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Abstract

Aguiar’s (2017) random categorisation rule (RCR) describes ran-
dom choice behaviour as the maximisation of a linear preference order
over the intersection of a random consideration set with the set of
available options. A key axiom in Aguiar’s (2017) characterisation
of the RCR is an acyclicity condition on a revealed preference rela-
tion derived from the random choice function. We show that this
condition may be substantially weakened — to asymmetry of the re-
vealed preference relation —without jeopardising the essence of the
RCR representation. In our generalisation of the RCR, preferences
may be ill-behaved on subsets of alternatives that are never consid-
ered together. While these pathologies in preference are masked by the
decision-maker’s selective attention to an particular choice problem,
they may still be revealed by data across different choice problems. Fi-
nally, we show that the generalised model remains within the random
utility class.

1 Introduction

Block and Marschak (1960) considered probabilistic choice behaviour that
may be characterised as the maximisation of a random (injective) utility
function. The necessary and suffi cient conditions for this characterisation
are rather complicated (Falmagne, 1978) and choice data reveal only lim-
ited information about the underlying distribution over preferences (Gibbard,

∗My thanks to the School of Economics and Finance at Queen Mary University of
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Mariotti for many stimulating conversations on random consideration set models.
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2017). Manzini and Mariotti (2014) introduced the idea of a random con-
sideration respesentation of probabilistic choice, in which a single (injective)
utility function is maximised over a random subset of the available alter-
natives. This characterisation is based on the notion that decision-makers
assign their attention randomly to a subset of available options. In the model
of Manzini and Mariotti, each element is considered randomly and indepen-
dently. Their model admits an elegant axiomatisation, and all parameters
of the model —the attention probabilities and the preferences —can be fully
recovered from choice data. Probabilistic choices that satisfy the Manzini
and Mariotti axioms also have a random utility characterisation.
Aguiar (2017) provides a generalisation of Manzini and Mariotti’s (2014)

random consideration model, which he calls a random categorisation rule,
that relaxes the restrictive independence assumption on consideration. In-
stead, potential alternatives are grouped into (possibly overlapping) cate-
gories and one category is randomly attended to when making a decision.
Probabilistic choices that follow a random categorisation rule also have a
random utility characterisation. The random consideration process can be
extracted from choice data, but given the lack of restrictions on this process
only limited information on preferences may be revealed.
We offer a generalisation of Aguiar’s model that relaxes the assumption

that preferences are linear. This is rather natural when consideration is
“categorical”. If a given collection of alternatives never occur together within
any single category that is given positive attention, then the decision-maker
is never called upon to “discipline”her preferences over these alternatives:
they are never considered simultaneously. Preferences only need to be well-
behaved within categories that may be considered with positive probability.
Nevertheless, ill-behaved portions of the decision-maker’s preferences may
still be revealed by comparing choice behaviour across choice problems.
We show that this generalisation of Aguiar’s random categorisation rule

may be characterised by relaxing one of Aguiar’s axioms. We also prove that
our generalisation remains within the random utility class; that is, it is com-
patible with the maximisation of a randomly chosen injective utility function.
Finally, we exhibit a random choice function that satisfies our axioms but not
Aguiar’s, and another that admits a random utility representation but does
not satisfy our axioms. In other words, the class of random choice functions
characterised by our axioms lies strictly between the random utility class and
the those that follow random categorisation rules.
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2 Preliminaries

Let X be a finite set of alternatives. We use 2X to denote the power set of
X. A choice set will be an element of 2X . Let a∗ be a “default”option. We
interpret a∗ as the option of not making a choice, so a∗ is excluded from X
by assumption: that is, a∗ /∈ X. If the choice set is empty, then a∗ is the
only option that is available. For each A ⊆ X let A∗ = A ∪ {a∗}. Hence, a
decision-maker facing choice set A may choose any element of A∗. We also
define A = X�A for each A ⊆ X. Thus, A is the complement of A in X,
not in X∗.
Throughout, we omit brackets around singleton sets whenever convenient,

provided no confusion is likely to arise.
A random choice function (RCF) is a mapping p : X∗ × 2X → [0, 1] that

satisfies p (x,A) = 0 if x /∈ A∗ and∑
x∈A∗

p (x,A) = 1

for all A ⊆ X. We interpret p (x,A) as the probability of choosing x given
choice set A. If E ⊆ A∗ we write p (E,A) as shorthand for∑

x∈E
p (x,A) .

