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Abstract

We evaluate the usefulness of satellite-based data on night-time lights for forecast-

ing GDP growth across a global sample of countries, proposing innovative location-based

indicators to extract new predictive information from the lights data. Our findings are gen-

erally favorable to the use of night lights data to improve the accuracy of model-based

forecasts. We also find a substantial degree of heterogeneity across countries in the rela-

tionship between lights and economic activity: individually-estimated models tend to out-

perform panel specifications. Key factors underlying the night lights performance include

the country’s size and income level, logistics infrastructure, and the quality of national

statistics.
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1 Introduction

Forecasts of economic activity are crucial to the decision-making process of policymakers and
market participants in general. A premise for informed economic decisions is to have a proper
expectation of the future state of the market of interest. In practice the decision-maker is then
continuously faced with an intricate forecasting challenge of finding leading indicators for the
variables that are relevant to her/his business. In this paper we propose and evaluate the usage
of satellite-based data on night-time lights for the prediction of GDP growth across a global
sample of countries. Our main contribution is the design of innovative measures for the extrac-
tion of predictive signals of macroeconomic activity from the richness of information provided
by the night lights dataset.

The night lights data consist of gridded observations of light intensities captured across the
globe during night time. An illustrative snapshot of this global dataset is presented in figure 1.1.
In order to evaluate the usefulness of these data for economic forecasting we construct Sum of
Lights (SoL) measures, aggregating the intensities of lights observed within the borders of
each country. One key innovation in this paper is the development of alternative location-
based SoL indicators, designed to focus on the lights emitted from selected areas instead of
the entire country’s territory; particularly, we propose focusing on areas showing (significant)
positive/negative correlations with the country’s history of GDP growth rates. As our results
reveal, a substantial portion (≈ 85% on average) of the lights signals observed over a country’s
territory are not significantly correlated with the country’s aggregate production, and would
therefore only add noise to an indiscriminate aggregation of the country’s lights. We show how
a proper classification of these geo-located signals can lead to a substantial improvement of the
accuracy of the night lights-based forecasts.

Another important contribution of this paper is an examination of alternative assumptions
on the cross-country specification of the relationship between light emissions and economic
growth. Namely, we question the common practice of assuming that this relationship is ho-
mogeneous across countries, and show that there are substantial accuracy improvements to be
achieved as well by allowing for individual country or partially pooled specifications. We also
find that the heterogeneity of performances of the night lights-based forecasts can be associated
with some country-specific factors, such as the country’s size, income level, expenditure and
production composition, logistics infrastructure, and quality of national statistics.

1.1 Motivation and relation to literature

The use of night lights data has been prominent in the recent economic literature, with appli-
cations that range from the geographical mapping of economic activity (Sutton and Costanza,
2002; Doll et al., 2006; Ghosh et al., 2010), to regional development analysis (Michalopou-
los and Papaioannou, 2013a,b), to the evaluation of the accuracy of national income accounts
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Figure 1.1: Snapshot of world stable night lights averaged over the year of 2013.

Notes: Based on OLS stable lights data obtained from NOAA-NGDC, as detailed in Section 3. The
averaged night lights intensity measures are depicted in logarithmic scale after satellite intercal-
ibration (see Appendix A.2) and normalization of grid cell areas to Earth’s curvature across the
latitudinal dimension.

(Chen and Nordhaus, 2011; Henderson et al., 2012; Nordhaus and Chen, 2015; Pinkovskiy and
Sala-i Martin, 2016); see also Donaldson and Storeygard (2016) for a more general review of
applications of satellite-based data in economics. In order to construct comparative measures
of living standards across countries and regions, these studies have focused either on time-
averaged relationships, hence taking advantage mainly of the geographical dimension of the
luminosity data variability, or on the contemporaneous relationship between light emissions
and economic activity.

Here, in contrast, we focus on the (lagged) time variations in the intensity of night lights
within a country, evaluating their usefulness to improve the accuracy of forecasts of economic
activity. To the best of our knowledge this is the first application of the night lights data to eco-
nomic forecasting at a global scale1, and this gap in the literature seems to be associated with
the difficulty in providing a rationale for seeing night lights as a leading indicator for the ag-
gregate economy. Thus, in order to challenge this view, we motivate our exercise by discussing
some potential channels through which lagged changes in light emissions can anticipate current
changes of a country’s GDP.

One possible mechanism determining the usefulness of night lights data for GDP forecast-
ing is related to the measurement error hypothesis, also explored by Henderson et al. (2012) for
(contemporaneous) improvement of GDP measures. Namely, because GDP statistics are sub-
ject to measurement errors, due to, for example, informal economic activity or less developed
statistical agencies, the night lights data can provide an alternative proxy to economic activity.

1Focusing on the case of China, Zhao et al. (2017) used the lights data for forecasting economic activity at
different levels of regional aggregation.
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Using a similar analytical framework, we show that lagged observations of lights growth also
provide predictive information on GDP growth rates as long as economic activity is serially
correlated; that is the case even after accounting for the persistence in measured GDP growth
rates with an autoregressive benchmark model.

Another observation that motivates the use of the night lights data for economic forecasting
comes from a time to build argument, along the lines of the seminal contribution of Kydland
and Prescott (1982) to macroeconomic modeling. Namely, because productive capital, like
factories and infrastructure, takes time to build and, importantly, generates lights during that
time, tracking the variation of geo-located lights can signal future increases of production that
will be realized when the construction is complete. In fact, assisted by an automated algorithm,
we have managed to document several cases around the world where light changes anticipated
broader regional economic development. Besides, one could also argue that the geographical
spread of production chains can favor the use of location-based signals as predictors of final
output. Namely, changes in economic activity at one place can signal further changes to come
at different geographical locations that will end up affecting future aggregate measures of eco-
nomic activity.

1.2 Approach summary

We process the night lights indicators for a sample of 167 countries at an annual frequency
over the period from 1992 to 2013.2 We then construct one-step-ahead GDP growth forecasts
based on a benchmark first-order autoregressive (AR) model, and on AR(1) models augmented
by the lagged values of the night lights indicators.3 Here we also distinguish between two
alternative specifications with respect to the estimation of these models, namely, a panel and
country-individual specifications. As a robustness check we also consider alternative partial
pooling specifications in an attempt to fine-tune the observed trade-off between heterogeneity
and estimation uncertainty in the relationship between the night lights indicators and GDP
growth.

We then proceed with the comparative evaluation of the accuracy of the night lights-based
forecasts relative to the benchmark model forecasts. We consider two main exercises with
respect to the sample used for the estimation of the models’ parameters. First, an in-sample

2One major limitation of the night lights data available and employed here and in most of the literature is
the time dimension, particularly because the satellite images need to be averaged over the annual frequency in
order to reduce weather and other seasonal effects to provide more accurate measurements (there are exceptions,
as, for example, Ishizawa et al., 2017, who used monthly lights data to measure economic recovery after natural
catastrophes); here we attempt to compensate for the short time dimension with a broad sample in the cross-section
dimension.

3In spite of their simplicity, univariate autoregressive models are commonly used as benchmark for GDP
growth forecasts in the literature and are often found to be hard to beat with more sophisticated models (see, e.g.,
Chauvet and Potter, 2013); our focus on first-order autoregressions is due to the limited sample of annual night
lights observations available, as explained in the previous footnote, although we obtain similar results using an
AR(2) model as benchmark.
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evaluation, where the full sample of data is used for both the estimation and the evaluation of
the conditional predictions. Second, a recursive out-of-sample evaluation, where only data up
to the forecasts base periods are used for estimation, starting with forecasts for 2001. Our main
measure of evaluation is the night lights-based forecasts’ root mean square error (RMSE), par-
ticularly relative to those obtained by the benchmark forecasts. We also evaluate the statistical
significance of our results by conducting bootstrapped tests for the comparison of the predictive
accuracy of nested models.

1.3 Results summary

Overall, we find evidence favorable to the use of night lights data for GDP growth forecast-
ing, particularly with individually-estimated models, which achieve in-sample RMSE accuracy
improvements ranging from 3% to 9% (cross-country GDP-weighted averages) relative to the
benchmark model. Among the night lights indicators, we find that those based on the loca-
tion of lights provide the greatest improvements to the accuracy of the GDP growth forecasts.
In fact, with a relaxed assumption on the timing of the classification of lights, namely, when
the gridded correlations are calculated using the full-sample, the average relative improvement
rises to a remarkable 37% rate.

Out-of-sample, the performance of the individual specifications deteriorates substantially
under the recursive estimation approach, a result that we attribute to the estimation biases
caused by the use of too small samples at the country-individual level. Notwithstanding, the
night lights approach still attain out-of-sample improvements for a substantial fraction of coun-
tries: about 46% on average across the indicators, most of which being statistically significant
at the 20% significance level; focusing on the full-sample correlation-based indicator, statisti-
cally significant improvements are obtained for more than 76% of the countries in our sample.
The magnitude of these out-of-sample improvements also vary quite substantially across the
countries, 47 of which achieve gains in the range between 20-61%, 42 in the range between
10-20%, and 39 in the range between 0-10%.

What explains all this variation in the usefulness of the night lights across countries? We
attempt to answer this question by evaluating several country-specific factors that could be as-
sociated with the performance of the night lights. Interestingly, our analysis indicates that the
night lights appear more useful for economic forecasting in bigger countries, but to a lesser
extent in low income countries. Besides, we also find that countries with lower consumption
expenditure, smaller agriculture sector (both as share of total GDP), better logistics infrastruc-
ture, and better national statistics, tend to obtain better forecasts with the night lights data.

