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Probability Weighting and Input Use Intensity in a State-

Contingent Framework  

Abstract 

Climate risk represents an increasing threat to poor and vulnerable farmers in drought-prone 

areas of Africa. This study assesses the fertilizer adoption responses of food insecure farmers in 

Malawi, where Drought Tolerant (DT) maize was recently introduced. A field experiment, eliciting 

risk attitudes of farmers, is combined with a detailed farm household survey. A state-contingent 

production model with rank-dependent utility preferences is estimated. Over-weighting of small 

probabilities was associated with less use of fertilizer on all maize types and particularly so on the 

more risky improved maize types. 

Key words: Climate risk, state-contingent production, subjective probability weighting, 

technology adoption, adaptation, maize, Drought Tolerant maize, fertilizer use. 

JEL codes: Q12, Q18, O33, C93, D03. 

1. Introduction 

Climate risk and shocks are expected to increase with climate change (IPCC 2014; Li et al. 2009), 

a trend that may especially threaten poor and vulnerable populations in Sub-Saharan Africa that 

are still highly dependent on agriculture for their livelihoods. Cereal crops, notably maize (the 

most important food crop in many African countries), are sensitive to climatic variability and to 

droughts in particular. 

One possible response to this threat is the use of more drought-tolerant (DT) maize varieties (Burke 

and Lobell 2010; CIMMYT 2013; Magorokosho et al. 2010) in combination with changes to input 

choices and other aspects of the production process. Because climate is highly variable and 

experience with new varieties is necessarily limited, farmers’ decisions on adoption will depend 

on risk attitudes and on the (actual and perceived) production technology. 

Holden and Quiggin (2017) applied cumulative prospect theory (Kahneman and Tversky) and a 

state-contingent model of production under uncertainty (Chambers and Quiggin 2000) to model 

decisions of farmers in Malawi on whether to adopt a new technology, based on drought tolerant 

(DT) maize. The key findings were that more risk averse households were more likely to adopt 
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DT maize, less likely to adopt other improved maize varieties and less likely to dis-adopt 

traditional local maize. Exposure to past drought shocks stimulated adoption of DT maize and dis-

adoption of local maize. More loss averse households were more likely to adopt DT maize. 

In this paper, we use further data results from the same study to model the interaction between the 

choice of technology and the intensity of input use, with a particular focus on fertilizer. We focus 

on the role of probability weighting, in a rank-dependent utility (RDU) model (Quiggin 1982)2. 

This work extends a substantial literature on the relationship between risk attitudes and input use 

(Leathers and Quiggin 1991, Horowitz and Lichtenberg 1993, Bontems and Thomas 2000, 2006, 

Yesuf and Bluffstone 2009, Monjardino et al 2013), most of which has been undertaken within the 

expected utility (EU) model, which does not take account of probability weighting. 

In discussion of input use and production risk, it is common to treat fertilizer as a risk-increasing 

input, since it typically yields higher returns in favorable states of nature. Conversely, pesticides 

and herbicides are often regarded as risk-reducing. Chambers and Quiggin (2000) argue that this 

terminology is misleading, since the effects of an input on the state-contingent distribution of 

outputs are not exogenously given, but depend on the production plan adopted by farmers. 

Chambers and Quiggin suggest instead that inputs should be defined as risk-complementary (risk-

substituting) if the demand for those inputs increases (decreases) with the adoption of a more risky 

production plan. It follows that, other things equal, a more risk-averse farmer will use more risk-

complementary inputs.  

In the present study, we have evidence on risk attitudes both from direct questioning of farmers 

and from observed decisions on the adoption of DT maize, which gives rise to less risky output 

distributions. 

 

 

                                                 
2 Cumulative prospect theory combines the rank-dependent approach to probability weighting with the reference point 

approach of the original prospect theory (Kahneman and Tversky 1979). Because our analysis showed little evidence 

that loss aversion plays an important role in decisions on fertilizer use, we focus on the RDU model without loss 

aversion. 
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 2. Risk preferences and input use: A brief literature review 

The question of whether concerns about risk are likely to encourage or discourage the use of inputs 

such as fertilizer has been discussed at length in the literature (Leathers and Quiggin 1991, 

Horowitz and Lichtenberg 1993, Bontems and Thomas 2000, 2006, Yesuf and Bluffstone 2009, 

Monjardino et al 2013, 2015). Most work has been done using expected utility (EU) theory with 

risk represented by a stochastic production function in which inputs can be classified as risk-

increasing or risk-reducing. 

Leathers and Quiggin (1991) use the Just-Pope production technology and treat fertilizer as a risk-

increasing input. The key conclusions are that, under the standard hypothesis of non-increasing 

absolute risk aversion, use of a risk-increasing input will increase in response to either a reduction 

in risk aversion or a multiplicative reduction in yield risk.   

Horowitz and Lichtenberg (1993) examine the effects of insurance and show that insured farmers 

use more fertilizer and pesticide. They infer that these inputs may be risk-increasing. This is 

consistent with the results of Leathers and Quiggin. However, the results are also open to the 

interpretation that insured farmers are more risk averse, in which case fertilizer and pesticide may 

be risk-reducing. 

Bontems and Thomas (2000, 2006) examine both risk aversion and the value of information, 

finding that both play a significant role in decisions on fertilizer use.  The aggregate effect of risk 

aversion and information processing is estimated at about 20% of profit per acre. The positive 

weight attributed to risk aversion is consistent with the assumption that fertilizer is a risk-

increasing input. 

Yusuf et al (2009) examined new technology adoption and fertilizer use in Ethiopia. They 

concluded, contrary to most previous work that fertilizer is a risk reducing input. Gelo et al (2015), 

also examining Ethiopian data subject to climate risk conclude that fertilizer is risk increasing. 

Most of this work was undertaken in the framework of Expected Utility theory. However, there is 

considerable evidence to support the more general rank-dependent utility (RDU) model, which 

incorporates probability weighting along with the traditional EUT concept of risk aversion arising 

from a concave utility function.  The  RDU model is a special case of the Cumulative Prospect 

Theory (CPT) model (Kahneman and Tversky), which allows for loss aversion as well as 
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probability weighting.  Unlike CPT, the RDU model has tractable comparative static properties 

(Quiggin 1991a). 

We are only aware of one paper applying CPT to input use decisions. Liu and Huang (2013) found 

that more risk averse farmers use more pesticide on cotton, while more loss averse farmers use 

less pesticide on cotton. Their finding is consistent with farmers placing more emphasis on loss 

aversion in the health domain than in the profit domain. This is the only study that we are aware 

of before our own study to combine a comprehensive field experiment, to reveal EUT, and CPT 

parameters, to assess how these are related to the intensity of adoption of a technology. There is 

clearly a need for more research to assess the external validity of their findings.  

 

3. Theoretical framework: A state-contingent approach to technology adoption 

The theoretical framework used here, as in Holden and Quiggin (2017), is based on the state-

contingent production technology (Chambers and Quiggin 2000). The exposition here will focus 

on the relationship between input demand and technology adoption, considered as forms of 

adaptation to climate change. 

Adaptation is the response to shocks and adoption of new technologies is part of such adaptation 

to climatic risk and change. Adaptation processes may be modelled as a change in the state-

contingent production technology, or as a change in the set of inputs and state-contingent outputs 

chosen from a given technology sets. 

Let the set of states of nature be denoted S.  The probability of state s in S  is denoted by πs. A 

state-contingent output vector is denoted by z in RS.  Here zs denotes the output realised if the 

producer chooses z and state s is realised.  

Input use is decided before the state of nature is revealed. The non-stochastic vector of inputs is 

denoted by x.  The technology is summarized by a set 

T ={(x,z): x can produce z} 

Note that, except in the special case of a Leontief or ‘output-cubical’ technology, the choice of 

inputs x does not determine the state-contingent output z. As is emphasized by Chambers and 
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Quiggin (2000), inputs may be allocated to increase output in some states of nature, at the cost of 

lower outputs in other states. 