Various models of random choice have been proposed, and each such
model delineates a particular family of random choice functions. A classical
example is the random utility model (RUM), most commonly associated (at
least amongst economists) with the work of Block and Marschak (1960).
More recently, various types of random consideration (RC) model have been
proposed, beginning with that of Manzini and Mariotti (2014). For technical
reasons, the RC models are defined for choice situations with a fixed default
—as described here —while RUM’s have traditionally been defined for choice
situations in which “no choice”is not an option. However, the RUM concept
is easily adapted to the present choice-with-default framework.
To describe these models, some further concepts and notation are useful.

• Given a binary relation R ⊆ E × E on a (finite) set E, we say that R
is asymmetric if (x, y) ∈ R implies (y, x) /∈ R for any x, y ∈ E. In par-
ticular, an asymmetric binary relation is irreflexive: (x, x) /∈ R for all
x ∈ E. We say that R is connected if {(x, y) , (y, x)}∩R 6= ∅ for any dis-
tinct x, y ∈ E and transitive if (x, z) ∈ R whenever {(x, y) , (y, z)} ⊆ R
for any x, y, z ∈ E. An asymmetric, connected and transitive binary
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relation is called a strict linear order (SLO). Finally, R is acyclic pro-
vided there does not exist a finite subset {a0, a1, ..., an} of E with n > 1
such that a0 = an and aiRai+1 for all i ∈ {0, 1, ..., n− 1}. Note that a
transitive relation is acyclic and an acyclic relation is asymmetric. As
usual, the notation xRy is synonymous with (x, y) ∈ R.

• Let Σ denote the set of strict linear orders on X and Σ∗ the set of
strict linear orders on X∗. The elements of Σ will be described inter-
changeably as subsets of X × X or as bijective mappings ρ : X →
{1, 2, ..., |X|}: the bijection ρ ∈ Σ is synonymous with the binary re-
lation �ρ∈ Σ satisfying a �ρ b iff ρ (a) < ρ (b). If �∈ Σ we use %
to denote the binary relation � ∪{(x, x) | x ∈ X}. Thus, if �∈ Σ
then % is the associated linear order. Given x ∈ X and �∈ Σ, let
� (x) ≡ {y ∈ X | y � x} and % (x) ≡ {y ∈ X | y % x}. Analogous
notational conventions will be applied to Σ∗.

• Finally, given a finite set E, we use ∆ (E) to denote the set of proba-
bilities on (the subsets of) E.

3 Random Categorisation

Aguiar (2017) defines a class of random consideration models —those that
conform to a random categorisation rule (RCR) —which generalises Manzini
and Mariotti (2014). Aguiar’s RCR also demarcates an important sub-class
of random choice functions which have a RUM (ibid., Lemma 1).

Definition 1 If p is a random choice function, then p has a RUM if there
exists some π ∈ ∆ (Σ∗) such that the following holds for any (x,A) ∈ X∗×2X

with x ∈ A∗:

p (x,A) = π ({ρ ∈ Σ∗ | ρ (x) ≤ ρ (a) for all a ∈ A∗})

In this case, we say that π is a RUM for p.

For “classical” choice structures (i.e., those without a default option),
there is an analogous definition with π an element of ∆ (Σ) rather than
∆ (Σ∗). Necessary and suffi cient conditions for the existence of a “classi-
cal” RUM were first published by Falmagne (1978), based on the famous
Block-Marschak inequalities (Block and Marschak, 1960). Necessary and
suffi cient conditions for the existence of a RUM in the sense of Definition 1
were recently established by Gibbard (2017). Gibbard’s characterisation is
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also based on a set of Block-Marschak inequalities (though the adaptation of
Falmagne’s logic to the choice-with-default case is non-trivial).
Aguiar’s (2017) notion of an RCR is based on what we will call a consid-

eration function, which is a mapping m : 2X → [0, 1] that satisfies∑
E⊆X

m (E) = 1.