1.4 Paper organization

Beyond this introduction, and some concluding remarks by the end, the paper proceeds into six
sections: Section 2 discusses the potential channels that can turn lights data into useful leading
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indicators of economic activity; Section 3 describes the night lights data and the construction of
the associated leading indicators; Section 4 outlines the forecasting model specifications, their
estimation, and the forecasting evaluation approach; Section 5 presents the main forecast eval-
uation results; Section 6 provides supplementary results on statistical significance and partial
pooling alternatives; and Section 7 presents an analysis of potential explanatory factors of the
night lights cross-country performance.

2 Lights as leading indicators

Underlying the use of night lights data to predict GDP is the hypothesis that the emission of
lights indicates the presence of economic activity.4 Clearly, the direction of causality between
these variables goes from GDP to lights, namely, it is the human activity on the ground that gen-
erates the lights that are captured by the satellites. Nevertheless, for forecasting purposes our
main interest is to uncover potential channels through which lagged changes in light emissions
anticipate current changes of a country’s GDP. In this context we discuss two main possible
mechanisms that can turn the night lights data into useful leading indicators: (i) a measurement
errors hypothesis; and, (ii) a time to build argument.

2.1 Measurement error hypothesis

The use of night lights data for forecasting economic activity can be motivated in the context
of a GDP measurement error statistical framework along the lines of Henderson et al. (2012).
Particularly, let a country’s real GDP growth statistics be affected by measurement errors ac-
cording to

yt = zt + ut, (2.1)

where yt stands for measured real GDP growth, zt for true real GDP growth, and ut for the
measurement error due to, for example, informal economic activity or mismatches between the
national accounts and the changing structure of the underlying economy (see Landefeld et al.,
2008). Furthermore, assume lights are generated with economic activity according to

xt = βzt + et, (2.2)

where xt stands for measured lights growth, β for the elasticity of lights with respect to true
real GDP, and et for a measurement error in this relationship due to, for example, satellite
sensor’s noise (see Section 3.1) or changes in how production is translated into lights within a

4Whereas this relationship is on the basis of this paper and the previous applications in the literature, it is im-
portant to note that the relationship between night-time emission of lights and economic activity is not guaranteed
so as to make of the former a substitute for traditional sources of macroeconomic data (see, e.g., Mellander et al.,
2015, for an assessment of the night lights data as a proxy for economic activity). Throughout this paper we argue,
and present evidence, in favor of the night lights data as a complement to other sources of data.
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country; as discussed in Henderson et al. (2012, ps. 1006, 1021) the latter could be caused by
changes in the sectoral composition of a country’s GDP, where some industries may generate
more lights than others, or a nonlinear relationship between development and lights emission
due to urbanization and technological effects.

Using the framework above, Henderson et al. (2012) showed how an improved estimate of
true GDP growth can be obtained by combining national statistics with measured lights growth.
The argument follows from a well known result in measurement error analysis according to
which different error-prone measures can be combined to recover the true value of the common
target variable. Following a similar rationale, we show how lagged light measurements can
provide useful predictions of GDP growth. However, in contrast to Henderson et al. (2012), we
are interested in the use of lights data for the prediction of measured GDP growth data, namely,
yt, which is the observable we have available for forecast evaluation purposes.

In the context of our empirical application, the lights-based forecasts are obtained by aug-
menting a benchmark AR(1) model with lights growth indicators. Abstracting from country-
specific factors and intercepts (the complete forecasting model specifications will be described
in Section 4), the benchmark forecasts are given by the fitted values of an AR(1) model,

ŷt = ρ̂yt−1, (2.3)

and the lights-based forecasts by

ỹt = %̂yt−1 + θ̂xt−1, (2.4)

where ρ̂, %̂, and θ̂ stand for estimated parameters. In fact, under the framework of equations
(2.1) and (2.2), we can derive the theoretical OLS estimates of these parameters and compare
the implied accuracy of these models’ forecasts (see online appendix A.1 for these derivations).
As expected, we find that the lights-based forecasts outperform the benchmark model as long
as β 6= 0; it is also important to note that true GDP is required to be serially correlated for
the lagged specifications to be relevant. The improvement obtained with the lights indicator, as
measured by a ratio between the forecasts mean squared errors, is then given by

β2σ2
u

β2σ2
z + σ2

e (1 + σ2
z/σ

2
u)
, (2.5)

where σ2
z , σ2

u, and σ2
e stand for the variances of zt, ut, and et, respectively. Intuitively, the

usefulness of the lights data increases with |β| and the magnitude of the measurement error in
GDP statistics, σ2

u, and decreases with the magnitude of the measurement error in the growth
vs. lights relationship, σ2

e .
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2.2 Lights and time to build examples

It is well known that productive capital, like factories and infrastructure, takes time to build
(Kydland and Prescott, 1982). Whereas this suggests the investment component of GDP as
an important predictor of future growth, it is not always the case that such decomposition
in national statistics is readily available.5 In this context, the night lights data can provide
an alternative predictor, particularly considering that such investments often generate intense
lights during construction time. That is, tracking the variation of geo-located lights can signal
future increases of production that will be realized when the construction of such production
facilities is complete.

In order to further substantiate this argument we document some cases where light changes
anticipated regional economic development. With the assistance of an automated algorithm
to select locations with substantial light changes over time, we have documented a few dozen
such cases across the world, including the development of industrial/economic zones, oil/gas
extraction and processing plants, hydroelectric and mining projects, and urban sprawls. Ani-
mated snapshots of the observed night lights and Google Earth images (Gorelick et al., 2017)
around these locations are available in a supplementary file. Here, for illustrative purposes, we
focus on two of these cases.

Gravatai Automotive Industrial Complex (Brazil): figure 2.1 shows the case of the con-
struction of a General Motors factory in the city of Gravatai, part of the metropolitan
region of Porto Alegre, Brazil. The plant location decision was announced in 1997,
which was also when its construction started. The factory opened and started producing
in 2000.

Zhengzhou Airport Economy Zone (China): figure 2.2 shows the case of the development
of an industrial zone next to the Zhengzhou Xinzheng International Airport, in the Henan
Province, China. The development was approved in October 2007, and expanded into a
comprehensive bonded zone, which are special customs areas providing favorable tax-
ation policies to bonded processing and logistics of goods for trade, in October 2010.
Foxconn’s “iPhone city” is located in the area.

2.3 Other potential channels

Considering the richness of the night lights data there are certainly other plausible channels
through which lagged lights can turn into useful leading indicators for economic activity. In-
formal economic activity may be one important factor that is more promptly captured by the
lights data than other sources. That may be particularly relevant for forecasting purposes in

5Also notice that there is some ambiguity over how in-progress capital formation and inventories are recorded
in national statistics due to issues in determining the timing of assets ownership (see United Nations, 2009, p.
108).
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Figure 2.1: Gravatai Automotive Industrial Complex, Brazil.

(a) Snapshots of averaged night lights.
1997 1999 2001

(b) Corresponding Google Earth Zoomed Images.

Notes: The selected case is located at 29.9373° South and 50.9147° West, and is marked in the night
lights snapshots with a square symbol. Link to Google maps: https://www.google.com/maps/@-
29.9373,-50.9147,10000m.
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Figure 2.2: Zhengzhou Airport Economy Zone, China.

(a) Snapshots of averaged night lights.
2009 2011 2013

(b) Corresponding Google Earth Zoomed Images.

Notes: The selected case is located at 34.5406° North and 113.8546° East, and is
marked in the night lights snapshots with a square symbol. Link to Google maps:
https://www.google.com/maps/@34.5406,113.8546,10000m.
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countries where businesses tend to start operations informally, but end up entering the formal
economy (and GDP statistics) only after succeeding to mature.6 Another potential channel
comes from the geographical spread of production chains, which can favor the use of location-
based signals as predictors of final output. Namely, changes in economic activity at one place
can signal further changes to come at different geographical locations that will end up affecting
future aggregate measures of economic activity.

Altogether, we take these potential channels as a motivation for the evaluation of the use-
fulness of the night lights data for GDP growth forecasting that follows in the remainder of this
paper.

3 Night lights data and indicators

3.1 Sources and issues

Satellite imagery data on night lights are obtained from the Earth Observation Group (EOG) at
the National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical Data
Center (NGDC), and come in the form of annual composite images representing the inten-
sity of lights captured by sensors on-board the Operational Linescan System (OLS). These
images are produced by EOG scientists by averaging cloud-free observations of night lights
and cover Earth’s surface between 75 degrees north and 65 degrees south latitude. The inten-
sity of the night lights radiance are converted into 6-bit digital number (DN) values, ranging
between 0 and 63, and allocated over a global grid of 30 arc second cells according to their geo-
graphic location. We use the stable lights version of the data, which focus on persistent lighting
sources obtained through the application of a background noise filtering algorithm (Elvidge
et al., 2003).

The night lights annual composites cover the period between 1992 and 2013, and are based
on data from a total of six satellites, some operating simultaneously; hence, for some years two
composite images have been produced, in which cases we adopt their weighted average after
intercalibration, using each cell’s number of cloud-free observations as weights. The intercal-
ibration is necessary because the OLS has no on-board calibration of the visible band while
sensor performance degrades over time, not to mention the evolution in sensor specifications
across the launched instruments. These factors are particularly important for the comparison
of night light emissions over time, and in order to account for them we adopt the regression-
based intercalibration procedure proposed by Elvidge et al. (2009), which takes an area with
low variation in emitted lights over time (Sicily) as reference to estimate re-scaling parameters
across the satellite-year composites. Details on this procedure are provided in Appendix A.2.

