure 1 illustrates two examples of an unbiased DM where ρc(0) is exactly one half.

Then, for any lottery pair with ∆k = 0, the likelihood to evaluate Pk above $k is exactly

50%, and consequently we should expect similar rates of standard and non-standard

reversals. However, if ∆k > 0, then the probability that Pk is evaluated above $k

exceeds 50% because ρv is increasing in ∆. Consequently, one should expect more non-

standard than standard reversals for pairs with ∆k > 0, giving rise to a type-1 anomaly

as the left panel of Figure 1 illustrates. Analogously, if ∆k < 0, then the probability

that Pk is evaluated above $k is below 50%. Thus, one should expect more standard

than non-standard reversals for pairs with ∆k < 0 giving rise to a type-2 anomaly. That

is, whether an anomaly is expected, and if so which one, depends on the CE differences

(∆k)
K
k=1, which in turn depend on the set of lotteries D used in the experiment and the

DM’s risk attitude.

To see this formally, note that if a DM is unbiased, then it follows that πc(D) =

πv(D). Equation (5) then simplifies dramatically to

SR(D, ρc, ρv , u)

NR(D, ρc, ρv , u)
=

1− πc(D)

πc(D)
.

The proof of the following result then immediately follows from this equation.

Proposition 1. If a DM is unbiased, then the following statements hold.

(i) An experiment D that is biased toward P-bets (πc(D) > 1
2) leads to a type-1

anomaly, that is, SR(D, ρc, ρv, u) < NR(D, ρc, ρv , u).
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(ii) An experiment D that is biased toward $-bets (πc(D) < 1
2) leads to a type-2

anomaly, that is, SR(D, ρc, ρv, u) > NR(D, ρc, ρv , u).

Proposition 1 shows that, even in the absence of a systematic difference between

evaluations and choices, behavioral noise does not lead to equal reversal rates. On

the contrary, whether a type-1 or a type-2 anomaly is expected depends on whether

and toward which alternative the experiment is biased, which in turn is determined by

individual characteristics of the DM and the set of lotteries used in the experiment.

The model also delivers a novel comparative static result. We say that the bias

in experiment D toward P-bets is stronger for DM i than for DM j if πi
c(D) > πj

c(D).

Further, for a DM i we say that the bias in experiment D1 toward P-bets is stronger than

in experiment D2 if πi
c(D1) > πi

c(D2). The next (straightforward) result shows that for

unbiased DMs the relative proportion of standard to non-standard reversals decreases

as an experiment becomes more biased toward P-bets.

Proposition 2. The following statements hold.

(a) Consider two unbiased DMs characterized by (ρic, ρ
i
v, u

i) and (ρjc, ρ
j
v, uj), respectively.

If the bias in experiment D toward P-bets is stronger for i than for j, then

SR(D, ρic, ρ
i
v, u

i)

NR(D, ρic, ρ
i
v, u

i)
<

SR(D, ρjc, ρ
j
v, uj)

NR(D, ρjc, ρ
j
v, uj)

.

(b) Consider an unbiased DM characterized by (ρc, ρv, u). If the bias in experiment D1

toward P-bets is stronger than the bias in experiment D2, then

SR(D1, ρc, ρv, u)

NR(D1, ρc, ρv, u)
<

SR(D2, ρc, ρv, u)

NR(D2, ρc, ρv, u)
.

Hence, depending on whether an experiment exhibits type-1 or type-2 anomalies,

a stronger bias (in the experiment) toward P-bets either exacerbates or dampens the

anomaly, respectively. This will be useful for testing the model in later sections.

Another interesting observation is that also the level of consistency (noise) may

affect the extent to which an experiment is biased toward P-bets. To see this, consider

the right panel of Figure 1, which illustrates an example where both ρc and ρv are

less consistent compared to the example in the left panel. Formally, we say that a

stochastic choice (or evaluation) function ρ1 is less consistent than ρ2 if ρ1(∆) < ρ2(∆)

for ∆ > 0 and ρ1(∆) > ρ2(∆) for ∆ < 0. It is easy to see that for a fixed ∆k > 0

(∆k < 0) the proportion of P choices is smaller if choices and evaluations are less

consistent. Hence, intuitively if most lottery pairs in an experiment D are such that

∆k > 0, then the proportion of P choices decreases as ρc becomes less consistent. In

other words, depending on ∆k the extent of the observed anomaly may decrease as the

level of behavioral noise increases.
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Summarizing, we have obtained an important and novel insight. Even with unbiased

DMs, we should expect type-1 anomalies in any preference reversal experiment that is

biased toward P-bets. Explaining this anomaly does not require any behavioral bias on

the side of the DM, and its strength is monotonically related to the extent to which the

experiment is biased toward P-bets as captured by πc(D).

2.2 Biased Evaluations

In this subsection, we consider the case of an evaluation method such that the DM has

a systematic bias in evaluations relative to choice. The left panel of Figure 2 gives an

illustrative example of a DM with a $-bias in evaluations. The stochastic evaluation

function is shifted downwards relative to the stochastic choice function. Intuitively,

if there is a δ > 0 such that ρv(δ) = 1
2 , then δ captures the extent of the bias of

evaluations toward the $-bets, that is, δ is the premium that makes the decision maker

(stochastically) indifferent between P and $+δ. Since ρv(0) is below one half, for ∆k = 0,

and also for pairs with positive but not-too-large differences in certainty equivalents, the

likelihood to evaluate the P-bet above the $-bet is smaller than 50%. As a result, we

should expect more standard than non-standard reversals, i.e. a type-2 anomaly.

If a DM exhibits a $-bias in evaluations, it follows that the proportion of P-choices

exceeds the proportion of evaluations in favor of P, that is, πc(D) > πv(D). Interest-

ingly, however, a $-bias in evaluations is not required for πc(D) > πv(D) to obtain. For

example, suppose that ρv is less consistent than ρc as the right panel of Figure 2 illus-

trates. Then, for a set of lottery pairs D with ∆k > 0 for all k, we have ρc(∆k) > ρv(∆k)

for all k, hence πc(D) > πv(D). Consequently, if an experiment features enough decision

problems with ∆k > 0, then πc(D) > πv(D) may obtain merely because evaluations are

less consistent than choices.

The essence of the effect of a DM exhibiting a $-bias can be seen directly in equation

(5). Suppose, as a thought experiment, that the experiment D was unbiased for the

DM, in the sense that πc(D) = 1
2 . It is then an immediate implication of equation (5)

that a type-2 anomaly is predicted if the DM exhibits a $-bias in evaluations. Formally,

we obtain the following result.

Proposition 3. Consider an unbiased experiment D in the sense that πc(D) = 1
2 . If

a DM exhibits a $-bias in evaluations, then the DM displays a type-2 anomaly, that is,

SR(D, ρc, ρv, u) > NR(D, ρc, ρv , u).

Proposition 4 below provides a second, novel comparative-statics prediction, namely

ceteris paribus a stronger $-bias in evaluations exacerbates the difference between the

rates of standard and non-standard reversals. Formally, for two DMs i, j characterized

by (ρc, ρ
i
v , u) and (ρc, ρ

j
v, u), we say that DM i exhibits a stronger $-bias (in evaluations)

than j in experiment D if ρiv(∆k) < ρjv(∆k) for all k. Intuitively, a stronger $-bias means

that a DM is more likely to evaluate $k higher than the Pk.
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Figure 2: Stochastic evaluation functions and reversal rates.

Proposition 4. Suppose two decision makers are characterized by (ρc, ρ
i
v , u) and (ρc, ρ

j
v, u).

If DM i exhibits a stronger $-bias than j in D, then

SR(D, ρc, ρ
i
v , u)−NR(D, ρc, ρ

i
v, u) > SR(D, ρc, ρ

j
v, u)−NR(D, ρc, ρ

j
v, u)

for any stochastic choice function ρc.

Proof. Consider an arbitrary stochastic choice function ρc. We have

SR(D, ρc, ρ
i
v, u)−NR(D, ρc, ρ

i
v, u) =

∑K
k=1 ρc(∆k)(1− ρiv(∆k))

∑K
ℓ=1 ρc(∆ℓ)

−
∑K

k=1(1− ρc(∆k))ρ
i
v(∆k)

∑K
ℓ=1(1− ρc(∆ℓ))

=

K
∑

k=1

ρc(∆k)
∑K

ℓ=1 ρc(∆ℓ)
−
(

ρc(∆k)
∑K

ℓ=1 ρc(∆ℓ)
+

(1− ρc(∆k))
∑K

ℓ=1(1− ρc(∆ℓ))

)

ρiv(∆k)

>

K
∑

k=1

ρc(∆k)
∑K

ℓ=1 ρc(∆ℓ)
−
(

ρc(∆k)
∑K

ℓ=1 ρc(∆ℓ)
+

(1− ρc(∆k))
∑K

ℓ=1(1− ρc(∆ℓ))

)

ρjv(∆k)

= SR(D, ρc, ρ
j
v , u)−NR(D, ρc, ρ

j
v , u)

where the inequality follows because ρiv(∆k) < ρjv(∆k) for all ∆k since i exhibits a

stronger $-bias than j. This completes the proof.

3 The Classical Preference Reversal Phenomenon

The classical preference reversal paradigm involves pairs of lotteries, typically consisting

of a relatively safe lottery, called the P-bet (‘P’ for probability), and a riskier lottery of-

fering a larger prize (a long shot), called the $-bet. Individual preferences over such pairs

are elicited independently in two ways, typically through pairwise choices and by elicit-

ing valuations separately for each lottery, e.g. using stated minimal selling prices. The

anomaly refers to the observation that decision makers often choose the comparatively-

safe P-bet, but state a larger monetary valuation for the $-bet than for the P-bet, which

corresponds to a standard preference reversal in the terms of our model. This empirical
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pattern is extremely robust (in the words of Butler and Loomes, 2007, “easy to produce,

but much harder to explain;” see Seidl, 2002 for a comprehensive survey). Crucially,

however, standard reversals occur much more frequently than non-standard reversals, in

which $-bets are chosen but P-bets receive a higher valuation.

Even more striking than the preference reversal phenomenon is the fact that, if the

monetary valuation task is replaced by an ordinal ranking task, the anomaly is reversed.

That is, instead of resulting in similar rates of standard and non-standard reversals, this

alternative implementation results in a reversal of the preference reversal phenomenon

(Casey, 1991; Bateman et al., 2007; Alós-Ferrer et al., 2016) where non-standard reversal

rates, which are rather low in the original design, now exceed the standard ones. This

is striking, because ranking tasks are conceptually closer to binary choices, and hence

should avoid systematic differences across elicitation methods. This puzzling reversal

of the phenomenon cannot be accounted for by any of the explanations of preference

reversals previously proposed in the literature. For instance, Bateman et al. (2007)

argued that ranking methods introduced “distorting effects of their own.”

A large number of competing, partial explanations for the preference reversal phe-

nomenon has been put forward over the years, including systematic violations of transi-

tivity (Safra et al., 1990) or procedural invariance (Goldstein and Einhorn, 1987), among

others. The prominence hypothesis (Tversky et al., 1988) generally attributes inconsis-

tencies to choice errors, arguing that decision makers focus on a prominent attribute

(e.g., the winning probability) and overweight it in choice tasks compared to evaluation

tasks. The scale compatibility hypothesis (Tversky et al., 1990) attributes the phe-

nomenon to errors in the evaluation method, arising because decision makers overweight

attributes which naturally map onto the (monetary) evaluation scale leading to so-called

overpricing. Accounts based on choice inconsistencies (Schmidt and Hey, 2004) argue

that preference reversals occur because evaluation tasks are less natural and hence more

noisy than choices, resulting in differences in error rates. However, starting with the

seminal work of Tversky et al. (1990) it has been consistently shown that the overall

phenomenon persists in experimental settings that control for these explanations (e.g.

Pommerehne et al., 1982; Cubitt et al., 2004). While there is general agreement that

several of the explanations given above influence preference reversals, no single account

has been able to fully explain when and why the phenomenon should be expected, and

which factors ameliorate or exacerbate it.

