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Abstract

Experimental evidence suggests that choice behaviour has a stochastic element.

Much of this evidence is based on studying choices between lotteries —choice under

risk. Binary choice probabilities admit a strong utility representation (SUR) if there

is a utility function such that the probability of choosing option A over option B

is a strictly increasing function of the utility difference between A and B. Debreu

(1958) obtained a simple set of suffi cient conditions on binary choice probabilities

for the existence of a SUR. More recently, Dagsvik (2008) considered binary choices

between lotteries and provided axiomatic foundations for a SUR in which the un-

derlying utility function is linear (i.e., conforms to expected utility). Our paper

strengthens and generalises Dagsvik’s result. We show that one of Dagsvik’s ax-

ioms can be weakened, and we extend his analysis to encompass choices between

uncertain prospects, as well as various non-linear specifications of utility.

1 Introduction

Experimental evidence on risky choice is conventionally interpreted as robustly rejecting

the descriptive validity of expected utility (EU) theory. This evidence (or rather, its

interpretation) has spawned a range of alternatives to EU.

Less well known, perhaps, is the fact that experiments also provide robust evidence of

randomness in choice behaviour —subjects are often observed to make different choices

in successive presentations of the same choice problem. Since the early 1990s increasing

attention has been paid to this latter phenomenon, and to the way in which “noise”

is modelled in the analysis of experimental data on choice behaviour. This new line of
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inquiry has prompted some revisionist thinking about the descriptive merits of EU theory.

Indeed, by 1995 John Hey was prepared to advance the following tentative hypothesis:

“[O]ne can explain experimental anlayses of decision making under risk better

(and simpler) as EU plus noise —rather than through some higher level func-

tional —as long as one specifies the noise appropriately.”(Hey, 1995, p.640)

In support of Hey’s hypothesis, consider the evidence of Schmidt and Neugebauer

(2007). They presented 24 subjects with the same 28 binary choice problems on three

consecutive days. These 28 problems were constructed so as to create ample opportu-

nity for the exhibition of Allais-type violations of independence: the set of binary choices

contains multiple (28) instances of common consequence relationships, common ratio re-

lationships or a mixture of the two. For a given pair of choice problems, Schmidt and

Neugebauer called a subject a “repetition consistent” for that pair if, for each problem

in the pair, s/he made the same choice on all three presentations of the problem. Other-

wise, the subject was deemed “repetition inconsitent”. Schmidt and Neugebauer observe

significant rates of repetition inconsistency, even though subjects are allowed to report

indifference. More importantly, they find that the majority of independence violations

are committed by the “repetition inconsistent”choosers.

This evidence is suggestive of noisy choice behaviour, but of choice behaviour that is

guided by expected utility nonetheless.1 Other studies (such as Buschena and Zilberman,

2000) lend further weight to this suggestion, but contrary evidence can also be found

(such as that in Loomes and Sugden, 1998, and Loomes and Pogrebna, 2014).

This new evidence not only challenges experimentalists to revisit the empirical analy-

sis of their data; it also issues a challenge to decision theorists. It has revived interest

(amongst economists, that is —psychologists have maintained a continuous level of inter-

est) in models of stochastic choice. These models characterise decision-mkaers in terms

of choice probabilities, rather than preference relations. The theoretical challenge is to

devise parsimonious, but descriptively accurate, representations for these choice probabil-

ities validated by plausible sets of axiomatic restrictions.

For binary choice problems, the class of Fechner representations are commonly used.

A Fechner model treats choice as fundamentally random, with choice probabilities de-

termined by the difference in the utility-stimulus of each option. A Fechner model thus

1In a similar spirit, Blavatskyy (2006) revisits the experimental evidence against the betweenness

property of preferences. He finds that this evidence is also compatible with noisy, but betweenness-

satisfying, choice behaviour.
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involves a utility function that determines the strength of stimuli and an auxiliary func-

tion that converts utility differences into the probability of choosing the utility-maximising

alternative.

In this paper we focus on a particular type of Fechner model, sometimes called a strong

utility model, in which this auxiliary function is required to be strictly increasing —the

greater the utility difference, the higher the probability of making a utility-maximising

choice.