For given input prices w, the technology may be summarized by a cost function 

C(w,z) = min{wx: (x,z) is in T} 

Conversely can derive the input demand function 

x(w,z) = argmin{wx: (x,z) is in T} 

A particularly simple case, for which Chambers and Quiggin (2000) present a graphical analysis 

is that of two states of nature, one of which is unfavorable in a sense that will be made precise. 

Chambers and Quiggin use the example, appropriate for the present paper, where the bad state is 

represented by a drought. 

The producer is concerned with net income 

y =  pz – wx  

= pz - C(w,z) 

assuming cost minimization.  Under the stated conditions, y is a stochastic variable taking values 

in RS. The producer’s problem is therefore one of choice under uncertainty. 

We will not, initially at least, impose a specific assumption about the producer’s preferences under 

uncertainty, such as maximization of expected value or expected utility, but will assume that 

preferences can be represented by a continuous functional  V mapping RS  to R such that V(y) is 

increasing in y. 

We now define the unfavorable state by considering the problem of achieving a given expected 

output z at minimum cost, that is 

z* = Min {C(w,z): π1z1 + π2z2 = z} . 

Definition: State 1 is unfavorable if in the solution to the problem above, we have 

z1 < z2 
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That is, while it would be technically feasible to produce more in the drought state than in the 

normal state, for example, by heavy use of irrigation, a cost-minimizing producer, seeking to 

achieve a given expected output, would never choose to do this. For the remainder of the paper, 

we will order the states so that z1 < z2. 

State-contingent output vectors with the same mean may be ordered in terms of riskiness in various 

ways (Chateauneuf et al. 2004, Quiggin 1991b, Rothschild and Stiglitz 1970, Sandmo 1971). For 

the case of two-states of nature, these all coincide.  For z, z’ such that E[z] = E[z’], we say that z’ 

is riskier than z if and only if 

 z1’  < z1 < z2 < z2’ 

Chambers and Quiggin define an input xj as risk-complementary if a shift from a state-contingent 

output vector z to a riskier z’ leads to an increase in demand for xj that is if 

xj(w,z) < xj(w,z’)  

and as a risk-substitute if  

xj(w,z) > xj(w,z’). 

Under expected utility we may write a market producer’s problem as 

Maxiz  E[u(pz – C(w,z))] 

with first-order condition 

E[u’(pz – C(w,z))(p-C(w,z)] = 0 

This analysis may be extended to allow for subsistence production. The simplest approach is to 

require output to meet a subsistence demand z0, with the residual z-z0 being marketed. The 

objective function then becomes  

Maxiz  E[u(p(z-z0) – C(w,z))] 

As is shown by Chambers and Quiggin (2000), a more risk-averse producer will choose a less 

risky state-contingent output plan than a less risk-averse producer. Hence, for a given expected 

output, the more risk-averse producer will use more risk-substituting inputs, and less risk-

complementary inputs. 
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Using the ‘correspondence condition’ proposed by Quiggin (1991a), the analysis may be extended 

to the case of non-EU preferences represented by a rank-dependent or prospect theory model (these 

coincide for the case where there are two states and returns are strictly positive). If the producer is 

uncertain about the probability of a bad state of nature and therefore has a subjective probability 

rather than an objective probability (Savage 1954), the subjective probability may replace the 

objective probability.  

People are commonly observed to overweight low probability extreme events (Kahnemann and 

Tversky 1979; Wu and Gonzales 1999; Gonzales and Wu 1999). Provided probability weighting 

leads to a greater weight on the less favorable state, an RDU maximizer will use more risk-

substituting inputs and less risk-complementary inputs than an EU maximizer with the same utility 

function. 

 

4. The case of fertilizer use and technological innovation in Malawi 

Our context, is that of food insecure and vulnerable smallholder farmers in Malawi who, to a large 

extent, rely on rain-fed agriculture as their main source of livelihood. The majority of these farmers 

are deficit producers of maize, which is their main staple food crop even after a large-scale input 

subsidy program was introduced in 2005 (Dorward and Chirwa 2011; Holden and Lunduka 2013; 

2014). These farmers must choose whether to adopt new drought tolerant (DT) varieties of maize, 

as against the alternatives of traditional local maize and other improved maize varieties (OIMP). 

Conditional on this choice, they must decide on other inputs to production, including the 

application of fertilizer. In this paper, we are primarily concerned with the fertilizer input choice. 

Our study was carried out in six districts in Central and Southern Malawi in 2012, a year in which 

a large part of the study area was exposed to a severe dry spell during the early rainy season when 

most households had planted their maize and applied basal fertilizer to their crops.  

Holden and Fisher (2015) found that DT maize expanded substantially in Malawi in the 2006-2012 

period and that the input subsidy program (FISP), which provides subsidized fertilizer and seeds, 

had been a major driver of this adoption process. They found that exposure to earlier shocks and 

risk aversion were positively associated with adoption of DT maize.  
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 Fertilizer use intensity is measured as kg of fertilizer applied to the areas planted with each type 

of maize. Shock exposure recall data were collected through the household survey and include 

drought shocks and other shocks (such as deaths and serious sickness in a family in the four years 

preceding the survey).  

The survey contained separate questions on preferences for improved versus local maize in 

situations without and with access to fertilizer. Local maize was preferred by 16.5% of the 

respondents in the case of good fertilizer access and by 47.9% in the case of poor or no fertilizer 

access.  

Exposure to shocks may affect risk attitudes. We asked the farm households whether they have 

been affected by any shocks in each of the last four years, i.e., from 2009 to 2012, and to rank 

shocks by severity. Table A1 in Appendix 1 shows the distribution of the most severe shocks they 

perceived they had been affected by in 2011-12.  

Risk preferences were measured using a combination of framed and artifactual field experiments. 

Elicitation procedures are described in Holden and Quiggin (2017). Here we focus on the CRRA 

parameter and the probability weighting parameter. Loss aversion was also elicited, nesting the 

RDU model within the CPT model of Kahneman and Tversky, but was not found to be 

significantly related to fertilizer demand. Hence, it is not reported here. 

Summary statistics for the key variables are presented in Table A2 in Appendix 1.  

 

5. Factors affecting input use decisions 

Adoption decisions may have to be made before the state of nature is revealed3. Choices are 

therefore subject to technological and market risk. We will consider each of these in turn. 

 

                                                 
3 Where droughts in the form of dry spells occur during the rainy season. 
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5.1. Weather risks and shocks 

The most relevant weather-related risks to crop production in Africa include rainfall risk (too much 

and too little rain) in the crucial stages of the crop cycle from before planting until after the harvest. 

The distribution of rainfall is particularly important, and stochastic events such as no rain or too 

much rain can cause severe damage. In this study, we focus particularly on the effects of too little 

rain arriving during the crucial growth stages of the maize crop.  

Widespread occurrence of such dry spells varies across years and locations. There can also be local 

variation in the occurrence of dry spells, as rainfall can be highly localized. We therefore depend 

on information from the farmers themselves regarding the occurrence of such dry spells. Such 

events are highly salient for farmers, and we have asked them to recall whether they experienced 

dry spells that affected their crops in each of the last three years. The farmers had no difficulties 

recalling such events, and their answers are consistent across farms in given neighborhoods. 

Lagged drought dummy variables, therefore, are good indicators of recent drought experiences4.  

Data from the nearest weather stations do not provide accurate information on local spatial 

variability. We utilize average rainfall from the weather stations as an indicator of expected rainfall 

in the area, which may also influence maize adoption decisions of farmers in the area.  

5.2. Market access risk and shocks 

Small farmers can face difficulties in accessing farm inputs such as maize seeds and fertilizers for 

several reasons, including poor market access (long distance and poor infrastructure), erratic and 

limited supply in thin and poorly developed markets, and policy interventions that affect access 

and prices, such as the distribution of targeted subsidized inputs in Malawi.  

