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Abstract

Taking as data-generation process a standard DSGE model, we show via

Monte Carlo that reliably detecting hysteresis, defined as the presence of aggre-

gate demand shocks with a permanent impact on output, is a significant chal-

lenge, as model-consistent identification schemes (i) spuriously detect it with

non-negligible probability when in fact the data-generation process features

none, and (ii) have a low power to discriminate between alternative extents of

hysteresis. We propose a simple approach to test for the presence of hysteresis,

and to estimate its extent, based on the notion of simulating specific statistics

(e.g., the fraction of frequency-zero variance of GDP due to hysteresis shocks)

conditional on alternative values of hysteresis we impose upon the VAR, and

then comparing the resulting Monte Carlo distributions to the corresponding

distributions computed based on the actual data via the Kullback-Leibler di-

vergence. Based on two alternative identification schemes, evidence suggests

that post-WWII U.S. data are compatible with the notion of no hysteresis,

although the most plausible estimate points towards a modest extent, equal to

7 per cent of the frequency-zero variance of GDP.
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1 Introduction

The term hysteresis captures the notion that economic disturbances that are typically

regarded as transitory (e.g., monetary policy shocks) can have very long-lived, or

even permanent effects. It is most often used within the context of the labor market,

where long and deep recessions can lead to long-term unemployment and, through

this channel, could raise the natural (or equilibrium) unemployment rate. Similarly,

a broad array of demand shocks could have long-lasting effects on productivity and

output through channels such as business formation or exit. The experience of the

financial crisis and the Great Recession, and that of the ongoing recession caused by

the COVID-19 pandemic, have rekindled interest in the possible presence of hysteresis

effects in macroeconomic data. Although the theoretical channels for the transmission

of hysteresis shocks are well-understood, empirical evidence is few and far between.

In this paper we search for hysteresis, which we define as the presence of aggregate

demand shocks with a permanent impact on output, in post-WWII U.S. data. We

identify aggregate demand and aggregate supply permanent GDP shocks by impos-

ing a combination of zero restrictions on their long-run impact on GDP, and sign

restrictions on both their short- and their long-run impacts on GDP and the price

level. We provide three main contributions:

first, taking as data-generation process (DGP) a standard real business cycle

(RBC) model featuring the possible presence of hysteresis effects (as discussed below),

we show via Monte Carlo that reliably detecting hysteresis in macroeconomic data

is a significant challenge. In particular, we show that model-consistent identification

schemes (i) spuriously detect hysteresis with non-negligible probability when in fact

the DGP features none, and (ii) have a low power to discriminate between alternative

extents of hysteresis.

Second, in order to address these problems we propose a straightforward approach

to test for the presence of hysteresis, and to estimate its extent, that is broadly con-

ceptually related to Stock and Watson’s (1996, 1998) TVP-MUB methodology for

exploring the presence of random-walk time-variation in the data. The proposed ap-

proach is based on the notion of (1) simulating via Monte Carlo specific statistics (e.g.,

the fraction of frequency-zero variance of GDP due to hysteresis shocks) conditional

on alternative extents of hysteresis that we impose upon estimated VARs, and then

(2) estimating the extent of hysteresis in the data by comparing the thus obtained

Monte Carlo distributions to the corresponding distributions computed based on the

actual data. For example, a natural estimate of the extent of hysteresis–let us call

it ∗–is that particular value such that median of the Monte Carlo distribution of
the fraction of frequency-zero variance of GDP due to hysteresis shocks simulated

conditional on ∗ is closest to the distribution computed based on the actual data,
where ‘closeness’ is defined in terms of the Kullback—Leibler divergence.

Third, when applying the proposed approach to the post-WWII United States,

evidence based on Bayesian VARs (either in levels, or cointegrated), and two alterna-
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tive identification schemes, suggests that the data are compatible with the notion of

no hysteresis, although the most plausible estimate points towards a modest extent,

equal to 7 per cent of the frequency-zero variance of GDP. Under this respect the

proposed Monte Carlo-based correction makes a material difference to the results,

with (e.g.) the simple estimates produced by the cointegrated VARs pointing to-

wards a fraction of the long-horizon forecast error variance (FEV) of GDP explained

by hysteresis shocks slightly in excess of 20 per cent.

1.1 Related literature

The classic paper on hysteresis is Blanchard and Summers (1986), which introduced

the concept to the economics profession and used it in order to explain the persis-

tence of European unemployment in the 1980s. Although they provided some basic

statistical evidence, their main argument was largely based on a theoretical model

of the labor market. In a similar vein, Ljungqvist and Sargent (1998) provided a

more microfounded theoretical approach to the same issue, and offered corroborating

evidence based on labor market data. More recently, theoretical frameworks based on

the idea of endogenous TFP have also allowed for a possible role of hysteresis effects

(see e.g., Anzoategui et al., 2019; or Jaimovich and Siu, 2020).

Empirical evidence in favor of or against hysteresis is somewhat sparse, arguably

because of the difficulty in distinguishing permanent and highly persistent compo-

nents in aggregate data. In fact, in his recent survey of the literature on the natural

rate hypothesis, Blanchard (2018) concluded that the evidence is not sufficiently

clear-cut to allow to reach strong conclusions. Cerra and Saxena (2008) showed that

in a sample of 190 countries over the period 1960-2001 deep recessions permanently

reduced the productive capacity of an economy. Ball (2009) used a simple Phillips

curve framework to back out the effects of changes in inflation on unemployment,

conditional on having observed large disinflations associated with deep recessions.

Although he argued for the presence of hysteresis, in the end he did not distinguish

between permanent and highly persistent effects. Galí (2015, 2020) took up Ball’s

analysis and integrated it within a New Keynesian model featuring an insider-outsider

labor market framework as in Blanchard and Summers (1986). Based on a quanti-

tative analysis of the model, he argued in favor of hysteresis as being an important

driver of the European unemployment and wage and price inflation experience.

Furlanetto et al. (2021) is the paper that is closest to our work. They also use a

structural VAR framework that combines long-run zero restrictions with short- and

long-run sign restrictions. They do detect an important role for hysteresis effects in

U.S. data. There are several differences between the present work and Furlanetto et

al.’s (2021): in particular, they work with VARs in differences, whereas we work with

either cointegrated VARs or VARs in levels, and they use a different set of variables.

Of note is also the recent contribution by Jordà et al. (2020), who estimate a dynamic

panel with local projections and detect large (compared with most contributions in
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the literature) effects of monetary policy shocks on GDP in the very long run.

The paper is organized as follows. The next section outlines our approach to

searching for hysteresis effects on output, whereas section 3 shows Monte Carlo ev-

idence on the performance of two alternative identification schemes. Section 4 dis-

cusses our proposed approach to address the problems highlighted by the Monte Carlo

exercise. Section 5 discusses the empirical evidence for the post-WWII United States.

Section 6 concludes.

2 Identifying Hysteresis Shocks

We assume that the permanent component of real GDP is driven by two, and only two

shocks, possessing respectively aggregate supply (AS) and aggregate demand (AD)

features. We label the two disturbances as ‘BQ’ (from Blanchard and Quah, 1989)

and ‘H’ (for ‘hysteresis’), respectively. The identifying restrictions we impose in order

to disentangle the two disturbances are motivated by the standard AD-AS framework

found in many macroeconomic textbooks, but they are also consistent with standard

New Keynesian models.

The motivation behind our restrictions can be briefly outlined as follows. We

assume that

(I) the AD curve is downward-sloping both in the short and in the long run, whereas

(II) the AS curve is upward-sloping in the short run, and it is vertical in the long

run. We further assume that

(III) BQ shocks only affect the AS curve, whereas

(IV) H shocks, which do affect the AD curve, may or may not also affect the AS

curve depending on whether there are, or there are not, hysteresis effects. In

the case of hysteresis, a negative (positive) H shock has a negative (positive)

permanent impact on the long-run AS curve.

The first three assumptions are standard, and are consistent with a wide array of

macroeconomic frameworks ranging from the textbook AD-AS model, to simple New

Keynesian models, and large-scale macroeconomic models used in policy institutions.

The fourth assumption captures the essence of the notion of hysteresis. In such a

case, a negative (positive) AD shock has a negative (positive) permanent impact

on long-run aggregate supply. Typical examples are the notion that deep recessions

permanently scar the economy by reducing its potential productive capacity, either by

increasing the equilibrium unemployment rate or by reducing firm entry, and thereby

long-run productivity. Alternatively, ‘running the economy hot’ could permanently

attract people into the labor force.
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Figure 1  A simple illustration of the identifying assumptions 
 
 
 
 



Figure 1 provides a simple illustration of assumptions (I)-(IV), and it allows for

a straightforward discussion of our identifying restrictions.