In the context of binary choices between lotteries, it is natural to ask whether the

data are consistent with a strong utility model whose utility function is drawn from a

particular class, such those with the expected utility form. This class is sometimes called

the core theory of the model. For a given core theory (i.e., class of utility functions), one

seeks necessary and suffi cient conditions on binary choice probabilities for a strong utility

representation with respect to a utility function drawn from this class. The necessary

conditions provide testable restrictions on observed probabilities; the set of suffi cient

conditions provides some basis for assessing the theoretical plausibility of the model.

At present, there is limited understanding of the axiomatic foundations of strong

utility models for choice under risk or uncertainty. Dagsvik (2008) is an important recent

contribution for the case of choice between lotteries, Dagsvik provides a set of suffi cient

conditions for a strong expected utility representation (SEUR) —that is, a strong utility

representation with EU as the core theory. To the best of our knowledge, no axiomatic

foundations have been provided for strong utility models (in the context of risk) with

core theories other than EU, or for strong utility models for choice between uncertain (as

opposed to risky) prospects. The present paper fills some of this gap. It also proves that

Dagsvik’s (2008) set of suffi cient conditions for a SEUR may be weakened.

1.1 Related literature

As noted, our results build directly on the work of Dagsvik (2008), which is discussed in

more detail below. Here, we briefly mention the related work of Blavattsky (2008, 2012)

and Gul and Pesendorfer (2006).

In the context of risk, Blavatskyy (2008) axiomatises a Fechner model — with EU

as the core theory —but not of the strong utility form. In Blavatskyy’s representation,

the function that converts utility differences into choice probabilities is required to be

non-decreasing but need not be strictly increasing. Choice probabilities can therefore be
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constant over some ranges of utility differences.2 In terms of axioms, the critical difference

between Dagsvik (and the present paper) and Blavatskyy is in the stochastic version of the

independence axiom that is used: strong independence (Dagsvik, 2008, and here) versus

common consequence independence (Blavatskyy, 2008).3

In the same paper, Blavatskyy also proposes a modification of his axioms to accom-

modate implicit EU (Dekel, 1986) as the core theory. Such utility functions have contours

that are linear but not necessarily parallel —they satisfy betweenness but not necessarily

independence. To the best of our knowledge, this is the only existing axiomatisation of a

Fechner model for lotteries in which the core theory is other than EU. The present paper

provides one more: we axiomatise a strong utility model with the Yaari’s (1987) Dual

Theory at its core.4

For the representation of binary choice probabilities, the main rivals to the Fechner

models are the random utility models.5 In a random utility model, the decision-maker

has a set of utility functions, one of which is randomly drawn —according to a fixed prob-

ability measure —whenever the decision-maker is confronted with a choice problem. The

randomly selected utility function is then maximised without error. Gul and Pesendorfer

(2006) axiomatise a random expected utility model, which requires that all utility func-

tions in the set have the EU form. We are not aware of any work on random utility models

with non-EU functions or for choice under uncertainty.

Blavatskyy (2012) considers binary choices between uncertain prospects (Savage acts).

The model that Blavatskyy axiomatises is a close relative of the Fechner models, though

not, strictly speaking, within the Fechner class. Instead, the probability of making a

utility-maximising choice depends on the “normalised” utility difference. Specifically,

given two uncertain prospects, their utility difference is normalised by the difference be-

tween the utility of the mutually dominating prospect that gives the best of the outcomes

provided by the two prospects in every state, and that of the mutually dominated prospect

that gives the worst of the two outcomes in every state. Blavatskyy axiomatises such a

model when the core theory is subjective expected utility (SEU).

So far as we are aware, this is the only existing axiomatisation of a Fechner-like model

2It is easy to check that Example 1 satisfies all of Blavatskyy’s axioms when û is linear.
3However, while our axioms and representations are in the spirit of Dagsvik (2008), the structure of

our proofs is closer to that in Blavatskyy (2008).
4Unfortunately, we have not been able to axiomatise the strong utility model for the wider class of

rank-dependent expected utility functions.
5A very strong rival according to the results of Loomes, Moffatt and Sugden (2002) and Butler, Isoni

and Loomes (2012).
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for choice between uncertain prospects. Once again, the present paper is complementary.

