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1 Introduction

Utilities under risk and over time have been subject to recent controversy and inten-
sive research with many important contributions triggered in particular by the paper
by Andersen et al. (2008). Using a double Multiple Choice List (MCL) approach they
estimated utility under risk and assumed time-dated utility in time preference exper-
iments to have the same functional form. This resulted in a substantial reduction in
the estimated discount rates when the time-dated utility curvature was determined by
the Constant Relative Risk Aversion (CRRA) coefficient from the risk MCL.

A number of studies have later questioned whether utility under risk and over
time are the same and have used alternative methods to test this (Abdellaoui et al.,
2013; Andreoni and Sprenger, 2012a,b; Andreoni et al., 2015; Cheung, 2019). Che-
ung (2016) provides a good review of most of these studies. The methods used to
elicit utility under risk and over time differ across these studies. However, one find-
ing in common is that they find utility under risk and over time to be different and not
to be closely correlated. Another finding in common is that utility under risk is found
to be more concave than utility over time.

Our study aims to contribute to this literature by assessing whether time-dated
utility can be estimated and be associated with magnitude effects in discounting be-
havior. Many studies have found that discount rates decline with the magnitudes of
the prospects offered. Chapman (1996) found that magnitude effects in discount rates
were much smaller after correcting for utility function curvature. Loewenstein and
Prelec (1992) also explained magnitude effects as resulting from utility function cur-
vature.

Another unsettled area in the estimation of utility under risk and over time is the
degree of integration with background consumption or wealth (often called degree
of asset integration). This issue has received more attention in relation to decisions
under risk and empirical studies indicate a limited level of asset integration in an
instantaneous utility function. Andersen et al. (2008) used a daily wage as the back-
ground level of consumption both in the risk and time preference estimation. Full
asset integration would imply risk neutral behavior in small gambles and constant
discount rates over varying time horizons in time preference experiments. This im-
plies that limited asset integration can explain small stakes risk aversion which has
been perceived as a puzzle (Rabin, 2000), and hyperbolic discounting (Holden and
Quiggin, 2017). Andreoni and Sprenger (2012a) used a Stone-Geary utility function
to estimate background consumption parameters in their estimation of time prefer-
ences. An important lesson from their study was that both the discount rate and the
utility curvature parameters were sensitive to background consumption. They found
that the discount rate declined and the concavity of the utility function increased
with increasing background consumption and it was challenging to jointly estimate
background consumption, utility curvature and discount rates given the high share of
corner solutions in their data.

Holden and Quiggin (2017) found substantial magnitude and time horizon effects
in an experiment where they assumed utility under risk and over time were the same
and estimated under risk. They attributed hyperbolic and magnitude effects to variable
asset integration based on a ”mental zooming” theory with larger amounts and longer
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time horizons resulting in higher degrees of asset integration. They used a separate
risk experiment to elicit utility under risk that was used to handle utility in time
as well. We question whether this may explain persistent magnitude effects in the
discounting functions.

We propose a new theory for time-dated utility without assuming that utility un-
der risk and over time are the same. It focuses on population-averaged behavior. We
test the theory using data from an incentivized large sample lab-in-the-field experi-
ment with substantial within-subject treatment variation in magnitude levels and time
horizons that facilitate simultaneous estimation of discount functions and time-dated
utility curvature while varying the assumptions about the degree of asset integration.

We ask the question whether so-called magnitude effects in time preference ex-
periments, where larger amounts are associated with lower discount rates than for
smaller amounts, can be explained by concavity in time-dated utility, captured by con-
stant elasticity of marginal utility (CEMU) utility functions, and/or variable degrees
of asset integration, similar to the zooming theory of Holden and Quiggin (2017).
Theoretical assumptions are relaxed in a step-wise approach while critically examin-
ing the plausibility of parameter estimates as a method to choose among specifica-
tions. Constant discounting is tested towards more flexible discounting functions to
assess hyperbolic effects, while explicitly testing for present bias. We study popula-
tion averaged effects with our within-subject design. The large sample allows testing
of the robustness of the results by splitting into district-wise samples.

The results indicate that models with variable asset integration give parameters
more in line with theoretical assumptions (positive discount rates for all within-
subject treatments and non-convex time-dated utility). The model with ”matching
fund” asset integration gave the most robust results (high consistency across the
district-wise samples in utility and discounting parameters, and with low Luce error
estimates) and time-dated utility with substantial concavity. The discounting func-
tions retained strong general hyperbolic patterns as well as present bias.

We outline the theory for time-dated utility in part 2 of the paper. The experimen-
tal design, sampling and data are described in part 3. The estimation and identification
strategy is presented in part 4 and the results in part 5, including robustness checks.
The findings are discussed and related to the literature in part 6 before we conclude.

2 Model framework

In the following we will give a modeling framework for population averaged be-
havior that aims to explain certain systematic anomalies observed in inter-temporal
choice. We will start from a classical Samuelson discounted utility model, where dis-
count rate, utility curvature and asset integration is constant across within subject
treatments. From this classical baseline, we introduce more flexible models where
discount rates, utility curvature and asset integration vary systematically at the popu-
lation level across within-subject treatments.
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2.1 Base model

Consider the standard binary choice problem, where the respondent has to choose
between two prospects, MA at time tA, or MB at time tB, where t0 ≤ tA < tB (t0 is the
present time):

UA = e−δ (tA−t0)u(y1 +MA)+ e−δ (tB−t0)u(y2) (1)

and

UB = e−δ (tA−t0)u(y1)+ e−δ (tB−t0)u(y2 +MB) (2)

where u(·) is the time-dated utility function, δ is the continuous time discount rate,
and y1 (y2) is the time-dated base consumption that is integrated with the prospects at
time tA (tB).