6Although we have not found a statistically significant relationship between our results and third-party esti-
mates of informality, we note that according to the World Bank Enterprise Surveys (2017), 11% of firms surveyed
globally state to have started operations without being formally registered, while this statistic rises to about 40%
for countries such as Nigeria and Indonesia; in Bolivia, the average firm reports to have operated in the shadow
economy for over four years (0.7 years for the global average).
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Figure 3.1: Averaged statistics of night lights data for selected countries.

(a) Cloud-free observations.
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(b) Fraction of top-coded pixels.
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(c) Fraction of unlit pixels.
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Notes: The statistics are averaged over the sample period 1992-2013 for each country in our sample (see
text for excluded countries). Countries are denoted by their ISO alpha-3 code, listed in Appendix
A.5.

There are a few other important issues that are known to affect the night lights data. First,
the annual composite images are based on averaged cloud-free observations,7 the availability
of which can vary substantially across countries depending on weather conditions: from a min-
imum average (across the country’s cells) of 3.05 cloud-free data points, observed in Iceland
during the year of 1999, to a maximum of 103.24, observed in Mauritius during 2010. This
restriction is particularly relevant for Nordic countries, as the averaged statistics in figure 3.1a
indicate. Second, sensor saturation, caused by signals exceeding the sensor’s detection range,
interfere in the measurement of brighter sources of light. These signals are recorded with the
highest DN value in the OLS scale (=63), or “top-coded”,8 and tend to be more frequently
observed in the more densely populated countries; see figure 3.1b. Third, as evidenced in fig-
ure 3.1c, the focus on stable lights leads to a substantial increase in the fraction of unlit pixels,
particularly in the more sparsely populated countries, which can affect the signals quantity-
quality trade-off on the construction of location-based measures of lights.

Another important aggregation issue relates to the area underlying each cell in the gridded
dataset. Due to the Earth’s curvature, the area covered by each pixel depends on its latitude, for
example: 0.85km2 at equator, 0.37km2 at S65º, and 0.22km2 at N75º. That is important for
the aggregation of night lights at the country level because the closer the detected lights (and
their changes) are to equator, the bigger their amplitude on the ground; to make these pixels

7Other than cloud coverage, data points are also discarded when any of the following features are present:
sunlight and glare (scattered sunlight penetration into the telescope), moonlight, and lighting from the aurora (see
Elvidge et al., 2003).

8Because the annual DNs are averages of daily observations, which, in turn, have been averaged from higher
resolution images, it is possible that sensor saturation also affects signals coded at lower values (see Hsu et al.,
2015; Bluhm and Krause, 2018). For that reason, our statistics on top-coded pixels are based on a threshold DN
value of 90% the maximum value on the scale of each satellite’s intercalibrated DNs.
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comparable (and aggregable), we re-scale the gridded light intensity measures by multiplying
them by their latitude-implied area.9

Before the computation of the night lights indicators (detailed below), the global composite
images need to be processed for the extraction of light intensity measures within the countries
borders. For that purpose we use the Database of Global Administrative Areas, GADM version
2.8 (http://gadm.org/), which contains definitions of 256 countries/territories borders across the
globe. This sample reduces to 190 countries after matching the records to those of the In-
ternational Monetary Fund’s (IMF) World Economic Outlook (WEO) database (October 2017
vintage), which is our source of data on GDP. Notice the GDP data are unbalanced in the time
dimension, with samples varying by country. Our sample of countries is finally reduced to 167
countries after excluding those with a population smaller than 100,000, a land area smaller than
1,000km2, South Sudan for lack of earlier GDP data, and Equatorial Guinea for having most
of its lights coming from gas flares. A list of the countries included in our sample is presented
in Appendix A.5.

3.2 Night lights indicators

The geo-located time series data on night lights provide a potentially rich source of predictive
information on economic activity. Naturally, there are several possible ways to extract this
information, and different measures can be constructed on the basis of the night lights data
to capture the evolution and geographical spread of economic activity. Here we distinguish
between two types of indicators:10 (i) aggregate indicators; and, (ii) location-based indicators.

Aggregate indicators have been the focus of most of the past literature looking at the rela-
tionship between economic activity and night light emissions (e.g., Ghosh et al., 2010; Chen
and Nordhaus, 2011; Henderson et al., 2012; Pinkovskiy and Sala-i Martin, 2016). Here we fo-
cus on the country’s Sum of Lights (SoL), which is obtained by simply summing up the light
intensity DNs observed within that country’s borders. Under the hypothesis that more (less)
lights means more (less) production, here we use SoL growth rates (log changes for every
growth rate throughout the paper) as a predictor for GDP growth.

One potential weakness of the aggregate SoL indicator is that it does not account for the
quality of the signals coming from different locations within the country’s territory. Namely, by
pooling all the country’s lights the SoL indicator can be affected by noisy signals from locations
that have little correlation with economic activity, potentially missing the predictive content

9Further issues are known to affect the spatial resolution of the night lights data, though of secondary impor-
tance for our purposes: the spatial precision of the night lights data is affected by “blooming” effects, that is, a
tendency to overestimate the true extent of lit area on the ground (see Doll, 2008); also, there is some overlap
between pixels because the value assigned to each of them is based on an on-board smoothing algorithm that
averages blocks of pixels from a finer resolution image (see Elvidge et al., 2004).

10In a previous version of this paper we have also considered distribution-based indicators (for example, the
DNs median, the DNs kurtosis, etc), which, in spite of some merit on the cross-country characterization of light
emission patterns, were found to have too limited time variation to be useful for forecasting purposes.
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Figure 3.2: Correlation-based classification of lights for France.

(a) Snapshot of night lights.
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(b) Correlated pixels.
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(c) Time series.
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Notes: The snapshot image in panel (a) is produced according to figure 1.1 notes, though “turning off”
the lights outside the country’s borders. The pixels’ classification in panel (b) is based on the
correlations (regardless of significance) between GDP growth and lagged lights growth using
observations up to 2013. The colored lines in panel (c) depict the evolution of the sum of lights
(1992=100) over pixels classified according to the past correlation of their lagged lights growth
and the country’s GDP growth, in this case summing up only those significant at the 25% level;
solid lines refer to the classification obtained using observations up to 2013, whereas the dashed
lines refer to previous vintages.

from relevant locations because of opposite lights variation from locations with less informative
signals. In an attempt to circumvent this issue we propose the use of location-based measures.
Here the idea is to decompose a country’s SoL by dividing its pixels according to a given
criterion. Particularly, we propose a classification of the country’s pixels according to their
past correlation with economic activity. This is done by constructing pixel-by-pixel time series
of light intensity changes, and then calculating their correlations with the country’s aggregate
times series of GDP changes. We then distinguish between two sets of pixels leading to two
new indicators: Positive/Negatively correlated pixels SoL. An illustration of this correlation-
based classification is presented in Figure 3.2 for the case of France.

The vintage of data used for the calculation of the pixels’ correlations is an important de-
terminant of the predictive quality of the correlation-based SoL indicators. Here we consider
two possibilities: (i) a real-time classification (dashed lines in Figure 3.2c), where the pixel
correlations are (re-)calculated recursively according to the data availability, that is, the classi-
fication used in a given year is based only on the night lights and GDP data from the previous
years; and, (ii) a full-sample classification (solid lines in Figure 3.2c), where the correlations
are calculated on the basis of data available at the forecast base year of 2013. Naturally, these
alternative classifications are motivated from different forecast evaluation goals. Whereas the
former classification simulates the information restrictions of a real-time forecaster, the latter
can be informative about the predictive value of the quality of the pixels classification. We shall
return to this important distinction in our analysis of the forecasting results.

Finally, with the purpose of reducing the inclusion of noisy lights signals, the correlation-
based indicators can be further specialized to account only for pixels with statistically signifi-
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Figure 3.3: Correlated pixels statistics.

(a) Distribution by intensity. (b) Fractions by year.
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cant correlations. Namely, before summing up the lights in each classification (positive/negative)
we also calculate the associated significances of the pixel correlations and discard those pixels
where the correlation significance was above a given threshold value. For that purpose we have
found that a p-value threshold of 25% yields the best results on average without affecting the
feasibility of the indicator across countries.

Figure 3.3 presents some statistics about the distribution of correlated pixels underlying
the construction of this new indicator. First, on a global scale, we can see from Figure 3.3a
that the distribution of correlated pixels tends to be concentrated on pixels with higher average
light intensity: this is reasonable as it indicates that places with low levels of light emissions
(left tail of the distribution) are not related to economic activity; it is also a good sign that
our approach is able to filter out so many noisy signals. Another interesting finding is that the
negatively correlated pixels tend to be skewed towards less intensively lit locations, while most
pixels with a higher light intensity (right tail of the distribution) show a positive correlation
with aggregate economic activity.