We consider Anscome-Aumann acts, rather than Savage acts. We obtain representations

of the conventional strong utility form for three alternative core theories: SEU, maxmin

expected utility and Choquet expected utility.

It should be noted that a major limitation of the Fechner models is their failure to ac-

commodate evidence that decision-makers rarely choose dominated options when there is a

transparent dominance relationship between the alternatives —either first-order stochastic

dominance (risk) or statewise dominance (uncertainty).6 Even when dominance relation-

ships are not present, recent empirical work casts doubt on the descriptive adequacy of

the strong utility structure.7 However, while acknowledging the empirical limitations of

the Fechner models, given their “benchmark”status in the literature it is still useful to

understand their axiomatic foundations.

2 Binary stochastic choice

Debreu (1958) proved a famous representation theorem for binary stochastic choice. The

primitives of the theory are a pair (A,P ), where A is an arbitrary set of alternatives and

P is a binary choice probability function (BCPF). The latter is a mapping

P : A× A→ [0, 1]

satisfying

P (a, b) = 1− P (b, a) (1)

for all a, b ∈ A.
The quantity P (a, b) is the probability with which the decision-maker selects a when

given the choice between a or b (with abstention not being an option). This interpretation

is behaviourally meaningful only if a 6= b, but it is traditional to define P on the entire

Cartesian product A× A for convenience. An immediate implication of (1) is that

P (a, a) =
1

2

for all a ∈ A.
6See, for example, Loomes, Moffatt and Sugden (2002). Blavatskyy (2012) uses a (non-Fechnerian)

representation with normalised utility differences precisely to avoid this problem. For the same reason,

Blavatskyy (2011) introduces a suitably normalised model for choice under risk.
7See Butler, Isoni and Loomes (2012).
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Given P , it is natural to impute the following binary relation on A: for any a, b ∈ A:

a %P b ⇔ P (a, b) ≥ P (b, a) ⇔ P (a, b) ≥ 1

2
(2)

where the second equivalence follows from (1). In other words, a is “weakly preferred”to

b iff the decision-maker chooses a over b at least half of the time. The asymmetric and

symmetric parts of %P are denoted �P and ˜P respectively, and satisfy

a �P b ⇔ P (a, b) >
1

2

and

a˜P b ⇔ P (a, b) =
1

2
.

Debreu provides suffi cient conditions for the existence of a utility function u : A→ R
such that

P (a, b) ≥ P (c, d) iff u (a)− u (b) ≥ u (c)− u (d) (3)

Choice probabilities are thus determined by utility differences, in the Fechnerian tradition

of psychophysics (Falmagne, 2002).8 Following Marschak (1960) we say that P has a

strong utility representation (SUR) when (3) obtains for some u.9

Debreu’s suffi cient conditions comprise two axioms, the first of which is the quadruple

condition (Davidson and Marschak, 1959):

Axiom D1 For all a, b, a′, b′ ∈ A:

P (a, b) ≥ P (a′, b′) iff P (a, a′) ≥ P (b, b′)

The quadruple condition is a close relative of the following:

Strong Stochastic Transitivity (SST) For all a, b, c ∈ A, if

min {P (a, b) , P (b, c)} ≥ 1

2

then

P (a, c) ≥ max {P (a, b) , P (b, c)} .
8There is a closely related literature in which the primitive P is replaced by a weak order %̂ on A×A,

called a difference relation, and suffi cient conditions are sought for a utility-difference representation:

(a, b) %̂ (c, d) ⇔ u (a)− u (b) ≥ u (c)− u (d) .

See Köbberling (2006) for a recent example and a summary of the previous literature.
9The literature is not consistent in the use of terminology. Some authors (e.g., Luce and Suppes, 1965)

use “strong utility”for a representation in which (3) is only required to hold when P (a, b) /∈ {0, 1} and
P (c, d) /∈ {0, 1}.
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It is well known that Axiom D1 implies SST, but not conversely.10 Davidson and

Marschak (1959, p.240) prove that SST is equivalent to the following weak substitutability

condition:11 for any a, b, c ∈ A,

P (a, b) ≥ 1

2
⇒ P (a, c) ≥ P (b, c) (4)

The extra strength of Axiom D1 comes at the cost of some intuitive appeal. The

SST condition (or weak substitutability) has a familiar and transparent logic, while the

quadruple condition is arguably less compelling from a normative point of view.