Let time-dated utility be represented by a constant elasticity of marginal utility
(CEMU) utility function;

u = ((y)1−θ −1)/(1−θ) (3)

where θ is the constant elasticity of marginal utility and the function is modified to
accommodate θ = 1.

Our baseline model is the basic Samuelson (1937) discounted utility (DU) model
applied to our binary choice data and is given by equations 1, 2 and 3, where the asset
integration is fixed to one daily wage (y1 = y2 = w).1 In this baseline, the discount
rate, δ , and the CEMU-parameter, θ , are endogenously determined as population-
averaged and treatment-averaged variables based on the treatment variation in time
horizons and magnitude levels2. A growing number of studies have questioned whether
utility under risk can be used to represent time-dated utility curvature in inter-temporal
choice (Andreoni and Sprenger, 2012b,a, 2015; Abdellaoui et al., 2013; Cheung,
2015, 2016, 2019). It is based on this literature that we use this alternative approach
and estimate θ from the substantial variation in magnitude levels included in our
unique experimental design.

2.2 Model extensions and theoretical foundations

The base model described in the preceding subsection does not allow for present bias
nor for more general hyperbolic behavior and magnitude effects that have been identi-
fied in many studies of inter-temporal choice. We explore three dimensions for model
extensions from the basic DU model to get better population-averaged fit with respon-
dent data. These three dimensions include δ variation (Dimension 1=non-constant
discounting), θ variation (Dimension 2=utility curvature), and asset integration vari-
ation (Dimension 3=variable asset integration).

1 In other words, we assume limited asset integration in line with Andersen et al. (2008, 2018).
2 We elaborate on the experimental design and treatments in part 3.
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Earlier research on discounting behavior for long primarily explored Dimension 1
in form of assessing present bias (quasi-hyperbolic) and to some extent general hyper-
bolic discounting (discount rates falling with length of time horizon after controlling
for present bias), and magnitude effects in discounting. The theoretical foundations
for present bias are well documented and related to phenomena such as procrastina-
tion, addiction, immediate pleasure, and liquidity constraints (Loewenstein and Pr-
elec, 1992; Laibson, 1997). The theoretical foundations for general hyperbolic and
magnitude effects are more controversial and have to a less extent been tested. The
hyperbolic model was proposed by psychologists while the quasi-hyperbolic model
has dominated in economics and there have been few attempts to rigorously com-
pare these (O’Donoghue and Rabin, 2015). Our approach is a more comprehensive
approach as it nests these models by retaining exponential discounting while testing
for present bias and time horizon effects by including dummy variables for MCLs
with present versus future amounts and for each time horizon length. We use delayed
front-end points in time as the base to avoid the confound with uncertainty associated
with delayed payoffs when assessing the time horizon effect. Our β is therefore the
inverse of that in the (δ ,β )-model (Phelps and Pollak, 1968; Laibson, 1997).

Dimensions 1 and 2 have been explored in many of the recent studies where
a growing number of studies have assessed whether utility under risk can be used
to represent time-dated utility. We are not aware that any other study has assessed
these two dimension jointly like we do in model Extension 1, see Table 1. In Ex-
tension 1 we test for hyperbolic discounting, including present bias. This approach
begs for the question whether magnitude effects should be solely assumed into the
utility curvature (Dimension 2) or whether it should also be brought into or retained
in dimension 1 (magnitude effects in discounting) (Chapman, 1996; Loewenstein and
Prelec, 1992). Extension 2 in addition allows for magnitude effects in the discount-
ing dimension. Like in the baseline model, both these extensions allow CEMU-θ to
be endogenously determined but constant across treatments and sample while asset
integration is exogenous and constant at the daily wage rate level. Table 1 sums up
all the extensions we test.

Table 1 Model variants.a

Dimension 1 2 3
Model Discount rate (δ ) Utility curvature (θ ) Asset integration (y)

Baseline model δ (.) θ(MB; .) w
Extension 1 δ (tB,β ; .) θ(MB; .) w
Extension 2 δ (tB,β ,MB; .) θ(MB; .) w
Extension 3 δ (tB,β ,MB; .) θ(tB,MB; .) w
Extension 4 δ (tB,β ; .) θ(tB,MB; .) MB
Extension 5 δ (tB,β ; .) θ(tB,MB; .) w(MB/mean(MB))
Extension 6 δ (tB,β ; .) θ(tB,MB; .) w(MB/mean(MB))(tB/mean(tB))

a β is present bias dummy parameter.
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In Dimension 2, the time-dated utility is captured. We choose a simple one-
parameter CEMU utility function with an endogenous but constant population-averaged
CEMU-θ for this in the first three models. These models assume that every point in
time has the same shape of the time-dated utility function. Next, we want to test
the hypothesis that the CEMU-θ parameter is constant and implying that the time-
dated utility curvature is constant across time horizons. In Extension 3 the CEMU-
parameter, θ , is therefore allowed to vary with time horizon tB by making it a function
of the time horizon dummy variables. Our hypothesis is that the time-dated utility
function is less concave for longer time horizons.

In dimension 3 the degree of asset integration is captured. While Expected Utility
Theory initially assumed full asset integration with wealth, research especially of
risk preferences has revealed small gamble risk aversion and thereby limited asset
integration (Rabin and Thaler, 2001; Binswanger, 1981).