Heterogeneity of input access is captured as follows. Dummy variables for the receipt of vouchers 

for subsidized fertilizer and maize seeds in the 2011/12 production season are included. The 

farmers can use these vouchers to obtain fertilizer and maize seeds at the nearest depot. While such 

access is partly random, it is also partly non-random, as such subsidies are targeted partly on the 

                                                 
4 While the severity of such dry spells can vary from place to place and year to year, farmers’ notions of droughts of 

this nature appeared to be quite accurate and related to the drought having a significant negative impact on their crop 

yields. While one may question whether such drought perception data are endogenous and correlated with household 

characteristics including preferences, we found no such problem when regressing the lagged drought perception 

variables and the number of shocks variable on the these household variables (results are available from authors upon 

request). 
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basis of unclear criteria and may be influenced by social networks in which the well-connected are 

likely to be more successful in obtaining subsidized inputs (Holden and Lunduka 2013; 2014; 

Ricker-Gilbert et al. 2011). The endogeneity of these variables has econometric implications that 

are discussed in relation to the estimation strategy. 

The implication of this uncertainty regarding access to maize technologies is that technology 

adoption itself becomes stochastic. This stochastic variation in technology adoption includes the 

outcome of the decision to adopt or not adopt and the degree of adoption. 

5.3. Exposure to shocks 

Households may have been exposed to several types of shocks in the recent past, and this may 

affect their production decisions, as there may be some learning from these shocks. The main types 

of shocks are droughts, and households may have gained insights into the performance of different 

maize varieties after such shocks. Shocks may also have affected farmers’ liquidity, their 

endowments, and the needs of households, and thus, they may have indirectly affected input 

decisions and technology choices.  

We asked households about their shock experiences during the last four years (2009-2012) and 

include a measure of the number of shocks households experienced in this period. It is possible 

that households have learned from the shocks and become more willing to adopt new technologies 

that make them better able to handle the types of uncertainties they face. It is also possible that the 

shocks have locked households into the use of inferior technologies that render their production 

less efficient.  

The main hypotheses we want to test are therefore the following: 

H1) Fertilizer use intensity is lower for more risk averse producers. 

H2) Fertilizer use intensity is higher for low-risk DT maize than for high risk OIMP and LM maize. 

H3) Subjective overweighting of low probability extreme events is associated with less intensive 

fertilizer use on maize. 

H4) Subjective overweighting of low probability extreme events is more strongly associated with 

less fertilizer use on the more risky OIMP and LM maize than the less risky DT maize.  

H5) Access to subsidized inputs enhances intensity of fertilizer use for all types of maize. 
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This study focuses on the input decisions that were mostly made before the state of nature was 

revealed. However, the drought in the 2011/12 season came so early in the rainy season that it also 

affected the planting of maize and fertilizer use.  

We adopt the classical approach to hypothesis testing, in which each of H1-5 is tested against the 

null hypothesis H0, which may be stated as “there is no difference in fertilizer use intensity 

associated with the variable under examination”. 

 

6. Data and estimation 

The survey contained separate questions on preferences for improved versus local maize in 

situations without and with access to fertilizer. Local maize was preferred by 16.5% of the 

respondents in the case of good fertilizer access and by 47.9% in the case of poor or no fertilizer 

access.  

Exposure to shocks may affect risk attitudes. We asked the farm households whether they have 

been affected by any shocks in each of the last four years, i.e., from 2009 to 2012, and to rank 

shocks by severity. Table A1 in Appendix 1 shows the distribution of the most severe shocks they 

perceived they had been affected by in 2011-12.  

Elicitation procedures are described in Holden and Quiggin (2017). Here we focus on the CRRA 

parameter and the probability weighting parameter. A single parameter for the probability 

weighting was calibrated from three multiple price lists following Tanaka et al. (2010). Loss 

aversion was also elicited, nesting the RDU model within the CPT model of Kahneman and 

Tversky, but was not found to be significantly related to fertilizer demand. Hence, it is not reported 

here. A large share of the sample was found to have a probability weighting function with inverted 

S-shape. This is consistent with most other studies of probability weighting functions (Gonzales 

and Wu 1999, Wu and Gonzales 1999). We used the following single-parameter weighting 

function and the multiple price list approach of Tanaka et al. (2010): 

    1/ exp ln 1/w p p
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An 1   implies overweighting of low probabilities and an inverted S-shape. Figure 1 shows the 

distribution of the   parameter in our sample. We see that the large majority have values below 

one and therefore overweight small probabilities. 

 

Figure 1. Distribution of the   parameter in the sample. 

Summary statistics for the key variables are presented in Table A2 in Appendix 1.  

This study focuses on the input decisions that were mostly made before the state of nature was 

revealed. However, the drought in the 2011/12 season came so early in the rainy season that it also 

affected the planting of maize and fertilizer use.  

6.1. Estimation strategy 

We focus primarily on ex ante technology choice and intensity decisions and assume that a non-

separable farm household model is an appropriate framework for input use decisions at the 

household level, as input markets are imperfect (Ricker-Gilbert et al. 2011). Input demands for 

fertilizer are therefore captured by the two sets (system) of equations below; 

1) Fi
M= Fi

M(Pi
Me, Pc

M, Ps
M, Si

M, Si
F, Rv, Ci, ®i, αi, λi, Xi, Ai, ϭv) 

where Fi
M represents the input investment by maize type, with the superscript M representing type 

of maize (three types: DT (drought tolerant), OIMP (other improved variety), LM (local maize)) 
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for farmer i. Pi
Me is the unobserved expected price of maize for farmer i. Pc

M is the commercial 

price of maize seed by maize type, and Ps
M is the subsidized price of maize seed. Si

M and Si
F are 

dummy variables indicating whether the farmer has access to subsidized seed or fertilizer in the 

form of a maize seed or fertilizer vouchers, Rv is average rainfall in the area as an indicator of 

agronomic suitability to maize production. Ci is a vector of shock and risk variables, including 

contemporary and lagged exposure to drought shocks, access to preferred maize varieties and the 

number of shocks that a farm household has been exposed to over the last three years. ®i represents 

the relative risk aversion coefficient, and αi is the subjective probability weighting parameter. Xi 

represents other household characteristics, Ai represents farm characteristics, and ϭv is a vector of 

village dummies. Similarly, fertilizer use intensity for each type of maize is a function of the same 

set of variables.  

 6.2. Intensity of fertilizer use by maize type 

Household level intensity of fertilizer use in kg of fertilizer by maize type was estimated for the 

three maize types. Some households had only one maize type, others had two, while hardly any 

had all three types5. To handle possible attrition bias and possible bias related to selection into 

maize type, inverse probability weights (IPWs) were generated for households having a given 

maize type, using probit models with baseline household characteristics. The fertilizer intensity 

models were then weighted with these IPWs. Fertilizer intensity models were estimated jointly 

and for each maize type as censored tobit models6. 

 

2012 2011 2010

0 1 2 31 32 33 4 5 6

7 8 9 10 11 12 13

4)  

                 ;

M M M M M M M M M M
ii i i i i i i v

M M M S M F M M M M M LM M

i i i i i i v i i

F crra D D D NS FG R

EX EN S S M F D ipw

         

        

         

      
 

The dependent variables are in kg fertilizer and are left censored. Variables are otherwise specified 

as in equation 5), with two exceptions. With the recursive nature of input use in the study area, 

planting of seeds takes place before application of fertilizers, which therefore is conditional on the 

choice of maize type. Selection into maize type is therefore controlled for by jointly controlling 

for attrition and sample selection by constructing joint inverse probability weights, ipwi
M. Tables 

1 and 2 present average marginal effects. 

                                                 
5 See Holden and Fisher (2015) for the details on the classification of maize varieties into these three maize types. 
6 Double hurdle models were also tested but failed to converge.  
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7. Results: Fertilizer use intensity by maize type 

7.1. Main model results 

Fertilizer use intensity is analyzed using censored tobit models that are pooled (Table 1) or 

conditional on the type of maize being planted by households (Table 2). To correct for attrition 

and sample selection bias related to planting specific types of maize, inverse probability weights 

from probit models for planting each type of maize were used, with the baseline household sample 

and characteristics as right-hand side variables. Input quantities were measured as kg fertilizer. 