The second of Debreu’s (1958) axioms is a solvability condition:

Axiom D2 For all a, b, c ∈ A and all π ∈ (0, 1)

P (a, b) ≥ π ≥ P (a, c) ⇒ P (a, e) = π for some e ∈ A

Debreu proves that Axioms D1—D2 suffi ce for a strong utility representation.12

It is important to note that Axiom D1 cannot be replaced by the weaker SST without

jeopardising Debreu’s result.13

Example 1. Let A be a compact, convex subset of some Euclidean space and let û :

A → R be a continuous function with û (A) = [u, u] ⊆ [0, 1] and
[
1
4
, 3
4

]
⊆ (u, u).

10See Luce and Suppes (1965, Theorem 39). Example 1, described below, also shows that SST does

not imply the quadruple condition.
11If we replace “⇒” with “⇔” in (4) we obtain the substitutability condition (Tversky and Russo,

1969), which is stronger (as Example 1 below illustrates).
12Scott (1964) showed that D1 alone is not suffi cient for a SUR, though it is clearly necessary. Axiom

D2 is not necessary, as the following example illustrates: A = [0, 1] and

P (a, b) =



3
4 + 1

4 (a− b) if a > b

1
2 if a = b

1
4 + 1

4 (a− b) if a < b

Then P (a, b) ≥ P (c, d) iff a − b ≥ c − d but solvability is violated: for example, take any a, b, c with
c > a > b and any π ∈

(
1
4 ,

1
2

)
.

13Köbberling (2006, Theorem 1) shows that the QC, which is called the strong crossover property

when translated into the language of difference relations, can be weakened within her axiom system

while preserving the SUR. However, one of her other axioms, weak separability, already implies the

substitutability property, which is stronger than SST.
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Now define P : A× A→ [0, 1] as follows:

P (a, b) =



3
4

if 1
2

[1 + û (a)− û (b)] ≥ 3
4

1
4

if 1
2

[1 + û (a)− û (b)] ≤ 1
4

1
2

[1 + û (a)− û (b)] otherwise

It is straightforward to check that P satisfies (1) and Axiom D2. It also satisfies

weak substitutability (and hence SST):

P (a, b) ≥ 1

2
⇔ 1

2
[1 + û (a)− û (b)] ≥ 1

2

⇔ û (a) ≥ û (b)

⇔ 1

2
[1 + û (a)− û (c)] ≥ 1

2
[1 + û (b)− û (c)]

⇒ P (a, c) ≥ P (b, c) .

However, P does not satisfy Axiom D1. Let a, b, c ∈ A be such that û (a) > û (b) > 3
4

and û (c) = 1
4
. Then

P (a, b) =
1

2
[1 + û (a)− û (b)] >

1

2
= P (c, c)

but P (a, c) = P (b, c) = 3
4
. Since Axiom D1 is clearly a necessary condition for a

representation of the form (3), no such representation exists for this example.

One consequence of Axiom D2 is that A must be suitably rich. A familiar context

that satisfies this richness condition is choice between risky prospects. For example, A

may be the unit simplex in Rn, interpreted as the set of lotteries over a fixed outcome set
X = {x1, ..., xn}. Dagsvik (2008) proves a strong utility representation theorem for this

context. More precisely, he provides suffi cient conditions for a SUR in which the utility

function u : A → R is linear. Let us call this a strong expected utility representation

(SEUR).14 Dagsvik’s suffi cient conditions for a SEUR augment Debreu’s axioms with two

more, which we discuss below (Section 4.1).

14Luce and Suppes (1965, p.360) use the same appellation to refer to a representation that obeys (3)

whenever P (a, b) /∈ {0, 1} and P (c, d) /∈ {0, 1}, and u is of the expected utility form.
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Dagsvik’s result is an important refinement of Debreu’s theorem for binary choices

between risky prospects. The purpose of the present paper is to provide further such

refinements, encompassing various non-expected utility models of choice under risk or un-

certainty. We also show that Dagsvik’s suffi cient conditions for a SEUR may be weakened:

the quadruple condition can be replaced by SST.