In the output ( )-price level ( ) space, in the short run (first panel) BQ shocks,

by shifting the AS curve, and therefore moving the economy along the AD curve, cause

output and prices to move in opposite directions. By the same token, H shocks, by

moving the economy along the AS curve, cause output and prices to move in the same

direction. The first set of restrictions we will impose in order to disentangle the two

shocks is therefore that both on impact, and up to subsequent  quarters, BQ shocks

generate, for output and prices, impulse responses with opposite signs, whereas H

shocks produce impulse responses with the same sign.1

Turning to the long run, BQ shocks (second panel), by assumption (III), only

impact upon the AS curve, and therefore produce permanent impacts on output and

prices with opposite signs. As for H shocks there are three possible cases:

() no hysteresis (third panel): in this case the long-run impact on output is zero,

whereas the sign of the long-run impact on prices is the same as the sign of the

short-run impact.

() Hysteresis (last two panels): here a negative (positive) H shock shifts the AD

curve down and to the left (up and to the right), and the long-run AS curve to the

left (right). As a result, the long-run impact on output is unambiguously negative

(positive), so that its sign is the same as the sign of its short run response to the

H shock. The long-run impact on prices, on the other hand, is ambiguous, and it

crucially depends on () the size of the hysteresis effect on output, and () the slope of

the AD curve. In particular, the flatter the AD curve, and the smaller the hysteresis

effect on output, the greater the likelihood that a negative (positive) H shock causes

a decrease (increase) in prices. In the limit (third panel), if the hysteresis impact on

output tends to zero the long-run impact on prices of a negative (positive) H shock

is unambiguously negative (positive). In general, however, this cannot be assumed.

In spite of this, since many researchers may find the assumption that a negative

(positive) H shock has a negative (positive) long-run impact not only on output,

but also on prices, more plausible, and intuitively sensible,2 in what follows we will

consider two alternative sets of results, obtained by imposing, and respectively not

imposing such restriction. To anticipate, the two sets of results are qualitatively the

same, so that, in practice, imposing or not imposing this restriction does appear to

make a material difference.

1These restrictions are the same as Canova and Paustian’s (2011) DSGE-based ‘robust sign

restrictions’ (see their Table 2, page 348). E.g., Canova and Paustian’s (2011) DSGE model features

two demand-side shocks, labelled as ‘Monetary’ and ‘Taste’, respectively, with the taste shocks being

essentially a non-monetary demand-side shock. For both shocks, the impacts on GDP and inflation

have the same sign.
2E.g., Furlanetto et al. (2021) do impose such restriction.
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Table 1 Identifying restrictions

Shock:

Impact on: BQ H BQ H

Short run: Long run:

Output + + + 0 +

Price level — + — + ?/+

Table 1 summarizes the previously discussed restrictions. We now turn to dis-

cussing two alternative empirical strategies for identifying BQ and H shocks in the

data, and to Monte Carlo evidence on their comparative effectiveness.

3 Two Alternative Empirical Strategies

Working with Bayesian VARs, either cointegrated or in levels, we identify BQ and H

shocks by imposing the restrictions summarized in Table 1 based on two alternative

empirical strategies, which we label, respectively, as Scheme I and Scheme II.

Scheme I jointly identifies both a BQ and an H shock. So, when working with

cointegrated VARs identified via a combination of zero long-run restrictions on GDP,

and both short- and long-run sign restrictions on GDP and the price level, this scheme

identifies two, and only two permanent GDP shocks, one being BQ and the other

being H. Although this would appear as the natural and logical way of imposing the

restrictions in Table 1, as we show below via Monte Carlo, taking as DGP a standard

RBC model featuring the possible presence of hysteresis, Scheme I suffers from the

shortcoming that it spuriously detects hysteresis with a sizeable probability when in

fact the DGP features none. The reason for this is straightforward: since this scheme

jointly identifies both a BQ and an H shock, in fact it imposes upon the data the

very existence of hysteresis by ‘brute force’. This motivates an alternative approach

to imposing the identifying restrictions in Table 1.

Whereas Scheme I identifies both a BQ and an H shock, Scheme II identifies a

single shock, which ought to be either BQ or H. So, focusing again on cointegrated

VARs, this scheme identifies a single permanent GDP shock, which ought to satisfy

the restrictions in Table 1 pertaining to either of the two disturbances. There are

two crucial differences with Scheme I. First, whereas Scheme I imposes the existence

of hysteresis upon the data, Scheme II only allows it: in fact, in principle all of the

models obtained via Scheme II could feature BQ shocks. Because of this, as we show

via Monte Carlo, this scheme exhibits a significantly smaller tendency to spuriously

identifying hysteresis when the DGP features none. Second, whereas the posterior

distribution produced by Scheme I pertains to a specific model, the distribution pro-

duced by Scheme II pertains to two different types of models.

As we will in Section 5, in spite of such stark difference between the two schemes,

when applied to the data via the Monte Carlo-based approach discussed in Section 4

they produce near-identical results.
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3.1 Monte Carlo evidence on the performance of the two

strategies

3.1.1 The data-generation process

The DGP we use in order to assess the reliability of the two alternative strategies is

described in detail in Online Appendix A. In essence, the model is the one described

in Galí’s (2015) Chapter 2, augmented with habit-formation in consumption and a

unit root in technology (and therefore in the natural level of output), and featuring

the possible presence of hysteresis effects. Households solve the following problem

∗0 ≡Max


0

∞X
=0



"
ln( − −1)− 

1+


1 + 

#
(1)

subject to

 + = −1 + −  (2)

where  and  are real consumption and hours worked, respectively; 01 is

the habit-formation parameter;  is the price of consumption goods;  is the stock

of nominal bonds;  is the price, at time , of a nominal bond paying 1 dollar at

time +1;  is the nominal wage;  are nominal lump-sum taxes; and the rest of

the notation is obvious. As for the firms we exactly follow Galí (2015), with the

only difference pertaining to the process for technology. Firms produce output ()

via the production function  = 
1−
 , with 01,  being technology, and the

capital stock being constant and normalized to 1, and maximize profits, − =


1−
 − with respect to . As for the logarithm of technology,  = ln(),

we postulate that it evolves according to

 = −1 +  + ̃−1 (3)

with  ∼ (0 2) being the technology shock, ̃ being the transitory component of

output, and  ≥ 0 capturing the possible presence of hysteresis effects. If  = 0 there
is no hysteresis, whereas if   0 positive (negative) transitory output fluctuations

cause subsequent permanent increases (decreases) in . This specification, which is

conceptually the same as the one used by Jordà et al. (2020), is designed to capture

the notion that positive (negative) deviations of GDP from potential (here, deviations

of output from its stochastic trend ) may have a positive (negative) impact on

potential GDP itself. Finally, monetary policy is described by a standard Taylor rule

with smoothing,

 = −1 + (1− ) (4)

where the notation is obvious.

Online Appendix A reports the log-linearized equations of the stationarized model

(both output and the real wage inherit indeed the unit root in , and therefore ought

to be stationarized for standard solutions methods for linear rational expectations
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models, such as Sims’ (2002), to be applicable). This is accomplished by defining the

stationarized variables ̃ ≡  and Ω̃ ≡ (), with ̃ and ̃ being their

respective log-deviations from the steady-state, so that ̃ is the component of output

that is driven by the transitory disturbances.

We calibrate the structural parameters as follows: =0.99, =1/3, =0.8, =1,

=0.9, =1.5, and =0.007.
3 We augment the model with three transitory AR(1)

disturbances, two of them ( and ) supply-side, and one () demand-side, and

an additive disturbance to the log of the production function,  ∼ (0 2), with

=0.005. The AR parameters are calibrated to ===0.75, whereas the stan-

dard deviations of the disturbances’ innovations  , 

 , and  (all zero-mean, and

normally distributed) are set to =0.001, =0.005 and =0.045. Based on this

calibration the permanent technology shock ( ) explains exactly 1/3 of the forecast

error variance (FEV) of log GDP on impact, and with =0 it explains slightly more

than 96 per cent of GDP’s FEV 15 years ahead. These figures are broadly in line with

the evidence produced by the structural VAR literature.4 Further, based on these val-

ues of the structural parameters the demand-side disturbance  is very close to being

the only driver of the transitory component of output, so that the identifying restric-

tions in Table 1 are, for practical purposes, correct. Finally, as for  in the Monte

Carlo exercise we consider a grid of values, from =0 (no hysteresis) to =0.1256, for

which the demand-side shock  explains exactly 20 per cent of the frequency-zero

variance of output, as at long horizons the other three shocks explain vitually nil of

output’s variation.