Our formal model applies directly to the classical preference reversal phenomenon

(and its reversal). P-bets and $-bets are lotteries of types P and $, respectively. The

choice and valuation methods correspond to the stochastic choice and valuation func-

tions, ρc and ρv. The preference reversal phenomenon is a type-2 anomaly, while its

reversal is a type-1 anomaly. All our results apply directly. Hence, the model explains

both the preference reversal phenomenon and its reversal (and, in particular, that the

latter is not due to any new bias or additional distorting effects), while also deriving new

testable predictions.
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Table 1: Summary of experiments
Experiment N Lab Preference reversal Out-of-sample Incentivization

experiment estimation based on of WTA/WTP
Choice Evaluation choices evaluations

RANK1 95 Cologne Yes Ranking Yes No -
RANK2 108 Zurich Yes Ranking Yes Yes (WTA) BDM
WTA1 95 Cologne Yes WTA Yes No OPM
WTA2 103 Zurich Yes WTA Yes Yes (WTA) BDM
WTP 102 Zurich Yes WTP Yes Yes (WTP) BDM

4 The Experiments

We have developed a stochastic choice model explaining type-1 and type-2 anoma-

lies (Propositions 1 and 3) while also providing novel, comparative-statics predictions

(Propositions 2 and 4). In the next two sections we report on experimental work which

was conducted to test the model’s predictions and assumptions (specifically the strength-

of-preference assumption) in the context of the preference reversal phenomenon discussed

in the previous section.

4.1 Experimental Design

We conducted five experiments with a total of 503 subjects. Table 1 provides an overview

of all experiments. Each experiment consisted of two parts. The first part was used to

estimate individual certainty equivalents for each subject. The second part was the

actual preference reversal experiment consisting of an evaluation phase and a choice

phase. The choice phase was identical across all experiments, but the estimation and

evaluation phases differed between experiments as explained below.

The goal of the first part (estimation) was to obtain a measure of each subject’s

individual preference. Subjects faced 32 lottery pairs that were unrelated to the P-bet/$-

bet pairs used in the second part of the experiment (preference reversal experiment).2

We used each subject’s elicited preferences over these 32 lottery pairs to estimate an

individual utility function (see Section 4.3 below). This was done out of sample in

the sense that the estimation relied exclusively on the preferences over the 32 lottery

pairs from this first part, but was used as an external measure of subjects’ certainty

equivalents for the P-bets and $-bets used in the preference reversal experiment in the

second part. In RANK2, WTA2, and WTP, we additionally elicited WTA or WTP

valuations also for the 64 lotteries used in the first part (estimation). In Section 6.2, we

use these valuations to show that our results are robust when utilities are estimated out

of monetary evaluations instead of choices.

2See Appendix Appendix F for the complete list of lotteries used in the experiments. In the Cologne
experiments the first part also included four pairs with dominated choices as a consistency check, but
across both experiments subjects made only 5 dominated choices (out of 190× 4 = 760). Consequently,
we decided not to include them in the Zurich experiments.
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The preference reversal experiments (second part) consisted of a choice phase and

an evaluation phase. Each experiment elicited subjects’ preferences over 60 P-bet/$-

bet pairs using two different elicitation methods (choice and evaluation). All lotteries

were of the form (p, x), that is, a lottery pays an amount x with probability p and zero

otherwise. Lottery pairs were constructed such that the P-bet pays a moderate amount

with a high probability well above 50%, whereas the $-bet pays a high amount with a

much lower probability well below 50%. In the choice phase, for each of the 60 pairs

subjects were asked to choose whether they would prefer to play the P-bet or the $-bet.

In the evaluation phase, subjects evaluated the same 120 lotteries (60 P-bets and 60

$-bets) using a different elicitation method that differed across experiments.

In experiments RANK1 and RANK2, the evaluation phase used a ranking-based

elicitation procedure. Lotteries were presented in blocks of six, and subjects were asked

to rank the six lotteries from their most (rank 1) to their least preferred (rank 6) option.

Each block contained three P-bet/$-bet pairs. In experiments WTA1 and WTA2, the

evaluation phase used willingness-to-accept (WTA) valuations. Specifically, subjects

were asked to state their minimal selling price for each of the 120 lotteries. Lotteries were

presented sequentially on separate screens and in randomized order. Experiment WTP

used willingness-to-pay (WTP) valuations in the evaluation phase and was otherwise

identical to WTA2.

4.2 Procedures

Experiments RANK1 and WTA1 were conducted at the University of Cologne (Ger-

many), and RANK2, WTA2, and WTP were conducted at the University of Zurich

(Switzerland). Participants were recruited from the respective student populations, ex-

cluding students majoring in psychology or economics (who might have learned about

the preference reversal phenomenon) and subjects who had previously participated in

experiments involving lottery choice. The experiments in Cologne and Zurich were com-

puterized using PsychoPy (Peirce, 2007) and z-Tree (Fischbacher, 2007), respectively.

Lotteries were presented in the form of colored pie charts, with colors (green and

blue) counterbalanced across subjects. The screen position (left or right) of lotteries

within pairs was also counterbalanced within subjects, with half of the pairs displaying

a $-bet on the right. To control for order effects, each subject was randomly assigned to

one of four different, pre-randomized sequences of lottery pairs.3

Before beginning the experiment, subjects were provided with general instructions

and had to answer four control questions to ensure their understanding of the concept of a

lottery and its pie-chart representation. Detailed instructions for all parts were presented

on-screen before the start of the respective task. At the end of the experiment, subjects

were asked to complete a short questionnaire eliciting various demographics (gender,

age, field of studies).4 There was no feedback during the course of the experiment, that

3We found no evidence for order effects on our main variables of interest.
4The Cologne experiments also elicited numerical literacy (Lipkus et al., 2001).
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is, subjects did not receive any information regarding their earnings until the very end

of the experiment. All decisions were made independently and at a subject’s individual

pace.

Payment procedures were explained within the instructions and carried out truth-

fully. To determine a subject’s payoff, one lottery from each phase was randomly selected

and paid (Azrieli et al., 2018). For the choice phase and the (choice-based) estimation

phase the payment mechanism was identical in all experiments; one of the lottery pairs

was randomly selected and the lottery chosen by the participant was played out.

For RANK1, RANK2, andWTA1, the evaluation phase used a variant of the (incentive-

compatible) Ordinal Payment Method (OPM; Goldstein and Einhorn, 1987; Tversky

et al., 1990; Cubitt et al., 2004). The computer selected one round/block at random,

and then randomly selected two of the six lotteries in the round/block.5 The one that

the participant had evaluated higher was then played out.

For experiment WTA1, we chose the OPM because it is more intuitive than the

Becker-DeGroot-Marschak (BDM) procedure (Becker et al., 1964). The latter has also

been found to be noisier (Alós-Ferrer et al., 2016). A potential concern with the OPM,

though, is that it only fully incentivizes subjects to truthfully reveal the ordinal rank-

ing of their valuations but not the actual levels. To ensure that the interpretation of

differences between elicited valuations and estimated certainty equivalents is justified,

and as an additional robustness check, experiments WTA2 and WTP relied on the BDM

procedure, which incentivizes subjects to state their true valuations. For the evaluation

phase, the computer selected one lottery at random. For that lottery, the computer

then randomly selected an offer price between zero and the highest outcome of the lot-

tery. The lottery was played out if the offer price was smaller than the subject’s stated

WTA/WTP and the subject received the offer price otherwise. For the additional eval-

uations in the first part (estimation) of experiments RANK2, WTA2, and WTP, one

lottery pair was randomly selected and paid according to the BDM procedure.

The total payoff from the experiment was the sum of the amounts received from the

estimation, evaluation, and choice phases. In addition subjects received a lab-mandated

show-up fee of e4 in Cologne and CHF 10 in Zurich. The average total remuneration

was e19.76 in Cologne and CHF 30.62 in Zurich. Sessions lasted between 70 and 85

minutes including instructions and payment.

4.3 Description of the Estimation Procedure

The estimation phase was only used to estimate subjects’ individual preferences out-

of-sample. The 32 lottery pairs used in this phase were constructed to maximize the

precision of the estimated preferences. To achieve this we relied on optimal design

5To ensure comparability with RANK1 and RANK2, in WTA1 the lotteries were also presented in 20
“rounds,” separated by screens announcing the next round. Each such round consisted of six lotteries
presented sequentially, with the set of lotteries in a round corresponding to one block of experiments
RANK1 and RANK2.
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theory (Silvey, 1980) in the context of non linear (binary) models (Ford et al., 1992;

Atkinson, 1996), in agreement with the recommendations of Moffatt (2015).6

We assume that the structure of errors follows an additive random utility model (e.g.,

Thurstone, 1927; Luce, 1959; McFadden, 2001). However, all results throughout the

paper remain qualitatively unchanged if we adopt a random preference model (Loomes

and Sugden, 1998; Apestegúıa and Ballester, 2018) instead (see Section 6.3). Estimation

of individual risk attitudes relies on a well-established maximum likelihood procedure

(e.g., see Train, 2003; Moffatt, 2005; Bellemare et al., 2008). We refer the interested

reader to Appendix Appendix A for a detailed description of the estimation procedure.

For the functional form of the estimated utilities, we adopt the normalized constant

absolute risk aversion (CARA) function as in Conte et al. (2011), which is given by

u(x) =







1−exp(−rx)
1−exp(−rxmax)

, if r 6= 0

x
xmax

, if r = 0,

where xmax is the upper bound of the outcome variable x. All our results remain quali-

tatively unchanged if we assume a CRRA utility function instead (see Section 6.3).

5 Results

In this section, we discuss the results of experiments RANK1, RANK2, WTA1, and

WTA2. Experiment WTP served as a robustness check, which we discuss in Section

6.1. For all four experiments, we use the choice-based, out-of-sample estimates of sub-

jects’ individual certainty equivalents derived from the 32 binary lottery choices of the

first part (estimation). Section 6.2 presents a robustness analysis, which shows that

our results do not hinge on estimating certainty equivalents out of choices but instead

are qualitatively unchanged when certainty equivalents are estimated from evaluations

instead. Recall that in WTA1 valuations were incentivized with an ordinal payment

method, whereas in experiment WTA2 valuations were incentivized using the Becker-

DeGroot-Marschak procedure. Hence, a comparison of those two experiments also allows

us to study robustness with respect to how valuations are incentivized.

Each experiment delivers three types of data for each of the 60 P-bet/$-bet pairs

(Pk, $k)
60
k=1 and each subject i: First, a binary choice function that takes the value 1 if

Pk was chosen over $k in the choice phase and 0 otherwise; second, a binary evaluation

function that takes the value 1 if Pk was evaluated higher than $k in the evaluation

phase and 0 otherwise; and third, an out-of-sample estimate of the certainty equivalent

difference between Pk and $k. In the remainder of this section, we use this data to test

6We chose to estimate risk attitudes from a sequence of pairwise lottery choices over alternatives such
as the multiple price list (MPL) method (Holt and Laury, 2002). The reason is that the latter imposes
a strong correlation structure on the choice sequence, namely a unique switching point (see Andersen
et al., 2006, for a discussion of the weaknesses of MPL methods). Moreover, Beauchamp et al. (2019)
show that MPL methods are susceptible to the compromise effect, which may lead to biased results.
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Figure 3: Strength-of-preference effects in RANK1 (left) and RANK2 (right).

the assumptions and the predictions of the model laid out in Section 2 at the population

level.

5.1 Unbiased Evaluations (RANK1 and RANK2)

For each experiment, we consider the empirical stochastic choice function ρ̂c and the

empirical stochastic valuation function ρ̂v as a function of the estimated difference in

CEs ∆̂i(Pk, $k). That is, for a given interval [∆, ∆̄] those functions give the proportion

of choices and evaluations, respectively, that favor the P-bet. Figure 3 plots the empirical

stochastic choice and evaluation functions for RANK1 (left) and RANK2 (right) binning

observations.7 For both choices and evaluations, we find a monotonically increasing,

sigmoidal relation with the P-bet being chosen and evaluated higher more often for

larger CE differences ∆. Thus, we find clear evidence for SoP effects in choices and

evaluations.

For both experiments, the empirical stochastic evaluation function exhibits no sys-

tematic shift relative to the empirical stochastic choice function. Hence, the ranking-

based elicitation method used in the evaluation phase of RANK1 and RANK2 is an

example of an unbiased evaluation method in the sense that ρ̂c ≃ ρ̂v. In RANK1, the

proportion of P-choices was π1
c = 0.68, whereas the proportion of evaluations that ranked

the P-bet above the $-bet was π1
v = 0.72. Analogously, we have π2

c = 0.55 and π2
v = 0.59

for RANK2. That is, both experiments are biased toward P-bets and, thus, Proposition

1 predicts a type-1 anomaly with more non-standard than standard reversals.