3 Mixture sets

Our central representation result (Corollary 0) requires only that A is a mixture set (Her-

stein and Milnor, 1953).15 Given a, b ∈ A and λ ∈ [0, 1], we write aλb for the λ-mixture

of a and b. In particular, a1b = a and a0b = b. For example, if a, b ∈ A ⊆ Rn then

aλb = λa+ (1− λ) b

under the standard mixture operation on Rn.
There are many axiom systems for preferences over mixture sets, leading to various

classes of utility functions. The best known, of course, are the axiom systems for expected

utility and the associated class of (mixture-)linear utility functions, but a wide range of

non-expected utility classes have also been axiomatised for specific mixture-set contexts.

It is therefore natural to seek probabilistic extensions of these expected and non-expected

utility models, leading to strong utility representations in which the utility function u :

A→ R falls within the relevant class.
To determine suitable classes of utility functions for this purpose, let us introduce the

following concept:

Definition 1 Given some M ⊆ A we say that u : A → R is M-linear if u (M) = u (A)

and

u (aλb) = λu (a) + (1− λ)u (b)

for any a ∈ A, any b ∈M and any λ ∈ [0, 1].

If M = A then M -linearity is (mixture-)linearity simpliciter. However, if M is a

proper subset of A, then M -linearity is a weaker property of u. Importantly, several non-

EU models (for preferences over A) have M -linear representations for some M ⊆ A (see

Section 4).

15While mixture sets can be discrete, the richness condition implied by solvability will implicitly exclude

such sets.

9



Given M ⊆ A, if P has a strong utility representation with respect to an M -linear

utility function u we say that P has a strong M-linear utility representation. The following

is clearly necessary for such a representation to exist:

Strong M-Independence For any a, b, c, d ∈ A, any e ∈M and any λ ∈ (0, 1),

P (a, b) ≥ P (c, d) ⇒ P (aλe, bλe) ≥ P (cλe, dλe) .

Note that Strong M -Independence implies Strong M ′-Independence for any M ′ ⊆M .

Strong M -Independence is a weakening of Dagsvik’s (2008) Strong Independence axiom:

Strong Independence For all a, b, a′, b′, c ∈ A and all λ ∈ (0, 1)

P (a, b) ≥ P (a′, b′) ⇒ P (aλc, bλc) ≥ P (a′λc, b′λc) .

Strong Independence implies Strong M -Independence for any M ⊆ A.

Our main representation result is obtained as a corollary of the following theorem.

Theorem 0 Let Σ be an interval in R (not necessarily bounded) containing 0 in its

interior. Suppose π : Σ × Σ → [0, 1] satisfies the following conditions for any

λ ∈ [0, 1] and any x, y, x′, y′, z ∈ Σ:

(i) π (x, y) = 1
2
iff x = y

(ii) π (x, y) + π (y, x) = 1

(iii) π (x, y) = π (x′, y′) implies

π (xλz, yλz) = π (x′λz, y′λz)

(iv) π is non-decreasing (respectively, non-increasing) in its first (respectively, sec-

ond) argument

(v) π is continuous in each argument

Then

π (x, y) ≥ π (x′, y′) iff x− y ≥ x′ − y′ (5)

for any x, y, x′, y′ ∈ Σ.
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The proof of Theorem 0 may be found in Appendix A.

To interpret Theorem 0, suppose we have a representation u : A→ R for the preference
relation %P defined by (2). Let Σ = u (A). Assuming 0 ∈ int (Σ) is without loss of

generality (WLOG) provided preferences are non-trivial (Σ is not a singleton). Now

re-calibrate P in terms of utility pairs by defining a mapping π : Σ × Σ → [0, 1] as

follows: π (x, y) = P (a, b) for any a, b ∈ A with u (a) = x and u (b) = y. Provided this

mapping is well-defined and satisfies (i)—(v), Theorem 0 implies that (3) holds. Corollary

0 establishes suffi cient conditions for the italicised provisos to be met. In particular,

Strong M -Independence ensures (iii).16

Corollary 0 Let A be a mixture set and M ⊆ A, and let P satisfy SST, D2 and Strong

M -Independence. If u : A→ R is M -linear and represents %P defined by (2), then
(3) holds for any a, b, c, d ∈ A.

Corollary 0 is the main result of the paper. It is proved in Appendix A.