Tables 1 and 2 present the results for models both without and with a set of endogenous variables. 

We also tested double hurdle models but these did not converge7 and censored tobit models 

appeared to be most appropriate.  

Tables 1 and 2 show that the key variables produced quite similar results in the cases without and 

with the endogenous variables. Relative risk aversion had a negative sign in all models but was 

significant only in one model in Table 2, the first model with OIMP maize without endogenous 

variables. The subjective probability weight (alpha parameter), however, is positive and highly 

significant (at 1% or 0.1% levels) in all models in Tables 1 and 2. This indicates that fertilizer use 

intensity is significantly lower for farmers who overweight low probability extreme events more. 

Figure 2 illustrates the actual distribution of fertilizer use8 on OIMP, DT and LM maize for 

respondents with alpha<0.75 versus respondents with alpha>0.75. We see that fertilizer use 

distributions are much lower for the first group and particularly so for the OIMP maize.  

There are no strong shock effects on fertilizer use intensity, but average rainfall is associated with 

a higher intensity of fertilizer use on OIMP maize, while for DT maize, farmers apply more 

fertilizer in areas with higher average rainfall and in areas not exposed to droughts two years 

earlier. It is possible that the one year lag is insignificant because there was no serious drought in 

2011. Some learning may enhance the potential of DT maize varieties, as the level of technical 

efficiency is found to be low in smallholder maize production in Malawi after controlling for 

drought and land quality (Holden and O’Donnell 2015).  

With regard to the included endogenous variables, receipt of a voucher for subsidized fertilizer is 

positive and highly significant (at the 0.1% level in the pooled model in Table 1 and at 10% level 

                                                 
7 The low number of censored observations may explain this. 
8 Untransformed fertilizer use, to get a better idea of the actual amounts used. 
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for OIMP and local maize and at 1% level for DT maize. Saving for fertilizer purchases is positive 

and significant at 0.1% level in the pooled model and the DT and local maize models while 

insignificant in the OIMP model. This result suggests that a liquidity constraint may limit fertilizer 

use intensity. The dummy for non-agricultural business is significant at the 0.1% level and positive 

in the OIMP maize model and significant at 0.1% level and negative in the LM model. While the 

first result is consistent with a liquidity constraint alleviated by access to non-farm income, the 

latter result is more puzzling.  

One of the implications of these findings is that fertilizer subsidies therefore counteract subjective 

overweighting of low probability extreme events, behavior that is associated with lower fertilizer 

use and low fertilizer use due to binding liquidity constraints. The latter finding is consistent with 

the findings of Holden and Lunduka (2014), while the first result indicates that irrational behavior 

also plays a significant role. 
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Table 1. Pooled models for all maize types 

  Parsimonious With Endog. Var. 

Relative risk aversion  -25.274 -13.681 
 

(32.826) (32.819) 

Subj. probability weight 96.137**** 97.579**** 
 

(23.753) (26.340) 

Number of shocks last 3 yrs -3.751 1.983 
 

(5.137) (4.267) 

Drought 2012, dummy 6.500 -1.074 
 

(25.015) (26.956) 

Drought 2011, dummy 8.133 8.953 
 

(19.593) (16.650) 

Drought 2010, dummy -23.230 -17.946 
 

(14.561) (14.301) 

Average rainfall -0.121* -0.114 
 

(0.073) (0.076) 

Farm size, GPS meas., ha 15.662**** 14.642**** 
 

(2.979) (3.347) 

Sex of respondent, male=1 -9.810 -2.693 
 

(9.719) (9.438) 

Subsidized fertilizer, dummy 
 

53.447**** 
  

(14.685) 

Savings for fertilizer, MK 
 

0.001**** 
  

(0.000) 

Non-agric. business, dummy 
 

2.548 
  

(11.815) 

Formal employment, dummy 
 

16.586 
  

(10.149) 

DT maize, dummy 36.498*** 26.563**   
 

(13.583) (12.539) 

Local maize, dummy -15.783 -19.206 
 

(13.075) (11.916) 

Village FE Yes Yes 

Constant 152.559* 71.840 
 

(82.711) (91.204) 

Sigma constant 75.320**** 71.104**** 
 

(7.094) (6.807) 

Log likelihood -1331.058 -1312.871 

Prob > F 0.000 0.000 

Number of observations 277 277 

Left-censored obs. 53 53 

Note: Dependent variable: kg Fertilizer. *, **, ***, *** indicate that coefficients are significant at 10, 5, 1, and 0.1% 

levels, respectively. Cluster robust standard errors in parentheses, clustering at village level.   
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Table 2. Censored tobit models for intensity of fertilizer use by maize type without and with 

endogenous variables (table with selected key variables). 

 
Parsimonious models With endogenous variables 

 
DT OIMP LM DT OIMP LM 

Relative risk aversion  -48.584 -104.617** -26.492 -41.447 -19.240 -25.260 
 

(54.806) (48.373) (33.167) (50.039) (61.866) (34.900) 

Subj. probability weight 68.834** 178.206**** 138.849*** 156.619**** 186.520*** 116.428***  
 

(29.640) (49.366) (47.542) (41.363) (64.311) (44.336) 

Number of shocks last 3 yrs -10.146 6.572 -13.303 9.247 16.392 -7.996 
 

(7.113) (23.392) (9.753) (6.530) (19.806) (8.488) 

Drought 2012, dummy -13.184 -5.338 -59.271 -52.512** -24.161 -26.762 
 

(33.282) (46.203) (42.548) (25.053) (23.837) (31.672) 

Drought 2011, dummy 5.697 5.400 14.326 -6.965 6.834 13.484 
 

(28.738) (27.936) (21.775) (21.532) (17.489) (22.898) 

Drought 2010, dummy -8.758 -55.576** -83.095**** -19.156 -43.740 -59.586***  
 

(16.179) (21.740) (19.898) (17.038) (41.653) (20.448) 

Average rainfall 0.121 0.067 0.315*** -0.017 -0.040 0.132*    
 

(0.152) (0.203) (0.096) (0.111) (0.161) (0.074) 

Farm size, GPS meas., ha 51.227**** -29.826**** 12.587**** 34.802**** -27.509**** 12.709**** 
 

(4.036) (8.280) (3.162) (7.051) (6.747) (2.498) 

Sex of respondent, male=1 -19.578 23.998 -12.071 -0.174 34.536 -12.251 
 

(25.544) (21.121) (15.162) (24.699) (25.368) (16.986) 

Subsid. fertilizer, dummy 
   

60.771*** 52.207* 33.125*    
    

(19.402) (29.591) (17.575) 

Savings for fertilizer, MK 
   

0.002**** 0.000 0.001**** 
    

(0.001) (0.001) (0.000) 

Non-agric. business, dummy 
   

-7.072 66.402**** -58.397**** 
    

(10.806) (20.495) (15.367) 

Formal employ., dummy 
   

43.964* -50.197* -3.766 
    

(24.557) (27.349) (23.797) 

Village FE Yes Yes Yes Yes Yes Yes 

Constant -26.853 11.630 -275.023**** -17.486 -104.097 -129.380**   
 

(209.756) (256.922) (76.426) (143.060) (239.725) (60.247) 

Sigma constant 49.096**** 77.802**** 26.465** 41.811**** 65.821**** 23.796**   
 

(13.931) (8.273) (11.836) (10.856) (9.627) (10.812) 

Log likelihood -6659.218 -3373.851 -17100.000 -6437.997 -3258.959 -16700.000 

Prob > F 0.000 0.000 0.000 0.000 0.000 0.000 

Number of observations 133 106 138 133 106 138 

Left-censored obs. 19 21 30 19 21 30 

Note: Dependent variable: kg Fertilizer. *, **, ***, *** indicate that coefficients are significant at 10, 5, 1, and 0.1% 

levels, respectively. Standard errors in parentheses. Models weighted with inverse probability weights to correct for 

attrition bias and sample selection into maize type, based on baseline survey household characteristics. The models 

are conditional on each maize type being grown by the household. The coefficients are average marginal effects. 
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Figure 2. Subjective probability weights and fertilizer use intensity on OIMP, DT and local maize 

We can now assess the hypotheses regarding fertilizer use intensity. Hypothesis H1 states that 

“Fertilizer use intensity is lower for more risk averse producers”. The coefficients for relative risk 

aversion were negative in all models but only significant in the model for OIMP maize without 

endogenous variables. Hypothesis H2 states that “Fertilizer use intensity is higher for low-risk DT 

maize than for high risk OIMP and LM maize”. Table 1 shows that fertilizer use on DT maize is 

significantly (at 1% and 5% levels in models without and with the endogenous variables) larger 

than on OIMP and LM maize. Hypothesis H2 is therefore supported by the data.  