To test this prediction, we turn to the reversal rates. Overall, the rate of reversals was

relatively low, amounting only to 19.46% in RANK1 and 26.27% in RANK2. Figure 4

displays violin plots for individual rates of standard and non-standard reversals, for both

experiments. We find that the rate of non-standard reversals in RANK1 (RANK2) is

7To construct the bins, we first order all observations by their individual difference ∆i(Pk, $k). Start-
ing at the ‘zero bin,’ which contains the 50 observations closest to zero, we symmetrically form bins of
up to 50 observations.
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Figure 4: Rates of standard and non-standard reversals for RANK1 (left) and RANK2
(right). Violin plots show the median, the interquartile range and the 95% confidence
intervals as well as rotated kernel density plots on each side.

44.41% (38.56%), which is higher than the rate of standard reversals of 15.73% (22.18%)

confirming the prediction of Proposition 1 (WSR tests; RANK1: N = 86, z = −5.893,
p < 0.001; RANK2: N = 104, z = −5.026, p < 0.001).8

That is, using a ranking-based elicitation method leads to the so-called “reversal of

the preference reversal phenomenon” (Casey, 1991; Alós-Ferrer et al., 2016), which so far

has been considered a puzzle. Our stochastic choice model provides an explanation for

the occurrence of the reversal of the preference reversal phenomenon, which is confirmed

by the data. Far from resulting from a behavioral bias, this phenomenon is merely a

consequence of stochastic choice and the experiment being biased toward P-bets. The

latter is a consequence of a combination of the particular way in which preference rever-

sal experiments are designed and the fact that standard experimental populations are

on average risk-averse. In typical experiments of this kind, lottery pairs (Pk, $k) are con-

structed in such a way that the expected values of Pk and $k are similar, but $k is riskier.

Since decision makers tend to be risk averse, it follows that for the majority of lottery

pairs the differences in certainty equivalents are positive. Hence, in the absence of a bias

in evaluations, risk aversion leads to a bias in the experiment toward P-bets, which in

turn leads to the reversal of the preference reversal phenomenon (a type-1 anomaly).

Indeed, in RANK1 (RANK2) the majority of subjects is risk averse: only 13 (11)

subjects or about 13.68% (10.19%) are classified as (mildly) risk-seeking. In RANK1

(RANK2) the average estimated risk propensity, r̂, is 0.152 (0.036) with a median of

0.160 (0.034) and a standard deviation of SD 0.102 (0.031).9

8Tests for differences in reversal rates can only include subjects for which both rates can be computed.
For subjects with very few P-bet or $-bet choices, reversal rates tend to be on the extremes at 0% or
100%. Therefore, when calculating standard and non-standard reversal rates we only include subjects
with at least four choices of each type. We obtain qualitatively the same results when all subjects for
which rates can be computed are used in the analysis.

9An agent with a risk propensity equal to the average in RANK1 (RANK2) would have a certainty
equivalent of about $3.25 ($4.553) when facing a lottery paying $10 with 50% probability and zero
otherwise.
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Figure 5: Reversal rates for median split on risk aversion (median split) in RANK1 (left)
and RANK2 (right).

Proposition 2(a) provides a novel, comparative-statics prediction on how differences

in individual characteristics affect the relation between the rates of standard and non-

standard reversals for a given set of lottery pairs D. Specifically, the prediction is that

the ratio SR/NR should be decreasing in the extent of the bias in experiment D toward

P-bets (captured by πc(D)). To test this prediction, we conducted a median split of

subjects in each experiment according to their individually-estimated risk attitudes.

Indeed, for the high risk aversion group in RANK1 (RANK2) the proportion of P-bet

choices is 80.10% (59.78%), whereas it is only 56.31% (50.22%) for the low risk aversion

group. These differences are significant according to Mann-Whitney-Wilcoxon (MWW)

tests (RANK1: N = 95, z = 6.022, p < 0.001; RANK2 N = 108, z = 2.626, p = 0.008).

That is, for the former group the bias in the experiment toward P-bets is stronger

than for the latter group. Thus Proposition 2(a) predicts a smaller ratio of standard to

non-standard reversals for the high risk aversion group than for the low risk aversion

group. Figure 5 shows the reversal rates for the two groups for RANK1 (left) and

RANK2 (right). In the low risk aversion group the rates of standard and non-standard

reversals for RANK1 (RANK2) are 22.13% (24.59%) and 29.87% (35.96%), respectively.

In contrast, in the high risk aversion group the average rates of standard and non-

standard reversals for RANK1 (RANK2) are 8.03% (19.86%) and 61.92% (41.06%),

respectively. The ratio of standard to non-standard reversals is 0.741 (0.684) for the low

risk aversion group and 0.130 (0.484) for the high risk aversion group. The differences

are statistically significantly (MWW tests; RANK1: N = 84, z = −5.930, p < 0.001;

RANK2: N = 107, z = −2.069, p = 0.038), in line with Proposition 2(a). That is, risk

aversion exacerbates type-1 anomalies in experiments that rely on unbiased evaluation

methods like the ranking-based method employed in RANK1 and RANK2.

Further, Proposition 2(b) predicts that the ratio SR/NR is decreasing as the bias

in an experiment D toward P-bets becomes stronger (πc(D) increases). We can test

this prediction in two ways: First, by comparing individual lottery pairs within RANK1
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Figure 6: Average ratio between standard and non-standard reversal rates (on a log
scale) by lottery pair as a function of the proportion of P-bet choices for RANK1 (left)
and RANK2 (right).

and RANK2, respectively. Second, by comparing RANK1 to RANK2. Figure 6 plots

the average proportion of P-bet choices πc({∆k}) against the average ratio SR/NR (on

a log scale), separately for each lottery pair (Pk, $k). A negative correlation between

the SR/NR ratio and πc({∆k}) is evident (Spearman; RANK1, ρ = −0.814, N = 58,

p < 0.001; RANK2, N = 60, ρ = −0.848, p < 0.001), in line with Proposition 2(b).

Further, comparing across experiments, we have π1
c (D) = 0.68 > 0.55 = π2

c (D). That

is, the bias in RANK1 toward P-bets is stronger than in RANK2 (MWW; N = 203,

z = 4.760, p < 0.001). In line with Proposition 2(b), we find that the SR/NR ratio is

0.314 in RANK1 and thus smaller than the ratio of 0.633 in RANK2. The difference is

significant (MWW; N = 118, z = 3.037, p = 0.002).

5.2 Biased Evaluations (WTA1 and WTA2)

We now consider the two experiments that used willingness-to-accept valuations in the

evaluation phase. Figure 7 plots the empirical stochastic choice and evaluation functions

for WTA1 (left) and WTA2 (right). For choices and evaluations we again find a mono-

tonically increasing, sigmoidal relation between the propensity to choose the P-bet and

the difference in certainty equivalents in both experiments. Thus, also in WTA1 and

WTA2 we find support for SoP effects in choices and evaluations.

Similarly to the ranking experiments, the empirical stochastic choice function is

roughly symmetric around zero and takes the value one half for CE differences close

to zero. However, in contrast to the two ranking-based experiments, the stochastic

evaluation function is clearly shifted downwards relative to the stochastic choice function,

taking a value well below one half around zero (recall Figure 2, left). Even for relatively

large differences in CE, the propensity to evaluate the P-bet higher than the $-bet

barely reaches 50%. Hence, in experiments WTA1 and WTA2 the DMs exhibit a $-bias

in evaluations elicited via willingness-to-accept valuations. In WTA1, the proportion
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Figure 7: Strength-of-preference effects in WTA1 (left) and WTA2 (right).
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Figure 8: Reversal rates for WTA1 (left) and WTA2 (right).

of P-choices was π1
c (D) = 0.70, whereas the proportion of evaluations that assigned a

larger WTA to the P-bet than to the $-bet was π1
v(D) = 0.24. Analogously, we have

π2
c (D) = 0.60 and π2

v(D) = 0.26 for WTA2. Both experiments are biased toward P-bets

and πi
c(D) is significantly larger than πi

v(D) (MWW tests; WTA1: N = 95, z = 8.441,

p < 0.0001; WTA2: N = 103, z = 8.644, p < 0.0001). For an unbiased experiment

(πc(D) = 1
2), Proposition 3 predicts that if DMs exhibit a $-bias in evaluations, then a

type-2 anomaly with more standard than non-standard reversals is expected to occur.

Experiments WTA1 and WTA2 are not unbiased, and intuitively the experimental bias

could dampen type-2 anomalies. Since type-2 anomalies are ubiquitous in preference

reversal experiments, though, we expect the prediction to hold if the experimental bias

is not too extreme.

To test this prediction, we again turn to the reversal rates. Reversals are extremely

frequent, with an average individual reversal rate of 50.63% in WTA1 and 41.74% in

WTA2 (not distinguishing types of reversals).10 Figure 8 displays violin plots for the

10Individual reversal rates were calculated excluding pairs where the P-bet and the $-bet were iden-
tically valued. This happened in 6.74% and 5.87% of the cases in WTA1 and WTA2, respectively.
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Figure 9: Accuracy of valuations inWTA1 (left) andWTA2 (right). Correlation between
stated WTA and predicted certainty equivalent, separately for P-bets and $-bets. Each
point corresponds to one lottery representing the average WTA and the average CE
across all subjects for a given experiment.

individual rates of standard and non-standard reversals, for both experiments. In WTA1

(WTA2) the rate of standard reversals, SR, is 63.02% (56.03%) and clearly exceeds the

rate of non-standard reversals, NR, which only amounts to 3.66% (6.11%). That is, when

the P-bet was chosen the propensity to state an inconsistent WTA ordering is higher

than when the $-bet was chosen (WSR tests; WTA1: N = 86, z = 8.008, p < 0.001;

WTA2: N = 98, z = 8.389, p < 0.001). Thus, the data shows a pronounced type-

2 anomaly with more standard than non-standard reversals despite both experiments

being biased toward P-bets.

Proposition 4 delivers a novel implication that serves as a causal test of the effect of

a $-bias on the asymmetry in reversal rates. Specifically, it predicts that a stronger $-

bias in evaluations increases the difference between standard and non-standard reversals.

To test this prediction, we require a measure that allows us to compare the extent of

the $-bias across DMs. Thanks to our design, we can employ the estimated individual

utility functions to quantify the economic magnitude of the $-bias on the subject level.

To that end, we consider the difference between the stated WTA valuation and the

certainty equivalent derived from each subject’s utility function ui normalized by the

certainty equivalent. We then take the average over all P-bets, respectively $-bets, for

each i, to obtain βi(P) =
1
K

∑

k
WTAi(Pk)−CEi(Pk)

CEi(Pk)
and βi($) =

1
K

∑

k
WTAi($k)−CEi($k)

CEi($k)

as a measure of subject i’s accuracy in evaluations, separately for each type of lottery.

To illustrate the accuracy of subjects’ WTA valuations Figure 9 plots the stated

WTAs against the estimated CEs for each of the 120 lotteries, distinguishing P-bets

and $-bets. For P-bets, the correlation coefficient is close to unity (Spearman; WTA1:

ρ = 0.930, N = 60, p < 0.001; WTA2: ρ = 0.992, N = 60, p < 0.001) and the (WTA,CE)

pairs are tightly clustered around the regression line, which is itself close to the diagonal.

Our results are unchanged when pairs with identical valuations are included and classified as either
non-reversals or reversals.
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Figure 10: Median split of βi (high versus low) for WTA1 (left) and WTA2 (right).

However, the same cannot be said for $-bets, for which the picture is much more dispersed

and far away from the diagonal, and the correlation is much lower (Spearman; WTA1:

ρ = 0.424, N = 60, p = 0.001; WTA2: ρ = 0.7644, N = 60, p < 0.001). Thus, contrary

to the generalized impression in the literature, the evaluations through stated WTA

faithfully reflect certainty equivalents for P-bets derived from independently-estimated

expected utilities. The implications are twofold: First, the accuracy of subjects’ stated

WTAs further confirms the validity of our estimated utilities. Second, there is no general,

systematic difference across elicitation tasks (monetary valuations and choices) for P-

bets. Crucially, we can interpret the difference βi = βi($)−βi(P) as a direct measure of

the economic magnitude of a DM’s $-bias in evaluations in monetary terms. According

to this measure, we quantify the $-bias in WTA1 at a whopping 275% relative to the

CE, and at 63% in WTA2.