Figure 2 shows, for output and prices, the IRFs in response to  and 

 , together

with the fractions of FEV of output and inflation explained by the two shocks, for

both =0 and =0.1256.5 The evidence in the figure suggests that the RBC model is

an appropriate DGP for assessing the ability of the identifying restrictions in Table 1

to effectively recover the authentic extent of hysteresis in the data (if any). First, for

either of the two values of  (the same holds for any value in between) the two shocks

explain sizeable, or even dominant fractions of the FEV of either variable at least over

some non-negligible horizon. For example, even for =0  is the dominant driver of

output at short horizons, and of prices at medium-to-long horizons. Second, from

the IRFs it is apparent how  and  satisfy the restrictions for BQ and H shocks,

respectively, reported in Table 1. In particular, with =0.1256–and in fact for any

06–the long-run impact of a positive  (i.e. H) shock on the price level is positive,

instead of being ambiguous as in the last two panels of Figure 1. Accordingly, in the

3The value for  is based on Watson’s (1986, p. 60) estimate of the standard deviation of shocks

to the stochastic trend of log real GDP. The rationale is that, within the present context,  is the

random-walk component of log real GDP.
4For example, as for the fraction of the FEV of GDP explained by permanent shocks on impact

see Table I.2 of Cochrane (1994).
5Figures A.1 and A.2 in the Online Appendix report the full set of IRFs and fractions of FEV

for output, the price level, hours, real wage, and technology.
6This evidence is available upon request.
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Figure 2  Theoretical impulse-response functions and fractions of forecast error variance 
             for the RBC model for output and prices, for ϵta (BQ) and ϵte (H) shocks 
 
 
 



Monte Carlo exercises below we will impose this restriction in the identification of H

shocks.

Although we could have considered more complex models (in particular, New

Keynesian models featuring a capital stock and a rich array of real frictions), and

more complex formalizations of the notion of hysteresis, we have chosen to adopt

the present setup for one main reason. Our objective here is simply to illustrate,

within a simple and transparent setting, the two problems already mentioned in

the Introduction, i.e. that model-consistent identification schemes spuriously detect

hysteresis with a sizeable probability when the DGP features none, and they have a

low power to discriminate between alternative extents of hysteresis. For such purpose

the present DGP is perfectly appropriate.7

3.1.2 Evidence

We simulate the model for samples of length equal to that of the actual sample we

will work with in Section 5, i.e. 261 observations.8 Based on each artificial sample we

then estimate Bayesian VARs for output (), the real wage (), hours (), inflation

(), and technology (). Whereas  and  are I(0),  and , as mentioned,

inherit the unit root in , and they are both cointegrated with log technology with

cointegration vector [1−1]0. In what follows we therefore work with either 1 =
[    ]

0 or 2 = [∆ (-) (-)  ]
0. In the former case, by the

arguments in Sims, Stock and Watson (1990) the VAR in levels effectively captures,

in principle, cointegration between  and either  and . In the latter case, on

the other hand, cointegration is imposed directly into the estimated system.9 For

each Monte Carlo simulation, and either 1 or 2, we choose the lag order as the

maximum between the lag orders chosen by the Schwartz and Hannan-Quinn criteria,

based on VARs estimated via OLS. For simplicity, in what follows we will refer to

the VAR for 1 as the ‘VAR in levels’, and to that for 2, with a slight abuse of

notation, as the ‘VAR in differences’.

We estimate the Bayesian VARs as in Uhlig (1998, 2005). Specifically, we exactly

follow Uhlig’s approach in terms of both distributional assumptions (the distributions

for the VAR’s coefficients and its covariance matrix are postulated to belong to the

Normal-Wishart family) and of priors. For estimation details the reader is therefore

referred to either the Appendix of Uhlig (1998), or to Appendix B of Uhlig (2005).

For each value of  and either VAR specification we perform 10,000 Monte Carlo

simulations, and based on each of them we estimate the Bayesian VARs by taking

7In fact, we checked the robustness of the results reported in the next sub-section based on a

standard New Keynesian model with backward- and forward-looking components in both the IS

and the Phillips curve, and technology still evolving according to (3). The results (available upon

request) are qualitatively the same.
8For each simulation we run a pre-sample of 100 observations that we then discard.
9See the discussion in (e.g.) Cochrane (1994) about alternative ways of estimating cointegrated

systems.
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10,000 draws from the posterior distribution.

Imposing the correct identifying restrictions with no hysteresis We start

by checking that, conditional on the model featuring no hysteresis (i.e., with =0) the

VARs correctly recover the main features of the DGP–in terms of impulse-response

functions (IRFs), and fractions of FEV)–when we impose the correct identifying

restriction, i.e. that the DGP features a single shock ( ) with a permanent impact

on output. This is shown in Figure A.3 in the Online Appendix based on VARs in

levels (the corresponding evidence based on VARs in differences is qualitatively the

same, and it is available upon request). When working in levels we identify  as in

Uhlig (2003, 2004), i.e. as the most powerful shock for  at a ‘long’ horizon, which

we set to 15 years ahead,10 whereas when working in differences we identify it as in

Blanchard and Quah (1989), i.e. as the only shock having a permanent impact on

. In brief, the evidence in Figure A.1 (as well as the corresponding evidence for the

VARs in differences) shows that either VAR recovers with great precision the main

features of the DGP, in terms of both IRFs and fractions of FEV. This is the case,

in particular, for the main series of interest within the present context, i.e. output.

Imposing Schemes I and II with no hysteresis Conditional on the DGP featur-

ing no hysteresis, we then explore to which extent Schemes I and II tend to spuriously

detect it. Based on the VAR in differences we consider both schemes, whereas based

on the VAR in levels we only consider Scheme II.11 Based on the VARs in differences

we implement Scheme I by jointly imposing the zero long-run restrictions, and the

short- and long-run sign restrictions, based on the by now standard methodology

proposed by Arias et al. (2018). We impose the short-run sign restrictions both on

impact and for the subsequent eight quarters. As for Scheme II we identify, for each

draw from the posterior distribution, the only shock that has a permanent impact on

GDP, and we check whether it satisfies both the short- and the long-run restrictions

characterizing either BQ or H shocks. If the shock is identified as either BQ or H we

keep the draw (i.e. the model), otherwise we discard it. Finally, based on the VARs

in levels we implement Scheme II by identifying, for each draw from the posterior,

the most powerful shock for  at the 15 years horizon. If the shock is identified as

either BQ or H we keep the draw, otherwise we discard it.12

10We experimented with alternative horizons, from 10 to 25 years ahead, and they tend to produce

near-identical results (this evidence is available upon request).
11The reason is that, to the best of our knowledge, no algorithm has been developed for combining

sign restrictions with Uhlig (2003, 2004)-style identification of the most powerful shock(s) at a specific

‘long’ horizon.
12One concern with working with VARs in levels and Uhlig (2003, 2004)-style identification of the

most powerful shock at a specific long-horizon is that, in principle, the two sets of models featuring

BQ and H shocks could explain systematically different fractions of the long-horizon FEV of output.

(This is obviously not a concern when working with VARs in differences: since both shocks are

identified as the only permanent shock for output, by construction they both explain 100 per cent
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Figure 3  True fractions of the variance of output explained by ϵte (H) shocks at ω=0 in the RBC model, 
             and medians and 16-84 and 5-95 percentiles of the Monte Carlo distributions of the estimated 
             fractions, based on VARs in differences and Scheme I 
 
 



The first column of Figure 3 shows the results for Scheme I applied to VARs in

differences. The two panels show the means, across the Monte Carlo distribution,

of the median and the 16-84 and 5-95 percentiles of the posterior distribution (top

panel), and posterior cumulative distribution (bottom panel), of the fractions of the

variance of output explained by identified H shocks at =0, together with the true

fractions of the variance of output at =0 explained by  in the RBC model.13

The evidence in the two panels is very clear: Scheme I tends to spuriously identify

hysteresis with non-negligible, and in fact quite sizeable probability, when there is

none in the DGP. A likely (although not the only) reason for this is that, as discussed

in Section 3, by its very logic this scheme imposes upon the data the very existence

of both BQ and H shocks.