The quantity m (E) is the probability that the decision-maker “considers”—
that is, resticts attention to —only those available options which lie within
E. Let C denote the set of all consideration functions.

Definition 2 If p is a random choice function, we say that p has a random
categorisation (RCG) representation if there exists some m ∈ C and some
�∈ Σ such that, for each A ⊆ X and every a ∈ A,

p (a,A) =
∑

E:E∩A∩%(a)={a}

m (E)

and
p (a∗, A) =

∑
E:E∩A=∅

m (E) .

In this case, we say that the pair (m,�) is an RCG model for p.

It is important to note that if (m,�) is an RCG model then � is an
element of Σ, not Σ∗. It is implicit in the RCG concept that the default
is strictly worse than anything in X. In particular, a∗ is chosen from A∗

if, and only if, no element of A is considered.1 If something other than a∗

is available and considered, then a∗ will not be chosen. This fact is what
allows us to recover the underlying consideration function from any p with
an RCG model —see Gibbard (2017) and the discussion below for more on
this important observation.
Our definition of an RCGmodel differs immaterially from Aguiar’s (2017)

notion of a random categorisation rule (RCR). An RCR describes preferences
via an injective utility function while an RCG uses a strict linear order.
Since only ordinal properties of utility are relevant to choice under an RCR,
nothing is lost thereby. An RCR also specifies a collection D of subsets of
X in which the support of m is contained. However, since the support of
m may be strictly contained in D, and since the family D is endogenous to
the particular RCR (as opposed to an exogenous constraint upon the notion

1This implicit assumption is inherited from Manzini and Mariotti (2014).
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of an RCR), its only role is notational convenience. Nothing of substance is
lost by omitting any reference to it.
The RCG class is characterised by two conditions on the random choice

function. The first is essentially one of the Block-Marschak inequalities.

Axiom 1 (WDMP) The mapping A 7−→ p
(
a∗, A

)
has a Möbius inverse

which is non-negative everywhere. That is, there exists some m : 2X → R+
such that

p
(
a∗, A

)
=

∑
B:B⊆A

m (B)

for any A ⊆ X.

The acronymWDMP stands for “Weakly Decreasing Marginal Propensity
(of Choice)”. Our statement of the WDMP axiom differs from Aguiar’s. His
version imposes a total monotonicity condition on the mapping ϕ : 2X →
[0, 1] defined as follows: ϕ (A) = 1 − p (a∗, A). This is equivalent to our
condition (Chateauneuf and Jaffray, 1989), but it is the total monotonicity
version that motivates the name of the axiom. Since total monotonicity
conditions — like Block-Marschak inequalities — are rather cumbersome to
state, and have (arguably) little advantage in intuitive appeal, we adopt the
more “direct”version of the WDMP axiom given above. This will help to
make the logic of Aguiar’s —and our —representation result more transparent.
Since p is an RCF, we have p (a∗, ∅) = 1 so the function m in the WDMP

axiom satisfies ∑
B:B⊆X

m (B) = 1.

It follows that m ∈ C. The WDMP axiom therefore delivers one of the
two elements that make up an RCG representation. Moreover, if p has an
RCG representation then choice data “reveal”the underlying consideration
function via Möbius inversion of the mapping A 7−→ p

(
a∗, A

)
:

m (B) =
∑

A:A⊆B
(−1)|B�A| p

(
a∗, A

)
.