To test Proposition 4, we now divide subjects into two groups based on a median

split of their $-bias, quantified by βi, for each experiment. Figure 10 shows the em-

pirical (average) stochastic choice and evaluation functions separately for the high and

low $-bias groups. For the former group, the stochastic evaluation function is shifted

downwards compared to the latter, that is, the group with high values of βi indeed

exhibits a stronger $-bias in evaluations (as defined in Section 2.2). In contrast, the

stochastic choice functions are indistinguishable for WTA1 and very close together for

WTA2. Comparing the reversal rates for both groups, we find that a stronger $-bias

exacerbates the asymmetry between standard and non-standard reversals. Specifically,

in WTA1 (WTA2) the difference between SR and NR amounts to 44.6 (28.5) percentage

points for the low $-bias group, whereas it is 75.5 (69.7) percentage points for the high

$-bias group. The differences between the low and high $-bias groups are statistically

significant (MWW tests, WTA1: N = 86, z = −4.986, p < 0.001; WTA2: N = 98,

z = −6.628, p < 0.001). Summarizing, we find that the asymmetry between the rates of

standard and non-standard reversals is larger for subjects that exhibit a stronger $-bias,

confirming the prediction of Proposition 4.
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5.3 The Classical Preference Reversal Phenomenon Revisited

Our theoretical and empirical results provide a new view on the classical preference

reversal phenomenon. Ever since this phenomenon was first discovered (Slovic and

Lichtenstein, 1968; Lichtenstein and Slovic, 1971; Lindman, 1971; Grether and Plott,

1979), dozens of contributions have reported the effect to be both robust and large, with

considerably-higher rates of standard reversals compared to the rates of non-standard

ones. Ironically, it seems that this wide consensus has hidden a misunderstanding: the

effect has actually been underestimated. The reason is that the literature has implicitly

assumed that the “default” situation in the absence of whatever causal determinants

were behind the phenomenon should have been an equality in reversal rates. This is

not correct. To see this, recall equation (5). For a DM exhibiting a $-bias in evalu-

ations we have πv(D) < πc(D), as documented in WTA1 and WTA2 above. It then

follows from equation (5) that SR
NR

> 1−πc(D)
πc(D) . In contrast, for an unbiased DM we

have πv(∆) = πc(∆), as documented in RANK1 and RANK2 above, which implies
SR
NR

= 1−πc(D)
πc(D) . Hence, depending on πc(D), type-1 or type-2 anomalies might obtain

in the absence of any underlying behavioral bias. The quantity πc(D) depends on the

risk attitudes in the sample and the choice of lottery pairs in the experiment. Thus,

whether the difference of standard and non-standard reversals is larger than zero or not

(or whether the ratio is larger than one or not) is simply not diagnostic of behavioral

biases. Simply put, a hypothetical situation with SR = NR is not the proper null to

study behavioral biases. Rather, this proper null is given by the equation SR
NR

= 1−πc(D)
πc(D) .

Since most experiments are biased toward P-bets due to risk aversion and the choice of

lottery pairs, we typically have that πc(D) > 1/2 and the true default situation is one

where the rates of non-standard reversals are higher (SR < NR), and hence the fact

that they become lower (SR > NR) in preference-reversal experiments with monetary

valuations shows that the underlying determinants are stronger than implicitly assumed.

We can illustrate this insight using the individual-level data from our experiments.

Figure 11 plots the individual reversal ratios against the individual choice odds (both on

a log scale) for the subjects in the WTA-based experiments (left) and the ranking-based

experiments (right). For all but one subject in WTA1 (seven in WTA2) the reversal

ratio is larger than the corresponding choice odds, in line with DMs exhibiting a $-

bias in WTA-valuations. In contrast, for RANK1 and RANK2 the points are clustered

around the diagonal, that is, for most DMs the reversal ratio closely matches the corre-

sponding choice odds, in line with DMs being unbiased. The actual preference reversal

phenomenon is the fact that the data in the WTA experiments is shifted upwards with

respect to the diagonal line, not with respect to a zero level. Note that, if one would

insist on evaluating possible behavioral biases with respect to a zero level, the right-

hand-side of Figure 11 would suggest a P-bias for a large part of the subjects in RANK

experiments (and a $-bias for the rest), while in reality there are no behavioral biases in

this case.
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Figure 11: Figure plots individual reversal ratio SR
NR

(on a log scale) against the individual
choice odds 1−πc

πc
. Left: WTA1 and WTA2. Right: RANK1 and RANK2.

5.4 Reexamining Previous Experiments

As outlined in the previous subsection, the proper null for a preference reversal exper-

iment is not an equality in reversal rates. Instead, we can interpret the discrepancy

between the reversal ratio SR
NR

and the choice odds 1−πc(D)
πc(D) as an indicator of a $-bias

in evaluations. Using this insight, we now proceed to reexamine existing preference

reversal experiments from the literature (summarized in Table 2), following an analo-

gous approach at the experiment level instead of at the subject level. Specifically, we

reconsider 28 previous preference reversal experiments {D1, . . . ,D28} and compute the

average (across subjects) of πc(Dj), SR(Dj), and NR(Dj) for each experiment Dj . Fig-

ure 12 plots the reversal ratio
SR(Dj)
NR(Dj)

and the choice odds
1−πc(Dj)
πc(Dj)

for j = 1, . . . , 28

on a log scale. Additionally, the figure includes our five experiments WTA1, WTA2,

RANK1, RANK2, and WTP. Points above the horizontal dashed line are those which

reported the preference reversal phenomenon, whereas points below show the reversal

of the phenomenon. Points left of the vertical dashed line indicate experiments that are

biased toward P-bets (πc(Dj) > 1
2), whereas points to the right indicate experiments

that are biased toward $-bets. The majority of the experiments (22 out of 28) exhibit

the classic asymmetry with more standard than non-standard reversals, two experiments

find basically identical rates of reversals of both types, and four experiments find a re-

versal of the preference reversal phenomenon. The majority of the experiments (16 out

of 28) are biased toward P-bets, one experiment is unbiased, and eleven experiments

are biased toward $-bets. As explained above, however, only whether a point is above

or below the diagonal is indicative of a behavioral $-bias. Comparing choice odds and

reversal ratios across experiments allows us to obtain further insights on the extent of

the bias for different evaluation methods.

Experiments that elicited evaluations using WTA-valuations (shown as red points)

consistently find evidence for the preference reversal phenomenon. Interestingly, how-

ever, almost all of those are above the diagonal, in line with DMs exhibiting a $-bias in

WTA valuations. The only exception is an experiment in Lichtenstein and Slovic (1973,
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Figure 12: Logarithm of the aggregate reversal ratio SR
NR

against logarithm of the aggre-
gate choice odds 1−πc

πc
for different 28 previous experiments in the literature (see Table

2) and our five new experiments.

LS73b), which used only lotteries with negative expected value that involved both gains

and losses.

Figure 12 also displays five experiments that used WTP-valuations (Willingness To

Pay) instead of WTA-valuations (see Table 2) and came to mixed conclusions. For this

reason, we carried out our own experiment using WTP, and we discuss this valuation

method in Section 6.1 below.

A few experiments have used rank-based evaluation tasks analogous to RANK1 and

RANK2 instead of monetary elicitations. Bateman et al. (2007) indirectly inferred

monetary valuations using a task that asked subjects to rank P-bets and $-bets sep-

arately but together with sure amounts (BDLS07a). They found a smaller asymmetry

in reversal rates compared to a second experiment using WTA-valuations (BDLS07b).

Both experiments were biased toward P-bets to a similar extent (πc(BDSL07b) = 0.75,

πc(BDSL07a) = 0.77). Thus, our results suggest that DMs exhibited a $-bias also in their

ranking-based task but that it was weaker than for WTA-valuations. Going one step

further, Alós-Ferrer et al. (2016) used a pure ranking task (AGKW16c,d), which led to

the reversal of the preference reversal phenomenon, whereas the preference reversal phe-

nomenon was observed in other treatments that used WTA-valuations (AGKW16a,b,e).
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Notably, (AGKW16d) sits squarely on the diagonal, in full agreement with our conclu-

sions that with this method DMs are unbiased.

Our analysis also suggest a new interpretation of some previous results. For example,

in light of the scale compatibility hypothesis, it is natural to speculate that one could

induce a P-bias, as opposed to the standard $-bias observed for WTA-valuations, by

shifting the focus from outcomes to probabilities. For this reason, Cubitt et al. (2004)

compared an experiment with WTA-valuations (CMS04a) to another (CMS04b) where

valuations were made in terms of probability equivalents (PE). Both experiments were

slightly biased toward $-bets (πc(CMS04a) = 0.41 and πc(CMS04b) = 0.43). While

WTA-valuations led to the preference reversal phenomenon, however (and disappoint-

ingly), there was no difference between reversal rates for PE-valuations. The fact that

valuations through probability equivalents did not “flip” the phenomenon thus cast

doubts on the compatibility hypothesis. However, our analysis suggests that the re-

sults of Cubitt et al. (2004) could be interpreted exactly as originally intended. The

key is that, again, the absence of a difference between reversal rates is not diagnostic

unless the experiment is unbiased (πc =
1
2). Figure 12 shows that experiment CMS04b

is actually located below the diagonal, which in view of our results suggests that indeed

subjects exhibited a (small) P-bias for the PE method.

In summary, our framework accommodates previous findings from the literature and

provides explanations for several observations which were so far considered inconsistent

or hard to explain. This is made possible by taking into account the combination of

differences in the bias in evaluations and differences in the extent to which specific

experiments are biased toward P-bets or $-bets.

26



Table 2: Overview of preference reversal experiments in the literature.
Study Label Evaluation πc SR NR

Lichtenstein and Slovic (1971), Exp1 LS71a WTA 0.51 0.83 0.06
Lichtenstein and Slovic (1971), Exp2 LS71b WTP 0.53 0.51 0.27
Lichtenstein and Slovic (1971), Exp3 LS71c WTA 0.57 0.56 0.11
Lichtenstein and Slovic (1973), PosEV LS73a WTA 0.47 0.81 0.10
Lichtenstein and Slovic (1973), NegEV LS73b WTA 0.68 0.19 0.76
Grether and Plott (1979), Exp1 GP79a WTA 0.42 0.56 0.14
Grether and Plott (1979), Exp2 GP79b WTA 0.37 0.68 0.21
Pommerehne et al. (1982) PSZ82 WTA 0.55 0.47 0.13
Reilly (1982), Exp1 R82a WTA 0.39 0.62 0.27
Reilly (1982), Exp2 R82b WTA 0.45 0.30 0.16
Goldstein and Einhorn (1987) GE87 WTA 0.52 0.61 0.21
Schkade and Johnson (1989) SJ89 WTA 0.54 0.54 0.06
Chu and Chu (1990) CC90 WTA 0.45 0.49 0.32
Tversky et al. (1990) TSK90 WTA 0.74 0.45 0.04
Casey (1991), Exp1 C91a WTP 0.63 0.21 0.71
Casey (1991), Exp2 C91b WTP 0.43 0.85 0.10
Casey (1991), Exp3 C91c WTP 0.68 0.20 0.53
Selten et al. (1999), Exp1 SSA99a WTA 0.40 0.61 0.10
Selten et al. (1999), Exp2 SSA99b WTA 0.50 0.63 0.13
Cubitt et al. (2004), Exp1 CMS04a WTA 0.41 0.35 0.03
Cubitt et al. (2004), Exp2 CMS04b PE 0.43 0.20 0.21
Schmidt and Hey (2004), Exp1 SH04a WTA 0.55 0.33 0.17
Schmidt and Hey (2004), Exp2 SH04b WTP 0.55 0.26 0.27
Chai (2005) C05 WTA 0.43 0.27 0.15
Bateman et al. (2007), Exp1 BDLS07a WTA 0.77 0.26 0.05
Bateman et al. (2007), Exp2 BDLS07b RANK 0.75 0.17 0.06
Alós-Ferrer et al. (2016), Exp1, BDM AGKW16a WTA 0.70 0.50 0.15
Alós-Ferrer et al. (2016), Exp1, OPM AGKW16b WTA 0.66 0.42 0.19
Alós-Ferrer et al. (2016), Exp2, Unframed AGKW16c RANK 0.66 0.18 0.55
Alós-Ferrer et al. (2016), Exp2, Framed AGKW16d RANK 0.67 0.20 0.40
Alós-Ferrer et al. (2016), Exp2, BDM AGKW16e WTA 0.69 0.48 0.18
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6 Robustness Analyses

This section briefly reports three robustness analyses. Section 6.1 shows that we obtain

qualitatively the same results if WTP valuations are used in the evaluation phase instead

of WTA valuations. Section 6.2 shows that our results remain robust when alternative

utility functions are estimated out-of-sample from unrelated WTA valuations. Finally,

Section 6.3 shows that our results do not hinge on the specific assumptions for the

estimation of utilities.