We propose that the time-dated utility function will be more quickly saturated,
and thereby more concave, if the amount received is consumed/utilized in a short
period of time. However, the logical response to the receipt of larger amounts is to
spread the utilization of this money over a longer time interval and thereby integrate
the use of this windfall money with the background consumption over a longer time
period. This is the fundamental theoretical argument for our proposition that higher
magnitude levels are associated with higher degree of asset/consumption integration.
To assess this, our next step is to allow the asset integration (y) to vary with mag-
nitude. We apply two alternative approaches to this in Extensions 4 and 5 in Table
1. The first approach allows the windfall future time-dated amounts to be integrated
with the same size background consumption. While this may sound arbitrary, it is not
more arbitrary than the previous choice of a daily wage as the time-dated background
consumption level used by Andersen et al. (2008) in risk as well as time preference
estimation or the use of zero asset integration used in many studies. For comparison
we include two additional variants for asset integration. In Extension 5 we normalize
the variation in asset integration around the mean future amount multiplied by the
daily wage, see Table 1. Finally, in Extension 6, we allow the degree of asset integra-
tion also to vary with time horizon by multiplying with the normalized time horizon
length. This is inspired by the zooming theory of Holden and Quiggin (2017) which
states that asset integration increases with time horizon and magnitude levels because
longer horizons and larger amounts involve ”bigger” decisions that stimulate subjects
to zoom out and think more holistically.

To highlight the importance of Dimension 3 we illustrate in Figure 1 that a higher
degree of asset integration implies a comparison of near future and far future prospects
further out to the right where the utility function is flatter. This implies less diminish-
ing utility associated with larger amounts compared smaller amounts and to models
with zero or small and fixed degree of asset integration. Likewise, if a longer time
horizon implies a higher degree of asset integration this also results in comparison of
prospects in a region of the time-dated utility function with less curvature.

Overall, we are therefore assessing three alternative theoretical routes or dimen-
sions for handling inter-temporal choice. All three routes have theoretical merit. The
assessment of magnitude effects and the three alternative routes for capturing them
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Fig. 1 Two different θ -asset integration pairs that give the same utility difference.

have, however, not been analyzed comprehensively before. This is the major novel
contribution of our paper.

The theoretical merit of the alternative model specifications is assessed by judg-
ing the theoretical plausibility of estimated parameters and thereby functional forms
of the discounting and utility functions. In general, discount rates for all time hori-
zons and magnitudes are expected to be non-negative and utility functions to be non-
convex as we operate in the gains domain only. We also expect the results for reliable
specifications to be robust and reasonably consistent across sub-samples. For Dimen-
sion 2 the H0 hypothesis is that θ does not vary with time horizon, or in other words,
the time-dated utility function is stable and unaffected by the time horizon. We return
to how we in more detail assess the alternative models against each other in part 4 of
the paper where the size of the Luce error is considered as an additional indicator.

3 Description of experiments, sampling and data

3.1 Experimental design and field implementation

The data set used in the study is based on a large sample ”lab-in-the-field” experiment
with young adults living in rural areas in Ethiopia. A within-subject 3∗3+1 Multi-
ple Choice List (MCL) design was used with randomized order of the the treatment
levels. Nine of 10 treatments had a one week front-end delay and the 10th treatment
had no front-end delay and was included to test for potential present bias. It was com-
bined with small amount (100 ETB) and 12 months time horizon. The 3 ∗ 3 design
included three far future point in time treatment levels, 3, 6 and 12 months and three
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magnitude levels, 100, 500 and 1000 Ethiopian Birr (ETB). The daily wage rate in
these rural areas at the time of the experiment was about 30 ETB.

The far future amount and the time horizon were kept constant in each CL and
only the near future amount varied within each CL. Rather than presenting the whole
list to respondents, a random row for each CL was presented first as a binary choice.
Depending on the response (preference for the smaller near future amount or the
larger far future amount), the enumerator was instructed to go to the bottom or the
top of the list. This is used to narrow in the range of implied discount rates. With
a switch between the near future and far future amounts at the bottom or top of the
list, the enumerator was instructed to go to the middle row between the first row and
bottom (top) row and continue to quickly narrow in on a switch point in the list. One
advantage of this method is that it simplifies the choice alternatives for the respondent
who does not see the whole price list and only makes one binary choice at the time
without being distracted by information from all the other rows in the same CL. This
should also reduce the risk of order effects, reduce the time needed to identify a switch
point in each CL, and lead to only one switch point in the list. If respondents preferred
the near future amount also at the bottom row in the CL, the enumerators were told to
add one or more extra rows at the bottom of the table with even smaller amounts till a
switch point is found (implying extremely high discount rates). Another advantage of
fixing the far future amount and varying the front end amount, and with adding rows
when needed, is that it avoids upward censoring of the identified discount rates. Such
censoring is common when the near future amount is fixed (Halevy, 2015; Pender,
1996; Yesuf and Bluffstone, 2019). High discount rates are more frequently found
in developing countries and may be associated with poverty and liquidity constraints
(Holden et al., 1998; Pender, 1996; Yesuf and Bluffstone, 2019). 3

Like Andersen et al. (2008), we incentivized the experiment by including a 10
percent probability of winning. The respondents were informed about this before
the start of the game. For delayed payouts, a guarantee was given by the local uni-
versity (Mekelle University), and a reward card was given to the winners of future
amounts, stating the time and amount to be paid out. The respondents were informed
that they should collect their future payouts at the office of the local credit provider
(DECSI). One of the authors was in charge of the fieldwork and arranged for all pay-
outs. Mekelle University is a trusted and long-term operator in the study areas. Table
?? in the appendix gives an example of a Choice List. Furthermore, Table ?? in the
Appendix gives an overview of the MCLs with variation in near and far future points
in time, and the far future amounts.