Corollary 0 suggests the following “recipe”for producing strong M -linear utility rep-

resentation theorems.

Step I. Choose a set of axiomatic restrictions on %P that are suffi cient for an M -linear
utility representation. Translate these axioms into the corresponding restrictions on

P using (2).

Step II. Add SST, D2 and Strong M -Independence, then apply Corollary 0.

In most cases, the axioms required at Step II already imply certain of the restrictions

needed for Step I, allowing for some economies to be achieved.

Of course, for this recipe to be useful from a normative point of view, Strong M -

Independence must be a reasonable restriction on P . If we assume —as seems natural —

that the binary relation %P defined by (2) orders the (utility) stimuli experienced by the
agent, then we may argue as follows.

16Note that the function π induced by Example 1 violates property (iii). Suppose, for example, that

u = 1 and u = 0. Let x = 1, x′ = 1
2 and y = z = 0, and note that

π (x, 0) = π (x′, 0) =
3

4

while

π
(x

2
, 0
)

=
3

4
6= 5

8
= π

(
x′

2
, 0

)
.

11



The axioms imposed at Step I embody an implicit argument that %P should possess
an M -linear representation. If so, then %P satisfies the following condition (which might
be called M -Independence): for any a, b ∈ A, any c ∈M and any λ ∈ (0, 1),

a %P b ⇒ aλc %P bλc.

In other words, if option a generates a stimulus at least as great as option b, then this

remains true after mixing with a common element from M . For example, it may be that

elements from M do not (or should not) “interfere”with other stimuli under mixing, so

options are (or should be) compared by first excluding common elements mixed in from

M . By this logic —which need not be compelling in all circumstances —we have reason to

expect that choice probabilities will (or should) be unaffected by mixing with a common

element from M .

4 Applications

The following sections apply our recipe to prove strong M -linear utility representation

theorems for a variety of specifications of A, M and the mixture operation aλb. These

provide selective illustrations only —other applications are no doubt possible and poten-

tially of interest.

We first consider the case M = A, so u is (mixture-)linear simpliciter. When A is the

unit simplex in Rn and the usual mixture operation is assumed, we are in the domain of
Dagsvik (2008). Our recipe therefore provides an alternative axiomatisation of the strong

expected utility representation, and an alternative proof of the representation theorem.

If A is a set of acts of the Anscombe-Aumann (AA) variety and mixtures are defined

as in Anscombe and Aumann (1963), we obtain a stochastic extension of AA version of

subjective expected utility (SEU) theory.

We next consider three examples in which M is a proper subset of A, obtaining

stochastic extensions of Dual Theory (DT), Choquet expected utility (CEU) theory and

maxmin expected utility (MEU) theory.

In proving these results, most of the effort is expended in eliminating redundancies

in the axioms introduced at Steps I and II. More direct applications of the recipe would

yield shorter proofs but longer lists of axioms in the statements of propositions.

For future reference, we define the following natural strengthening of Axiom D2, which

will be useful in the sequel:
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Mixture Solvability (MS) For all a, b, c ∈ A and all π ∈ (0, 1)

P (a, b) ≥ π ≥ P (a, c) ⇒ P (a, bλc) = π for some λ ∈ [0, 1]

The MS condition, together with Strong M -Independence, ensures that the binary

relation (2) possesses suffi cient “continuity”to make Step I in the examples below.17

Note that if A in Example 1 is a mixture set and û is (mixture-)linear, then MS is

satisfied. It follows that strengthening D2 to MS does not, on its own, allow us to weaken

the quadruple condition to SST in Debreu’s theorem. This observation is significant, as

our representation theorems will use SST rather than the stronger quadruple condition.

4.1 Strong expected utility

Let us first recall Dagsvik’s (2008) representation theorem.

In addition to Axioms D1, D2 and Strong Independence, Dagsvik also requires:

Axiom D3 [Archimedean Property] For all a, b, c ∈ A, if

P (a, b) >
1

2
> P (c, b)

then there exist α, β ∈ (0, 1) such that

P (aαc, b) >
1

2
> P (aβc, b) .

Theorem D [Dagsvik, 2008, Theorems 2 and 4] If A is the unit simplex in Rn and
P satisfies D1-D3 and Strong Independence, then P has a strong expected utility

representation.