The fact that the consideration function in an RCG model is observable from
choice data is somewhat intuitive. The default is chosen if, and only if, no
other available alternative is considered, irrespective of preferences over X.
Data on the probability of choosing a∗ therefore conveys all the information
necessary to recover m, albeit in a deeply encoded fashion.
Unlike the consideration function, the strict linear order in an RCGmodel

may not be fully revealed by choice data. The preference a � b cannot affect
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choice unless m assigns positive probability to some E with {a, b} ⊆ E (and
maybe not even then). Aguiar therefore defines the following revealed pref-
erence relation on X: a B b iff p (b, A ∪ a) 6= p (b, A) for some A containing
b (where a, b ∈ X). Note that B is irreflexive by construction. If p has an
RCG representation (m,�), then B⊆� but the containment may be strict.
To ensure that the revealed preference relation is compatible with some strict
linear order, Aguiar imposes:

Axiom 2 (Acyclicity) The revealed preference relation B is acyclic.
Acycicity of B ensures that it has an extension in Σ by Szpilrajn’s The-

orem. The WDMP axiom therefore delivers an element m ∈ C and the
Acyclicity axiom a strict linear order �∈ Σ that extends B. Aguiar proves
that this pair constitutes an RCG model for p and, conversely, that every p
with an RCG model satisfies his two axioms.

Theorem 1 (Aguiar, 2017) Let p be a random choice function. Then p
has an RCG model iff it satisfies WDMP and Acyclicity.

Recall that an acyclic binary relation is asymmetric. In the following
section we explore the implications of relaxing Axiom 2 to the requirement
that B is asymmetric. It turns out that essentially the same representation
may be obtained, but the preference relation � need no longer be connected
nor transitive. These deficiencies in preference may be evident in choice data,
but they do not undermine the viability of preference-guided choice due to
the decision-maker’s selective attention. Cycles are never “noticed”by the
decision-maker when confronting any particular choice problem.

4 Generalised Random Categorisation

Consider the following generalisation of the RCG rule:

Definition 3 If p is a random choice function, we say that p has a gen-
eralised random categorisation (RCG) representation if there exists some
m ∈ C and some asymmetric binary relation �⊆ X × X such that, for
each A ⊆ X and every a ∈ A,

p (a,A) =
∑

B:B∩A∩(�(a)∪a)={a}

m (B)

and
p (a∗, A) =

∑
B:B∩A=∅

m (B) .

In this case, we say that the pair (m,�) is a GRCG model for p.
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There are two differences between Definitions 2 and 3: first, the binary
relation in a GRCG is required to be asymmetric but not necessarily con-
nected or transitive; second, the specification of p (a,A) in a GRCG model
uses “� (a) ∪ a” in place of “% (a)”to account for the possibility that �
may not be connected.
Nevertheless, the basic spirit of an RCG representation is preserved in

Definition 3. Element a ∈ A is chosen from A∗ iff it is considered but nothing
in A∩ � (a) is considered at the same time. The default option is chosen iff
nothing in the choice set is considered.

4.1 Representation

We will prove that an RCF has a GRCG representation iff it satisfies the
WDMP axiom and:

Axiom 3 (Asymmetry) The revealed preference relation B is asymmetric.

In this section we prove our respresentation result. Readers familiar with
Aguiar (2017) will easily recognise that our arguments closely follow Aguiar’s
proof. After establishing our representation result, we then turn to the in-
terpretation of GRCG models and their relation to RCG models and RUMs.
It will be useful to define the following minimal reflexive extension of the

revaled preference relation, B: a D b iff a = b or a B b. Note that D need
not coincide with {(a, b) ∈ X ×X | (b, a) /∈B}. We also let

B (a) = {b ∈ X|b B a}

and
D (a) = {b ∈ X|b D a} = {a}∪ B (a)

for any a ∈ X. The following is an important observation about revealed
preference:2

Lemma 1 Let p be an RCF. Then

p (a,A) = p (a,D (a) ∩ A)

for every A ⊆ X and every a ∈ A.
2Aguiar (2017, p.51) makes a similar observation.
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Proof. If b ∈ A and b /∈D (a) then b 6= a and p (a,B ∪ b) = p (a,B) for all
B containing a. We may therefore successively remove each such b from A
without affecting the probability that a is chosen. �

Thus, only the elements of A that are revealed preferred to a ∈ A affect
p (a,A). Next, we have the key implication of Axiom 3:

Lemma 2 (cf., Aguiar, 2017, Lemma 2.) Let p be an RCF. If p satisfies
Asymmetry, then

p (a,A) = p (a∗, A∩ B (a)) − p (a∗, A∩ D (a))

for every A ⊆ X and every a ∈ A.