3.2 Sampling and data

Our study uses data from a field experiment where the respondents are resource-poor
young adults living in a risky environment where they combine individual and group

3 This approach is also likely to reduce bias towards the middle in each PL which has been a concern
(Andersen et al., 2006). Random choices in the lists may also be associated with biases (Andersson et al.,
2016). The randomly chosen starting point may be associated with some bias if the first choice is erroneous.
We tested for such potential bias (test results available from the authors upon request). Controlling for such
bias had minimal effects on the issues we study in this paper.
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Table 2 The Experiment. The number of treatments in each treatment level in parenthesis

Treatment type Treatment levels

Front end point in time Current (1), 1 week delay (9)
Endpoint in time 3 months (3), 6 months (3), 12 months (4)
Future amount level 100 ETB (4), 500 ETB (3), 1000 ETB (3)

Note: ETB = Ethiopean Birr.

business activities as sources of livelihood. Our sample differs systematically from
the typical laboratory samples with university students by our sample having sub-
stantially lower level of average education and larger variation in the number of years
of completed education. We also have a larger age variation. Young adults eligible
for joining the youth business group program had to be land-poor and come from the
municipality and be interested in the program. We cannot therefore rule out sample
selection bias, like for any student sample taking part in a lab experiment. One po-
tential advantage we have is that we had a large sample of business groups and group
members to sample from in the five districts where we implemented the experiment.

The total sample of groups was 742 and the average number of youth members
per group was 19.5, giving a total sample of close to 15,000 members. We randomly
sampled groups and for sampled groups we sampled 12 members. Some groups had
less than 12 members and then we tried to include all members that were available at
the time of the experiment. We analyze data from 978 subjects in 119 youth business
groups in five districts where we have 109,384 observations based on the 10 CLs.

Decisions under risk and over time are of central importance in their livelihood
choices and understanding the logic of their decisions as revealed through experi-
ments can be important for policy-making and interventions to create more sustain-
able livelihoods.

4 Model Estimation, Validation and Robustness Checks

The models are estimated using the maximum likelihood approach based on the bi-
nary choice data and the switch points identified in each CL in the within-subject
design. We use the Luce error specification to handle decision errors. 4

∇EU =
EU

1
µ

B

EU
1
µ

A +EU
1
µ

B

(4)

This gives rise to the following likelihood function:

4 Blavatskyy and Maafi (2018) found that models with non-constant discount rates were better fitted
with choice-based models with Luce (1959) errors than models with Fechner (1860) errors or Wilcox
(2008) contextual errors.
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lnL(δ ,θ ,µ;Choicei j,MA, |tB,MB,β |WD) =

∑
i
((ln(Φ(∇U)|Choicei j = 1)+(ln(Φ(1−∇U)|Choicei j = 0)) (5)

where Choicei j = 1(−1) denotes the choice of alternative A (B). Alternative model
specifications are estimated relating the population-averaged endogenous parameters
(discount rate (δ ), utility-θ and Luce error(µ) to the within-subject treatments to
test alternative functional forms (exponential versus (quasi)-hyperbolic discounting
functions (dimension 1), concavity of the time-dated utility (dimension 2), and con-
stant and variable asset integration (dimension 3). We estimate population-averaged
parameters for the full sample and per district (WD).

In addition to assessing parameter signs and sizes versus theoretical expectations,
we use the Luce error as an indicator of the model fit. A lower Luce error indicates a
better fit of the model specification.

To assess the external validity and robustness of model results for the different
specifications, we split our sample to run models of sub-populations across districts.
We estimated district-wise models for the following model specifications that are
included in Appendix 2:

a) Table 3, Baseline Samuelson DU model.
b) Table 3, Extension 3: Model with constant asset integration and hyperbolic

discounting and magnitude effects.
c) Table 4, Extension 4: Matching fund models.
d) Table 4, Extension 5: Low but variable asset integration in magnitude.
e) Table 4, Extension 6: Low but variable asset integration in magnitude and time

horizon.

5 Results

The first set of model results are presented in Table 3. The discount rates in all ta-
bles are measured as annualized inflation-corrected continuous time discount rates
in 100% units. The models in Table 3 are specified with a low and constant base
consumption (asset integration) level of one daily wage. The Baseline model is the
DU model with exponential discounting with endogenous population-averaged dis-
count rate and CEMU utility function with endogenous constant population-averaged
Utility-θ across all the within-subject treatments. Table 3 shows that the continuous
time discount rate in the DU model is 63.4 % and the θ = 0.349, indicating quite
concave time-dated utility with θ being highly significant and larger than zero.

In Model E1 in Table 3, we test for non-constant discount rates by including
dummies to test for present bias and time horizon effects, i.e. population-averaged
general hyperbolic and quasi-hyperbolic discounting. The base for the discount rate
in Model E1 is 3 months horizon, while the parameters for the dummies for 6 and
12 months horizons have to be added to the base (constant) parameter to get the
discount rate for each time horizon treatment. The present bias treatment was for the
12 months horizon and the discount rate for 12 months horizon without a delayed
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near future point in time has to be calculated by adding the parameter for the present
bias to that for 12 months horizon and the constant parameter. We see that the base
parameter for 3 months horizon is 188.6% while for 12 months horizon it is (188.6−
96.4)% = 92.2% with one week delayed initial point in time. Without delayed initial
point in time, the discount rate is 14% higher, equal to 106.2%.Furthermore, Model
E1 in Table 3 shows that the θ = −0.68 which implies that the utility function is
highly convex. The convex utility function contributes to the very high discount rates
compared to the Baseline model.