6.1 WTA versus WTP Valuations

In the main analysis, we have relied on WTA-valuations because this is the most common

choice in the literature. Preference reversals have also been shown to obtain if one uses

willingness-to-pay (WTP) valuations or sequential elicitation methods instead (Butler

and Loomes, 2007). There are, however, some differences. For instance, it has been

previously argued that WTPs might be less biased than WTAs (Schmidt and Hey,

2004). However, empirical results using WTP have found both the preference reversal

phenomenon and its reversal (see Figure 12). The second experiment of Schmidt and Hey

(2004, SH04b) used WTP instead of WTA (as in SH04a) in the evaluation phase. Both

of their experiments used the same lotteries and were essentially unbiased (πc = 0.54).

Hence, the choice odds ratio is close to one and in the absence of a $-bias in evaluations

no asymmetry between reversal rates should be expected. While for WTA-valuations

(SH04a) the standard asymmetry was observed, for WTP-valuations (SH04b) reversal

rates were indistinguishable. Evaluations through WTP were also used in a series of

(non-incentivized) experiments by Casey (1991). Experiments 1 and 3 (C91a, C91c)

used large, hypothetical stakes and were biased toward P-bets (πc(C91a) = 0.68 and

πc(C91c) = 0.62). Here, indeed the reversal of the preference reversal phenomenon

(NR > SR) was observed. In contrast, Experiment 2 (C91b) used small stakes and

was biased toward $-bets (πc(C91b) = 0.43). Here, the classical preference reversal

phenomenon (SR > NR) was observed. Thus, evidence from these previous experiments

suggests that with WTP-valuations DMs might exhibit a smaller $-bias in evaluations

than with WTA-valuations or even no bias at all. If that would be the case, then equation

(5) implies that whether the preference reversal phenomenon or its reversal is observed

should mainly depend on the degree to which the experiment is biased toward P-bets or

$-bets, which would explain the seemingly inconsistent findings in Casey (1991).

However, apart from using WTP valuations, the experiments by Schmidt and Hey

(2004) and Casey (1991) also differed from typical preference reversal experiments in

a number of other dimensions (e.g. hypothetical payoffs, number of repetitions, and

number of outcomes of the lotteries). Hence, to clarify the role of WTP valuations and

to verify whether they are indeed unbiased, we conducted an additional experiment,

WTP, that was identical to WTA2 with the sole exception that the evaluation phase

relied on WTP instead of WTA. The results of experiment WTP, which are reported in
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Appendix Appendix B, are very similar to the results of experiments WTA1 and WTA2

reported in Section 5. In particular, we find a $-bias also in WTP valuations, which

is of a similar magnitude (actually, slightly larger) than in WTA2 (MWW test on βi;

N = 207, z = 1.843, p = 0.065). Thus, our results suggest that WTP valuations are also

biased.

6.2 Price-based versus Choice-based Utility Estimation

So far we have relied on choice-based, out-of-sample estimates of subject’s individual

utility functions. Although we are convinced that this approach is appropriate, we

acknowledge that one might argue that preferences estimated from choices (although out-

of-sample) are likely to reflect other binary choices (like those in the choice phase) better

than monetary valuations (like those in the evaluation phase of the WTA experiments)

simply because the decision situations are more similar. In this section, we show that this

is not the case. Intuitively, this argument suggests that one should obtain the opposite

result when utilities are estimated from monetary valuations instead. Although this is

an intuitive line of thought, we can clearly refute this conjecture.

In experiments RANK2 and WTA2, we elicited WTA-valuations also for the 64

lotteries used for utility estimation in the first part. We then repeated the estimation

exercise described in Section 4.3 using the imputed choices derived from those WTA-

valuations. That is, for a lottery pair (A,B) used in the first part we consider A to

be “chosen” by subject i if and only if WTAi(A) > WTAi(B).11 We then estimated

new utility functions u′i using these imputed, valuation-based “choices.” The robustness

analysis, which we report in Appendix Appendix C, replicates all our previous findings.

That is, our results do not hinge on estimating utilities out of choices but instead are

qualitatively unchanged when utilities are estimated from WTA-valuations instead. The

reason is simply that there is no systematic bias between choices and monetary valuations

in general, but rather a bias in the valuation of $-bets only (recall Figure 9).

It is important to note, however, that in RANK2 the empirical stochastic choice and

evaluation functions based on u′i both show a strong upwards shift, thus wrongly sug-

gesting a P-bias in evaluations and choices. Further, in WTA2 the empirical stochastic

choice function is also shifted upwards, whereas the stochastic evaluation function is

still shifted downwards. That is, although qualitatively the results go in the same direc-

tion, these alternative, valuation-based estimates perform poorly at accurately capturing

choices or evaluations.

6.3 Alternative Utility Estimations

The results reported above relied on utilities estimated assuming a CARA functional

form. As a robustness check, we repeated the RUM-based estimation exercise described

11In 8.44% and 7.06% of all cases in WTA2 and RANK2, respectively, the stated valuation was the
same for both lotteries. These observations were not considered for the estimation.
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in Section 4.3 using a constant relative risk aversion (CRRA) utility function instead. We

then repeated the analysis reported in Section 5 based on those CRRA estimates. The

results, which we report in Appendix Appendix D, confirm that our previous observations

do not hinge on the CARA specification of the utility function, but remain robust when

a CRRA specification is used instead.

Random Preference Models (RPM) (e.g., Loomes and Sugden, 1995), where utility

noise is replaced with parameter noise for a given functional family of utilities, have

been recently defended as an alternative to standard random utility models (see Wilcox,

2008, 2011; Bruner, 2017; Apestegúıa and Ballester, 2018; Vieider, 2018). As a further

robustness check, we also estimated an RPM and repeated the analysis reported in

Section 5 with the corresponding estimates. This analysis, which we report in Appendix

Appendix E, shows that our results are also qualitatively unchanged in this case.

7 Conclusion

We have provided a stochastic choice model for decisions under risk that predicts when

inconsistencies across different preference elicitation methods should occur, which kind

of anomalies should be expected and when, and what determines their magnitude. This

is important because inconsistencies across elicitation methods are pervasive and con-

tradict all preference-based theories of decisions under risk. Our results show that some

anomalies are not diagnostic of behavioral biases at all, but rather that they arise natu-

rally as a consequence of regularities in stochastic choice, risk attitudes, and experimental

design. Other anomalies, however, can be traced back to behavioral biases affecting the

evaluation of certain alternatives. We also provide comparative-statics results showing

how the anomalies are exacerbated or dampened by the strength of behavioral biases, but

also by individual characteristics as risk aversion or the particularities of the alternatives

used in an experiment.

To test the model, we conducted five different experiments focused on the classical

preference reversal phenomenon, which is one of the most robust empirical anomalies

contradicting basic microeconomic principles. The results confirm all our predictions,

which include when the phenomenon occurs, when the opposite anomaly occurs instead,

and how their magnitudes change. The experiments rely on the estimation of certainty

equivalents using out-of-sample data, which allow us to operationalize our tests and also

validate our assumptions on stochastic choice. The results are robust to the functional

form used to estimate utilities, to the use of willingness-to-accept or willingness-to-pay

as valuation methods, to the method used to incentivize valuations, and to the use of

choices or valuations to estimate utilities.

When applied to the classical preference reversal phenomenon, our model allows

us to uncover new regularities and organize the previous literature. In particular, we

find that the previous literature has compared empirical results to the incorrect default,

because in the absence of a behavioral bias, an anomaly is predicted which corresponds
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to the reversal of the classical phenomenon. As a consequence, the magnitude of the

phenomenon has actually been underestimated.

Our model and data provide a consistent, unified, systematic account of anomalies

in preference elicitation including the preference reversal phenomenon. The fact that we

identify the correct defaults in the absence of behavioral biases is particularly relevant

for future research whenever different elicitation methods are employed. A researcher

who fails to account for the correct defaults that we identify might incorrectly conclude

that a behavioral bias must be invoked to explain an apparent anomaly which in reality

merely reflects the correct default.
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Appendix A Description of RUM Estimation

To estimate individual utility functions from the binary lottery choices in part one of

the experiment we follow the approach described in Moffatt (2015, Chapter 13). All

T = 32 trials used for the utility estimation involved binary choices between lotteries of

the form A = (p, x) and B = (q, y), where A pays x with probability p and B pays y with

probability q, and 0 otherwise. We index the trials in the experiment by t = 1, ..., 32,

that is, in trial t subjects face the choice between At = (pt, xt) and Bt = (qt, yt). Further,

we index the N subjects by i = 1, ..., N . In the main analysis we assume a normalized

constant absolute risk aversion (CARA) function as in Conte et al. (2011), which is given

by

u(x | r) =







1−e−rx

1−e−rxmax
, if r 6= 0

x
xmax

, if r = 0,
(6)

where xmax = max{x1, . . . , xT , y1, . . . , yT } is the maximum outcome across all T lottery

pairs (trials). The normalization ensures that u(x | r) is increasing also for negative

values of r (indicating risk-seeking).12 Under the assumption of Expected Utility maxi-

mization, subject i with utility function u(x | ri) chooses At over Bt if the difference in

expected utilities is positive, that is,

∇t(ri) := ptu(xt | ri)− qtu(yt | ri) =
pt(1− e−rixt)− qt(1− e−riyt)

1− e−rixmax

> 0. (7)

In order to be able to estimate the parameters of the model, we now add noise to the

model. There are two standard approaches in the literature: The Fechner or Random

Utility Model (RUM) and the Random Preference Model (RPM). RUM assumes that

each subject is characterized by a risk parameter ri that is fixed across trials, whereas

RPM assumes that a subject’s risk parameter varies randomly between trials but is drawn

from a certain distribution. Since our goal is to compare certainty equivalents across

multiple trials, the main analysis reported in the paper uses a RUM-based estimation.13

Following the RUM approach, we add an error term εit ∼ N(0, σ2) with σ2 > 0 to

(7). That is, the lottery At is chosen if the following condition holds:

∇t(ri) + εit > 0 (8)

Define the binary choice indicator for trial t

γit =







1 if At chosen by subject i

−1 if Bt chosen by subject i.

12The results are qualitatively unchanged when we assume an utility function with constant relative
risk aversion (CRRA) instead (see Appendix Appendix D).

13In Appendix Appendix E we carry out an analogue estimation using the RPM approach and report
the corresponding results. We find that all results are qualitatively unchanged.
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Then the probability of a choice conditional on the risk-parameter ri is given by

P (γit | ri) = P (γit∇t(ri) > γit(−εit)) = P

(

γit
∇t(ri)

σ
> γit

−εit
σ

)

= Φ

(

γit
∇t(ri)

σ

)

(9)

where Φ is the standard normal cumulative distribution function.

The conditional probabilities above were derived conditional on a subject’s risk pa-

rameter ri. In other words, estimating this model over the entire population would imply

homogeneity in risk attitude across subjects. In order to allow for between-subject het-

erogeneity, we let the risk attitudes vary across the population. In particular, we assume

that the individual risk attitudes in the population are distributed normally in our sub-

ject pool according to

r ∼ N(µ, η2).

Hence, the log-likelihood of a sample given by the matrix Γ = (γit) consisting of T trials

and N subjects is

logL =
N
∑

i=1

ln

∫ ∞

−∞

T
∏

t=1

Φ

(

γit
∇t(r)

σ

)

f(r | µ, η)dr (10)

where f(r | µ, η) = 1√
2ρη2

e
− 1

2

(

r−µ

η

)

2

is the density function of the risk parameter r.

In order to evaluate the integral in (10) we use the method of maximum simulated

likelihood (MSL) (see Train, 2003, for details). Specifically, we will approximate this

integral by the following average

1

H

H
∑

h=1

(

T
∏

t=1

Φ

(

γit
∇t(rih)

σ

)

)

(11)

using a sequence of H (transformed) Halton draws (ri1, . . . , riH) from N(µ, η2) for each

subject i (fixed over trials t). For the estimation, we use the Stata implementation

“mdraws” of this procedure (Cappellari and Jenkins, 2003). Halton draws, a by-now-

standard procedure, simulate random draws that ensure even coverage of the parameter

space (e.g. avoiding clustering) using Halton sequences (Halton, 1960; Moffatt, 2015).

Specifically, a Halton sequence is defined for a given prime number p, for example p = 2,

is (12 ,
1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 ,

1
16 ,

9
16 , . . . ). Such a sequence (h1, h2, . . . ) provide pseudo-random

draws from the uniform distribution U(0, 1). To obtain draws from N(µ, η2) we apply

the following transformation rij = µ+ ηΦ−1(hj) where Φ−1 is the inverse of the normal

cumulative distribution function.