Table 2 Fraction (Φ) of the variance of output explained by

 (H) shocks at =0, and Monte Carlo fraction of identified

models featuring H shocks, based on Scheme II

Based on VARs in levels: Based on VARs in differences:

Median and 5-95 Median and 5-95

Φ Mean per cent credible set Mean per cent credible set

0.000 0.002 0.001 [0.000 0.006] 0.002 0.000 [0.000 0.006]

0.050 0.011 0.000 [0.000 0.036] 0.014 0.000 [0.000 0.056]

0.100 0.024 0.001 [0.000 0.084] 0.026 0.001 [0.000 0.126]

0.150 0.034 0.001 [0.000 0.172] 0.042 0.002 [0.000 0.226]

0.200 0.049 0.002 [0.000 0.303] 0.068 0.004 [0.000 0.481]

It is therefore of interest to compare these results with the corresponding set of re-

sults based on Scheme II, which are reported in the first row of Table 2. Interestingly,

based on VARs in either levels or differences, when the DGP features no hysteresis

Scheme II identifies a fraction of models featuring H shocks that is essentially equal

to zero. This suggests that this scheme might provide a more reliable strategy for

searching for hysteresis in macroeconomic data. In order to ascertain whether this is

in fact the case, we now turn to DGPs that do feature hysteresis.

of the frequency-zero variance of output within their own model.) For example, models featuring

BQ shocks could explain, on average, 95 per cent of the long-horizon FEV of output, whereas those

featuring H shocks could explain, on average, 50 per cent. Under these circumstances simply focusing

on the fraction of models featuring either BQ or H shocks would be misleading. In fact, this is not

the case. In each single application, based on either Monte Carlo simulations, or the actual data, the

posterior distributions of the long-horizon FEV of output explained by the models featuring BQ and

H shocks are consistently very close, and often near-identical. This suggests that, for all practical

purposes, Scheme II applied to VARs in levels identifies two sets of models, each of them featuring

a single permanent shock.
13So, to be clear, for each Monte Carlo simulation the Bayesian SVAR produces a posterior

distribution of the fraction of the variance of output explained by H shocks at =0. For each

simulation we extract the median and the 16-84 and 5-95 percentiles of this distribution, which we

store thus building up the Monte Carlo distribution of these objects. What Figure 3 shows are the

means of these objects taken across the Monte Carlo distributions.

11



Imposing Schemes I and II in the presence of hysteresis Columns 2 to 4

of Figure 3, and rows 2 to 4 of Table 2 report the corresponding sets of results for

four different values of the true fraction of the variance of output explained by 
at =0 in the RBC model, Φ. The main finding in Figure 3 is that, conceptually

in line with the previously discussed evidence for Φ=0, Scheme I has a low power

to discriminate between alternative extents of hysteresis. This is especially apparent

from the evidence in the top row, as the posterior distributions of the fraction of the

variance of output explained by H shocks are consistently spread out, with materially

different values of Φ being associated with quite similar probabilities. For example,

when Φ is equal to 10 per cent, which one might regard, ex ante, as a plausible value,

the mode of the posterior in panel (1,3) still has a clear peak at Φ=0, but values in

excess of 20, 30, or even 40 per cent are associated with non-negligible probabilities.

Turning to the corresponding evidence for Scheme II, two things ought to be

pointed out of the results in Table 2. First, and least importantly, the mean (i.e.,

the expected value of the) fraction of identified models featuring H shocks does not

reliably capture the true value of Φ in the DGP, it is rather systematically lower, and

it exhibits a non-linear relationship with Φ. For our purposes, however, this bears

no negative implication, since there should be no presumption that the estimated

fraction of models featuring H shocks should be a reliable estimator of Φ. The crucial

point is rather that, as Φ increases in the DGP, the mean fraction of models featuring

H shocks increases monotonically: this suggests that, in principle, based on a Monte

Carlo-based approach conceptually akin to Stock and Watson’s (1996, 1998) TVP-

MUB methodology, it should be possible to back out a reliable estimate of Φ from

the Monte Carlo distributions generated conditional on a grid of values of Φ.

4 A Monte Carlo-Based Approach

Let us start from Scheme II, for which the Monte Carlo-based approach we propose

is more straightforward.

4.1 Scheme II

When applied to Bayesian VARs Scheme II produces a certain fraction  of models

(i.e. of SVARs) for which the permanent output shock is H, with 0≤  ≤1. Let
∗ be the fraction of such models obtained based a specific sample of actual data.
The proposed strategy, which (as discussed below) is conceptually related to Stock

and Watson’s (1996, 1998) TVP-MUB methodology for testing for the presence of

random-walk time-variation, and estimating its extent, can be described as follows.

We start by simulating estimated VARs upon which (as described below) we

impose specific values of hysteresis, i.e. of the fraction (Φ) of the frequency-zero

variance of output explained by H shocks. We consider a grid of  values for Φ from

0 (no hysteresis) to Φ=0.5 (for which H shocks explain half of the frequency-zero
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variance of output). We label the individual values of Φ in the grid as Φ, with 

= 1, 2, ..., . Based on each simulated, artificial sample , with  = 1, 2, ...,  ,

conditional on Φ we then estimate the same Bayesian VAR we previously estimated

based on the actual data, and we implement Scheme II. This produces a fraction 
of identified models for which the permanent output shock is H. In this way, for each

Φ we build up the Monte Carlo distribution of the fraction of models with H shocks.

The Monte Carlo evidence in Section 3.1.2 suggests that the larger Φ the greater the

probability of identifying models featuring H shocks, so that as Φ increases from 0

to Φ, the resulting Monte Carlo distributions of the 

 ’s shift more and more to

the right. Let ̄

be the median of the Monte Carlo distribution of the  ’s, computed

conditional on Φ. A natural estimate of the fraction of the frequency-zero variance

of output explained by H shocks (i.e., the extent of hysteresis) is the value of Φ such

that ̄

= ∗, the fraction of models featuring H shocks obtained based on the actual

data. Finally, by comparing ∗ with the Monte Carlo distribution of the 1 ’s (i.e., the
distribution for Φ1=0, with no hysteresis) it is possible to compute a ‘pseudo -value’

for the null hypothesis of no hysteresis.14

This approach bears a close conceptual similarity with Stock and Watson’s (1996,

1998) TVP-MUB methodology. Working within a Classical context, they perform

a test for a joint break in the model’s coefficients, and then build up the Monte

Carlo distribution of the test statistic conditional on a grid of values for the extent of

random-walk time-variation in the coefficients. Once again, the intuition is that the

larger the extent of random-walk time variation, the more the Monte Carlo distrib-

ution of the break test statistics gets shifted to the right. The TVP-MUB estimate

of the extent of random-walk time-variation is that specific value conditional upon

which the median of the resulting Monte Carlo distribution is equal to the value of

the break test based on the actual data.

Let us now turn to Scheme I.

4.2 Scheme I

Based on each sample, this scheme produces a posterior distribution for Φ. Let

 ∗(Φ) be the posterior distribution obtained by applying Scheme I to a Bayesian
cointegrated VAR estimated based on the actual data. Exactly as for Scheme II, for

each value of Φ in the grid from 0 to Φ we simulate the VAR  times. Based

on each artificial sample  we then estimate the same VAR we previously estimated

based on the actual data, and we implement Scheme I, thus obtaining a posterior

distribution  (Φ) of the fraction of the frequency-zero variance of output explained

by H shocks. In this way, for each Φ we build up the Monte Carlo distribution of

the  (Φ)’s. The Monte Carlo evidence in Figure 2 suggests that the larger Φ the

more the Monte Carlo distributions of the  (Φ)’s will shift to the right. Let ̄
(Φ)

14We label it ‘pseudo’ because we are working within a Bayesian context.
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be the median of the Monte Carlo distribution of the  (Φ)’s computed conditional

on Φ. A natural estimate of Φ is the value of Φ such that ̄
(Φ) is closest to the

posterior distribution obtained based on the actual data,  ∗(Φ), where ‘closeness’ is
defined in terms of the Kullback-Leibler divergence.