Model Extension 2 (E2) deviates from E1 by including magnitude effects in the
discounting function. This results in a dramatic change in the Utility-θ which changes
from −0.68 to 1.08, that is from highly convex to highly concave. The model fit ap-
pears to be better as the Luce error reduces dramatically compared to the Baseline
and E1 models. The magnitude effects in the discounting function are highly signif-
icant and in line with earlier findings, i.e. larger amounts are associated with lower
discount rates even when utility curvature is modeled on magnitude levels. The time
horizon and present bias variables remain significant and in the same direction as in
model E2 while the constant term in the discount rate model is dramatically reduced
after magnitude effects are included, causing a substantial reduction in all discount
rates. They even move into the negative range for long horizons and large amounts.

Model Extension 3 (E3) expands from E2 by allowing Utility-θ to vary with time
horizon. Table 3 shows that the concavity increases with time horizon but not much
from the very high constant term for the shortest horizon. The Luce error reduces
slighly compared to model E2 but the discount rates remain in the negative area for
long horizons and large amounts.

The models that allow variable asset integration (dimension 3) are presented in
Table 4. Extension 4 (E4) uses matching fund asset integration. The model gives
quite concave utility that is increasing slightly for long horizons (12 months). It gives
discount rates that decline with time horizon and increase by about 21% when there is
no delay in initial point in time. The discount rate remains in the non-negative range
for all time horizon treatments. The Luce error is small, indicating good model fit.

Model Extension 5 (E5) restricts asset integration around a daily wage by multi-
plying the daily wage with the relative magnitude of the future amount (normalized
to average future amount). Table 4 shows that this model gives a utility function that
is only slightly concave while concavity increases with the length of the time horizon,
slightly more than in model E4. The discount rates are all in the reasonable range and
with significant time horizon and present bias treatment effects. However, the Luce
error is substantially higher than for the E4 model, indicating a poorer fit.

Model Extension 6 (E6) expands on E5 by also allowing asset integration to vary
with time horizon (normalized to average horizon length). Like model E5, this speci-
fication also gives close to linear utility but in this case with Utility-θ being lower for
longer time horizons. The discount rate parameters are quite similar in size to in the
E5 specification and the Luce error is slightly higher and almost ten times as high as
for models E2-E4.
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Table 3 Discounting models with time-dated utility and constant asset integration

EQUATION VARIABLES (Baseline) (E1) (E2) (E3)

Discount rate Present bias 0.140*** 0.146*** 0.162***
(0.017) (0.015) (0.015)

6 Months -0.468*** -0.426*** -0.431***
(0.009) (0.010) (0.009)

12 Months -0.964*** -0.876*** -0.876***
(0.011) (0.013) (0.012)

500 Future amount -0.609*** -0.624***
(0.016) (0.016)

1000 Future amount -0.808*** -0.832***
(0.019) (0.018)

Constant 0.634*** 1.886*** 1.062*** 1.044***
(0.064) (0.034) (0.027) (0.027)

Utility θ 6 Months 0.040***
(0.005)

12 Months 0.095***
(0.008)

Constant 0.349*** -0.677*** 1.079*** 1.070***
(0.089) (0.056) (0.019) (0.019)

Luce error Constant 0.220*** 0.498*** 0.035*** 0.031***
(0.032) (0.024) (0.002) (0.002)

Observations 109,384 109,384 109,384 109,384
Log likelihood -44385 -38769 -37923 -37741

Discount rates are measured in 100% units.
Cluster-robust standard errors in parentheses, clustered at subject level.

Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

5.1 Robustness checks

To further inspect the robustness and validity of these models we next run district-
wise models for five districts. The results are presented in Tables A2.1-A2.5 in Ap-
pendix 2 and are briefly summarized here.

Table A2.1 presents the DU Baseline models for each district. We observe sub-
stantial variation in Utility-θ across districts, varying from -0.36 but insignificantly
different from 0 in Degua Tembien district to 0.60 in Adwa district. The Degua Tem-
bien model also suffers from large standard errors and larger Luce error than for the
other districts.

Table A2.2, based on Extension 3, with magnitude effects in the discounting func-
tion, gives very similar results and with small Luce errors in all districts. The fit is
therefore very good. The main problem with these models is that they all result in
implausible negative discount rates for large amounts and long time horizons. The
time-dated utility function is strongly concave and increasing in concavity with the
length of time horizon for all districts.

Table A2.3, based on Extension 4 (Matching fund asset integration), gives consis-
tent results across four out of five districts. District Klite Awlalo (model 4) gives junk
results. For the remaining four districts the Luce errors are low and the utility curva-
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Table 4 Discounting models with variable asset integration

EQUATION VARIABLES (E4) (E5) (E6)

Discount rate Present bias 0.206*** 0.175*** 0.178***
(0.015) (0.012) (0.013)

6 Months -0.445*** -0.490*** -0.423***
(0.009) (0.011) (0.013)

12 Months -0.909*** -1.041*** -0.872***
(0.012) (0.016) (0.022)

Constant 1.256*** 1.465*** 1.419***
(0.021) (0.042) (0.055)

Utility θ 6 Months 0.011 0.046*** -0.050***
(0.008) (0.014) (0.015)

12 Months 0.070*** 0.158*** -0.121***
(0.013) (0.021) (0.025)

Constant 0.582*** 0.029 0.105*
(0.049) (0.054) (0.058)

Luce error Constant 0.033*** 0.296*** 0.320***
(0.003) (0.018) (0.023)

Observations 109,384 109,384 109,384
Log likelihood -37174 -37325 -37456

Discount rates are measured in 100% units.
Cluster-robust standard errors in parentheses, clustered at subject level.

Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

tures were similar and concave with concavity increasing slightly for the longest time
horizon. 5

Table A2.4, based on Extension 5, gives quite similar results across four out of
five districts. The utility curvature is less well determined in Samre district (model
3). Utility is closer to linear for short horizons (3 months) and concavity increases
slightly for longer time horizons. The Luce errors are substantially higher than for
the Matching fund models.