Corollary 0 may be applied to give a variation on Theorem D; one which is applicable

to any mixture set. It uses SST in place of the stronger quadruple condition (Axiom D1).

Note that several economies are possible at Step I. The restrictions on P imposed by

transitivity and mixture-independence of the binary relation %P are guaranteed by SST
and Stong Independence respectively. We invoke MS and Strong Independence to ensure

that P also satisfies the restrictions implied by a standard continuity condition on %P

(Lemma 1).

17See Lemma 1.
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Proposition 1 If A is a mixture set and P satisfies SST, MS and Strong Independence,
then P has a strong expected utility representation (i.e., representation (3) for some

linear u).

Proof. Let %P be the binary relation defined by (2). For Step I it suffi ces to prove that
%P has an A-linear (i.e., linear) representation.
It is obvious that %P is complete. It is transitive by SST. Setting a′ = b′ in the

definition of Strong Independence, we see that %P inherits the following independence
property: for all a, b, c ∈ A and all λ ∈ (0, 1)

a %P b ⇒ aλc %P bλc (6)

Finally, %P satisfies a standard continuity property.

Lemma 1 For any a, b, c ∈ A, the sets{
λ ∈ [0, 1]

∣∣ aλb %P c}
and {

λ ∈ [0, 1]
∣∣ c %P aλb}

are closed.

Proof. The basic idea of the proof is simple. First, we use (6) to show that preferences
are monotone in λ. Second, MS implies that preferences exhibit solvability with respect

to λ. Finally, we observe that monotonicity plus solvability implies continuity in λ.

Fix some a, b, c ∈ A and consider the set{
λ ∈ [0, 1]

∣∣ c %P aλb} (7)

It is without loss of generality (WLOG) to assume a %P b. Then aλb %P b for any

λ ∈ (0, 1) by (6). Hence, applying (6) once more, we have:

aλb %P bµ (aλb)

for any µ ∈ (0, 1). Since bµ (aλb) = a [λ (1− µ)] b, it follows that if λ is in (7) then so is

any λ′ < λ. It remains to exclude the possibility that (7) is of the form [0, ζ) for some

ζ > 0.

Let {λm}∞m=1 ⊆ [0, ζ) be a convergent sequence with limit ζ. Suppose aλmb %P c for
each m, while c �P aζb. Then

P (c, aζb) >
1

2
≥ P (c, aλmb)

14



for each m. Let

x ∈
(
P (c, aζb) ,

1

2

)
.

Given some m ∈ {1, 2, ...}, MS ensures that there exists µ ∈ (0, 1) such that

x = P (c, (aζb)µ (aλmb)) = P (c, a [µζ + (1− µ)λm] b) .

Since µζ + (1− µ)λm ∈ [0, ζ) and x > 1
2
we have the desired contradiction.

The same sort of argument (mutatis mutandis) shows that the set{
λ ∈ [0, 1]

∣∣ aλb %P c}
is closed. �

By Theorem 1 of Fishburn (1982, Chapter 2), %P possesses a linear representation, u.
The result now follows by Corollary 0. In particular, Strong Independence is equivalent

to Strong A-Independence. �

Proposition 1 provides a more “compact” axiomatisation of strong expected utility

than Theorem D, in the sense of having one fewer axioms (D3 is not required) and using

SST in place of the stronger QC. However, it also uses a strengthened version of solvability

(MS rather than D2), so the relationship between the two sets of axioms is not transparent.

Appendix B offers some clarification. It proves a strengthened version of Theorem D,

called Theorem D∗, in which SST replaces Axiom D1 (QC). Proposition 1 and Theorem

D∗ together show that MS is equivalent to the conjunction of D2 and D3, given SST and

Strong Independence.

The proof of Theorem D∗ follows our usual recipe, but a more elaborate argument is

required at Stage I, since we cannot use MS to establish the required continuity of %P

(Lemma 1). Instead, the argument leans more heavily on Strong Independence, which, it

turns out, imposes restrictions on %P over and above the independence condition (6).