4.3 Imposing specific values of hysteresis upon estimated

VARs

Finally, we impose specific values of Φ upon the estimated VARs that we then sim-

ulate as follows. Based on the actual data sample we analyze (discussed in Section

5), we start by estimating a cointegrated VAR via Johansen’s maximum likelihood

estimator as described in Hamilton (1994), imposing in estimation the number of

cointegration vectors identified based on Johansen’s trace and maximum eigenvalue

tests (these tests and their results are discussed in detail in Appendix B). When iden-

tifying a single permanent real GDP shock via long-run zero restrictions, the shock

satisfies all of the restrictions characterizing BQ shocks in Table 1. In the Monte

Carlo simulations conditional on Φ1=0 (i.e., no hysteresis) we therefore generate the

artificial samples by simply bootstrapping this SVAR, randomly drawing with re-

placement from the identified structural shocks. As for the Φ’s for 1 we proceed

as follows. Based on the point estimate of the reduced-form cointegrated VAR we

identify both a BQ and an H shock by imposing the restrictions in Table 1, together

with the long-run zero restriction that the two shocks are the only ones allowed to

have a permanent impact on real GDP. We implement this by drawing 100,000 ran-

dom rotation matrices jointly imposing the long-run zero restrictions, and the short-

and long-run sign restrictions, via Arias et al.’s (2018) algorithm. This produces a

distribution of the impact matrix of the structural shocks, 0, in the cointegrated

SVAR ∆ = 0 +1∆−1 + +∆− + 0−1 +0, where  is the matrix

of the cointegration vectors,  is the matrix of the loadings, [0] =  , with 
being the  ×  identity matrix, and the rest of the notation is obvious. Let ̄0
be the median of this distribution. From the distribution we select the 0 matrix

that minimizes the sum of the squared deviations of its individual elements from the

corresponding elements of ̄0, i.e. the sum across all of the 
2 elements of (0-̄0)

2.

Finally, we impose specific values of Φ0, by appropriately rescaling the column of

0 associated with H shocks, and we generate the artificial samples for the Monte

Carlo exercises by bootstrapping the resulting SVAR exactly as we do for Φ1=0.

5 Evidence for the Post-WWII United States

Our baseline system features the logarithms of real GDP, real consumption, real

investment, and total hours worked; inflation, computed as the log-difference of the

GDP deflator; the 10-year government bond yield; and Wu and Xia’s (2016) ‘shadow
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rate’. The sample period is 1954Q3-2019Q4, and the sources of the data are described

in detail in Appendix A.

We start by discussing the evidence produced by Scheme II applied to Bayesian

VARs in levels, which based on the Monte Carlo evidence in Section 3.1.2 should be

expected to produce, for plausible value of hysteresis, more precise results, and we

then turn to discussing that produced by either Scheme I or Scheme II applied to

Bayesian cointegrated VARs. As already mentioned, the two sets of results are very

similar, and suggest that H shocks likely explain about 6-7 per cent of the frequency-

zero variance of GDP, although strictly speaking evidence is compatible with the

notion of no hysteresis.

5.1 Evidence based on VARs in levels and Scheme II

The approach we use is the same as in the Monte Carlo exercise of Section 3.1.2, i.e.

we estimate the reduced-form Bayesian VAR as in Uhlig (1998, 2005), taking 100,000

draws from the posterior distribution. For each draw we then identify, as in Uhlig

(2003, 2004), the most powerful shock for real GDP at the 15 years horizon, and we

check whether it satisfies the restrictions in Table 1 characterizing either BQ or H

shocks. If the draw satisfies either of the two sets of restrictions we keep it, otherwise

we discard it. As for the long-run impact of H shocks on the GDP deflator, we either

leave it unrestricted, or we impose the restriction that its sign is the same as the sign

of its short-run impact.

Starting from the quantitative importance of hysteresis, in terms of the fraction of

the variance of GDP at =0 explained by H shocks (i.e., Φ), the first column of Figure

4 shows the fraction of models featuring H shocks estimated in the data, together with

the medians of the Monte Carlo distributions generated (as described in Section 4)

conditional on alternative values of Φ. The fractions of models featuring H shocks

estimated in the data are equal to 6.7 when no restriction on their long-run impact

on the GDP deflator is imposed, and to 6.1 per cent when it is instead imposed.

As expected, the medians of the Monte Carlo distributions increase monotonically

with Φ. The Monte Carlo-based estimate of Φ, equal to the value for which the

median of the corresponding Monte Carlo distribution is equal to the fraction of

models featuring H shocks estimated in the data, is equal to 7 and 6.5 per cent when

restrictions on the long-run impact of H shocks on the GDP deflator are not, and

are imposed respectively, thus showing that, in fact, imposing or not imposing such

restriction makes little difference.

The second column of Figure 4 shows the deconvoluted density of Φ, where the

deconvolution has been performed based on exactly the same methodology used by

Benati (2007) to deconvolute the density of , the extent of random-walk drift in the

data estimated via Stock and Watson’s (1996, 1998) TVP-MUB methodology. Once

again, imposing or not imposing restrictions on the long-run impact of H shocks

on the GDP deflator makes virtually no difference. The evidence in the two panels
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Figure 4  Evidence based on VARs in levels and Scheme II 
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Figure 5  Impulse-response functions based on VARs in levels and Scheme II 
 
 
 



suggests that although the just-mentioned estimates of Φ, around 6-7 per cent, are

quite small, in fact the only values that can be ruled out with very high confidence

are those in excess of 30 per cent, and even quite large values such as 15-20 per cent

are still associated with non-negligible probabilities. One obvious reason for such a

large uncertainty about estimates of Φ is that the extent of hysteresis is a feature of

the data pertaining to the infinite long run, and therefore, as discussed by Faust and

Leeper (1997), it should be difficult to pin down with precision in finite samples. In

line with Uhlig (2003, 2004), one possibility to obtain more precise estimates might

therefore be to focus upon a long, but finite horizon. In fact, this is not the case, as

the results obtained by focusing upon the 15 years ahead horizon, as opposed to the

frequency =0, and numerically very close (these results are available upon request).

Figure 5 shows the IRFs produced by the two types of models, with no restriction

being imposed upon the long-run impact of H shocks on the GDP deflator, whereas

Figure A.4 in the Online Appendix shows the fractions of FEV explained by BQ and H

shocks based on either model. IRFs have been normalized so that the median impact

of either shock upon real GDP at the 15 years horizon is equal to one. The most

notable result in Figure 5 is that a positive H shock causes a strongly statistically

significant increase in hours worked at all horizons, which appears to broadly stabilize

about 5 years after impact, thus suggesting that the long-run impact of the shock is

in fact permanent. This suggests that one channel through which hysteresis effects

manifest themselves is via changes in hours worked. Based on the median estimates,

the long-horizon impact on hours is about half, in percentage points, as that on GDP.

As we will see in Section 5.2.2, this result is confirmed by the evidence produced by

cointegrated SVARs. A second interesting result in Figure 5 is that a non-negligible

fraction of the models featuring H shocks is associated with a negative impact upon

the price level (i.e., with the case depicted in the very last panel of Figure 1). This

finding, however, should not be over-emphasized since, the bulk of the mass of the

posterior distribution is in fact associated with a positive impact.

The evidence in the first column of Figure A.4 suggests that the fractions of

the FEV of GDP explained by BQ and H shocks within their respective models is

essentially the same. In particular, at the 15 years horizon, the median and the 90 per

cent credible set of the fraction of FEV is equal to 0.884 [0.762 0.955] for BQ shocks,

and to 0.900 [0.798 0.961] for H shocks.15 Either shock also explains large fractions of

the FEV of hours and (as expected) consumption and investment, whereas the role

played for the remaining variables is significantly smaller.

We now turn to the corresponding evidence based on cointegrated VARs.

15The corresponding fractions obtained by imposing restrictions on the long-run impact of H

shocks on the GDP deflator are virtually identical.
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5.2 Evidence based on Bayesian cointegrated VARs

Our approach to Bayesian cointegration is based on methods introduced by Strachan

and Inder (2004) and Koop et al. (2010), which we discuss in the following sub-

sections.

5.2.1 Methodology

Identification of the cointegration vectors Let the cointegrated VECM repre-

sentation be

∆ = 0 +1∆−1 + +∆− + 0−1 +  (5)

where  is the matrix of the cointegration vectors,  is the matrix of the loadings,

[0] = Σ, and the rest of the notation is standard.

For the  cointegration vectors to be uniquely identified, each of the  columns

of the matrix  ought to feature at least  restrictions (see Kleibergen and van Dijk,

1994, or Bauwens and Lubrano, 1996). Within a Classical context, the standard

solution proposed by Johansen (1988, 1991) is to rely on the identification method

for reduced-rank regression models introduced by Anderson (1951). Within a Bayesian

setting, several methods have been proposed. Following Koop et al. (2010), we adopt

the approach proposed by Strachan and Inder (2004), which is based on imposing the

normalization that  is semi-orthogonal:

0 =  (6)

where  is the  ×  identity matrix.16 This restriction is imposed by defining a

semi-orthogonal matrix  = (
0
)

−12, which is used to center the prior for the
cointegration space around the value that a researcher considers the most plausible.