Furthermore, panels 3.3b and 3.3c present statistics on the fractions of correlated pixels at
the country level. First, over time, we can see there is an increasing trend on the average fraction
of pixels identified as correlated with economic activity, although this trend is less pronounced
when focusing on the significant correlations. While this may be attributed to the augmenting
samples used for these calculations as time goes on, there is a marked decline between 2009-
10, possibly a lagged effect of the global financial crisis of 2007-08. Finally, figure 3.3c shows
there is substantial heterogeneity in these pixel classifications across countries. Interestingly,
neither the total fractions of correlated pixels, nor their balance between positive and negative
correlations, appear to be related to the countries levels of development, as the fractions are
also dispersed within each classification of income per capita according to the World Bank.
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4 Forecasting approach

4.1 Model specifications

In order to construct forecasts for GDP growth we estimate both pooled and individual countries
model specifications. As a benchmark we adopt a simple AR(1) model, as given by

yi,t = αi + ρyi,t−1 + εi,t, (4.1)

for the pooled specification, and

yi,t = α′i + ρiyi,t−1 + εi,t, (4.2)

for the individual specification, where yi,t stands for country i’s (= 1, . . . , 167) GDP growth
rate for year t (= 1993, . . . , 2014), and α(′)

i for country fixed effects.11 The use of univariate
AR models as a benchmark for GDP growth forecasts is common in the literature. Chauvet
and Potter (2013), for example, select an AR(2) model to evaluate the accuracy of more so-
phisticated multivariate models, such as vector autoregressions and dynamic factor models, for
forecasting US quarterly GDP growth rates.12 They find that the simpler AR(2) model is hard
to beat, particularly during non-recessionary phases of the business cycle.

The night lights-based forecasts are obtained by augmenting the benchmark models with
the night lights indicators discussed in the previous section.13 Letting xk,i,t stand for a vector
containing indicator k, the augmented models are given by

yi,t = αk,i + %kyi,t−1 + θkxk,i,t−1 + εk,i,t, (4.3)

yi,t = α′k,i + %k,iyi,t−1 + θk,ixk,i,t−1 + εk,i,t, (4.4)

for the pooled and individual specifications, respectively, where the parameter vectors θk(,i)

have dimensions conformable to the number of combined indicator measures. For example, for
the standard SoL indicator, xk,i,t is univariate, that is, containing only one indicator series at
a time; for the cases of the location-based indicators, two SoL growth measures are produced

11We have also experimented with the inclusion of period fixed effects in all model specifications but have found
that, whereas their inclusion can improve the robustness of parameter estimates to cross-correlated disturbances
(for example, global shocks), it also tends to deteriorate the models’ forecasting performance, particularly for
the in-sample evaluation exercise, where the period fixed effects cannot be used for computation of conditional
forecasts.

12Our focus on the AR(1) specification is due to the limited availability of annual night lights data and the effects
that adding an extra parameter on the second lag of GDP growth rates can have on estimation uncertainty. Results
taking the AR(2) model as a benchmark are reported in Appendix A.3 and show similar night lights improvement
figures as those obtained under the AR(1) specification presented in the main text.

13Models including only the night lights indicators, namely, without the AR(1) term, yield poor forecasting
performance relative to the benchmark, which is not surprising considering the relevance of persistence in the
GDP series.
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according to the decomposition of a country’s pixels in a given year into positive and negatively
correlated pixels. Also notice that the lights indicators are introduced with a lag so as to reflect
our interest in 1-year-ahead forecasts; these specifications can be easily adjusted to instead use
the contemporaneous relationship between lights and growth, more in the spirit of a nowcasting
exercise.14

One important issue in the estimation of these models using a global sample of countries is
the likely presence of outliers in the estimated relationships, mostly due to country-specific dis-
ruptive events such as wars and armed conflicts. Such outliers can introduce substantial biases
in the estimation of the model parameters. To deal with this issue we adopt a two-stage estima-
tion approach for outliers detection. First, we estimate the benchmark panel model specification
with all available observations and derive the corresponding studentized residuals, obtained by
dividing the raw residuals by an independent estimate the residual standard deviation. Outliers
are then detected based on the statistical significance (p-value smaller than 1% under Student’s
t-distribution) of each disturbance; a total of 67 outliers are detected according to this proce-
dure (these are listed in the Appendix A.5). In the second stage we obtain the final estimates of
the models, both panel and individual specifications, excluding the detected outliers from the
sample.

4.2 Model estimates

The estimates of the panel models, (4.1) and (4.3), as well as averages of their individual
counterparts, (4.2) and (4.4), are reported in Table 4.1. Interestingly, the panel estimate for
the lagged values of the standard total SoL indicator (All pixels) is not statistically significant,
while the average of its individual estimates is only marginally significant at the 10% level of
significance. In contrast, the estimates are more favorable to the correlation-based indicators,
which are found to have statistically significant relationships with GDP growth, and reasonable
signs on the estimated coefficients, that is, positive (negative) for the indicator reflecting the
positively (negatively) correlated pixels.

The models using the correlated pixels indicators are also clearly superior in terms of ex-
planatory power, as evidenced by the adjusted R2 statistics. Besides, the individual specifi-
cations obtain even greater improvements to explanatory power by allowing for heterogenous
relationships between the lights indicators and GDP growth. Nevertheless, this improvement
comes at the cost of an increase in the number of estimated parameters, hence leading to less
parsimonious models, which, in turn, can have a negative effect on the accuracy of the estimates
and their implied forecasts. This tradeoff between parsimony and fit is captured by the reported
information criteria, namely the Bayesian and the Akaike IC, which only differ in terms of how

14Although the data we use in this paper are available for free only at the annual frequency, there is an obvious
potential for more timely products on the basis of the raw daily images used to construct the annual composites.
Besides, monthly data have been produced since 2013 from the more recently launched Suomi National Polar-
orbiting Partnership satellite’s Visible Infrared Imaging Radiometer Suite (VIIRS) sensors.
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Table 4.1: Models estimates.

Predictors
Panel estimates Individual estimates (averaged)

(1) (2) (3) (1’) (2’) (3’)

Lag GDP growth 0.256∗∗∗ 0.248∗∗∗ 0.259∗∗∗ 0.246∗∗∗ 0.245∗∗∗ 0.275∗∗∗

(0.027) (0.029) (0.026) [0.022] [0.022] [0.017]
Lag SoL growth:

All pixels 0.003 0.011∗

(0.004) [0.006]
Positively 0.052∗∗∗ 0.127∗∗∗

corr. pixels (0.009) [0.008]
Negatively -0.041∗∗∗ -0.083∗∗∗

corr. pixels (0.005) [0.005]

N. observations 3598 3334 3316 3598 3334 3316
N. estim. params. 168 169 170 334 501 668
R2 (adjusted) 0.277 0.279 0.403 0.338 0.348 0.608
Bayesian IC 5.526 5.508 5.313 5.767 6.103 5.937
Akaike IC 5.237 5.198 5.000 5.193 5.185 4.707

Notes: Estimates obtained regressing real GDP growth on the corresponding predictors and country
fixed effects. Estimation by least squares in two stages: first, with all available observations; sec-
ond, excluding outliers (67 in total; see text for details). Values inside parentheses are country-
clustered robust standard errors, while values inside square brackets are standard errors of the
means of the individual estimates. ∗∗∗, ∗∗, and ∗ stand for 1%, 5%, and 10% levels of statis-
tical significance, respectively. The Bayesian and Akaike information criteria are calculated as
(−2 logL+p logN)/N and (−2 logL+2p)/N , respectively, where L is the value of the normal
likelihood function, p is the number of estimated parameters, and N is the number of observa-
tions.
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Figure 4.1: Individual estimates of forecasting models.

(a) Total SoL.
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(b) Correlation-based SoL.
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severe the number of estimated parameters is penalized. Here there is mixed evidence for the
individual models relative to the panel estimates: whereas the more severe BIC deteriorates (in-
creases), the AIC indicates the increase in the number of parameters is worthwhile. Also notice
the AIC always improves (decreases) with the inclusion of additional night lights indicators
within both the panel and the individual specifications.

The assumption of a common relationship between the night lights indicators and GDP
growth across countries, as implied by the panel specifications, is further put into question
when we look at the individual estimates for the country-individual model specifications, as
depicted in Figure 4.1. Namely, we observe a wide range of individual parameter estimates:
the coefficients associated with the total SoL indicator, for example, range from -0.25 to 0.33.
Although the estimates for the correlation-based indicators tend to be consistent with their ex-
pected signs, it is clear that even in this case the individual estimates are too dispersed to justify
pooling. Interestingly, the individual AR(1) coefficient estimates are also found to be widely
dispersed in relation to their panel estimates. Hence, in spite of the likely higher estimation
uncertainty in the individual specifications (eqs. 4.2 and 4.4), due to the use of smaller samples
of data, it seems important to give full consideration to this alternative on the evaluation of the
predictive performance of the night lights-based forecasts.

4.3 Evaluation exercises

In order to evaluate the quality of the night lights indicators as predictors of annual GDP growth
we conduct two main exercises, differing mainly with respect to the sample used for the estima-
tion of the model parameters and evaluation of the forecasts. More formally, under the model
specifications described above, the construction of one-step-ahead conditional GDP growth
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forecasts, ŷk,i,t+1, can be generically expressed as given by

ŷSk,i,t+1 = α̂Sk,i + %̂Sk(,i)yi,t + θ̂
S
k(,i)xk,i,t, (4.5)

where the superscript S is introduced to denote the sample used in the estimation of the model
parameters, and the (, i) subscript distinguishes between the panel and individual countries
specifications.