Hypothesis H3 states that “Subjective overweighting of low probability extreme events is 

associated with less use of fertilizer.” This hypotheses is strongly supported by our data as the 

subjective probability weight variable is highly significant and with positive sign in all models. 

Hypothesis H4 states that “Subjective overweighting of low probability extreme events is more 

strongly associated with less fertilizer use on the more risky OIMP and LM maize than the less 

risky DT maize”.   Table 2 shows that the highest coefficients are found for OIMP maize, which 

may be perceived as the riskiest type of maize to which fertilizer is applied, but it is significantly 
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larger than that of DT maize only in the models without endogenous variables. Finally, hypothesis 

H5 states that “Access to subsidized inputs enhances the intensity of fertilizer use on all types of 

maize.” This hypothesis is strongly supported by the results.  

7.2. Robustness checks 

We have demonstrated that the key preference and shock variables are robust to the model 

specifications both without and with the endogenous variables in the models with log transformed 

input variables. The key results are also very similar in models with untransformed variables and 

with specifications in which the number of included endogenous variables is altered. This was the 

case for the maize type adoption models and the fertilizer intensity models. While we used IPWs 

to correct for attrition bias, the models without IPWs produced very similar results.  

We do not have a good measure of household income, as the off-farm income data are weak and 

do not include consumption data that would have allowed us to create a measure of total 

consumption expenditure. Farm size (land) is the best wealth indicator we have. The off-farm 

income access dummies and savings variables, together with the input subsidy access variables, 

revealed that poverty and liquidity constraints can constrain adoption of both fertilizer and 

improved maize seeds. However, controlling for these factors did not change the way relative risk 

aversion and subjective probability weighting affected technology adoption and the intensity of 

adoption. 

 

8. Conclusion 

Climate change is likely to increase climate risk, and more severe and more frequent droughts are 

likely to occur in some parts of the world, including the southern part of Africa in which Malawi 

is situated. Malawi has a population and an economy that is highly dependent on rain-fed 

agriculture, with maize being the main staple crop that is susceptible to drought. International 

efforts have resulted in the development of improved high-yielding and more drought-tolerant 

maize varieties.  

This study has investigated the adoption decisions of poor smallholder farmers in Malawi with 

regard to fertilizer use on these maize types. Field experiments were used to elicit risk preference 

prospect theory parameters. These were combined with detailed household-farm plot data, with 
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farmers’ fields measured using GPS. This allowed for a detailed investigation of factors associated 

with intensity of adoption of fertilizer on different maize types. To our knowledge, this is the first 

study of its kind to include such a detailed investigation of how drought shocks, risk preferences 

and probability weighting affect fertilizer use intensity.  

Perhaps surprisingly, our study revealed only weak correlations between risk aversion and 

fertilizer used intensity, with higher risk aversion being associated with lower fertilizer use 

intensity on the most risky type of improved maize. We found strong and robust positive 

correlation between over-weighting of low probabilities and lower levels of fertilizer use while 

intensity of fertilizer use was higher on the new DT type of maize, consistent with our theory. 

Fertilizer subsidies enhanced fertilizer use intensity on all maize types and this served to 

compensate for the under-investment in fertilizer use due to the subjective over-weighting of low 

probability drought-risk in the study areas. Fertilizer subsidies may therefore not only stimulate 

input use due to a relaxation of liquidity constraints but also due to an adjustment for systematic 

irrational behavior related to probability judgements.  
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Appendix 1. Descriptive statistics 

We observe that the drought shock dominated (reported as the most severe shock by 51% of the 

respondents experiencing a shock), followed by livestock death/theft, large rises in food prices, 

crop disease/pests, and deaths/illness of family members. We constructed a simple measure of 

shock exposure in the form of a count of the number of shocks the households had been exposed 

to in the 2009-2012 period and tested how this may affect their technology adoption in terms of 

maize type and fertilizer use. 

Table A1. Most severe shock in 2011/12, type of shock, for those experiencing shocks in this year 

Shock type, shock 1, 2012 Freq. Percent Cum. 

Lower yields due to drought/flood 123 50.62 50.62 

Crop disease/pests 14 5.76 56.38 

Livestock death/theft 35 14.40 70.78 

Household business failure 2 0.82 71.60 

Loss of paid employment 1 0.41 72.02 

Non-payment of salary 2 0.82 72.84 

Large rise in price of food 19 7.82 80.66 

Death of head 2 0.82 81.48 

Death of working hh members 1 0.41 81.89 

Illness/accident of hh member 11 4.53 86.42 

Death of other family member 10 4.12 90.53 

Dwelling damaged/destroyed 8 3.29 93.83 

Theft 6 2.47 96.30 

Other 9 3.70 100.00 

Total 243 100.00  
Note: Based on the sample of 282 households with good quality data. 
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Table A2. List of variables 

Variable Obs Mean Std. Dev. Min Max 

Planted DT maize, dummy 282 .507 .501 0 1 

Planted OIMP maize, dummy 282 .397 .490 0 1 

Planted local maize (LM), dummy 282 .553 .498 0 1 

Maize area, local maize, ha 282 .279 .340 0 1.86 

Maize area, DT maize, ha 282 .320 .479 0 3.26 

Maize area, OIMP maize, ha 282 .245 .622 0 8.45 

Total fertilizer on DT maize, kg 282 35.82 64.71 0 500 

Total fertilizer on OIMP maize, kg 282 27.38 62.03 0 500 

Total fertilizer on local maize, kg 282 28.07 56.34 0 400 

Fertilizer use on OIMP maize, dummy 282 .298 .458 0 1 

Fertilizer use on DT maize, dummy 282 .394 .489 0 1 

Fertilizer use on local maize, dummy 
282 .426 .495 0 1 

Relative risk aversion coefficient 279 1.73 .291 .986 2.21 

Subjective probabilty weight 278 .877 .213 .25 1.4 

Loss aversion coefficient 278 4.61 2.97 .07 10.32 

Number of shocks last 4 years 282 1.61 .867 0 4 

Drought 2012, dummy 282 .780 .415 0 1 

Drought 2011, dummy 282 .174 .380 0 1 

Drought 2010, dummy 282 .085 .292 0 2 

Average rainfall, mm 282 899.8 92.2 

786.2

6 1014.9 

Failed to get preferred variety, dummy 282 .337 .473 0 1 

Farm size in ha 282 1.24 1.50 .086 19.18 

Sex of respondent, male=1 281 .587 .493 0 1 

Age of household head, years 282 43.24 14.51 21 85 

Savings for fertilizer purchase, MK 282 3853 144 0 

16000

0 

Non-agricultural business, dummy 280 .461 .499 0 1 

Formal employment, dummy 281 .146 .354 0 1 

Received fertilizer coupon (FISP) 282 .557 .498 0 1 

Received seed coupon (FISP) 282 .582 .494 0 1 

 

Additional included variables 

The next variables are the shock variables (drought shock dummies, and a dummy for farmers who 

failed to obtain their preferred maize variety (FGi)). The number of shocks includes shocks other 

than droughts, such as deaths or serious sickness in the family. Such shocks may affect both the 
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ability and the willingness to adopt. Rvt is average annual rainfall. EXi are exogenous9 household 

characteristics such as (owned) farm size and sex of household head. Farm size may limit the 

intensity of adoption, as farm sizes are small due to high population density in the study areas. The 

following parenthesis in equation 5) contains variables that are more endogenous in character, and 

models are run both without and with them to assess the stability of the results and the potential 

importance of these endogenous variables. We were unable to find an IV strategy that would help 

identify these potential endogenous variables10. The key findings we present were very robust to 

alternative model specifications11, giving us confidence in our conclusions, which also fit well 

with theoretical expectations.  