Since  and  span the same space, this is obtained by appropriately selecting

the columns of  based on a priori information, for instance derived from economic

theory.

As mentioned, in our baseline specification  = [      ]
0, where ,

, , and  are, respectively, the logarithms of GDP, consumption, investment, and

total hours worked;  = -−1 is inflation; and and  are the short- and the long-

term nominal interest rates. As discussed in Appendix B, based on Elliot et al.’s (1996)

tests the null hypothesis of a unit root cannot be rejected for any of the series (whereas

it is strongly rejected for their differences). Further, Johansen’s tests identify three

cointegration vectors for the 7-variables system, whereas the corresponding tests for

the bivariate systems featuring GDP and consumption, consumption and investment,

and the short- and the long-term nominal interest rates detect cointegration for all

16We also considered the “linear normalization” approach proposed by Geweke (1996). Although

the results are qualitatively similar to those based on Strachan and Inder (2004), we focus on the

latter because Geweke’s (1996) approach is less general.
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of the three systems. In the light of this evidence, the natural choice is to center

the prior for  at the three cointegration relationships identified in the bivariate

systems,17 which is obtained by setting  to

 0
 =

⎡⎣ 1 −1 0 0 0 0 0

0 1 −23 0 0 0 0

0 0 0 1 −1 0 0

⎤⎦  (7)

Our calibration for the priors for the second elements of the normalized cointegration

vectors for GDP and consumption, consumption and investment, and the short and

the long rate (corresponding to the first, second and third rows of  0
, respectively)

reflects the fact that in the long run GDP and consumption, and short- and long-

term nominal interest rates, respectively, tend to move essentially one-for-one in all

countries, and for all historical periods we are aware of,18 whereas investment typically

tends to increase somewhat faster than GDP. For example, in the United States since

1947Q1 real GDP has increased, on a log scale, by 1.97, whereas the corresponding

increase for real investment has been equal to 2.75, so that the increase for the former

series has been equal to 71.6 per cent of the increase for the latter one. It is important

to stress, however, that given the flatness of the prior for  (discussed below, and in

Appendix C), the centering of its prior encoded in this choice for  imposes, in fact,

extremely weak restrictions.

Estimation We estimate the cointegrated VAR via the Gibbs-sampling algorithm

proposed by Koop et al. (2010). The algorithm cycles through four steps associated

with (i) the loadings matrix  in equation (5), (ii) the matrix of the cointegration

vectors , (iii) the VAR coefficient matrices , and (iv) the covariance matrix Σ,

which jointly describe a single pass of the Gibbs sampler. We run a burn-in pre-sample

of 100,000 draws, which we then discard. We then generate 1,000,000 draws, which

we “thin” by sampling every 100 draws in order to reduce their autocorrelation. This

leaves us with 10,000 draws from the ergodic distribution, which we use for inference.19

Appendix C discusses in detail both the priors, which we take from either Koop

et al. (2010) or Geweke (1996), and the conditional distributions we use in order

17Standard neoclassical growth theory suggests that, to the extent that the real interest rate is

I(1), it should be cointegrated with both the consumption/GDP and the investment/GDP ratios.

As the evidence in Table A.1 in the Online Appendix shows, the null hypothesis of a unit root for

the ex post real rate (computed as the difference between the short rate and inflation) cannot indeed

be rejected. As discussed next, however, our priors for the cointegration vectors are extremely weak,

so that the three cointegration relationships in the bivariate systems are only used to center the

priors very loosely, and in fact they allow the short rate and inflation to enter the cointegration

relationship between GDP and either consumption or investment.
18We can provide extensive evidence on this based on long-run data that, for several countries,

stretches back in time to the aftermath of the Napoleonic Wars.
19The online appendix reports evidence on the convergence of the Markov chain by showing the

first autocorrelation of the draws for each individual parameter. For all parameters the autocorrela-

tions are extremely low, typically between -0.1 and 0.1.
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to draw from the posterior in steps (i)-(iv), which are taken from either Koop et al.

(2010) or Geweke (1996). All of the priors are extremely weak. In particular, the one

for the matrix of the cointegration vectors  is flat.

Imposing the identifying restrictions As for Identification Scheme I, we jointly

impose the zero long-run restrictions, and the short- and long-run sign restrictions,

based on the methodology proposed by Arias et al. (2018). We impose the short-run

sign restrictions both on impact and for the subsequent eight quarters.

As for Identification Scheme II we identify, for each draw from the ergodic distri-

bution, the only shock that has a permanent impact on GDP, and we check whether

it satisfies both the short- and the long-run restrictions characterizing either BQ or

H shocks. If the shock is identified as either BQ or H we keep the draw, otherwise

we discard it.

5.2.2 Empirical evidence

Scheme I Figure 6 shows, for a grid of values of the fraction of the variance of

GDP explained by H shocks at =0 (i.e., Φ), the Kullback-Leibler (KL) divergence

statistic between (1) the posterior distribution of Φ estimated in the data based on

Scheme I applied to the Bayesian cointegrated VAR, and (2) the median of the Monte

Carlo distribution of Φ computed (as discussed in Section 4.2) conditional on each

value in the grid. Conceptually in line with the corresponding evidence based on

Scheme II applied to VARs in levels discussed in Section 5.1 the goal is, once again,

to determine which, among the values of Φ in the grid, is most likely to have produced

the posterior distribution of Φ estimated in the data. The evidence in the figure is

quite clear, with the KL statistic exhibiting a hump-shaped pattern with a minimum

corresponding to Φ=0.07, exactly in line with the results from Scheme II applied to

VARs in levels.

Figures 7 and 8 report the median and the 16-84 and 5-95 percentiles of the

posterior distributions of the IRFs to BQ and H shocks, and of the fractions of the

FEV of the series explained by the two disturbances. The IRFs are qualitatively the

same as those produced by Scheme I applied to VARs in levels in Figure 5, with the

only difference that here the impact of H shocks on the short rate is estimated to

be permanent, rather than transitory. As for the fractions of FEV in Figure 8, the

most notable result is that whereas, as mentioned, our Monte Carlo-based approach

suggests that Φ is equal to 7 per cent, the median fraction of the long-horizon FEV

of real GDP explained by H shocks is slightly greater than 20 per cent. This shows

that the Monte Carlo-based methodology we propose does make a material difference

to the estimates, pointing towards a smaller extent of hysteresis than suggested by

the simple estimates produced by the cointegrated VAR.
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Figure 6  The Kullback-Leibler divergence for alternative values of the fraction of the variance 
             of GDP explained by H shocks at ω=0, based on cointegrated VARs and Scheme I 
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Figure 7  Impulse-response functions based on cointegrated VARs and Scheme I 
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Figure 8  Fractions of forecast error variance based on cointegrated VARs and Scheme I 
 
 
 
 



Scheme II Turning finally to the results produced by Scheme II, they are uniformly

in line with the corresponding set of results based on VARs in levels discussed in

Section 5.1, and they are therefore not reported here, but they are available upon

request.

6 Conclusions

Taking as data-generation process a standard DSGEmodel, we have shown via Monte

Carlo that reliably detecting hysteresis, defined as the presence of aggregate demand

shocks with a permanent impact on output, is a significant challenge, as model-

consistent identification schemes spuriously detect it with non-negligible probability

when in fact the data-generation process features none, and have a low power to dis-

criminate between alternative extents of hysteresis. We propose a simple approach to

test for the presence of hysteresis, and to estimate its extent, based on the notion of

simulating specific statistics (e.g., the fraction of frequency-zero variance of GDP due

to hysteresis shocks) conditional on alternative values of hysteresis we impose upon

the VAR, and then comparing the resulting Monte Carlo distributions to the corre-

sponding distributions computed based on the actual data via the Kullback-Leibler

divergence. Based on two alternative identification schemes, evidence suggests that

post-WWII U.S. data are compatible with the notion of no hysteresis, although the

most plausible estimate points towards a modest extent, equal to about 7 per cent of

the frequency-zero variance of GDP.
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A Sources of the Data

Quarterly seasonally adjusted series for real GDP (‘GDPC1: Real Gross Domestic

Product, Billions of Chained 2012 Dollars, Quarterly, Seasonally Adjusted Annual

Rate’) and the GDP deflator (‘GDPCTPI: Gross Domestic Product: Chain-type Price

Index’) are from the U.S. Department of Commerce, Bureau of Economic Analysis.