First, we evaluate the models’ in-sample predictive performance. To that purpose we con-
struct GDP growth forecasts for every year in the period from 1993 to 2014, namely, with
t = {1992, . . . , 2013} in equation (4.5), using model parameters estimated with our full sam-
ple of data, that is, with S = {1992, . . . , 2014} in (4.5). Naturally, this is not a realistic
real-time forecasting exercise considering that data beyond the forecast base period are nor-
mally not available to a forecaster estimating the forecasting model. To approach this issue we
propose a second exercise to evaluate recursive out-of-sample (OS) forecasts. Namely, we
restrict our evaluation to annual forecasts for the period from 2001 to 2014, constructed with
model estimates based on an augmenting recursive sample; under the notation of equation (4.5),
while t = {2000, . . . , 2013}, St = {i}ti=1992. Importantly, for the OS exercise we have found
that the effects of estimation uncertainty can be reduced for the night lights-augmented mod-
els by fixing the AR(1) and intercept parameters to the recursive benchmark estimates, while
(re-)estimating only the night lights relationships.15

Our main measure of evaluation is the forecasts’ root mean squared errors (RMSE), cal-
culated as usual for each country and model specification. We then construct the night lights
RMSE ratios in relation to the AR(1) benchmark RMSE, where values below one indicate the
former outperformed the benchmark, and vice versa. Considering that we have a total of 167
countries in our sample, we synthesize our evaluation by averaging the RMSEs across coun-
tries, using country GDP (in PPP terms) as weights. A similar weighted averaging is applied to
summarize the RMSE ratios, except that these are averaged geometrically.

5 Forecast evaluation

5.1 Averaged statistics

The averaged results for the main evaluation exercises are presented in Table 5.1. Starting
with the in-sample results, in panel (i), we observe that the usefulness of the night lights data
depends on whether the forecasting model was estimated pooling all the countries together or
individually. Here the evidence is in favor of the individual estimation, yielding in-sample pre-
dictions between 5% and 27% more accurate than the panel estimated models. Across the night

15Using equation (4.5)’s notation this is equivalent to setting α̂St

k,i = α̂St
i , %̂St

k(,i) = ρ̂St

(i), for all k, while θ̂
St

k(,i) is

obtained by regressing
(
yi,j+1 − ŷSt

i,j+1

)
on xk,i,j recursively with j = St.
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Table 5.1: Forecast evaluation statistics.

Model
Panel Individual

Sample
RMSE Ratio SSR RMSE Ratio SSR

(i) In-sample evaluation.
AR(1) benchmark 2.203 - 65% 2.079 - 64% 3465
AR(1) + Lagged SoL indicators:
+ Total SoL growth 2.201 1.00 66% 2.026 0.97 67% 3335
+ Correlated pixels SoL growth

Real-time classification 2.216 0.99 68% 1.935 0.91 69% 2845
Full-sample classification 1.802 0.80 73% 1.322 0.63 77% 3316

(ii) Out-of-sample evaluation.
AR(1) benchmark 2.400 - 64% 2.524 - 63% 2232
AR(1) + Lagged SoL indicators:
+ Total SoL growth 2.401 1.00 64% 2.555 1.01 60% 2220
+ Correlated pixels SoL growth

Real-time classification 2.531 1.07 63% 2.709 1.07 60% 2180
Full-sample classification 2.003 0.82 70% 1.998 0.78 69% 2188

Notes: All statistics are weighted cross-country averages using the countries GDPs (in PPP terms) as
weights and are based on forecasts over the period from 1993 to 2014, for the in-sample eval-
uation, and from 2001 to 2014, for the out-of-sample evaluation. RMSE stands for root mean
squared errors. SSR stands for the sign success ratio of predicted growth change. Ratios are
first computed individually, relative to the corresponding benchmark specification over identi-
cal forecasting samples, and then geometrically averaged using countries GDPs as weights. The
out-of-sample forecasts are constructed recursively with models estimated using only past obser-
vations available at the forecast base period. The real-time classification of pixel correlations are
re-calculated for every forecast base period using only past data, while the full-sample classifica-
tion is based on data up to 2013.

lights indicators, the correlation-based ones stand out, with accuracy improvements reaching
up to 37% (full-sample classification) in relation to the benchmark model. An averaged mea-
sure of the predicted sign success (SSR) is also presented in Table 5.1, where the differences in
performance suggest that part of the improvements brought by the night lights is due to better
sign predictions too.

Interestingly, a greater improvement is obtained with the use of the full-sample instead
of real-time vintages for the calculation of the pixel correlations. In spite of being infeasible
for a real-time forecaster, the results obtained under this full-sample classification indicate
the relevance of locations’ classification for the accuracy of the night lights-based forecasts.
Particularly, an understanding of the spatial evolution of light intensities at locations with higher
predictive content for economic activity can be an interesting avenue for future research.

Turning to the out-of-sample results, presented in panel (ii) of Table 5.1, we observe a dete-
rioration of the individual model’s performances relative to their panel estimated counterparts.
Whereas this could put into question our in-sample conclusions, favoring the individually-
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Table 5.2: Frequencies of night lights improvements over benchmark model across countries.

Statistics / specifications
In-sample Out-of-sample

Panel Individual Panel Individual

(i) Indicator-specific improvement rates:
(a) Total SoL growth 63.5% 92.2% 49.7% 34.7%

(13.2%) (27.5%) (18.0%) (25.1%)
Correlated pixels SoL growth

(b) Real-time classification 64.7% 97.6% 25.7% 21.6%
(25.1%) (37.7%) (15.0%) (25.1%)

(c) Full-sample classification 86.8% 97.6% 88.6% 80.8%
(80.8%) (70.1%) (84.4%) (76.6%)

Average: (a) + (b) + (c) 71.7% 95.8% 54.7% 45.7%
(39.7%) (45.1%) (39.1%) (42.3%)

(ii) Max-t frequency of rejections at 20% significance:
Models set: (a) + (b) 18.6% 38.9% 17.4% 22.2%
Models set: (a) + (b) + (c) 75.4% 64.7% 61.1% 64.7%

Notes: The frequencies measure the percentage of countries for which the night lights augmented model
outperformed the benchmark. Statistics in parenthesis refer to the cross-country frequency of re-
jections of the Clark and West (2007) (CW) one-sided test for equal predictive accuracy in nested
models, at the 20% level of significance computed using 1,000 bootstrap replications according
to the Clark and McCracken (2012) method for nested model reality checks. The Max-t reality
check refers to multiple-model variant of the CW test.

estimated models, these results seem to be driven mainly by parameter estimation errors, due
to the small samples available for the first recursive estimations. For example, the first indi-
vidual recursive forecasts, for the year 2001, are based on model estimates obtained using, at
best, merely 7 data points, from 1994 (the 1992-93 SoL changes are used as a lagged value)
to 2000, for each individual country; compare that to the more than 1,000 observations used
under the panel estimation and it is not surprising that the recursive OS exercise favored the lat-
ter. Nevertheless, relative to their corresponding benchmark, the OS performances of the night
lights-augmented models are more uniform within the panel and individual specifications: here
only the full-sample classification of pixels is capable of providing an average improvement,
equal to 18% and 22%, for the panel and individual specifications, respectively.

5.2 Individual country performances

The averaged statistics can conceal the cross-country heterogeneity of performances. Particu-
larly, the averages can be affected by large outliers that push the evaluation measures towards
a direction that does not reflect the majority of the results. To approach this issue we now
focus on the distribution of results across countries. In Table 5.2 we present statistics on the
cross-country frequency within which the night lights indicators improved over the benchmark
model’s forecasting accuracy (test results will be discussed below in Section 6.1).
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Overall, the results reported in panel (i) of Table 5.2 confirm our findings with the averaged
statistics. Namely, the individual models achieve higher improvement rates than the panel ones
under the in-sample exercise, whereas the opposite is observed under the recursive OS evalua-
tion. Notwithstanding, these results also reveal that even in OS forecasting the night lights data
can still be useful for a considerable portion of countries, providing improvements to about
55%, using the panel specification, and 46%, using individual specifications, of the countries in
our sample, on average across the indicators. Focusing on the full-sample correlation-based in-
dicator, as reported in panel (i)-(c), provides an even more favorable outlook for the night lights
data with improvements being registered for more than 80% of our sample of 167 countries.

It is also interesting to look at how the usefulness of the night lights data varies across
the countries in our sample. In Figure 5.1 we present the countries RMSE ratios, focusing
on the forecasts obtained with the models augmented with the full-sample correlated pixels
indicators, and grouped according to the World Bank income classification.16 We note that
the improvement rates reported above are found to be slightly skewed against the low income
countries, with OS improvements with the individual (panel) models for only 58% (77%) of
the countries in that group, compared to 94% (97%), 79% (93%), and 82% (88%), for the
high, upper middle, and lower middle income groups of countries, respectively. The individual
performances obtained with the panel model are also more stable across the high and upper
middle income countries.

6 Supplementary evaluations

6.1 Statistical tests

Our analysis has so far been based on direct comparisons of sample accuracy measures of the
forecasts derived from different modeling assumptions and night lights indicators. One impor-
tant question is how these comparisons stand in statistical terms, namely, when a model is found
to outperform (or not) the benchmark, how much confidence can we put on this being evidence
that would transcend the sample used for the evaluation? To attempt to answer this question
we conduct statistical tests comparing the predictive accuracy of the night lights-augmented
forecasts to those obtained under the AR(1) benchmark model. For that purpose we follow
the approach suggested by Clark and West (2007, CW) for comparison of nested17 models,
also adapting the inference to finite samples by simulating the empirical distribution of the test

16Country-specific evaluation reports are also available in a supplementary file.
17One traditional test for the hypothesis of equal predictive accuracy is the Diebold and Mariano (1995, DM)

test, which is based on the mean difference in sample average losses (here assumed to be the squared forecast
error). However, one important disadvantage of the DM test is that it does not account for parameter estimation
uncertainty, an issue that is of great relevance in our application. Besides, our comparative evaluation involves
nested models, that is, the night lights-augmented specifications, eqs. (4.3) and (4.4), would converge to the bench-
mark specifications, eqs. (4.1) and (4.2), under the null hypothesis that the night lights indicators are irrelevant to
GDP growth predictions (for further discussion on these issues, see Elliott and Timmermann, 2016, Ch. 17).
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Figure 5.1: Countries RMSE ratios grouped by income level.