The MSL approach amounts to replacing the integral in (10) by (11) and then max-

imize the resulting function

log L̂ =

N
∑

i=1

ln
1

H

H
∑

h=1

(

T
∏

t=1

Φ

(

γit
∇t(rih)

σ

)

)

. (12)
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Figure A.1: Strength-of-preference effects (left) and reversal rates (right) for WTP.

Maximization of (12) is carried out using standard MLE routines in Stata to obtain

the estimates (µ̂, η̂, σ̂). Given those estimates we obtain the posterior expectation of each

subject’s risk attitude r̂i conditional on their T choices applying Bayes’ rule as follows

r̂i = E(ri|γi1, ..., γiT ) ≈
1
H

∑H
h=1 rih

(

∏T
t=1 Φ

(

γit
∇t(rih)

σ̂

))

1
H

∑H
h=1

(

∏T
t=1 Φ

(

γit
∇t(rih)

σ̂

))

for a sequence of Halton draws (ri1, . . . , riH) from N(µ̂, η̂2).

Given the estimated individual mean risk parameter r̂i, we obtain

ûi(x) =
1− e−r̂ix

1− e−r̂ixmax

for r̂i 6= 0

as the estimated utility function of subject i.

Appendix B Willingness-To-Pay Valuations

Experiment WTP was identical to WTA2 except that it employed willingness-to-pay

(WTP) valuations instead of WTA in the evaluation phase as well as for the estimation

in the first part. The experiment involved N = 102 subjects and it was conducted at

the University of Zurich.

The left-hand panel of Figure A.1 plots the empirical stochastic choice and evalua-

tion functions for WTP. Both functions are monotonically increasing, in line with SoP

effects in choices and evaluations. As observed previously for the WTA experiments,

the stochastic evaluation function is shifted downwards relative to the stochastic choice

function, which itself is roughly symmetric around zero. Thus, also in WTP DMs exhibit

a $-bias in evaluations elicited via WTP valuations. The proportion of P-choices was

πc(WTP ) = 0.59, whereas the proportion of WTP valuations that favored the P-bet

was πv(WTP ) = 0.22. That is, also the WTP experiment is biased toward P-bets and
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Figure A.2: Accuracy of valuations in WTP (left). Median split of βi (high versus low)
for WTP (right).

πi
c is significantly larger than πi

v (MWW test; N = 102, z = 8.409, p < 0.001). In line

with Proposition 3 and despite WTP being biased toward P-bets, we find a clear type-2

anomaly with more standard (62.18%) than non-standard reversals (6.27%; WSR test,

N = 94, z = 8.157, p < 0.001; See Figure A.1, right).

To test Proposition 4, we turn to the accuracy of subjects’ WTP valuations given

by βi(P) = 1
K

∑

k
WTPi(Pk)−CEi(Pk)

CEi(Pk)
and βi($) = 1

K

∑

k
WTPi($k)−CEi($k)

CEi($k)
. Figure A.2

(left) plots the stated WTPs against the estimated CEs for each of the 120 lotteries,

distinguishing P-bets and $-bets. Also WTP-valuations capture subjects’ estimated

CEs very well for P-bets (Spearman; ρ = 0.986, N = 60, p < 0.001), whereas $-bets are

further away from the diagonal (Spearman; ρ = 0.692, N = 60, p < 0.001). Again, we

take βi = βi($) − βi(P) as a measure of a DM’s $-bias in WTP-valuations in monetary

terms, which we quantify at 63.25% relative to the CE. Figure A.2 (right) shows the

empirical stochastic choice and evaluation functions separately for the high and low $-

bias groups (according to a median split on βi). Again, the high $-bias group exhibits a

stronger $-bias in evaluations as expected. Comparing reversal rates across groups, we

observe that the difference between SR andNR is 68.0 and 42.7 percentage points for the

high and low $-bias groups, respectively. That is, again a stronger $-bias exacerbates

the asymmetry increasing the difference between SR and NR (MWW test; N = 94,

z = −3.187, p = 0.001).

Summarizing, our results suggest a $-bias also in WTP-valuations, which is of a

similar magnitude than the one observed in WTA2. Overall, the results in experiment

WTP closely resemble the ones obtained for WTA2.

Appendix C Price-based Utility Estimation

The analysis in the main text relied on choice-based, out-of-sample estimates of subject’s

individual utility functions. In experiments RANK2 and WTA2, we also elicited WTA-
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Figure A.3: Strength-of-preference effects in RANK2 (left) and WTA2 (right).

valuations for the 64 lotteries used in the first part for the choice-based estimation.

Using those WTA-valuations we repeated the estimation exercise described in Appendix

Appendix A. Specifically, for each of the 32 lottery pairs (A,B) used in the first part

of the experiments, we consider A to be “chosen” by subject i if and only if i stated

a higher WTA for A than for B. Using these imputed choices delivers valuation-based

utility estimates, which we denote by u′i. The following analysis proceeds along the lines

of Section 5 with the only difference that the certainty equivalent differences ∆̂i(Pk, $k)

are based on the valuation-based estimates u′i and not on the choice-based estimates ui.

Figure A.3 plots the empirical stochastic choice and evaluation functions for RANK2

(left) and WTA2 (right). Also with valuation-based CE estimates SoP effects in choices

and evaluations are evident in both experiments. As before, in RANK2 we observe no

systematic difference between the stochastic choice and evaluation function, whereas in

WTA2 the latter is clearly shifted downwards relative to the stochastic choice function.

Thus, we confirm our previous observation that the ranking-based evaluation method is

unbiased, whereas WTA-valuations exhibit a $-bias.

We obtain the following valuation-based estimates of subjects’ risk attitudes. The

majority of subjects is risk seeking in both experiments: only 15 subjects or about

12.96% are classified as risk averse in RANK2, and 28 subjects or about 27.18% in

WTA2. Average estimated risk propensities, r̂, are −0.023 with a median of −0.024 and

a standard deviation of 0.020 in RANK2 and −0.014 with a median of −0.013 and a

standard deviation of 0.027 in WTA2.

Proposition 2(a) for unbiased evaluations states that a larger proportion of P-bet

choices (πc(D)) should lead to a larger type-1 anomaly. A median split of subjects

according to the valuation-based estimates of their risk attitudes in RANK2 does not

produce differences in the proportion of P-bet choices (high risk aversion group 55.28%,

low risk aversion group 54.72%; MWW; N = 108, z = 0.012, p = 0.991). However,

we can directly test the prediction with a median split on πc(D) (average proportion of

P -bet choices 39.90% and 67.08% for the below-median and above-median groups, re-

spectively). In the below-median group the rates of standard and non-standard reversals
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Figure A.4: Accuracy of valuations (left) and median split of βi (right) for WTA2.

are 28.83% and 28.94%, respectively. In contrast, for the above-median group the aver-

age rates of standard and non-standard reversals are 16.90% and 46.19%, respectively.

The ratio of standard to non-standard reversals is 0.996 for the below-median group and

0.366 for the above-median group. The differences are statistically significantly (MWW

test; N = 104, z = −4.176, p < 0.001), in line with Proposition 2(a). That is, a stronger

bias in the experiment toward P-bets exacerbates type-1 anomalies in experiments that

rely on unbiased evaluation methods.

To test Proposition 4 for biased evaluations, we again resort to βi(P) and βi($) as

a measure of subject i’s accuracy in evaluations but now with respect to the valuation-

based estimates of subjects’ certainty equivalents in WTA2. Figure A.4 (left) plots the

stated WTAs against the estimated CEs for each of the 120 lottery pairs. For P-bets,

the correlation is close to unity (Spearman; WTA2: ρ = 0.997, N = 60, p < 0.001) and

again the (WTA,CE) pairs are close to the diagonal. For the valuation-based estimates

the correlation is also high for $-bets (Spearman; WTA2: ρ = 0.900, N = 60, p < 0.001),

however, the (WTA,CE) pairs are again systematically above the diagonal. Thus, even

with valuation-based estimates WTAs faithfully reflect CEs for P-bets but not for $-bets.

We now divide subjects into two groups based on a median split of their $-bias

(based on the u′i estimates) as captured by βi. Figure A.4 (right) shows the empirical

stochastic choice and evaluation functions for both groups. For the high $-bias group

the stochastic evaluation function is again shifted downwards compared to the low $-

bias group, while the stochastic choice functions are indistinguishable. Comparing the

reversal rates across groups, we find a larger asymmetry between standard and non-

standard reversals for the high $-bias group compared to the low $-bias group (WTA2:

low, SR = 46.95%, NR = 7.42%; high, SR = 64.06%, NR = 3.12%; MWW testN = 98,

z = 3.168, p = 0.001).
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Figure A.5: CRRA. Strength-of-preference effects in RANK1, RANK2, WTA1, and
WTA2.

Appendix D Alternative Estimation with CRRA Utility

The analysis in the main text relied on utility estimates assuming a CARA utility func-

tion. As a further robustness check, we repeated the RUM-based estimation exercise

described in Section 4.3 and Appendix Appendix A with the constant relative risk aver-

sion (CRRA) utility function u(x | r) = xr. As we detail below, this robustness check

confirms that the results reported in Section 5 do not hinge on the CARA specification

of the utility function.

Figure A.5 plots the stochastic choice and evaluation functions based on the CRRA-

estimates for experiments RANK1, RANK2, WTA1, and WTA2. In all four experiments

SoP effects are evident. In the ranking-based experiments, both functions are indistin-

guishable. In contrast, in the WTA experiments we confirm that the stochastic evalua-

tion functions are shifted downwards relative to the stochastic choice functions, which

themselves are roughly symmetric around zero. Also based on the CRRA-estimates, the

majority of subjects in all four experiments is risk averse (RANK1: 98.95%; RANK2:

91.67%; WTA1: 97.89%; WTA2: 99.03%). Conducting a median split based on the

estimated CRRA risk parameter, r̂, we observe that for the high risk aversion group

in RANK1 (RANK2) the proportion of P-bet choices is 75.77% (59.51%), whereas it is
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Figure A.6: CRRA. Accuracy of valuations in WTA1 (left) and WTA2 (right).

only 55.00% (47.33%) for the low risk aversion group. These differences are significant

(MWW tests; RANK1: N = 95, z = 5.232, p < 0.001; RANK2: N = 108, z = 3.904,

p < 0.001). In line with Proposition 2(a), we find that for the high risk aversion group

the ratio of standard to non-standard reversals is smaller than for the low risk aversion

group (RANK1: low, SR = 9.72%, NR = 39.06%; high SR = 20.72%; NR = 69.31%;

MWW test, N = 86, z = 4.095, p < 0.001; RANK2: low, SR = 24.64%, NR = 34.08%;

high, SR = 19.82%, NR = 43.68%; MWW test, N = 107, z = 2.041, p = 0.041).

To test Proposition 4, we again turn to the accuracy of subjects’ WTA valuations but

now with respect to the CRRA-based estimates of subjects’ certainty equivalents. Figure

A.6 plots the stated WTAs against the estimated CEs. We again replicate our previous

finding that WTAs of P-bets are well-captured by the estimated CEs (Spearman; WTA1:

ρ = 0.887, N = 60, p < 0.001; WTA2: ρ = 0.972, N = 60, p < 0.001), whereas for

$-bets the (WTA,CE) pairs are far away from the diagonal, and the correlation is much

lower (Spearman; WTA1: ρ = 0.490, N = 60, p < 0.001; WTA2: ρ = 0.646, N = 60,

p < 0.001). Based on the CRRA estimation, we quantify the $-bias in WTA1 and

WTA2 at 320% and 174% relative to the CE, respectively. Next, we divide subjects

into two groups based on a median split of their $-bias, quantified by βi. Figure A.7

shows the empirical stochastic choice and evaluation functions separately for both groups

in WTA1 and WTA2. For the high $-bias groups, we again find that the stochastic

evaluation functions are shifted downwards relative to the low $-bias group, indicating

that the former exhibits a stronger $-bias in evaluations. Comparing reversal rates,

we find, in line with Proposition 2, that the difference between SR and NR in WTA1

(WTA2) is 44.61 (31.18) percentage points for the low $-bias group, whereas it is 75.55

(67.19) percentage points for the high $-bias group. These differences are significant

(MWW tests, WTA1: N = 86, z = −4.986, p < 0.001; WTA2: N = 98, z = −6.098,
p < 0.001). That is, we again find that a stronger $-bias exacerbates the asymmetry

between standard and non-standard reversals.
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Figure A.7: CRRA. Median split of βi (high versus low) for WTA1 (left) and WTA2
(right).

Appendix E Alternative Estimation with RPM

The analysis in the main text relied on RUM-based estimates. As a further robustness

check, we conducted an alternative estimation exercise using an RPM procedure (de-

scribed below) assuming a CARA utility function. As we outline below, this robustness

check confirms that our results do not hinge on the RUM procedure.