Proof. Suppose a ∈ A ⊆ X. For any b ∈B (a) ∩ A the asymmetry of B
implies p (b,D (a) ∩ A) = p (b,B (a) ∩ A). Therefore:

p (a,D (a) ∩ A) = p (a,D (a) ∩ A) +
∑

b∈B(a)∩A
[p (b,D (a) ∩ A)− p (b,B (a) ∩ A)]

=

 ∑
b∈D(a)∩A

p (b,D (a) ∩ A)

 −
 ∑
b∈B(a)∩A

p (b,B (a) ∩ A)


= [1− p (a∗,D (a) ∩ A)] − [1− p (a∗,B (a) ∩ A)]

= p (a∗,B (a) ∩ A) − p (a∗,D (a) ∩ A)

The result now follows by Lemma 1. �

In a GRCGmodel, the default is chosen iffno other option is available and
considered. Hence, given a GRCG representation (m,�), A ⊆ X and a ∈ A,
p (a∗,� (a) ∩ A) is the probability that no consideration is given to anything
in A that is preferred to a, and p (a∗, A ∩ (� (a) ∪ a)) is the probability that
neither a nor anything in A that is preferred to a is considered. The difference
will therefore be the probability of choosing a from A . Lemma 2 says that
the same relationship holds for any RCF when we replace� with the revealed
preference relation, B, provided the latter is asymmetric.
Our main result is now within easy reach.

Theorem 2 Let p be an RCF. Then p has a GRCG representation iff it
satisfies WDMP and Asymmetry.
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Proof. We first verify the necessity of the axioms. Let (m,�) be a GRCG
model for p. Then, for any A ⊆ X,

p
(
a∗, A

)
=

∑
B:B∩A=∅

m (B) =
∑

B:B⊆A
m (B)

which implies the WDMP axiom. Now consider Asymmetry of B. Suppose
a, b ∈ X with b B a, so p (a,A) 6= p (a,A ∪ b) for some A ⊆ X with a ∈ A.
Hence b /∈ A (and b 6= a in particular) and we may deduce that b � a as
follows: if b /∈� (a) then

A ∩ (� (a) ∪ a) = (A ∪ b) ∩ (� (a) ∪ a)

so p (a,A) = p (a,A ∪ b), which is a contradiction. By the asymmetry of �
we therefore have a /∈� (b), from which it follows that

C ∩ (� (b) ∪ b) = (C ∪ a) ∩ (� (b) ∪ b)

for any C ⊆ X with b ∈ C. Hence p (b, C) = p (b, C ∪ a) for any C ⊆ X with
b ∈ C, so (a, b) /∈B. This establishes that p satisfies Asymmetry.
Next, we prove suffi ciency. The WDMP condition, together with the fact

that p (a∗, ∅) = 1, imply there exists m ∈ C such that

1− p (a∗, A) =
∑

B:B∩A 6=∅

m (B) (1)

and hence
p (a∗, A) =

∑
B:B∩A=∅

m (B)

for any A ⊆ X. Using Lemma 2 and (1) we have, for any A ⊆ X and any
a ∈ A:

p (a,A) = p (a∗,B (a) ∩ A) − p (a∗,D (a) ∩ A)

= [1− p (a∗,D (a) ∩ A)] − [1− p (a∗,B (a) ∩ A)]

=

 ∑
B:B∩A∩D(a)6=∅

m (B)

 −
 ∑
B:B∩A∩B(a)6=∅

m (B)


=

∑
B:B∩A∩D(a)={a}

m (B)

It follows that (m,B) is a GRCG model for p. �



4 GENERALISED RANDOM CATEGORISATION 11

4.2 Interpretation

The formal similarity of a GRCG model with an RCG model obscures an
important difference. If an RCF satisfies WDMP and Acyclicity then it has
an RCG representation (m,�) with B⊆�. This part of the logic is indeed
similar in the GRCG case: if an RCF satisfies WDMP and Asymmetry then
it has a GRCG representation (m,�) with B⊆�. The converse is where a
distinction appears. Given a consideration function m ∈ C and strict linear
order �∈ Σ the RCG model (m,�) induces an RCF. That is, the choice
probabilities implied by the model will necessarily satisfy p (A∗, A) = 1 for
every A ⊆ X.3 However, given a pair (m,�) with m ∈ C and �⊆ X × X
asymmetric, there may not be any RCF for which (m,�) is a GRCG model.