Table A2.5, based on Extension 6, gives close to linear utility but with some
variation in utility curvatures across districts. Unlike for Extension 5, the curvature
is lower for long horizons (12 months). Like for Extension 5, utility curvature is less
well established (high standard errors) for Samre district.

6 Discussion

We will discuss the results for our time-dated utility theory with variable asset inte-
gration in comparison with the dominant theories in the field, based on the estimated
models.

5 A noteworthy finding is that when a present bias dummy is included in the time-dated utility function,
the model for Klite Awlalo performs very similar to the models for all other districts and gives an equally
low Luce error. This is the case even though the present bias dummy is insignificant in the utility model
for all districts. The results are available from the authors upon request.
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The baseline Samuelson DU model with constant (population-averaged and treat-
ment averaged) discount rate and endogenous utility-θ can be rejected as all the al-
ternative models provide strong evidence of non-constant discount rates. The district-
wise models with constant discount rates gave variable results for Utility-θ .

Extension 1 (E1), which introduces controls for present bias and time horizon.
These effects are highly significant but this model fails in the sense that it generates
strongly convex time-dated utility. When magnitude effects are allowed to affect dis-
count rates directly as well as indirectly through the utility function in Extension 2,
concave utility reemerges and the magnitude effects in the discounting function are
strong and highly significant and with negative sign for longer time horizons. This
result indicates that magnitude effects in discounting cannot be explained by util-
ity curvature alone Chapman (1996); Loewenstein and Prelec (1992). And this basic
result does not change when allowing time-dated utility curvature to vary with the
length of time horizon in Extension 3. While models E2 and E3 apparently provides
a good fit as demonstrated by the low Luce errors, their fundamental weakness is
that they generate negative discount rates for long time horizons and large amounts.
We therefore also reject these specifications as they give theoretically implausible
parameter estimates.

Models E1, E2, and E3 demonstrate highly significant present bias in the data
with the present bias contributing to discount rates being 14-16.2% ceteris paribus.
These models also demonstrate strong and highly significant diminishing impatience
after controlling for present bias. We cannot therefore reject the two hypotheses re-
garding there being hyperbolic effects in the data and we have to reject the Samuelson
DU model. We also have to reject the hypothesis that hyperbolic discounting is only
due to present bias. When it comes to magnitude effects in the discounting function,
models E2 and E3 indicate that these cannot be explained solely as utility curvature
effects. Overall, none of the models with constant asset integration inspected so far
are fully satisfactory from a theoretical perspective based on the inspection of the
estimated parameters.

Our time-dated utility theory suggested that larger amounts are to a larger extent
integrated with background consumption and this may imply a fundamental error in
models that impose constant or no asset integration. It is thus of interest whether the
models with variable asset integration are better able to overcome the observed lim-
itations of the models with limited and constant asset integration and produce more
plausible parameter estimates. We present three models with variable asset integra-
tion for the full sample in Table 4.

Model E4 with matching fund asset integration, is based on our time dated utility
theory that asset integration increases (linearly) with amounts allocated for utiliza-
tion over a longer time interval. It produces more plausible parameter estimates with
discount rates varying from 34.7% for 12 months horizon to 125.6% for 3 months
horizon. The model yields quite concave utility-θ in the fairly narrow range 0.582-
0.652, similar to the DU model but much lower than in the E2 and E3 specifications.
There is a weak tendency that concavity increases with longer time horizon. In our
theory we proposed that time-dated utility will be less concave when focusing at more
distant points in time and this is not consistent with the finding in this specification.
We also notice that the Luce error is low and at about the same size as in the E2 and
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E3 models, indicating its good fit. We note that the concavity of the utility is quite
strong in this model compared to some other recent studies estimating utility curva-
ture through other means than behavior in risk experiments Andreoni and Sprenger
(2012a); Abdellaoui et al. (2013); Cheung (2019). The inclusion of quite high mag-
nitude levels in our experiment may be a reason for this. Less variation in magnitude
levels may give closer to linear and less accurate estimates.

Model E5 allows variable asset integration but at a more restricted level, allowing
it to vary with magnitude around a daily wage level. This model also yields reasonable
discount rates in the range from 42.4-146.5%. These higher discount rates than in
the previous model are explained by less concave utility with θ in the range 0.029-
0.187. In this model the concavity increases somewhat more as the time horizon is
extended compared to model E4. The Luce error is much larger than for the matching
fund model. Overall, these two models with variable asset integration give parameter
estimates that are more plausible for all treatments and treatment levels compared to
the models with constant and limited asset integration.

Model E6 expands asset integration by also allowing it to vary with time hori-
zon. This specification is inspired by the Holden and Quiggin (2017) zooming theory
which allows asset integration to vary both in time horizon and magnitude while de-
riving utility curvature from a risk experiment. Unlike that study, we use magnitude
effects also to estimate utility curvature and we do not aim to use variable asset in-
tegration to eliminate time horizon and magnitude effects. We test only how a linear
adjustment for time horizon in the asset integration function affects the utility and
discount function parameter estimates. We find that this model yields reasonable and
slightly higher discount rates than the previous models and utility curvature that is
close to linear but slightly concave for shorter time horizons. This specification there-
fore gives utility curvature estimates that are close to other recent studies (Abdellaoui
et al., 2013; Andreoni and Sprenger, 2012a; Cheung, 2019) in terms of being close to
linear but concave. The finding of utility curvature declining slightly with time hori-
zon is also consistent with our time-dated utility theory. However, the Luce error in
the model is slightly higher than for model E5 and much higher than for model E4,
indicating that it gives a poorer fit to the data.