Inflation has been computed as the log-difference of the GDP deflator. Quarterly

seasonally adjusted series for real chain-weighted investment and real chain-weighted

consumption have been computed based on the data found in Tables 1.1.6, 1.1.6B,

1.1.6C, and 1.1.6D of the United States National Income and Product Accounts.

Whereas consumption pertains to non-durables and services, investment has been

computed by chain-weighting the relevant series pertaining to durable goods; private

investment in structures, equipment, and residential investment; Federal national de-

fense and non-defense gross investment; and State and local gross investment. A

quarterly seasonally adjusted series for total hours worked by all persons in the non-

farm business sector (‘HOANBS: Nonfarm Business Sector: Hours of All Persons,

Index 2009=100’) is from the U.S. Department of Labor, Bureau of Labor Statistics.

A monthly series for the 10-year government bond yield (‘GS10: 10-Year Treasury

Constant Maturity Rate’) is from the Board of Governors of the Federal Reserve Sys-

tem. A monthly series for Wu and Xia’s ‘shadow rate’ is from Cynthia Wu’s website,

at: https://sites.google.com/view/jingcynthiawu. Both the Wu-Xia ‘shadow rate’,

and the 10-year government bond yield, have been converted to the quarterly fre-

quency by taking averages within the quarter. A quarterly seasonally adjusted series

for average hours worked by all persons in the nonfarm business sector has been com-

puted by dividing the previously mentioned series for total hours worked by total

employment in the nonfarm business sector (the FRED II acronym is PRS85006013).

Quarterly seasonally adjusted series for the civilian unemployment rate, the level of

unemployment (in thousands of persons) and the labor force overall participation

rate have been computed by taking averages within the quarter of the monthly series

produced by the U.S. Department of Labor, Bureau of Labor Statistics (the FRED

II acronyms are UNRATE, UNEMPLOY, and CIVPART).

B Unit Root and Cointegration Properties of the

Data

Table A.1 in the Online Appendix reports results from Elliot et al. (1996) unit root

tests for either the (log) levels or the (log) differences of the series. In short, the null

of a unit root cannot be rejected for any of the series, whereas it can be rejected

for their (log) differences. Turning to the cointegration properties of the data, basic

economic theory suggests that, within the present context, we should expect at least

three cointegration relationships: one between the short- and the long-term nominal
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interest rates, and two between GDP, consumption, and investment. Table 1 provides

evidence that this is indeed the case. The table reports bootstrapped p-values20 for

Johansen’s trace and maximum eigenvalue tests for three bivariate systems featuring

GDP and consumption, consumption and investment, and the short and the long rate.

For all systems evidence of cointegration is very strong, with the largest -value across

the three systems being equal to just 0.0033. Turning to the 7-variables system, Table

2 reports bootstrapped p-values for the corresponding tests.21 Whereas the trace tests

uniformly reject the null of no cointegration against any of up to five cointegration

vectors, results from maximum eigenvalues tests point towards three cointegration

vectors, with the test of three versus four vectors producing a -value of 0.6376. In

the main text we therefore work under the assumption that the 7-variables system

features the three cointegration vectors suggested by economic theory.

Table A.1 Bootstrapped p-values for Johansen’s tests for the

bivariate systems

Log GDP and Log consumption Short rate

Test log consumption and log investment and long rate

Trace 2.0e-4 3.e-4 0.0029

Maximum eigenvalue 5.0e-4 0.0015 0.0033
 Based on 10,000 bootstrap replications of Cavaliere et al.’s (2012) procedure.

Table A.2 Bootstrapped p-values for Johansen’s tests for the

seven-variables system

Trace tests of the null of no cointegration against

the alternative of h or more cointegration vectors:

h = 1 h = 2 h = 3 h = 4 h = 5

0.0050 0.0025 0.0100 0.0746 0.0865

Maximum eigenvalue tests of h versus h+1 cointegration vectors:

0 versus 1 1 versus 2 2 versus 3 3 versus 4 4 versus 5

0.0854 0.0072 0.0875 0.6376 —
 Based on 10,000 bootstrap replications of Cavaliere et al.’s (2012) procedure.

20Bootstrapping has been implemented as in Cavaliere et al. (2012). Cavaliere et al. (2012),

Benati (2015), and especially the Online Appendix of Benati et al. (2021) provide extensive Monte

Carlo evidence on the excellent performance of this bootstrapping procedure.
21Again, bootstrapping has been implemented based on Cavaliere et al.’s (2012) methodology.
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C Choice of the Priors, and Drawing from the Pos-

terior, for the Bayesian Cointegrated VAR of

Section 5.1

C.1 Choice of the priors

We follow Koop et al. (2010) in the choice of the priors for , , and Σ. The prior

for  is a shrinkage prior with zero mean:

 | 0 1  Σ    ∼
¡
0 (01)

−1 ⊗
¢
 (8)

where MN denotes the matricvariate-normal distribution; 1 =  0 + −1⊥ 0
⊥;

and is a square matrix that, in line with Strachan and Inder (2004), we set to = Σ.

In addition,  is a scalar between 0 and 1, and  is a scalar that controls the extent of

shrinkage. In what follows we set  = 1, which corresponds to a flat, non-informative

prior on , and  = 1000, corresponding to a very weakly informative prior for  (the

standard non-informative prior would be obtained by setting 1 = 0).

The prior for  is based on a matrix angular central Gaussian distribution:

() ∝ | |−2|0()
−1|−2 (9)

where  =  0 + ⊥ 0
⊥, and  is the number of variables in the system. The

prior for the covariance matrix Σ is the non-informative prior:

(Σ) ∝ |Σ|−(+1)2 (10)

As for the coefficient matrices , we follow Geweke (1996) and choose a multivariate

normal prior, which implies that the posterior is also multivariate normal.22

C.2 Drawing from the posterior

The conditional posterior distribution for  = Σ is inverse-Wishart:

Σ |  0 1    ∼ 
¡
0 + (01)

−10  + 
¢
 (11)

where  is the sample length. The conditional posterior for the coefficient matrices

 is given by (see Geweke, 1996)

() |  Σ     ∼ 
©
(Σ−1 ⊗  0 + 2)−1(Σ−1 ⊗  0)(0) (Σ−1 ⊗  0 + 2)−1

ª


(12)

with 0 ≡ [0 1 2 ... ] and ̂ = (
0)−1 0(∆ − ̃ 0). ∆ and ̃ are  ×

matrices, whose -th rows are equal to ∆ 0
 and 

0
−1, respectively.  is a  × 1+

22We thank Rodney Strachan for confirming to us that taking step () of the Gibbs-sampling

algorithm from Geweke (1996) and the remaining steps from Koop et al. (2010) is indeed appropriate.
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matrix, whose -th row is  ≡ [1 ∆ 0
−1 ∆ 0

−2 ... ∆ 0
−]. Following Geweke (1996)

we set 2=10.

We derive the posterior distributions for  and  as in Koop et al. (2010). Using

the transformation 0 = ()(−1)0 =
£
(0)12

¤ £
(0)−12

¤0 ≡ 0, with  =

(0)12,  = −1,  = (0)12,  = (0)−12, and 0 = 0, the priors for  and
 imply the following priors for  and :

 | 0 1  Σ    ∼
¡
0 (0−1)−1 ⊗ 

¢
 (13)

() ∝ ||−2|0−1|−2 (14)

The conditional draws for  and , that is, steps () and () of the Gibbs-sampling

algorithm, can then be obtained via the following two steps:

(0) draw (∗) from (|0 1  Σ    ) and transform it to obtain a draw

(∗) = (∗)((∗)0(∗))−12; and

(0) draw  from (|(∗) 0 1  Σ    ) and transform it to obtain draws

 = (0)−12 and  = (∗)(0)12.