Example 1 Let |X| = 3. Define the consideration function m such that it
assigns equal probability to each of the eight subsets of X and let �= ∅. If
(m,�) were a GRCG model for p then

p (a,A) =
∑
B:a∈B

m (B) =
1

2

for any A ⊆ X and any a ∈ A. In particular, p (X,X) = 3/2 so p is not an
RCF.

Thus, when interpreting Theorem 2 it is important to bear in mind the
maintained assumption that p is an RCF. This assumption could be consid-
erably weakened in Aguiar’s result but not in ours.
Suppose m ∈ C and �⊆ X ×X is asymmetric. In order for (m,�) to be

a GRCG model for some RCF it is necessary that, for any A ⊆ X, each B
in the support of m must contribute to p (x,A) for exactly one x ∈ A∗. If �
is linear, this is guaranteed: any B with B ∩ A = ∅ contributes exclusively
to p (a∗, A) and for every B with B ∩ A 6= ∅ there is a unique �-maximal
â in B ∩ A, so B contributes exclusively to p (â, A) since â � a for any
a ∈ (B ∩ A)� {â}. On the other hand, if � has cycles, there may be some
B with B ∩ A 6= ∅ that does not contribute to p (x,A) for any x ∈ A∗ since
there is no undominated element in B∩A; and if {(a, b) , (b, a)}∩ �= ∅ then
B = {a, b} ⊆ A contributes to both p (a,A) and p (b, A). These observations
allow us to rule out any RCF having a GRCG model (m,�) in which m
assigns positive weight to sets with “unconnected” alternatives or to sets
with cycles.

3Moreover, if B is the revealed preference relation for the constructed RCF, then B⊆�,
as the reader may easily verify.
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Lemma 3 Let p be an RCF and let (m,�) be a GRCG model for p. Then
m assigns zero probability to any B ⊆ X such that (i) there exist a, b ∈ B
with a 6= b, a /∈� (b) and b /∈� (a), or (ii) B contains a cycle with respect to
�.

Proof. Suppose B satisfies (i) and m (B) > 0. Let A = {a, b} ⊆ B with
a 6= b, a /∈� (b) and b /∈� (a). It follows that

p (a,A) =
∑

C:C∩{a,b}∩(�(a)∪a)={a}

m (C)

=
∑

E:E∩{a,b}={a}

m (E) +
∑

F :F∩{a,b}={a,b}

m (F )

p (b, A) =
∑

E:E∩{a,b}={b}

m (E) +
∑

F :F∩{a,b}={a,b}

m (F )

and
p (a∗, A) =

∑
C:C∩{a,b}=∅

m (C) .

Therefore

p (A∗, A) = 1 +
∑

F :F∩A={a,b}

m (F ) ≥ 1 +m (B) > 1.

This is the desired contradiction.
Next, suppose B satisfies (ii) and m (B) > 0. By what we have already

established, we may assume that m (E) = 0 for any E with a, b ∈ E such
that a 6= b, a /∈� (b) and b /∈� (a). Let A = {a0, a1, ..., an} ⊆ B with a0 = an
and ai � ai+1 for each i ∈ {0, 1, ..., n− 1}. Since � is asymmetric, n ≥ 3. It
follows that m (B) does not contribute to p (x,A) for any x ∈ A∗. To avoid
the conclusion that p (A∗, A) < 1 there must be some E with m (E) > 0 that
contributes to the probability of choosing more than one element of A∗. This
requires that there exist aj, ak ∈ A with j 6= k,

E ∩ A ∩ (� (aj) ∪ aj) = {aj}

and
E ∩ A ∩ (� (ak) ∪ ak) = {ak} .