To further scrutinize the alternative models against each other, we assess the ro-
bustness of the results by estimating the models separately in five district-wise sam-
ples, see tables in Appendix 2.

Assessing jointly the variants of asset integration models across districts, the
matching model E4 gives very robust and similar results across districts (except one)
and with very low Luce errors. Discount rates are all within reasonable ranges and
utility-θ does not vary much across districts or across time horizon treatments but is
quite strongly concave in all models, within the range 0.515-0.751 across four dis-
tricts and time horizon treatments. This compares to utility-θ variation from -0.014-
0.273 for the E5 model when leaving one district out, and to -0.186-0.248 for the E6
model across four districts. The Luce errors are 8-10 times higher for models E5 and
E6 than for model E4. This finding gives some cracks in the finding of apparent nice
aggregate parameter estimates for the E5 and E6 models compared to the matching
fund model (E4).
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Overall, the models with variable asset integration give more plausible discount
rates and utility curvature estimates than models with fixed and limited asset inte-
gration. The findings lend support to our theory about time-dated utility stating that
larger amounts are integrated with larger consumption or asset values, based on the
idea that larger amounts are perceived to be used over a longer time period.

7 Conclusion

We have used data from a large field experiment with within-subject magnitude and
time horizon treatments to jointly estimate population-averaged time-dated utility and
discounting functions. The experimental data are used to test the appropriateness of
different theoretical models and hypotheses. In particular, we wanted to test our new
time-dated utility theory stating that the level of asset integration is increasing in
magnitude by larger amounts being distributed and combined with larger background
consumption over longer time-intervals for time-dated utility. The theory also opens
for additional asset integration for more far future prospects based on the zooming
theory of Holden and Quiggin (2017) as well.

We assessed three dimensions for incorporating magnitude effects in inter-temporal
discounting. The most common way has been to include it as magnitude effects di-
rectly in the discounting function. The second dimension is to incorporate magnitude
effects through the time-dated utility function and use variation in magnitude treat-
ments to identify the curvature of the time-dated utility function. The third dimension
is through variable asset integration that increases with magnitude levels. Our study
revealed that the first two, alone or in combination, were insufficient to give plau-
sible parameter estimates in discounting and utility. However, using dimension two
and three to incorporate magnitude effects gave models with parameters within rea-
sonable ranges. A model with ”matching fund” asset integration gave more robust
and stable results and better fit (low Luce errors) than models with more restricted
but variable asset integration. The latter types of models gave utility functions that
were closer to linear than the matching fund model that gave quite concave utility
functions. Our assessment is based on the requirement that discount rates should be
non-negative for all time horizon and magnitude levels and have non-convex utility
functions in the gains domain of the experimental payoffs that our experiment inves-
tigates.
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8 Appendix 1. Experimental tool

Overview of the Multiple Choice List design is presented in Table A1.1.

Table A1.1. Overview of Multiple Choice Lists

Choice List Initial time Future time Future Amount Task Row 10
(weeks) (months) (ETB) Amount (ETB)

1 1 3 100 5
2 1 6 100 5
3 1 12 100 5
4 1 3 500 25
5 1 6 500 25
6 1 12 500 25
7 1 3 1000 50
8 1 6 1000 50
9 1 12 1000 50

10 0 12 100 5

Example of Choice List in the field experiment is presented in Table A1.2:

9 Appendix 2. Sensitivity Analyses

District-wise model results are presented below for selected structural model formu-
lations.
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Table A1.2. Example of Choice List

Time pref. Start Task Recive at far Choice Receive at near Choice
Series no. point no. future period future period

8 1 1000 1000
8 2 1000 900
8 3 1000 800
8 4 1000 700
8 5 1000 600
8 6 1000 500
8 7 1000 400
8 8 1000 300
8 9 1000 200
8 10 1000 100
8 11 1000 50

Table A2.1. Baseline DU model, by district

District
(1) (2) (3) (4) (5)

EQUATION VARIABLES Raya D. Tembien S. Samre K. Awlalo Adwa

Discount rate Constant 0.758*** 1.107*** 0.550*** 0.628*** 0.451***
(0.137) (0.207) (0.117) (0.133) (0.070)

Utility θ Constant 0.039 -0.355 0.355** 0.571*** 0.603***
(0.222) (0.392) (0.164) (0.133) (0.077)

Luce error Constant 0.287*** 0.522*** 0.173*** 0.182*** 0.140***
(0.081) (0.172) (0.049) (0.053) (0.023)

Observations 20,983 25,861 12,688 15,043 34,809
Log likelihood -8054 -10896 -4596 -6433 -14070

Cluster-robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table A2.2. Extension 3: Hyperbolic models with magnitude effects and constant asset integration, by
district

(1) (2) (3) (4) (5)
EQUATION VARIABLES Raya D. Tembien S. Samre K. Awlalo Adwa

Discount rate Present bias 0.181*** 0.145*** 0.189*** 0.152*** 0.162***
(0.031) (0.027) (0.048) (0.052) (0.028)

6 Months -0.345*** -0.411*** -0.409*** -0.507*** -0.478***
(0.020) (0.018) (0.030) (0.028) (0.017)

12 Months -0.784*** -0.838*** -0.835*** -0.994*** -0.930***
(0.027) (0.025) (0.038) (0.033) (0.020)

500 Future amount -0.650*** -0.684*** -0.607*** -0.589*** -0.595***
(0.030) (0.035) (0.043) (0.041) (0.029)

1000 Future amount -0.850*** -0.899*** -0.820*** -0.826*** -0.791***
(0.036) (0.040) (0.045) (0.042) (0.034)

Constant 0.864*** 1.088*** 0.913*** 1.262*** 1.070***
(0.048) (0.061) (0.061) (0.087) (0.048)