Figure A.8 plots the stochastic choice and evaluation functions based on the RPM

estimates for RANK1, RANK2, WTA1, and WTA2. In all four experiments we observe

clear SoP effects. In RANK1 and RANK2, the stochastic choice and evaluation functions

are indistinguishable. In contrast, in WTA1 and WTA2, we observe a clear downward

shift of the stochastic evaluation functions relative to the stochastic choice functions. The

latter ones are roughly symmetric around zero. According to the estimated mean risk

parameter m̂i, the majority of subjects in all four experiments is risk averse (RANK1:

84.21%; RANK2: 52.78%; WTA1: 87.37%; WTA2: 76.70%). Conducting a median

split based on the estimated mean risk parameter, m̂, we observe that for the high risk

aversion group in RANK1 (RANK2) the proportion of P-bet choices is 80.21% (63.27%),

whereas it is only 56.21% (46.73%) for the low risk aversion group. These differences are

significant (MWW tests; RANK1: N = 95, z = 6.093, p < 0.001; RANK2: N = 108,

z = 4.942, p < 0.001). We again confirm the prediction of Proposition 2(a). For the high

risk aversion group the ratio of standard to non-standard reversals is smaller than for the

low risk aversion group (RANK1: low, SR = 22.03%, NR = 30.22%; high SR = 6.83%;

NR = 63.60%; MWW test, N = 91, z = 6.258, p < 0.001; RANK2: low, SR = 26.63%,

NR = 32.40%; high, SR = 17.72%, NR = 44.71%; MWW test, N = 104, z = 3.631,

p = 0.001).

We again turn to the accuracy of subjects’ WTA valuations relative to the RPM-

based estimates of subjects’ CEs illustrated in Figure A.9. As before, for P-bets the

WTA valuations are well-predicted by the estimated CEs (Spearman; WTA1: ρ = 0.927,

N = 60, p < 0.001; WTA2: ρ = 0.992, N = 60, p < 0.001), whereas WTAs for $-bets
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Figure A.8: RPM. Strength-of-preference effects in RANK1, RANK2, WTA1, and
WTA2.

are further off (Spearman; WTA1: ρ = 0.502, N = 60, p < 0.001; WTA2: ρ = 0.764,

N = 60, p < 0.001). Based on the RPM estimation, we quantify the $-bias in WTA1

and WTA2 at 317% and 60% relative to the CE, respectively. Conducting a median split

according to subjects’ $-bias, quantified by βi, we can again plot the empirical stochastic

choice and evaluation functions separately for both groups in WTA1 and WTA2 (see

Figure A.10). For the high $-bias groups the stochastic evaluation functions are shifted

downwards relative to the low $-bias groups, that is, the former exhibit a stronger $-

bias in evaluations. We also confirm again Proposition 4. Specifically, the difference

between SR and NR in WTA1 (WTA2) is 45.13 (32.23) percentage points for the low

$-bias group, whereas it is 74.26 (66.90) percentage points for the high $-bias group.

These differences are significant (MWW tests, WTA1: N = 86, z = −2.326, p = 0.019;

WTA2: N = 98, z = −5.558, p < 0.001). That is, we again find that a stronger $-bias

exacerbates the asymmetry between standard and non-standard reversals.

Description of the RPM Procedure

For the RPM estimation, we used the same setup with N subjects, T = 32 trials, and

the CARA utility function given by (6). Additionally, we assume that At is the safer of

the two lotteries, that is, p > q. In contrast to the RUM approach, the RPM assumes
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Figure A.9: RPM. Accuracy of valuations in WTA1 (left) and WTA2 (right).
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Figure A.10: RPM. Median split of βi (high versus low) for WTA1 (left) and WTA2
(right).

that a subject’s risk parameter is not fixed across trials but varies randomly between

trials. Specifically, we assume that subject i’s risk parameter in trial t is distributed

according to rit ∼ N(mi, σ
2) where mi is subject i’s mean risk attitude. Assuming

Expected Utility maximization, in this setup subject i with utility function ui chooses

At over Bt if and only if

∆t(rit) =
pt(1− e−ritxt)− qt(1− e−rityt)

1− e−ritxmax

> 0.

Let r∗t be the risk parameter that would make a subject exactly indifferent between

the two lotteries in task t, that is, ∆t(r
∗
t ) = 0. Since At is always the safer lottery, we

obtain the following equivalence

∆t(rit) > 0 ⇔ rit > r∗t .
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Again using γit ∈ {1,−1} as a binary indicator that At is chosen by subject i in trial

t, the probability of a choice conditional on a subject’s mean risk attitude mi is given

by

P (γit|mi) = P (γitrit > γitr
∗
t |mi) = P

(

γit
rit −mi

σ
> γit

r∗t −mi

σ

)

= Φ

(

γit
mi − r∗t

σ

)

where Φ is the standard normal cumulative distribution function. Next, in order to

introduce between-subject heterogeneity we let the individual mean risk attitude vary

across the population. In particular, we assume that

mi ∼ N(µ, η2).

Hence, the log-likelihood for a sample consisting of T trials and N subjects given by the

matrix Γ = (γit) is

logL =
N
∑

i=1

ln

∫ ∞

−∞

T
∏

t=1

Φ

(

γit
m− r∗t

σ

)

f(m | µ, η)dm (13)

where f(m | µ, η) is the density function of the mean risk attitude m. Using the MSL

approach we replace the integral in (13) by the following approximation

1

H

H
∑

h=1

(

T
∏

t=1

Φ

(

γit
mih − r∗t

σ

)

)

(14)

using a sequence of H (transformed) Halton draws (mi1, . . . ,miH) from N(µ, η2) for

each subject i (fixed over trials t). We then maximize the resulting function

log L̂ =

N
∑

i=1

ln
1

H

H
∑

h=1

(

T
∏

t=1

Φ

(

γit
mih − r∗t

σ

)

)

. (15)

using standard MLE routines in STATA to obtain the parameter estimates (µ̂, η̂, σ̂).

Given those estimates we can then compute the posterior expectation of a subject’s

mean risk attitude m̂i conditional on the observed T choices using Bayes’ rule as follows

m̂i = E(mi|γi1, ..., γiT ) ≈
1
H

∑H
h=1mih

(

∏T
t=1 Φ

(

γit
mih−r∗t

σ

))

1
H

∑H
h=1

(

∏T
t=1 Φ

(

γit
mih−r∗t

σ

))

for a sequence of Halton draws (mi1, . . . ,miH) from N(µ̂, η̂2).

Given the estimated individual mean risk parameter m̂i, we obtain

ûi(x) =
1− e−m̂ix

1− e−m̂ixmax

for m̂i 6= 0

as the estimated utility function of subject i.
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Appendix F List of Lottery Pairs

Table A.1 shows the 32 lottery pairs used for the utility estimations (first part). Table

A.2 shows the 60 lottery pairs used in the preference reversal experiments (second part).

Table A.1: Lottery pairs (A,B) used for the utility estimation in the first part.
Lottery Lottery A Lottery B
Pair p x EV q y EV

1 0.05 12 0.6 0.8 3 2.4
2 0.2 22 4.4 0.8 5 4
3 0.25 17 4.25 0.75 6 4.5
4 0.35 20 7 0.6 8 4.8
5 0.35 17 5.95 0.7 4 2.8
6 0.4 12 4.8 0.7 6 4.2
7 0.4 14 5.6 0.65 6 3.9
8 0.4 14 5.6 0.8 3 2.4
9 0.5 11 5.5 0.7 7 4.9
10 0.5 15 7.5 0.65 7 4.55
11 0.5 20 10 0.7 5 3.5
12 0.55 5 2.75 0.35 18 6.3
13 0.55 4 2.2 0.2 15 3
14 0.55 4 2.2 0.4 15 6
15 0.55 4 2.2 0.45 21 9.45
16 0.6 6 3.6 0.35 11 3.85

Lottery Lottery A Lottery B
Pair p x EV q y EV

17 0.6 5 3 0.3 22 6.6
18 0.6 8 4.8 0.5 13 6.5
19 0.6 14 8.4 0.7 4 2.8
20 0.6 4 2.4 0.55 6 3.3
21 0.6 3 1.8 0.5 13 6.5
22 0.65 3 1.95 0.15 18 2.7
23 0.65 17 11.05 0.75 7 5.25
24 0.7 4 2.8 0.1 16 1.6
25 0.7 7 4.9 0.6 20 12
26 0.7 11 7.7 0.8 6 4.8
27 0.7 18 12.6 0.85 5 4.25
28 0.75 6 4.5 0.3 15 4.5
29 0.75 6 4.5 0.4 15 6
30 0.75 4 3 0.35 12 4.2
31 0.75 15 11.25 0.8 5 4
32 0.8 3 2.4 0.4 17 6.8

Table A.2: Lottery pairs (P, $) used in the preference reversal experiments.
Lottery P-Bets $-Bets
Pair p x EV q y EV

1 0.95 3 2.85 0.37 10 3.70
2 0.57 5 2.85 0.46 10 4.60
3 0.90 6 5.40 0.30 11 3.30
4 0.80 6 4.80 0.30 11 3.30
5 0.72 7 5.04 0.23 11 2.53
6 0.79 2 1.58 0.21 11 2.31
7 0.8 2 1.60 0.4 11 4.40
8 0.64 8 5.12 0.24 12 2.88
9 0.84 6 5.04 0.48 12 5.76
10 0.75 3 2.25 0.17 12 2.04
11 0.94 3 2.82 0.49 12 5.88
12 0.92 4 3.68 0.53 12 6.36
13 0.82 3 2.46 0.34 12 4.08
14 0.74 6 4.44 0.15 13 1.95
15 0.89 5 4.45 0.39 13 5.07
16 0.87 6 5.22 0.36 13 4.68
17 0.9 2 1.80 0.35 13 4.55
18 0.66 2 1.32 0.24 13 3.12
19 0.6 5 3.00 0.45 13 5.85
20 0.9 7 6.30 0.51 14 7.14
21 0.86 5 4.30 0.16 15 2.40
22 0.70 10 7.00 0.31 15 4.65
23 0.85 5 4.25 0.41 15 6.15
24 0.63 7 4.41 0.41 15 6.15
25 0.75 6 4.50 0.15 15 2.25
26 0.76 11 8.36 0.37 16 5.92
27 0.63 4 2.52 0.33 16 5.28
28 0.96 5 4.80 0.19 17 3.23
29 0.96 8 7.68 0.43 17 7.31
30 0.84 9 7.56 0.25 18 4.50

Lottery P-Bets $-Bets
Pair p x EV q y EV

31 0.83 6 4.98 0.31 18 5.58
32 0.95 5 4.75 0.22 18 3.96
33 0.86 5 4.30 0.33 18 5.94
34 0.79 4 3.16 0.33 18 5.94
35 0.60 11 6.60 0.22 19 4.18
36 0.56 10 5.60 0.43 19 8.17
37 0.79 7 5.53 0.20 20 4.00
38 0.7 5 3.50 0.17 20 3.40
39 0.85 10 8.50 0.3 20 6.00
40 0.65 4 2.60 0.25 20 5.00
41 0.92 8 7.36 0.23 21 4.83
42 0.88 11 9.68 0.35 21 7.35
43 0.72 6 4.32 0.29 21 6.09
44 0.68 3 2.04 0.23 21 4.83
45 0.73 9 6.57 0.21 22 4.62
46 0.6 7 4.20 0.3 22 6.60
47 0.68 11 7.48 0.23 23 5.29
48 0.88 8 7.04 0.4 24 9.60
49 0.84 7 5.88 0.35 25 8.75
50 0.95 8 7.60 0.31 27 8.37
51 0.82 11 9.02 0.24 31 7.44
52 0.87 5 4.35 0.13 32 4.16
53 0.86 4 3.44 0.55 6 3.30
54 0.8 4 3.20 0.45 6 2.70
55 0.87 3 2.61 0.5 7 3.50
56 0.75 5 3.75 0.55 7 3.85
57 0.82 5 4.10 0.47 8 3.76
58 0.71 5 3.55 0.22 9 1.98
59 0.89 5 4.45 0.55 9 4.95
60 0.82 4 3.28 0.36 9 3.24
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Appendix G Translated Instructions

[These are the written instructions for RANK1 and WTA1 given to subjects before the

experiment. The original instructions for the Cologne experiments were in German. Text

in brackets [...] was not displayed to subjects. The instructions for the other experiments

were very similar and are available from the authors upon request.]