(a) High income countries. (b) Upper middle income countries.

(c) Lower middle income countries. (d) Low income countries.

Notes: The RMSE ratios refer to forecasts obtained with the correlated pixels (full-sample classifica-
tion) night lights model. Values below one indicate countries for which the night lights-based
forecasts outperformed those from the benchmark model, and the opposite for the ratios above
one. Statistical significance is computed from 1,000 bootstrap replications as detailed in the text.
The countries are grouped according to their World Bank income classification and sorted within
each group in ascending order according to their corresponding individual specification out-of-
sample RMSE ratios.
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statistics according to the bootstrap procedure proposed by Clark and McCracken (2012).18

The statistical tests for predictive improvement are again conducted separately for each
country, model, pooling assumption, and evaluation exercise. The results are summarized in
Table 5.2 in the form of cross-country frequencies of rejections of the null hypothesis that the
night lights data bring no improvement to the accuracy of the benchmark AR(1) model.19 As
expected, these hit-rates tend to be smaller than the improvement rates observed above, based
solely on the sample RMSEs. The only exception is the OS result with individual real-time
correlation-based SoL forecasts, where the rate of CW rejections is slightly higher than the
raw RMSE improvement rates; this is due to the fact that the CW test statistic corrects the
MSE differentials for the estimation of additional parameters in the alternative model, which is
another clear indication that these results are strongly affected by estimation uncertainty.

Whereas the lower rates of rejections of the null of no predictive improvement indicate
caution should be taken in extrapolating our overall assessments beyond our sample, we note
that the in-sample evidence may still provide some guidance on the applicability of our findings
for particular countries. Indeed, Inoue and Kilian (2005) question the interpretation that in-
sample evidence of predictability unaccompanied by similar out-of-sample evidence is likely
to be spurious, showing that such an empirical regularity can be explained by the fact that in-
sample tests tend to have higher power than out-of-sample ones. Country-specific significance
results are also depicted in figure 5.1.

6.2 Partial pooling

The panel and individual specifications represent two extreme ends of a broad range of possi-
bilities with respect to the grouping of countries for the estimation of the relationship between
night lights and GDP growth. From one side, both our estimation and forecasting results have
indicated the existence of too much cross-country heterogeneity in that relationship to endorse
the full pooling assumption. The individual specifications, in turn, have been found to be
severely affected by estimation uncertainty, particularly for the purpose of out-of-sample fore-
casting. Hence, we now explore some partial pooling alternatives in an attempt to improve this
trade-off between heterogeneity and estimation uncertainty.

To approach the issue of partial pooling we adopt three different criteria. First, we evaluate
the sub-grouping of countries according to their WB income classification. Second, we group

18In short, Clark and McCracken (2012) propose the use of a wild fixed regressor bootstrap procedure to ap-
proximate the asymptotic critical values in the comparison of forecasts based on nested models. There are only
two differences in our application: (i) considering that we have a panel of countries, in order to preserve the cross-
country correlations we use the same random resampling across the countries on each bootstrap replication; and,
(ii) we use the benchmark (restricted) model to obtain the bootstrapped residuals instead of the unrestricted specifi-
cation, including all night lights indicators, considering that this would be infeasible for the individually-estimated
models; according to Clark and McCracken (2012), this makes little difference in practice.

19The individual tests underlying these rates are provided in an online supplement, including the results based
on the DM test and the theoretical distribution of the tests statistics; the latter tend to show higher rejection rates
(lower p-values), on average, than those obtained under the bootstrapped tests.
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Table 6.1: Partial pooling RMSE ratios.

Specification Panel
Clustering criterion (n.clusters)

IndividualIncome Region k-means
(4) (7) (50) (100)

(i) In-sample evaluation.
Total SoL growth 1.00 0.99 1.00 0.97 0.97 0.97
Correlated pixels SoL growth:

Real-time 0.99 0.99 0.97 0.90 0.91 0.91
Full-sample 0.80 0.79 0.74 0.66 0.63 0.63

(ii) Out-of-sample evaluation.
Total SoL growth 1.00 1.00 1.00 1.00 1.00 1.01
Correlated pixels SoL growth:

Real-time 1.07 1.06 1.05 1.06 1.04 1.07
Full-sample 0.82 0.81 0.81 0.81 0.82 0.78

Notes: See the notes to Table 5.1 for details about the construction of the RMSE ratio statistics. The
partial pooling classifications by income (34 high, 29 upper middle, 51 lower middle, and 53 low
income countries) and region (22 from East Asia & Pacific, 49 from Europe & Central Asia, 26
from Latin America & Caribbean, 18 from Middle East & North Africa, 2 from North Amer-
ica, 7 from South Asia, and 43 from Sub-Saharan Africa) are based on World Bank definitions.
The k-means classifications are obtained separately for each model specification based on the
Euclidean distance between the individual estimates of the AR(1) and the night lights indicator(s)
coefficients.

countries according to their WB region. Third, we adopt a k-means clustering algorithm to
group countries in a way that minimizes the Euclidean distance between the country individual
estimates (see, e.g., Vahid, 1999; Sarafidis and Weber, 2015, for previous applications of clus-
tering methods in panel data). The results of these exercises are presented in Table 6.1, which
also reports the previous panel and individual results for comparative purposes.

As the RMSE ratios in Table 6.1 indicate, there is little support for the grouping of countries
according to their WB income class and regions. A slightly more favorable picture is obtained
using the more agnostic approach based on the k-means clustering algorithm; however, the
individual results are still favored in some of the exercises, particularly in the OS exercise with
the full-sample correlation-based night lights indicators. Hence, whereas there is some space
for improvement with the partial pooling alternative, more elaborate methods may be required
to single out the optimal partitioning of countries with respect to the relationship between the
night lights and GDP growth.

7 Potential explanatory factors

Our results show a non-negligible degree of heterogeneity in the performance of the night lights
indicators in forecasting GDP growth across our global sample of countries, particularly when
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Figure 7.1: Scatterplots between night lights performances and key country-specific factors.

(a) Size-related factors.
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(b) Structure-related factors.

(c) Logistic-related factors. (d) Data-related factors.
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Notes: The countries (log) RMSE ratios (depicted in the vertical axis of each plot) are the same as
those reported in Figure 5.1 obtained from individual model estimates.

forecasting out-of-sample. Whereas the countries income per capita classification seems to be
associated with the stability of night lights performance (recall the analysis of Figure 5.1), we
now attempt to uncover other key factors underlying the usefulness of the night lights data.
For that purpose we examine the relationship between the night lights performances and some
country-specific factors, including variables for the country’s: economic development, infras-
tructure and sectoral composition; demographic and geographic characteristics; energy effi-
ciency; informal sector size; and statistical capacity. The results are summarized in Figure 7.1,
focusing on the four most important categories of factors for the performance of the forecasts
based on the full-sample correlated pixels night lights indicator. Results for the other indica-
tors, together with a complete list of all variables considered and their sources, are provided in
Appendix A.4.

The first group of factors, presented in Figure 7.1a, refers to size-related measures, where
bigger countries, in economic, population, and geographic terms, are found to obtain better
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night lights performances (notice lower log RMSE ratios represent better night lights perfor-
mances relative to the benchmark). This is a quite sensible finding considering that the bigger
the country the higher tends to be the number of night lights signals collected by the satellites.
The second group of factors, presented in Figure 7.1b, relates to the structure of the countries
expenditures and production sectors. Here, both the share of consumption and the share of
agriculture in GDP are found to be negatively associated with the performance of the night
lights forecasts. Considering that countries with higher consumption shares tend to present
lower investment rates, we interpret this finding as consistent with the time to build argument
outlined in Section 2.2. The finding on agriculture also seems consistent with the idea that
the night lights data are more sensitive to concentrated industrial activities, which are likely
to generate more luminosity than scattered countryside activity. The usefulness of geo-located
signals is also evidenced by the results for the third group of factors, presented in Figure 7.1c,
which indicate that the night lights tend to achieve better performance in countries with better
logistics infrastructure and connectivity to global shipping networks.

Finally, the last group of factors, presented in Figure 7.1d, is related to the measurement
error hypothesis outlined in Section 2.1. Intriguingly, the night lights forecasts tend to perform
better for countries with higher scores in the World Bank Statistical Capacity assessments, a
result in contrast with the past literature proposing the use of night lights to improve GDP mea-
sures in countries with less reliable statistics. One possible explanation for this result comes
from the fact that, in contrast to the previous literature, we are estimating the lights-growth
relationship individually for each country; thus, the better results we obtain for more developed
countries can be associated with better estimates provided by the higher quality of GDP data
for those countries.20 This view is corroborated by the results relating the night lights perfor-
mances with estimates of the relationship between GDP growth and (lagged) lights growth in
the individual forecasting models, where stronger relationships are found to be associated with
improved night lights performance.