But this implies {aj, ak} ⊆ E ∩ A, and hence aj /∈� (ak) and ak /∈� (aj), so
m (E) = 0 for any such E. Once again, we have a contradiction. �
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Corollary 1 If (m,�) is a GRCG model for some RCF, then any set in the
support of m is strictly linearly ordered by �.

Proof. Lemma 3 means that m (E) > 0 only if � is connected and acyclic
on E. It follows that � must be transitive on E. �

In light of Corollary 1, one might reasonably wonder whether the class
of GRCG models is really a generalisation of the RCG class at all? The
following example verifies that it is.

Example 2 Let X = {a, b, c} and consider the RCF described in the fol-
lowing table. Each entry gives the probability of choosing the alternative
associated with the row from the choice set associated with the column. (The
probabilities of choosing a∗ are omitted but may be calculated as the column
residuals, together with p (a∗, ∅) = 1.)

{a} {b} {c} {a, b} {b, c} {a, c} X
a 2/3 0 0 2/3 0 1/3 1/3
b 0 2/3 0 1/3 2/3 0 1/3
c 0 0 2/3 0 1/3 2/3 1/3

Let �= {(a, b) , (b, c) , (c, a)} and define m ∈ C as follows:

m ({a, b}) = m ({a, c}) = m ({b, c}) =
1

3

and m (E) = 0 otherwise. It is easily checked that (m,�) is a GRCG model
for p. However, p does not have any RCG representation since the associated
revealed preference relation is cyclic (cf., Aguiar, 2017, Theorem 1): a B b
since p (b, {a, b}) < p (b, {b}), b B c since p (c, {b, c}) < p (c, {c}) and c B a
since p (a, {a, c}) < p (a, {a}).

4.3 Every GRCG model is a RUM

Aguiar (2017) shows that any RCF with an RCG representation also has
a RUM (ibid., Lemma 1). The same is true of any RCF with a GRCG
representation.

Proposition 1 Let p be an RCF. If p has a GRCG representation then there
exists a RUM for p.

Proof. Let (m,�) be a GRCG model for p. For each E ⊆ X withm (E) > 0
fix some ρE ∈ Σ∗ that ranks all elements of E above a∗, all elements of E
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below a∗ and ranks the elements of E the same way that � does. (Recall
that � induces a strict linear order on E when m (E) > 0: see Corollary 1.)
Let �E⊆ X × X denote the binary relation described by the restriction of
ρE to X. For each E ⊆ X with m (E) = 0 let �E denote some arbitrary
element of Σ.
The key observation is that if m (E) > 0 then for any A ⊆ X and any

a ∈ X,

A ∩ E ∩
(
�E (a) ∪ a

)
= {a} ⇔ A ∩ E ∩ (� (a) ∪ a) = {a} (2)

This follows since either condition implies a ∈ E, and if a ∈ E we have

E ∩
(
�E (a) ∪ a

)
= E ∩ (� (a) ∪ a)

using the fact that �E (strictly linearly) orders the elements of E the same
way as �.
Now define π ∈ ∆ (Σ∗) by setting π

(
ρE
)

= m (E) for every E with
m (E) > 0 and π (ρ) = 0 otherwise. Let p̂ denote the RCF generated by the
RUM, π. If a ∈ A ⊆ X then

p̂ (a,A) = π ({ρ ∈ Σ∗ | ρ (a) ≤ ρ (x) for all x ∈ A∗})

= π
({
ρE | m (E) > 0 and A ∩ E ∩

(
�E (a) ∪ a

)
= {a}

})
=

∑
E:A∩E∩(�E(a)∪a)={a}

m (E)

=
∑

E:A∩E∩(�(a)∪a)={a}

m (E)

where the final equality uses (2). Thus, p̂ = p. �

It is easily checked that a RUM for the RCF in Example 2 is obtained by
assigning probability 1

3
to each element of {ρ1, ρ2, ρ3} ∈ Σ∗ where:

ρ1 (a) = 1, ρ1 (b) = 2, ρ1 (a∗) = 3, ρ1 (c) = 4

ρ2 (b) = 1, ρ2 (c) = 2, ρ2 (a∗) = 3, ρ2 (a) = 4

and
ρ3 (c) = 1, ρ3 (a) = 2, ρ3 (a∗) = 3, ρ3 (b) = 4.