Utility θ 6 Months 0.060*** 0.023* 0.056*** 0.025* 0.055***
(0.011) (0.012) (0.018) (0.013) (0.009)

12 Months 0.126*** 0.078*** 0.134*** 0.071*** 0.104***
(0.017) (0.018) (0.019) (0.020) (0.012)

Constant 1.072*** 1.068*** 1.054*** 1.080*** 1.071***
(0.034) (0.041) (0.046) (0.053) (0.034)

Luce error Constant 0.025*** 0.035*** 0.025*** 0.037*** 0.030***
(0.003) (0.006) (0.003) (0.008) (0.004)

Observations 20,983 25,861 12,688 15,043 34,809
Log likelihood -6864 -9444 -3821 -5414 -11820

Cluster-robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table A2.3. Extension 4: Discount rate models with time-dated utility with Matching fund asset
integration, by district

(1) (2) (3) (4) (5)
EQUATION VARIABLES Raya D. Tembien S. Samre K. Awlalo Adwa

Discount rate Present bias 0.231*** 0.223*** 0.222*** 0.088*** 0.182***
(0.030) (0.030) (0.041) (0.023) (0.027)

6 Months -0.354*** -0.430*** -0.412*** -0.554*** -0.491***
(0.020) (0.018) (0.029) (0.040) (0.017)

12 Months -0.815*** -0.870*** -0.866*** -1.216*** -0.965***
(0.026) (0.025) (0.036) (0.067) (0.019)

Constant 1.113*** 1.217*** 1.183*** 3.549*** 1.323***
(0.044) (0.044) (0.057) (0.056) (0.039)

Utility θ 6 Months 0.035* -0.006 0.020 -1.039 0.030**
(0.019) (0.013) (0.031) (0.724) (0.014)

12 Months 0.097*** 0.050** 0.087** 0.317 0.085***
(0.035) (0.024) (0.042) (1.323) (0.023)

Constant 0.531*** 0.701*** 0.505*** -18.571*** 0.515***
(0.115) (0.084) (0.131) (1.204) (0.108)

Luce error Constant 0.032*** 0.028*** 0.031*** 2.086*** 0.036***
(0.007) (0.006) (0.007) (0.165) (0.007)

Observations 20,983 25,861 12,688 15,043 34,809
Log likelihood -6899 -9237 -3854 -5290 -11632

Cluster-robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A2.4. Extension 5: Discount rate models with time-dated utility with wage and magnitude
calibrated asset integration. by district

(1) (2) (3) (4) (5)
EQUATION VARIABLES Raya D. Tembien S. Samre K. Awlalo Adwa

Discount rate Present bias 0.199*** 0.194*** 0.181*** 0.147*** 0.152***
(0.025) (0.025) (0.031) (0.036) (0.023)

6 Months -0.431*** -0.450*** -0.510*** -0.554*** -0.551***
(0.027) (0.019) (0.050) (0.028) (0.018)

12.ffuturetimem -0.981*** -0.980*** -1.086*** -1.143*** -1.104***
(0.041) (0.029) (0.077) (0.042) (0.026)

Constant 1.336*** 1.361*** 1.746*** 1.675*** 1.541***
(0.123) (0.078) (0.342) (0.105) (0.075)

Utility θ 6 Months 0.096*** 0.001 0.140 0.026 0.081***
(0.034) (0.026) (0.100) (0.031) (0.024)

12 Months 0.219*** 0.113*** 0.329** 0.138*** 0.184***
(0.055) (0.040) (0.153) (0.052) (0.035)

Constant -0.014 0.160* -0.555 0.010 -0.010
(0.170) (0.094) (0.587) (0.124) (0.100)

Luce error Constant 0.266*** 0.283*** 0.386** 0.351*** 0.299***
(0.049) (0.037) (0.154) (0.050) (0.032)

Observations 20,983 25,861 12,688 15,043 34,809
Log likelihood -6837 -9350 -3815 -5336 -11663

Cluster-robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table A2.5. Extension 6: Discount rate models with time-dated utility with wage, magnitude and time
horizon calibrated asset integration, by district

(1) (2) (3) (4) (5)
EQUATION VARIABLES Raya D. Tembien S. Samre K. Awlalo Adwa

Discount rate Present bias 0.196*** 0.201*** 0.164** 0.153*** 0.154***
(0.028) (0.026) (0.069) (0.037) (0.023)

6 Months -0.401*** -0.364*** -0.511*** -0.474*** -0.492***
(0.056) (0.022) (0.087) (0.032) (0.025)

12 Months -0.872*** -0.785*** -1.050*** -0.954*** -0.945***
(0.108) (0.038) (0.272) (0.052) (0.039)

Constant 1.465*** 1.285*** 2.136 1.561*** 1.517***
(0.339) (0.104) (2.149) (0.116) (0.103)

Utility θ 6 Months 0.021 -0.096*** 0.083 -0.080** -0.014
(0.046) (0.034) (0.232) (0.032) (0.025)

12 Months -0.039 -0.157*** 0.019 -0.159*** -0.099**
(0.063) (0.054) (0.205) (0.059) (0.041)

Constant -0.147 0.248** -1.194 0.170 0.046
(0.437) (0.098) (4.749) (0.104) (0.114)

Luce error Constant 0.347** 0.303*** 0.608 0.350*** 0.330***
(0.136) (0.047) (1.330) (0.053) (0.042)

Observations 20,983 25,861 12,688 15,043 34,809
Log likelihood -6860 -9385 -3821 -5354 -11701

Cluster-robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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