 ENi includes household saving for purchases of fertilizer and dummies that indicate non-

agricultural business activity and off-farm formal employment. These variables may capture the 

liquidity situations of households, their opportunity cost of time, and their ability. It also includes 

ex ante labor allocation12 to this type of maize production. Labor is assumed to be a complementary 

input that is essential to the intensity of adoption (land preparation, planting and fertilization). Si
F 

is a dummy indicating whether the household received subsidized fertilizer (received at least one 

fertilizer voucher alone or to share with another household). Si
S is a dummy indicating whether the 

household received a maize seed voucher under the subsidy program that can be used to obtain a 

free seed package. It is assumed that access to subsidies stimulates use of these inputs, due to 

market imperfections (Ricker-Gilbert et al. 2011). 
iipw is the inverse probability weight, included 

to control for attrition in the sample13. Village fixed effects were also used to control for cross 

                                                 
9 Exogenous in the sense that they cannot easily be changed in the short run. 
10 While, e.g., Ricker-Gilbert et al. (2011) used age of household head as an instrument to access subsidized inputs 

(older persons may be better connected and therefore have superior access), this instrument did not work in our data. 

Additionally, we believe that age itself is likely to affect technology adoption, including intensity of adoption (and the 

results confirm this). 
11 These alternative specifications include varying the number of potentially endogenous variables. Here we only 

present the results without endogenous variables and with the full set of endogenous variables. Alternative 

specifications also include models with untransformed and log transformed variables, but models with log transformed 

models were preferred, due to their better distributional properties. The key results also remained robust across the 

alternative functional form specifications. The results are available upon request. 
12 By ex ante labor allocation, we mean labor allocated before the state of nature (in the form of drought in this case) 

is revealed. 
13 It is constructed from the baseline household data, including all households in the initial survey in 2006. The baseline 

survey contained 450 households, of which only 350 were found and re-interviewed in 2012. From these, we were 

able to obtain high quality data from field experiments and the survey, including measurement of maize plots for 282 

households after removal of outlier observations. 
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village differences in market access, prices and the distribution of improved maize seeds through 

and outside the subsidy program.  
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Appendix 2. Detailed results 

Table A4. Censored tobit models for intensity of fertilizer use by maize type without and with 

endogenous variables (complete models). 

 Models without endogenous variables Models with endogenous variables 

RHS variables 

Fertilizer 

on DT 

Fertilizer 

on OIMP  

Fertilizer 

on LM 

Fertilizer 

on DT 

Fertilizer 

on OIMP  

Fertilizer 

on LM 

Relative risk aversion coefficient -0.433 -3.235*** -0.587 -0.811 -1.413 -0.761     

 (0.816) (1.063) (0.904) (0.653) (0.973) (0.776)     

Subjective probability weight 2.054*** 3.613*** 1.297 2.082**** 2.912** 1.292*    

 (0.754) (1.192) (0.818) (0.571) (1.126) (0.736)     

Loss aversion coefficient -0.022 0.051 0.010 0.012 0.004 -0.009     

 (0.065) (0.066) (0.067) (0.055) (0.056) (0.059)     

Number of shocks last 3 years -0.018 -0.254 -0.304 0.222 -0.101 0.047     

 (0.158) (0.250) (0.270) (0.140) (0.232) (0.246)     

Drought 2012, dummy 0.109 -0.740 0.017 -0.171 -0.841 -0.207     

 (0.662) (0.684) (0.615) (0.512) (0.563) (0.593)     

Drought 2011, dummy -0.262 1.011* 0.157 -0.220 0.598 0.527     

 (0.434) (0.583) (0.625) (0.313) (0.559) (0.573)     

Drought 2010, dummy 0.220 -0.959 -0.591 0.266 -0.748 -0.562     

 (0.334) (0.817) (0.711) (0.319) (0.878) (0.583)     

Average rainfall, mm -0.009** 0.011*** -0.003 -0.009*** 0.007** -0.003     

 (0.004) (0.003) (0.004) (0.003) (0.003) (0.003)     

Failed to get preferred variety, dummy -0.559 0.196 -0.227 -0.006 0.367 -0.017     

 (0.366) (0.418) (0.449) (0.307) (0.366) (0.403)     

Log of Farm size in ha 0.769 0.398 0.022 -0.873* -1.174 -0.894     

 (0.525) (0.771) (0.544) (0.513) (0.818) (0.759)     

Sex of respondent in household -0.367 0.241 -0.935** 0.071 0.207 -0.714*    

 (0.304) (0.427) (0.421) (0.244) (0.403) (0.361)     

Received subsidized fertilizer voucher   1.958**** 1.254*** 1.920**** 

    (0.331) (0.473) (0.427)     

Received subsidized seed voucher    -0.475 -0.519 -0.104     

    (0.351) (0.473) (0.384)     

Log of savings for fertilizer purchase    0.078** -0.004 0.074*    

    (0.030) (0.054) (0.044)     

Non-agricultural business, dummy    -0.074 1.079*** -0.152     

    (0.301) (0.388) (0.341)     

Formal employment, dummy    -0.317 0.009 0.009     

    (0.375) (0.445) (0.613)     

Log of DT maize area    2.439****                   

    (0.589)                   

Log of OIMP maize area     3.278***                  

     (1.220)                  

Log of local maize area      3.539**   
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      (1.475)     

Log of pre-state of nature labor DT    0.249   

    (0.156)   

Log of pre-state of nature labor OIMP    -0.328  

     (0.286)  

Log of pre-state of nature labor LM      0.235     

      (0.231)     

Village FE Yes Yes Yes Yes Yes Yes 

Constant 12.220*** -4.561 7.266* 10.512*** -3.561 3.836     

 (4.171) (3.501) (4.134) (3.258) (3.323) (3.817)     

Sigma constant 1.563**** 1.738**** 1.943**** 1.225**** 1.496**** 1.634**** 

 (0.156) (0.171) (0.166) (0.112) (0.141) (0.132)     

Log likelihood -338.241 -266.369 -379.935 -294.977 -246.207 -345.089     

Prob > F 0.000 0.000 0.009 0.000 0.000 0.000     

Number of observations 136 98 144 136 98 143     

Left-censored obs. 20 19 32 20 19 32 

Note: Dependent variable: log(kg Fertilizer+1). *, **, ***, *** indicate that coefficients are significant at 10, 5, 1, and 

0.1% levels, respectively. Standard errors in parentheses. Models weighted with inverse probability weights to correct 

for attrition bias and sample selection into maize type, based on baseline survey household characteristics. The models 

are conditional on each maize type being grown by the household. The coefficients are average marginal effects. 
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Appendix 3. Field experiment design: Risk preference experiments 

Instructions to enumerators: Arrange the experiment for all households in a village within one 

day.  Use school or another facility where a large room with tables and chairs are available. Ensure 

that the area is protected from interference by other people and prevent that those who have played 

interact with those that have not played the experiments. With four enumerators you may 

interview/play with four respondents at the same time such but ensure that those who play cannot 

communicate or observe each other. All games should be played with the head of the household.   

They should get a participation amount (MK 1000) that they have to be prepared to lose (some of) 

in the experiments). There is a large number of tasks to be evaluated by each of the respondents. 