8 Concluding remarks

In this paper we evaluated the usefulness of satellite-based data on night-time lights for the
prediction of annual GDP growth across a global sample of 167 countries over the period from
1993 to 2014. We proposed innovative measures to improve the quality of the signals obtained
from the lights data at different locations within a country, and evaluated their predictive con-
tent by augmenting an AR(1) GDP growth forecasting model with lagged values of the lights
indicators. We have also considered alternative assumptions on the pooled estimation of the

20Recall from equation (2.5) that a lower measurement error in the lights-growth relationship, σ2
e , can be ex-

pected to improve the performance of the lights data, while lower GDP measurement errors, σ2
u, would lead to

a deterioration of that improvement; hence, our results suggest that the effect of more precise individual lights-
growth estimates dominate the decrease of relevance of the lights data for countries with better statistics.
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relationship between lights and GDP growth across countries, ranging from country-individual
specifications to partial and full panel specifications.

Overall, we have found evidence favorable to the use of night lights data for GDP growth
forecasting. Importantly, our results indicate a substantial degree of heterogeneity across coun-
try estimates, and that these effects are relevant for the use of night lights as predictors of GDP
growth. Namely, we have found that individually-estimated models tend to outperform pooled
specifications, even though the former are subject to greater sampling variability due to the use
of smaller samples. These biases have been particularly harmful under an out-of-sample fore-
cast evaluation exercise, though we still find statistically significant improvements for over two
thirds of our sample of countries. In spite of these estimation issues, we believe our analysis of
innovative location-based night lights indicators provides an interesting framework for future
applications of the night lights data for economic measurement and forecasting.
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A Online Appendix (not for publication)

A.1 Theoretical derivation of lights relative accuracy

Under the framework of equations (2.1) and (2.2), the OLS estimates of ρ̂, %̂, and θ̂ are given
by

ρ̂ =
Cov (zt, zt−1)

σ2
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, (A.3)

respectively. Using these estimates, the mean squared forecast errors associated with the bench-
mark and the lights-based forecasts are given by

∆̂ = E
[
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]
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respectively. We can now compare the accuracy of the night lights-based forecasts to that of
the benchmark model by focusing on their (normalized) MSFE ratio,
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where the second term of equation (A.6) reflects the (expected) improvement obtained with the
use of the lights-augmented specification in relation to the benchmark autoregressive model.

A.2 Intercalibration of night lights data

The night lights data consist of a total of 34 global composite images coming from six different
satellites operating over the period between 1992 and 2013. For comparative purposes, these
data require intercalibration in order to adjust for varying sensor conditions. Here we follow
the approach proposed by Elvidge et al. (2009), where a second order polynomial regression
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is estimated across the satellite-year composites over Sicily, and then used to adjust the global
composites accordingly. The regression specification is given by

DNr,p = φ0 + φ1DNs,p + φ2DN
2
s,p, (A.7)

where p stand for the pixel, s for the satellite-year composite to be re-scaled, and r (= F152006)
for the reference satellite-year composite, which was selected so as to maximize the average fit
of the regressions. The dispersion of the data used for estimation and the parameter estimates
are presented in Figure A.1 and Table A.1, respectively.

A.3 AR(2) benchmark results

Table A.2 presents the averaged forecast evaluation statistics taking an AR(2) model as the
benchmark. Although the in-sample RMSEs are smaller than those observed under the AR(1)
benchmark exercise presented in Table 5.1, the RMSE ratios of the night lights-based forecasts
relative to the benchmark are roughly the same. A similar picture emerges in terms of RMSE
ratios under the out-of-sample evaluation exercise, although in this case the AR(2) RMSEs are
generally higher than those obtained with the AR(1) benchmark analysed in the main text.

A.4 Explanatory factors supplementary results and data sources

The data used for the analysis of explanatory factors come from many different sources, such
as: (i) the International Monetary Fund (IMF) World Economic Outlook (WEO); (ii) the World
Bank Development Indicators (WB-DI); (iii) the Gallup et al. (1999, GSM) physical geography
dataset; (iv) the Penn World Tables (Heston et al., 2002, PWT); (v) OECD Real-Time and
Revisions Database (RTRD); (vi) the International Labour Organization (ILO). A complete list
of the variables considered is presented in Table A.3. The scatterplots relating all these variables
to the out-of-sample performance of the night lights-based forecasts, individual models, are
presented in Figures A.2-A.9.
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Figure A.1: Scatter plots of Sicily’s pixels DNs used for intercalibration of satellites.

Notes: The DN values observed over Sicily for the reference satellite F152006 are plotted (x-axis) against
Sicily’s DN values from other satellite-year composites (y-axis). The black line depicts the fitted
values according to equation (A.7).
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Table A.1: Intercalibration regression estimates.

Sat. Year φ0 φ1 φ2 R2 N.Pixs.

10 1992 -1.8913 1.2378 -0.0042 0.904 29796
10 1993 -1.0148 1.2210 -0.0039 0.926 33413
10 1994 -0.4652 1.1417 -0.0031 0.932 30561
12 1994 -0.7232 0.8819 0.0013 0.929 28980
12 1995 -0.2319 0.9166 0.0004 0.938 32207
12 1996 -0.1864 0.9556 0.0002 0.937 30016
12 1997 -0.4029 0.8706 0.0015 0.939 31979
12 1998 0.1048 0.7470 0.0027 0.951 32436
12 1999 0.4627 0.6816 0.0035 0.940 31268
14 1997 -1.4670 1.3965 -0.0064 0.935 31695
14 1998 -0.1328 1.2448 -0.0048 0.933 30864
14 1999 -0.2841 1.1501 -0.0029 0.950 33353
14 2000 0.5327 1.0149 -0.0012 0.943 32084
14 2001 -0.0964 1.0062 -0.0009 0.958 32844
14 2002 0.6088 0.8688 0.0009 0.954 31427
14 2003 0.1951 0.9600 -0.0002 0.959 33361
15 2000 0.1642 0.7380 0.0029 0.939 33651
15 2001 -0.4642 0.7937 0.0027 0.956 33059
15 2002 0.1410 0.6751 0.0042 0.960 32359
15 2003 -0.3656 1.1889 -0.0031 0.966 33340
15 2004 0.0403 1.0301 -0.0009 0.976 31080
15 2005 0.0837 0.9788 0.0001 0.970 33509
15 2006 0.0000 1.0000 0.0000 1.000 33877
15 2007 0.5517 0.9891 0.0002 0.966 31159
16 2004 -0.2095 0.9014 0.0007 0.958 31752
16 2005 -0.5565 1.1083 -0.0021 0.970 33618
16 2006 -0.4076 0.8657 0.0020 0.970 31893
16 2007 0.4299 0.6412 0.0046 0.972 32308
16 2008 0.2339 0.7200 0.0033 0.966 32271
16 2009 0.3699 0.7898 0.0022 0.962 28894
18 2010 1.8024 0.2926 0.0092 0.931 31117
18 2011 1.6726 0.4687 0.0062 0.936 31245
18 2012 1.6511 0.3815 0.0078 0.954 32151
18 2013 1.5803 0.4479 0.0064 0.957 32181

Notes: The estimates refer to equation (A.7) and are based on
Sicily’s night lights data.
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Figure A.2: Scatterplots between forecasting performances of night lights indicators and
country-specific factors – size-related factors.

Notes: The countries (log) RMSE ratios (depicted in the vertical axis of each plot) are those ob-
tained under the out-of-sample exercise using the individually estimated forecasting models.
Yellow, red, and blue points refer to the performances of the forecasting models using the
total SoL, real-time correlated pixels SoL, and full-sample correlated pixels SoL growth
variables, respectively.
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Figure A.3: Scatterplots between forecasting performances of night lights indicators and
country-specific factors – night lights data factors.

Notes: Same as notes to Figure A.2.
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Table A.2: Forecast evaluation statistics against AR(2) benchmark.

Model
Panel Individual

Sample
RMSE Ratio SSR RMSE Ratio SSR

(i) In-sample evaluation.
AR(2) benchmark 2.188 - 66% 2.036 - 68% 3437
AR(2) + Lagged SoL indicators:
+ Total SoL growth 2.184 1.00 66% 1.978 0.97 70% 3307
+ Correlated pixels SoL growth

Real-time classification 2.205 0.99 67% 1.897 0.90 68% 2843
Full-sample classification 1.792 0.80 74% 1.289 0.63 77% 3290

(ii) Out-of-sample evaluation.
AR(2) benchmark 2.416 - 66% 2.696 - 62% 2205
AR(2) + Lagged SoL indicators:
+ Total SoL growth 2.418 1.00 66% 2.736 1.01 63% 2181
+ Correlated pixels SoL growth

Real-time classification 2.533 1.07 64% 2.847 1.06 59% 2117
Full-sample classification 2.020 0.82 70% 2.244 0.83 69% 2121

Notes: Same as notes to Table 5.1.

Figure A.4: Scatterplots between forecasting performances of night lights indicators and
country-specific factors – demographic factors.

Notes: Same as notes to Figure A.2.
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Table A.3: Explanatory factors – variables and data sources.

Control groups Sources Variables

Economic and IMF-WEO GDP per capita (PPP), GDP (PPP),
demographic variables average population count and density.

WB-DI Ratios of consumption, agriculture, industry,
services, natural resources rents, and trade
to GDP, urban population (ratio to total).