General Instructions

Welcome! In this experiment you will be asked to make a series of decisions that will de-

termine your earnings at the end of the experiment. The total duration of the experiment

is about 1 hour and 30 minutes.

If you have a question, please raise your hand and remain seated. An experimenter

will come and answer your question.

It is important, that you read the instructions carefully before you make your deci-

sions.

During the experiment you are not allowed to talk or communicate in any other way

with the other participants. If you violate this rule, you might be excluded from the

experiment.

We now explain the general course of the experiment: The experiment consists of

three parts. In each part you have to make multiple decisions. At the end of the

experiment you will be asked to answer a questionnaire.

In each part, you can earn money. How much money you earn will depend on your

decisions in that part and chance. Your earnings in one part of the experiment are

independent of your earnings and decisions in the other parts. Your earnings in each

part will be added up and you will be paid the total amount anonymously and in cash

at the end of the experiment. In addition to this amount you will receive e4 for your

participation in the experiment.

Below you will find further general information for the experiment. The specific

instructions for each part will be shown on screen directly before the beginning of that

part.

Instructions: Lotteries

In the three parts of the experiment you will be asked to make decisions about lotteries.

Hence, we will now explain in detail what a lottery is:

A lottery consists of two potential outcomes, each of which will occur with a given

probability. One of the two outcomes is always e0 (zero). The other outcome will differ

from lottery to lottery. If a lottery is played out, this means that you will receive exactly

one of the two possible outcomes (in Euro).
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In the experiment lotteries will be represented by pie charts as in the example below.

The colored areas of the pie chart illustrate the probabilities for the two corresponding

outcomes.

Example:

The pie chart depicted above is an example of how we present a lottery. In this

example, the lottery pays e10 with a probability of 75%, which is represented by the

blue area. Additionally, this information is also shown numerically above the pie chart.

Accordingly, the lottery pays e0 with a probability of 25%, which is represented by the

green area. The second outcome is always e0 and occurs with the remaining probability.

Please note that this information is not repeated numerically on screen.

If a lottery is played out, this means that it will pay exactly one of the two outcomes.

In the example above, the lottery pays e10 with a probability of 75% and e0 with the

remaining probability of 25%.

Please note that the lottery shown above is only an example. The lotteries in the

experiment will have different outcomes and probabilities.

If you have a question, please raise your hand. If you have no further questions, you

may proceed to the comprehension questions on the next page.

Comprehension Questions: Lotteries

Below you see examples of two lotteries, similar to the ones you will face later on in the

experiment. Please note that these lotteries are only examples.

Lottery A Lottery B
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Please answer the following comprehension questions:

1. What is the probability that Lottery A pays e10?

2. What is the probability that Lottery B pays e0?

3. Which amount does Lottery A pay with a probability of 25%?

4. Which amount does Lottery B pay with a probability of 55%?

Once you have answered all comprehension questions, please raise your hand. An

experimenter will then check your answers.

Translated Onscreen Instructions

[These are the instructions for each part, which were presented separately on screen, at

the beginning of each part. The original instructions were in German. Text in brackets

[...] was not displayed to subjects.]

Welcome to this economic experiment. Thank you for supporting our research.

Please note the following rules:

1. During the experiment you are not allowed to communicate with each other.

2. If you have questions, please raise your hand.

3. Please refrain from using any features of the computer that are not part of the

experiment.

Instructions for Part 1

Your decisions: In this part of the experiment you will be presented with a series of

lottery pairs. Your task is to choose one of the two lotteries from each pair.

On the screen you will see a lottery pair (consisting of two lotteries) represented by

two pie charts. One of the lotteries will be shown on the left and the other will be shown

on the right. You choose one of the lotteries by pressing the left or right arrow key on

your keyboard. These keys are marked with a yellow sticker. To choose the lottery on

the left, press the left arrow key “←.” To choose the lottery on the right, press the right

arrow key “→.” Please note that your decisions will affect your earnings at the end of

the experiment (a detailed description of how your earnings are determined will follow

below).

There are no wrong or correct decisions. When you choose one of the lotteries, this

simply shows that you prefer to play this lottery over the other lottery.

After you have made your decision, you will see the next lottery pair. In part 1 you

will be presented with a total of 36 lottery pairs. After you have made a decision for

each of the pairs, this part ends and we will start with the next part of the experiment.
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Your Earnings for Part 1

After you have made a decision for each of the lottery pairs, the computer will randomly

select one of the 36 lottery pairs. The computer then checks which of the two lotteries

you have chosen for this randomly selected pair. The lottery you have chosen will be

played out. The outcome of the lottery determines your earnings for part 1 of the

experiment.

The lottery will be played out at the end of the experiment, that is, after you have

completed all three parts of the experiment. Please note: Although your earnings for

this part will be determined at the end of the experiment, they will only depend on your

decisions in this part of the experiment and chance.

If you have any further questions, please raise your hand and remain seated.

Instructions for Part 2 [Experiment WTA1]

Your decisions: In this part of the experiment you will be presented with a series of

lotteries. When a lottery is presented to you on screen, you may simply assume, that

you own that lottery and are asked to sell it.

Your task is to state the lowest price at which you are still willing to sell the presented

lottery instead of keeping the lottery and playing it out. There is no wrong or correct

answer when stating the lowest price at which you are still willing to sell the lottery.

When you enter your selling price for the lottery, simply ask yourself “Is this really the

lowest price at which I am still willing to sell the lottery instead of playing the lottery?”.

Please note that your decisions will affect your earnings at the end of the experiment (a

detailed description of how your earnings are determined will follow below).

Please enter the lowest price at which you are still willing to sell the lottery in the

form “EURO.CENTS.” Please note that you cannot enter a selling price that is larger

than the highest outcome of the lottery.

After you have entered your selling price, the next lottery will be presented. In this

part of the experiment you will see a total of 120 lotteries, presented in 20 rounds of 6

lotteries each. All rounds are independent. Once you have entered a selling price for

each lottery in a round, the next round will start. Once you are done with all 20 rounds,

you can continue with the next part of the experiment.

Your Earnings for Part 2 [Experiment WTA1]

After you have entered your lowest selling price for each of the lotteries, the computer

will randomly draw one of the 20 rounds. From this round, the computer will then

randomly select two of the six lotteries. The computer then checks for which of the two

lotteries you have entered the higher selling price (in case both prices are the same, the

computer will randomly select one of the two lotteries with equal probability). This

lottery will be played out and the outcome of that lottery determines your earnings for

part 2 of the experiment.
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The lottery will be played out at the end of the experiment, that is, after you have

completed all three parts of the experiment. Please note: Although your earnings for

this part will be determined at the end of the experiment, they will only depend on your

decisions in this part of the experiment and chance.

If you have any further questions, please raise your hand and remain seated.

Instructions for Part 2 [Experiment RANK1]

Your decisions: In this part of the experiment you will be presented with a series of

lotteries. When a lottery is presented to you on screen, you may simply assume, that

you own that lottery and may play that lottery.

Your task is to order different lotteries according to your preference, that is, according

to how much you would like to play them. In each round you will see six different lotteries

on screen. Please order the lotteries as follows:

• First, choose your first-ranked lottery, that is, the one of the six lotteries that you

would like to play the most.

• Second, choose your second-ranked lottery, that is the one that you would like to

play out the second most.

• Third, choose your third-ranked lottery, that is the one that you would like to play

out the third most.

• Fourth, choose your fourth-ranked lottery, that is the one that you would like to

play out the fourth most.

• Fifth, choose your fifth-ranked lottery, that is the one that you would like to play

out the fifth most.

• Sixth, choose your sixth-ranked lottery, that is the one that you would like to play

out the least.

To select a lottery simply click on the button below the lottery that you want to

select. As soon as you assign a rank to a lottery, the corresponding rank (from 1 to 6)

will be shown below that lottery.

In case you want to change the rank of the lotteries, please press the “Reset” button.

This resets the ranking. After you have ranked the lotteries from rank 1 to rank 6, please

press the “Continue” button to confirm your ranking and proceed to the next round.

Please note that there is no wrong or correct ranking. When ranking the lotteries,

simply ask yourself which lottery you would like to play out the most, the second-

most and so on. Please note that your decisions will affect your earnings at the end of

the experiment (a detailed description of how your earnings are determined will follow

below).
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In this part of the experiment you will see a total of 120 lotteries, presented in 20

rounds of 6 lotteries each. All rounds are independent, that is, you will have to submit

20 rankings of 6 lotteries by assigning ranks from 1 to 6. Once you are done with all 20

rounds, you can continue with the next part of the experiment.

Your Earnings for Part 2 [Experiment RANK1]

After you have ranked all lotteries, the computer will randomly draw one of the 20

rounds. From this round, the computer will then randomly select two of the six lotteries.

The computer then checks which of the two lotteries you have ranked higher (that is,

which one you want to play out more). This lottery will be played out and the outcome

of that lottery determines your earnings for part 2 of the experiment.

The lottery will be played out at the end of the experiment, that is, after you have

completed all three parts of the experiment. Please note: Although your earnings for

this part will be determined at the end of the experiment, they will only depend on your

decisions in this part of the experiment and chance.

If you have any further questions, please raise your hand and remain seated.

Instructions for Part 3

Your decisions: In this part of the experiment you will be presented with a series of

lottery pairs. Similarly to part 1, your task is to choose one of the two lotteries from

each pair. Please note that the lottery pairs are different from part 1.

On the screen you will see a lottery pair (consisting of two lotteries) represented by

two pie charts. One of the lotteries will be shown on the left and the other will be shown

on the right. You can choose one of the lotteries pressing the left or right arrow key on

your keyboard. These keys are marked with a yellow sticker. To choose the lottery on

the left, press the left arrow key “←.” To choose the lottery on the right, press the right

arrow key “→.” Please note that your decisions will affect your earnings at the end of

the experiment (a detailed description of how your earnings are determined will follow

below).

There are no wrong or correct decisions. When you choose one of the lotteries, this

simply shows that you prefer to play this lottery over the other lottery.

After you have made your decision, you will see the next lottery pair. In part 3 you

will be presented with a total of 60 lottery pairs. After you have made a decision for

each of the pairs, this part ends and you can start the questionnaire.

Your Earnings for Part 3

After you have made a decision for each of the lottery pairs, the computer will randomly

select one of the 60 lottery pairs. The computer then checks which of the two lotteries

you have chosen for this randomly selected pair. The lottery you have chosen will be
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played out. The outcome of the lottery determines your earnings for part 3 of the

experiment.

The lottery will be played out at the end of the experiment, that is, after you have

completed all three parts of the experiment. Please note: Although your earnings for

this part will be determined at the end of the experiment, they will only depend on your

decisions in this part of the experiment and chance.

If you have any further questions, please raise your hand and remain seated.
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Bellemare, C., S. Kröger, and A. van Soest (2008). Measuring Inequity Aversion in a
Heterogeneous Population Using Experimental Decisions and Subjective Probabilities.
Econometrica 76 (4), 815–839.

Bleichrodt, H. and J. L. Pinto Prades (2009). New Evidence of Preference Reversals in
Health Utility Measurement. Health Economics 18 (6), 713–726.

51



Bruner, D. M. (2017). Does Decision Error Decrease with Risk Aversion? Experimental
Economics 20 (1), 259–273.

Butler, D. J. and G. Loomes (2007). Imprecision as an Account of the Preference Reversal
Phenomenon. American Economic Review 97 (1), 277–297.

Cappellari, L. and S. P. Jenkins (2003). Multivariate Probit Regression Using Simulated
Maximum Likelihood. The Stata Journal 3 (3), 278–294.

Casey, J. T. (1991). Reversal of the Preference Reversal Phenomenon. Organizational
Behavior and Human Decision Processes 48 (2), 224–251.

Chai, X. (2005). Cognitive Preference Reversal or Market Price Reversal? Kyklos 58 (2),
177–194.

Chu, Y.-P. and R.-L. Chu (1990). The Subsidence of Preference Reversals in Simplified
and Marketlike Experimental Settings: A Note. American Economic Review 80 (4),
902–911.

Collins, S. M. and D. James (2015). Response Mode and Stochastic Choice Together
Explain Preference Reversals. Quantitative Economics 6 (3), 825–856.

Conte, A., J. D. Hey, and P. G. Moffatt (2011). Mixture Models of Choice Under Risk.
Journal of Econometrics 162 (1), 79–88.

Cubitt, R. P., A. Munro, and C. Starmer (2004). Testing Explanations of Preference
Reversal. Economic Journal 114 (497), 709–726.

Dashiell, J. F. (1937). Affective Value-Distances as a Determinant of Aesthetic
Judgment-Times. American Journal of Psychology 50, 57–67.
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