You have to take the time that is needed for them to think about each task such that they understand 

it and make proper selection based on their own preferences. Explain to them that a lottery will be 

used to identify which of the series of games that they will play that will be real and give them a 

real payout. 

Risk preference experiments: Overview 

First four series: Choice between alternative maize varieties. Two types of years: Bad years 

(drought) and good years (no drought). Varying probability of bad year (number of bad 

years out of 10) & varying yield outcome levels for varieties in good and bad years (in 

kg/ha). When they choose the Variety they do not know what type of year they will get 

(good or bad), only the chance (in number of years out of ten) of a bad year. Based on this 

they should choose their preferred variety. Lotteries come in series, where your task is to 

identify the switch point in each series where typically only one variable (e.g. the 

probability of good or bad years) changes at the time. Rational behavior implies that there 

will be only one switch point in each of the series (or in some cases they will not switch at 

all). If they switch back and forth this is an indication that they have not understood the 

game or answer carelessly. Your task is to make sure that they understand and make careful 

(preferred choices).  You therefore need to be patient, especially in the beginning to make 

them understand. Demonstrate the probabilities with fingers or cards (use 10 playing 

cards). Demonstrate the outcomes with money. . Such demonstration methods should be 

standardized  across enumerators in initial testing of the experiments.   
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After careful completion of the whole interview and making of choices, there will be a 

random sampling of the series and game in the series that will give the actual payout. After 

this the household head will be given her/his reward based on the outcome of this sampling 

and actual choices made.  After that they are asked to go home and not talk to other 

households who have not yet been interviewed or played the game. It is important that they 

respect this. 

Risk of starting point bias: Randomize the task you start with in each series (pull a card). 

After the first response move towards the end point in the direction you expect a switch to 

check whether you get it. Narrow in on the switch point by moving to the middle between 

the last prospects if there was a switch, continue halfway forward otherwise. 

Instructions to players (household heads): 

We have rewarded you with an initial payment of MK 1000 for coming to play the game. 

You are likely to win more but may also expect to lose some of the MK 1000 in the games 

to be played. Rewards depend on outcomes in lotteries and choices made by you during 

the game. If you make careful decisions you are more likely to get preferred rewards over 

less preferred rewards. The experiments include choices of maize varieties with different 

outcomes in drought years and years with good rainfall, alternative lotteries with money, 

lotteries with payments at different points in time, and lotteries with maize seeds (2 kg 

bags) and fertilizers (5 kg bags). 

The rewards will vary in the different lotteries which come in series.  

At the end a lottery will be used to identify which of the choice series will be for real 

payout. After you have received your reward(s) you should go home and not talk to 

anybody who have not yet played the game. That is very important.  
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Choice series 1 (Chose between Variety 1 and Variety 2 when probability of drought 

varies) 

  
Variety 1 (Lottery A)  Variety 2 (Lottery B)    
Yields in kg/ha  Yields in kg/ha  

 
Task 

Probability 
of bad 
year, % 

Bad 
year 

Good 
year 

Expected 
yield 

Choice Bad 
year 

Good 
year 

Expected 
yield 

Choice 

11 10 1000 2000 1900  100 4000 3610  
12 20 1000 2000 1800  100 4000 3220  
13 30 1000 2000 1700  100 4000 2830  

14 40 1000 2000 1600  100 4000 2440  
15 50 1000 2000 1500  100 4000 2050  
16 60 1000 2000 1400  100 4000 1660  
17 70 1000 2000 1300  100 4000 1270  
18 80 1000 2000 1200  100 4000 880  

 

Choice series 2(Chose between Variety 3 and Variety 2 when probability of drought varies) 
  

Variety 3 (Lottery A) 
 

Variety 2 (Lottery B) 
 

  
Yields in kg/ha 

 
Yields in kg/ha 

 

Task Probability 
of bad year, 
% 

Bad 
year 

Good 
year 

Expected 
yield 

Choice Bad 
year 

Good 
year 

Expected 
yield 

Choice 

21 10 1000 1500 1450 
 

100 4000 3610 
 

22 20 1000 1500 1400 
 

100 4000 3220 
 

23 30 1000 1500 1350 
 

100 4000 2830 
 

24 40 1000 1500 1300 
 

100 4000 2440 
 

25 50 1000 1500 1250 
 

100 4000 2050 
 

26 60 1000 1500 1200 
 

100 4000 1660 
 

27 70 1000 1500 1150 
 

100 4000 1270 
 

28 80 1000 1500 1100 
 

100 4000 880 
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Choice series 3(Chose between Variety 3 and Variety 4 when probability of drought varies) 
  

Variety 3 (Lottery A) 
 

Variety 4 (Lottery B) 
 

  
Yields in kg/ha  

 
Yields in kg/ha  

 

Task Probabilit
y of bad 
year, % 

Bad 
year 

Good 
year 

Expected 
yield 

Choice Bad 
year 

Good 
year 

Expected 
yield 

Choice 

31 10 1000 1500 1450 
 

500 4000 3650 
 

32 20 1000 1500 1400 
 

500 4000 3300 
 

33 30 1000 1500 1350 
 

500 4000 2950 
 

34 40 1000 1500 1300 
 

500 4000 2600 
 

35 50 1000 1500 1250 
 

500 4000 2250 
 

36 60 1000 1500 1200 
 

500 4000 1900 
 

37 70 1000 1500 1150 
 

500 4000 1550 
 

38 80 1000 1500 1100 
 

500 4000 1200 
 

39 90 1000 1500 1050 
 

500 4000 850 
 

 

Choice series 4(Chose between Variety 3 and Variety 5 when probability of drought varies) 
  

Variety 3 (Lottery A) 
 

Variety 5 (Lottery B) 
 

  
Yields in kg/ha  

 
Yields in kg/ha  

 

Task Probability 
of bad 
year, % 

Bad 
year 

Good 
year 

Expected 
yield 

Choice Bad 
year 

Good 
year 

Expected 
yield 

Choice 

41 10 1000 1500 1450 
 

800 4000 3680 
 

42 20 1000 1500 1400 
 

800 4000 3360 
 

43 30 1000 1500 1350 
 

800 4000 3040 
 

44 40 1000 1500 1300 
 

800 4000 2720 
 

45 50 1000 1500 1250 
 

800 4000 2400 
 

46 60 1000 1500 1200 
 

800 4000 2080 
 

47 70 1000 1500 1150 
 

800 4000 1760 
 

48 80 1000 1500 1100 
 

800 4000 1440 
 

49 90 1000 1500 1050 
 

800 4000 1120 
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Instructions to players: The following experiments involve money (MK) rather than maize yields. 
Here is a chance of winning real money in these experiments. One of the experiments will be 
chosen for real payout. Your choices will affect a potential payout from the experiments. You 
should therefore make careful judgment and decisions. The game for payout will be sampled after 
you have responded to a series of lottery choices. 

 

Choice series 5: Chose between Lottery A and Lottery B when probability of bad outcome varies 
  

Lottery A  Lottery B    
Outcome in MK  Outcome in MK 

 
 

Task Probability 
of bad 
outcome, % 

Bad  Good  Expected  Choice Bad  Good  Expected  Choice 

51 10 1000 2000 1900  100 4000 3610  

52 20 1000 2000 1800  100 4000 3220  
53 30 1000 2000 1700  100 4000 2830  
54 40 1000 2000 1600  100 4000 2440  
55 50 1000 2000 1500  100 4000 2050  
56 60 1000 2000 1400  100 4000 1660  
57 70 1000 2000 1300  100 4000 1270  
58 80 1000 2000 1200  100 4000 880  
59 90 1000 2000 1100  100 4000 490  

 

Choice series 6: Chose between Lottery A and Lottery B when probability of bad outcome varies 
  

Lottery A 
 

Lottery B 
 

  
Outcome in MK 

 
Outcome in MK 

 