In the Online Appendix we report evidence on the convergence properties of the Koop

et al. (2010) Gibbs-sampling algorithm.
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Online Appendix for:

Searching for Hysteresis

Luca Benati

University of Bern∗
Thomas A. Lubik

Federal Reserve Bank of Richmond†

A The Real Business Cycle Model Used in the

Monte Carlo Exercise of Section 3

Here follows a detailed description of the real business cycle (RBC) model we use

as data-generation process (DGP) in the Monte Carlo exercise of Section 3. In

essence, the model is that described in Galí’s (2015) Chapter 2, augmented with

habit-formation in consumption and a unit root in technology (and therefore in the

natural level of output), and featuring the possible presence of hysteresis effects (as

discussed below). Whenever possible we follow Galí’s own notation. Households solve

the following problem

∗0 ≡Max


0

∞X
=0



"
ln( − −1)− 

1+


1 + 

#
(A.1)

subject to

 + = −1 + −  (A.2)

where  and  are real consumption and hours worked, respectively; 01 is the

habit-formation parameter;  is the price of consumption goods;  is the stock of

nominal bonds;  is the price, at time , of a nominal bond paying 1 dollar at time

+1;  is the nominal wage;  are nominal lump-sum taxes; and the rest of the

notation is obvious. The two first-order conditions (FOCs) are



 =







∙
1

 − −1
− 



+1 − 

¸
(A.3)

∗Department of Economics, University of Bern, Schanzeneckstrasse 1, CH-3001, Bern, Switzer-
land. Email: luca.benati@vwi.unibe.ch

†Research Department, P.O. Box 27622, Richmond, VA 23261. Tel.: +1-804-697-8246. Email:

thomas.lubik@rich.frb.org.
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and



∙


 − −1

+1



¸
= 

∙
1 + 

+1 − 

− 


+2 − +1

¸
(A.4)

With no habit-formation (i.e., with =0) the two FOCs collapse to those found in

Galí (2015), i.e.



 =





1



and 1 = 

∙


+1+1

¸
(A.5)

As for the firms we exactly follow Galí (2015), with the only difference pertaining

to the process for technology. Firms produce output () via the production function

 = 
1−
 , with 01 being the Cobb-Douglas parameter,  being technology,

and the capital stock being constant and normalized to 1. Maximization of profits,

 −, produces the FOC





= (1− )1−
 (A.6)

As for the logarithm of technology,  = ln(), we postulate that it evolves according

to

 = −1 +  + ̃−1 (A.7)

with  ∼ (0 2), ̃ being the transitory component of output (to be discussed

below), and  ≥ 0 capturing the possible presence of hysteresis effects. If  = 0 there
is no hysteresis, whereas if   0 positive (negative) transitory fluctuations of output

cause subsequent permanent increases (decreases) in the level of technology. This

specification, which is conceptually the same as the one used by Jordà et al. (2020),

is designed to capture, in a very simple and stripped-down fashion, the notion that

positive (negative) deviations of GDP from potential (here, deviations of output from

its stochastic trend ) may have a positive (negative) impact on potential GDP itself.

Although we could have considered more complex formalizations of the notion of

hysteresis, we chose to use (A.7) because for our own purposes (i.e., performing Monte

Carlo simulations) it is perfectly appropriate. Finally, since there is no investment,

no government expenditure, and no foreign sector,  = .

Since  is I(1), log-linearization of the FOCs and of the production function

requires the preliminary stationarizazion of the relevant variables. We define the sta-

tionarized variables

̃ ≡ 



and Ω̃ ≡

³




´


 (A.8)

with ̃ and ̃ being the log-deviations of ̃ and Ω̃ from the steady-state, so that ̃ is

the component of output that is driven by the transitory disturbances (discussed be-

low). With ̃ and Ω̃ defined as in (A.8), the production function and the three FOCs

can be trivially stationarized. Then, log-linearization of the stationarized production

2



function and of the three stationarized FOCs produces the following four log-linear

relationships characterizing the dynamics of the economy in a neighborhood of the

steady-state,

̃ − (1− ) = 0 (A.9)

̃ +  −  = 0 (A.10)

− + +1| +  +  − ̃ − +1| + ̃+1| = 0 (A.11)

 − ̃ −  +
1

(1-)(1-)

£
(1 + 2)̃ − ̃+1| − ̃−1 + ∆

¤
= 0 (A.12)

where  ∼ (0) is the log-deviation of from the steady-state,  ≡ -−1 = ln()-

ln(−1) is inflation,  is a transitory demand disturbance, and  and  are two

transitory supply disturbances, with

 = −1 +  (A.13)

 = −1 +  (A.14)

 = −1 +  (A.15)

with  ∼ (0 2), 

 ∼ (0 2), 


 ∼ (0 2), |  |  1, and where the

rest of the notation is obvious. The logarithm of technology, , evolves according

to (A.7). Finally, monetary policy is characterized by a standard Taylor rule with

smoothing,

 = −1 + (1− ) (A.16)

where the notation is obvious. By defining the state vector as

 = [  ̃  ̃∆    +1| ̃+1| +1| ̃+1|]
0 (A.17)

and augmenting the system with the definition of the four rational expectations fore-

cast errors

 = |−1 +  (A.18)

̃ = ̃|−1 + 
̃
 (A.19)

 = |−1 +  (A.20)

̃ = ̃|−1 + ̃ (A.21)

the system can be put into the ‘Sims canonical form’ (see Sims, 2002) and solved.

We calibrate the structural parameters as follows: =0.99, =1/3, =0.8, =1,

=0.9, =1.5, and =0.007.
1 We augment the model with three transitory AR(1)

disturbances, two of them ( and ) supply-side, and one () demand-side, and

1The value for  is close to Watson’s (1986, p. 60) estimate of the standard deviation of shocks

to the stochastic trend of log real GDP (0.0057). The rationale is that, within the present context,

 is the random-walk component of log real GDP.
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an additive disturbance to the log of the production function,  ∼ (0 2), with

=0.005. The AR parameters are calibrated to ===0.75, whereas the stan-

dard deviations of the disturbances’ innovations  , 

 , and  (all zero-mean, and

normally distributed) are set to =0.001, =0.005 and =0.045. Based on this

calibration the permanent technology shock ( ) explains exactly 1/3 of the forecast

error variance (FEV) of log GDP on impact, and with =0 it explains slightly more

than 96 per cent of GDP’s FEV 15 years ahead. These figures are broadly in line

with the evidence produced by the structural VAR literature: for example, as for the

fraction of the FEV of GDP explained by permanent shocks on impact see Table I.2

of Cochrane (1994). Further, based on these values of the structural parameters the

demand-side disturbance  is quite close to being the only driver of the transitory

component of output, so that the identifying restrictions in Table 1 are, for practical

purposes, correct. Finally, as for  in the Monte Carlo exercise we consider a grid of

values, from =0 (no hysteresis) to =0.348, for which the technology shock  and

the demand-side shock  both explain virtually half of the frequency-zero variance

of output.

B Additional Tables and Figures

Table A.1a Bootstrapped p-values for Elliot, Rothenberg, and Stock unit

root tests for the (log) levels of the series

In levels In differences

Series =2 =4 =6 =8 =2 =4 =6 =8

Log real GDP 0.5780 0.8241 0.7787 0.8105 0.0000 0.0000 0.0000 0.0002

Log real consumption 0.7368 0.8979 0.9060 0.9204 0.0000 0.0000 0.0000 0.0002

Log real investment 0.3562 0.3501 0.2409 0.3119 0.0000 0.0000 0.0000 0.0001

Log total hours 0.5413 0.7210 0.7594 0.9082 0.0000 0.0000 0.0000 0.0000

Long rate 0.6642 0.6366 0.7697 0.8215 0.0000 0.0000 0.0000 0.0000

Short rate 0.2491 0.1753 0.1433 0.3722 0.0000 0.0000 0.0000 0.0000

Inflation 0.1083 0.2288 0.1881 0.2336 0.0000 0.0000 0.0000 0.0000

Ex post real short rate 0.0697 0.1709 0.1436 0.2034 0.0000 0.0000 0.0000 0.0000
 Based on 10,000 bootstrap replications. For details, see Appendix A.  Short rate minus inflation.
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Figure A.1  Theoretical impulse-response functions for the RBC model 
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Figure A.2  Theoretical fractions of forecast error variance for the RBC model 
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Figure A.3  Monte Carlo evidence on recovering the RBC model’s true IRFs and fractions of forecast 
                error variance with no hysteresis, conditional on the correct identification scheme  
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Figure A.4  Fractions of forecast error variance based on VARs in levels and Scheme II 
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Figure A.5  Impulse-response functions based on cointegrated VARs and Scheme II (without 
                imposing restrictions on the long-run impact of H shocks on the GDP deflator) 
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Figure A.6  Fractions of forecast error variance based on cointegrated VARs and Scheme II (without 
                imposing restrictions on the long-run impact of H shocks on the GDP deflator) 
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