Energy WB-DI Access to electricity (% of pop.),
electric power consumption (per capita),

electric power trans./distr. losses (% output),
renewable energy consumption (% total),

GDP per unit of energy use.
Geographic WB-DI Area (km2), logistic performance,

liner shipping connectivity.
GSM Latitude and longitude centroids,

mean elevation, mean distance to nearest
navigable river/coast, pop. within 100km

of coast/nav.river.
Informality WB-DI % firms competing against informal firms,

% firms formally registered when started,
n. years operated informal, % firms identifying

informal competitors as a major constraint.
ILO % informal employment.

Data quality WB-DI Assessments of statistical capacity:
overall score on periodicity and timeliness,

source data, methodology.
PWT Quality index.

OECD-RTRD§ Mean absolute revisions,
revisions autocorrelation.

Notes: §Revisions statistics calculated between first published and latest available data.
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Figure A.5: Scatterplots between forecasting performances of night lights indicators and
country-specific factors – geographic/logistic factors.

Notes: Same as notes to Figure A.2.
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Figure A.6: Scatterplots between forecasting performances of night lights indicators and
country-specific factors – economic structure factors.

Notes: Same as notes to Figure A.2.
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Figure A.7: Scatterplots between forecasting performances of night lights indicators and
country-specific factors – energy-related factors.

Notes: Same as notes to Figure A.2.
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Figure A.8: Scatterplots between forecasting performances of night lights indicators and
country-specific factors – informality-related factors.

Notes: Same as notes to Figure A.2.
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Figure A.9: Scatterplots between forecasting performances of night lights indicators and
country-specific factors – data quality factors.

Notes: Same as notes to Figure A.2.
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A.5 List of countries

ISO COUNTRY GDP SAMPLE ISO COUNTRY GDP SAMPLE

HIGH INCOME COUNTRIES: UPPER MIDDLE INCOME COUNTRIES:
ARE United Arab Emirates 1992 - 2014 ARG Argentina 1992 - 2014*
AUS Australia 1992 - 2014 BRA Brazil 1992 - 2014
AUT Austria 1992 - 2014 BWA Botswana 1992 - 2014
BEL Belgium 1992 - 2014 CHL Chile 1992 - 2014
BHS The Bahamas 1992 - 2014 CRI Costa Rica 1992 - 2014
BRN Brunei Darussalam 1992 - 2014 CZE Czech Republic 1996 - 2014
CAN Canada 1992 - 2014 EST Estonia 1994 - 2014*
CHE Switzerland 1992 - 2014 GAB Gabon 1992 - 2014
CYP Cyprus 1992 - 2014 HRV Croatia 1993 - 2014
DEU Germany 1992 - 2014 HUN Hungary 1992 - 2014
DNK Denmark 1992 - 2014 LBN Lebanon 1992 - 2013
ESP Spain 1992 - 2014 LBY Libya 1992 - 2014*
FIN Finland 1992 - 2014 LTU Lithuania 1996 - 2014*
FRA France 1992 - 2014 LVA Latvia 1993 - 2014*
GBR United Kingdom 1992 - 2014 MEX Mexico 1992 - 2014
GRC Greece 1992 - 2014 MNE Montenegro 2001 - 2014
IRL Ireland 1992 - 2014 MUS Mauritius 1992 - 2014
ISL Iceland 1992 - 2014 MYS Malaysia 1992 - 2014
ISR Israel 1992 - 2014 OMN Oman 1992 - 2014
ITA Italy 1992 - 2014 PAN Panama 1992 - 2014
JPN Japan 1992 - 2014 POL Poland 1992 - 2014
KOR Korea 1992 - 2014 SAU Saudi Arabia 1992 - 2014
KWT Kuwait 1992 - 2014* SRB Serbia 1999 - 2014
LUX Luxembourg 1992 - 2014 SVK Slovak Republic 1994 - 2014
NLD Netherlands 1992 - 2014 TTO Trinidad and Tobago 1992 - 2014
NOR Norway 1992 - 2014 TUR Turkey 1992 - 2014
NZL New Zealand 1992 - 2014 URY Uruguay 1992 - 2014
PRI Puerto Rico 1992 - 2014 VEN Venezuela 1992 - 2014*
PRT Portugal 1992 - 2014 ZAF South Africa 1992 - 2014
QAT Qatar 1992 - 2014*
SVN Slovenia 1993 - 2014
SWE Sweden 1992 - 2014
TWN Taiwan Province of China 1992 - 2014
USA United States 1992 - 2014 LOW INCOME COUNTRIES:

AFG Afghanistan 2003 - 2014
LOWER MIDDLE INCOME COUNTRIES: AZE Azerbaijan 1993 - 2014*
AGO Angola 1992 - 2014* BDI Burundi 1992 - 2014
ALB Albania 1992 - 2014* BEN Benin 1992 - 2014
ARM Armenia 1993 - 2014* BFA Burkina Faso 1992 - 2014
BGR Bulgaria 1992 - 2014 BGD Bangladesh 1992 - 2014
BIH Bosnia and Herzegovina 1997 - 2014 BTN Bhutan 1992 - 2014
BLR Belarus 1993 - 2014* CAF Central African Republic 1992 - 2012
BLZ Belize 1992 - 2014 CIV Côte d’Ivoire 1992 - 2014
BOL Bolivia 1992 - 2014 CMR Cameroon 1992 - 2014
CHN China 1992 - 2014 COD Democratic Republic of the Congo 1992 - 2014*
COL Colombia 1992 - 2014 COG Republic of Congo 1992 - 2014
CPV Cabo Verde 1992 - 2014 COM Comoros 1992 - 2014
DJI Djibouti 1992 - 2014 ERI Eritrea 1993 - 2006*
DOM Dominican Republic 1992 - 2014 ETH Ethiopia 1992 - 2014*
DZA Algeria 1992 - 2014 GHA Ghana 1992 - 2014
ECU Ecuador 1992 - 2014 GIN Guinea 1992 - 2011
EGY Egypt 1992 - 2014 GMB The Gambia 1992 - 2014
FJI Fiji 1992 - 2014 GNB Guinea-Bissau 1992 - 2014*
GEO Georgia 1995 - 2014 HTI Haiti 1992 - 2014
GTM Guatemala 1992 - 2014 IND India 1992 - 2014*
GUY Guyana 1992 - 2014 KEN Kenya 1992 - 2014
HND Honduras 1992 - 2014 KGZ Kyrgyz Republic 1993 - 2014*
IDN Indonesia 1992 - 2014 KHM Cambodia 1992 - 2014
IRN Islamic Republic of Iran 1992 - 2014 LAO Lao P.D.R. 1992 - 2014
IRQ Iraq 1999 - 2014* LBR Liberia 2001 - 2014*
JAM Jamaica 1992 - 2014 LSO Lesotho 1992 - 2014
JOR Jordan 1992 - 2014 MDG Madagascar 1992 - 2014*
KAZ Kazakhstan 1993 - 2014* MLI Mali 1992 - 2014
LKA Sri Lanka 1992 - 2014 MMR Myanmar 1998 - 2014
MAR Morocco 1992 - 2014 MNG Mongolia 1992 - 2014
MDA Moldova 1993 - 2014* MOZ Mozambique 1992 - 2014*
MKD FYR Macedonia 1993 - 2014 MRT Mauritania 1992 - 2014
NAM Namibia 1992 - 2014 MWI Malawi 1992 - 2011*
PER Peru 1992 - 2014 NER Niger 1992 - 2014
PHL Philippines 1992 - 2014 NGA Nigeria 1992 - 2014
PNG Papua New Guinea 1992 - 2013 NIC Nicaragua 1992 - 2014
PRY Paraguay 1992 - 2014 NPL Nepal 1992 - 2014
ROU Romania 1992 - 2014 PAK Pakistan 1992 - 2014
RUS Russia 1993 - 2014* RWA Rwanda 1992 - 2014*
SLV El Salvador 1992 - 2014 SDN Sudan 1992 - 2010
SUR Suriname 1992 - 2014 SEN Senegal 1992 - 2014
SWZ Swaziland 1992 - 2014 SLB Solomon Islands 1992 - 2014*
SYR Syria 1992 - 2010 SLE Sierra Leone 1992 - 2014*
THA Thailand 1992 - 2014 TCD Chad 1992 - 2014*
TKM Turkmenistan 1993 - 2014* TGO Togo 1992 - 2013*
TLS Timor-Leste 2001 - 2014 TJK Tajikistan 1993 - 2014*
TUN Tunisia 1992 - 2014 TZA Tanzania 1992 - 2014
UKR Ukraine 1993 - 2014* UGA Uganda 1992 - 2014
UVK Kosovo 2001 - 2014 VNM Vietnam 1992 - 2014
UZB Uzbekistan 1993 - 2014 YEM Yemen 1992 - 2008
VUT Vanuatu 1992 - 2014 ZMB Zambia 1992 - 2014*
WSM Samoa 1992 - 2014 ZWE Zimbabwe 1999 - 2013*

*Outliers: AGO (93), ALB (97), ARG (02), ARM (09), AZE (94, 95, 05, 06), BLR (94, 95), COD (93), ERI (95,01), EST (09), ETH (92), GNB (98), IDN (98), IRQ (00-04), KAZ (94),
KGZ (94), KWT (92, 93, 09), LBR (03), LBY (03, 05, 11-14), LTU (09), LVA (09), MDA (94), MDG (02), MOZ (96), MWI (94), QAT (97, 06), RUS (94), RWA (93-95), SLB
(00), SLE (96, 97, 01, 02, 13), TCD (04), TGO (93, 94, 95), TJK (94), TKM (94, 97), UKR (94, 09), VEN (04), ZMB (94), ZWE (03, 08, 10, 11).
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