Task Probability 
of bad 
outcome, % 

Bad  Good  Expected  Choice Bad  Good  Expected  Choice 

61 10 1000 1500 1450 
 

100 4000 3610 
 

62 20 1000 1500 1400 
 

100 4000 3220 
 

63 30 1000 1500 1350 
 

100 4000 2830 
 

64 40 1000 1500 1300 
 

100 4000 2440 
 

65 50 1000 1500 1250 
 

100 4000 2050 
 

66 60 1000 1500 1200 
 

100 4000 1660 
 

67 70 1000 1500 1150 
 

100 4000 1270 
 

68 80 1000 1500 1100 
 

100 4000 880 
 

69 90 1000 1500 1050  100 4000 490  
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Choice series 7: Chose between Lottery A and Lottery B when probability of bad outcome varies 
  

Lottery A 
 

Lottery B 
 

  
Outcome in MK 

 
Outcome in MK 

 

Task Probability 
of bad 
outcome, 
% 

Bad  Good  Expected  Choice Bad  Good  Expected  Choice 

71 10 1000 1500 1450 
 

500 4000 3650 
 

72 20 1000 1500 1400 
 

500 4000 3300 
 

73 30 1000 1500 1350 
 

500 4000 2950 
 

74 40 1000 1500 1300 
 

500 4000 2600 
 

75 50 1000 1500 1250 
 

500 4000 2250 
 

76 60 1000 1500 1200 
 

500 4000 1900 
 

77 70 1000 1500 1150 
 

500 4000 1550 
 

78 80 1000 1500 1100 
 

500 4000 1200 
 

79 90 1000 1500 1050 
 

500 4000 850 
 

 

Choice series 8: Chose between Lottery A and Lottery B when probability of bad outcome varies 
  

Lottery A 
 

Lottery B 
 

  
Outcome in MK 

 
Outcome in MK 

 

Task Probability 
of bad 
outcome, 
% 

Bad  Good  Expected  Choice Bad  Good  Expected  Choice 

81 10 1000 1500 1450 
 

800 4000 3680 
 

82 20 1000 1500 1400 
 

800 4000 3360 
 

83 30 1000 1500 1350 
 

800 4000 3040 
 

84 40 1000 1500 1300 
 

800 4000 2720 
 

85 50 1000 1500 1250 
 

800 4000 2400 
 

86 60 1000 1500 1200 
 

800 4000 2080 
 

87 70 1000 1500 1150 
 

800 4000 1760 
 

88 80 1000 1500 1100 
 

800 4000 1440 
 

89 90 1000 1500 1050 
 

800 4000 1120 
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Prospect theory series: In each of the following series probabilities stay constant across tasks but 

vary across prospects. Prospect A is kept constant within a series but good outcome is increasing 

with task number in Prospect B. Identify the switch point like in earlier series (expect switch from 

Prospect A to Prospect B at some point).  

PT1 
 

Prospect A 
  

Prospect B  
  

Task Probability 
of bad 
outcome, 
% 

Bad Good Expected 
yield 

Choice Probability 
of bad 
outcome, 
% 

Bad Good Expected 
yield 

Choice 

P1 60 1000 4000 2200 
 

90 500 7000 1150 
 

P2 60 1000 4000 2200 
 

90 500 10000 1450 
 

P3 60 1000 4000 2200 
 

90 500 13000 1750 
 

P4 60 1000 4000 2200 
 

90 500 16000 2050 
 

P5 60 1000 4000 2200 
 

90 500 19000 2350 
 

P6 60 1000 4000 2200 
 

90 500 22000 2650 
 

P7 60 1000 4000 2200 
 

90 500 25000 2950 
 

P8 60 1000 4000 2200 
 

90 500 28000 3250 
 

P9 60 1000 4000 2200 
 

90 500 35000 3950 
 

P10 60 1000 4000 2200 
 

90 500 50000 5450 
 

 

PT2 
 

Prospect A 
  

Prospect B 

Task Probability 
of bad 
outcome, 
% 

Bad Good Expecte
d yield 

Choice Probability 
of bad 
outcome, 
% 

Bad Good Expecte
d yield 

Choic
e 

P11 10 1500 2000 1950 
 

30 250 2500 1825 
 

P12 10 1500 2000 1950 
 

30 250 2750 2000 
 

P13 10 1500 2000 1950 
 

30 250 3000 2175 
 

P14 10 1500 2000 1950 
 

30 250 3250 2350 
 

P15 10 1500 2000 1950 
 

30 250 3500 2525 
 

P16 10 1500 2000 1950 
 

30 250 3750 2700 
 

P17 10 1500 2000 1950 
 

30 250 4000 2875 
 

P18 10 1500 2000 1950 
 

30 250 4500 3225 
 

P19 10 1500 2000 1950 
 

30 250 5000 3575 
 

P20 10 1500 2000 1950 
 

30 250 6000 4275 
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Payment for Risk preference games: Use 6 cards (1-6) to identify which of the 6 series with 

money above should be selected for payout. Then allow households to pick a card out of 10 to 

identify which of the tasks in the selected series will be used for payout. You use the Prospect they 

have chosen for that task, prospect A or B. For that chosen Prospect you identify the probability 

of Good and Bad outcomes and assign card numbers to each, e.g. 40% probability of Good 

outcome in PT1 game implies that you assign cards 1-4 to Good and cards 5-10 to Bad outcome. 

After that you shuffle the cards and ask the farmer to pull one card. If the card is 1-4 you pay them 

the Good outcome of MK 4000 for PT1 and you give them MK 1 000 if the card number they pick 

is above 4. 

 

Payment in risk preference experiments: 

Series chosen for payout (Respondent pulls 1 out of 6 cards):________________ 

Task chosen for payout (Respondent pulls 1 of 9 or 10 cards:________________ 

Identify whether the Respondent had chosen Prospect A or B for that Task: Prospect 

chosen:__________ 

Allocate cards according to probabilities in Task chosen, and ask respondent to pull a card 

to assess whether the number is associated to the Bad or Good Outcome.  

Card pulled:_________ 

Card implies: 1=Win, 0=Loss 

Amount won:__________ 

Signature for amount received:________________  
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Loss Aversion (money) 

 The household head has been given 1000 MK that s/he will have to risk all or some of in 

the following game.  

 Instructions to players: You have a choice between participating in two lotteries. Each 

of them has a 50% chance of winning, and 50% chance of losing (by tossing a coin). 

First choice: “Lottery A will give you MK 1250 extra if the coin toss lands on Head, 

and you have to give back MK 200 if it lands on Tail. Lottery B will give you MK 1500 

extra if coin lands on Head but you will lose all the MK 1000 if it lands on Tail. Do 

you choose Lottery A or Lottery B?  

 Instructions to instructors: Introduce each of the seven lottery choices in a similar way 

as above to determine the switch point from Lottery A to Lottery B. Tick the preferred 

lottery (A or B) in each row. Only one of these seven games will be randomly sampled and 

played for real (by selecting one card out of seven numbered from 1 to 7. For the selected 

task you see whether they chose Prospect A or B. For the prospect they chose you toss the 

coin to identify whether they win or lose.  

 There should typically be one switch point where they switch from Lottery A to Lottery B 

(consistent behavior) but always choosing one of the lotteries would also be consistent. 

 
  

Prospect A 
   

Prospect B 
  

Task Probability 
of bad 
outcome, % 

Win Loss Expected 
yield 

Choice Probability 
of bad 
outcome, 
% 

Win Loss Expected 
yield 

Choice 

L1 50 1250 -200 525 
 

50 1500 -1000 250 
 

L2 50 200 -200 0 
 

50 1500 -1000 250 
 

L3 50 50 -200 -75 
 

50 1500 -1000 250 
 

L4 50 50 -200 -75 
 

50 1500 -800 350 
 

L5 50 50 -400 -175 
 

50 1500 -800 350 
 

L6 50 50 -400 -175 
 

50 1500 -700 400 
 

L7 50 50 -400 -175 
 

50 1500 -550 475 
 

 

Mark the play that was sampled to be real: Game no:______ 

Outcome of the game: Amount lost:_____________ Amount won:_________ 

 

Signature of player:_________________________ 