However, not every RCF with a RUM has a GRCG representation.
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Example 3 Let X = {a, b, c} and consider the RUM that chooses each of
the following strict linear orders with probability 1

2
:

ρ (a) = 1, ρ (b) = 2, ρ (c) = 3, ρ (a∗) = 4

and
ρ̂ (c) = 1, ρ̂ (b) = 2, ρ̂ (a) = 3, ρ̂ (a∗) = 4.

Let p denote the RCF generated by this RUM. Then p may be depicted as
follows (as usual, omitting the probabilities of choosing a∗):

{a} {b} {c} {a, b} {b, c} {a, c} X
a 1 0 0 1/2 0 1/2 1/2
b 0 1 0 1/2 1/2 0 0
c 0 0 1 0 1/2 1/2 1/2

We deduce that p has no GRCG representation from the fact that the re-
vealed preference relation B obtained from p is not asymmetric: a B b since
p (b,X) < p (b, {b, c}) and b B a since p (a, {a, b}) < p (a, {a}).

Thus, the set of RCF’s with an RCG representation is a proper subset of
those with a GRCG representation, which in turn is a proper subset of those
with a RUM. To explore these relationships in more detail, some additional
notation will be useful.
Let P denote the set of RCF’s with a GRCG representation and P ′ the

proper subset of P with an RCG representation. Next, for every (E,�) with
E ⊆ X and �⊆ X × X strictly linear on E, let Σ∗(E,�) ⊆ Σ∗ be defined as
follows: ρ ∈ Σ∗(E,�) iff ρ ranks everything in E above a∗, everything in E
below a∗ and everything in E the same way as �. Finally, given �⊆ X ×X
let

Σ∗� =
⋃{

Σ∗(�,E) | � is strictly linear on E ⊆ X
}
.

Note that Σ∗(�,E) ∩ Σ∗(�,E′) = ∅ for any distinct E,E ′ ∈ 2X on which � is
strictly linear.

Theorem 3 Let p be an RCF. Then p ∈ P iff there is an asymmetric binary
relation �⊆ X × X and a RUM, π ∈ ∆ (Σ∗), for p with π (Σ∗�) = 1 and
π (ρ) > 0 for at most one ρ ∈ Σ∗(�,E) for every E ⊆ X on which � is strictly
linear.

Proof. The “only if”part follows by the construction in the proof of Propo-
sition 1. For the “if”part, let π denote a RUM for p satisfying the indicated
support restriction for some asymmetric binary relation �⊆ X × X. If �
is strictly linear on E and there is some ρ ∈ Σ∗(�,E) with π (ρ) > 0, let
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m (E) = π (ρ); let m (E) = 0 otherwise. In particular, if m (E) > 0 then �
is strictly linear on E and every ρ̂ ∈ Σ∗(�,E) satisfies ρ̂ (x) < ρ̂ (a∗) iff x ∈ E.
It follows that for any A ⊆ X and any a ∈ A we have:

p (a,A) = π ({ρ ∈ Σ∗ | ρ (a) ≤ ρ (x) for all x ∈ A∗})

=
∑

E:A∩E∩(�(a)∪a)={a}

m (E) .

Thus, (m,�) is a GRCG model for p. �

Corollary 2 Let p be an RCF. Then p ∈ P ′ iff there is some �∈ Σ and
a RUM, π ∈ ∆ (Σ∗), for p with π (Σ∗�) = 1 and π (ρ) > 0 for at most one
ρ ∈ Σ∗(�,E) for every E ⊆ X.

Proof. The “only if”part follows by the construction in the proof of Propo-
sition 1, noting that �∈ Σ if p ∈ P ′. The “if” part follows directly from
Theorem 3. �

As Example 2 shows, there exists an RCF p with GRCG model (m,�)
together with subsets E,E ′, E ′′ ∈ 2X such that � is strictly linear on E, E ′
and E ′′ but there is no �̂ ∈ Σ that orders each of E, E ′ and E ′′ the same
way as �.
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