4.2 Preferences over AA acts

Consider an Anscombe-Aumann environment in which A is a set of acts (uncertain

prospects) with the following structure: there is a finite set S of states and a mixture

set C of consequences, and A consists of all functions from S to C. The mixture opera-

tion on C induces a mixture operation on A in the usual (Anscombe-Aumann) manner:

given a, b ∈ A and λ ∈ [0, 1], the function aλb ∈ A maps state s ∈ S to consequence

a (s)λb (s) ∈ C.
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We use Ac to denote the set of constant functions in A, and take the usual notational

liberty of identifying Ac with C. We also define

∆ (S) =

{
θ : S → [0, 1]

∣∣∣∣∣ ∑
s

θ (s) = 1

}

to be the set of all possible probability distributions over the states.

Anscombe and Aumann (1963) take C to be the unit simplex in Rn, interpreted as
the set of roulette lotteries over a fixed set of n prizes and endowed with the usual mixing

operation, but this is not essential to our analysis.18

4.2.1 Subjective expected utility

A utility function u : A→ R has the SEU structure if it takes the form

u (a) =
∑
s∈S

θ (s) v (a (s)) (8)

for some linear function v : C → R and some θ ∈ ∆ (S). Note that u in (8) is A-linear,

but not every A-linear function has the form (8). If (3) holds with u of the SEU form, we

say that P has a strong SEU representation.

We may apply our recipe to obtain a strong SEU representation theorem. Several

economies are possible in specifying the axioms. Given the axioms introduced at Step II,

we need only add the following in order to make Step I:19

Stochastic State Monotonicity For any a, b ∈ A, if

P (a (s) , b (s)) ≥ 1

2

for every s ∈ S then P (a, b) ≥ 1
2
.

Proposition 2 If P satisfies SST, MS, Stochastic State Monotonicity and Strong Inde-

pendence, then P has a strong SEU representation.

Proof. By Corollary 0, it suffi ces to show that %P has a SEU representation.
18That is, the formalities rely only on C being a mixture set. At the level of interpretation matters are

not so robust, since axioms such as Strong Independence depend for their plausibility on C being a set

of roulette lotteries.
19Recall that we identify the consequence p ∈ C with the constant function in Ac that maps each state

to p.

16



Observe that Ac is a mixture set and the restriction of P to Ac × Ac satisfies SST,

Strong Independence and MS. From the proof of Proposition 1, we therefore deduce that

the restriction of %P to Ac is a weak order satisfying (6) and (7), and hence possesses
a linear representation. Denote the latter by v : C → R and let Λ = v (C). Then Λ

is a closed interval. Given Stochastic State Monotonicity, the result is trivial if Λ is a

singleton, so assume otherwise.

Consider the following binary relation ≥∗ on the set ΛS of state-utility vectors: x ≥∗ y
if a %P b for some a, b ∈ A with xs = v (a (s)) and ys = v (b (s)) for each s ∈ S. This
binary relation is well-defined by Stochastic State Monotonicity: for any a, b ∈ A

a (s) %P b (s) for all s ∈ S ⇒ a %P b (9)

Let >∗ denote the asymmetric part of ≥∗.
It is straightforward to verify (using SST and Strong Independence) that ≥∗ is a weak

order that satisfies

x ≥∗ y ⇒ λx+ (1− λ) z ≥∗ λy + (1− λ) z

for all x, y, z ∈ ΛS and all λ ∈ (0, 1). To prove that ≥∗ has a linear representation, it
suffi ces (see the proof of Proposition 1) to show:

Lemma 2 The following sets are closed for all x, y, z ∈ ΛS:

{µ ∈ [0, 1] | µx+ (1− µ) y ≥∗ z}

and

{µ ∈ [0, 1] | z ≥∗ µx+ (1− µ) y} .

Proof. Define P ∗ : ΛS×ΛS → [0, 1] as follows: P ∗ (x, y) = P (a, b) if there exists a, b ∈ A
with xs = v (a (s)) and ys = v (b (s)) for each s ∈ S. This is well-defined, since weak

substitutability implies P (a, b) = P (a′, b′) whenever a ∼P a′ and b ∼P b′, and the state

monotonicity property (9) means that a ∼P a′ whenever a (s) ∼P a′ (s) for all s ∈ S.

Thus, x ≥∗ y iff P ∗ (x, y) ≥ 1
2
.

Note that P ∗ inherits the MS property from P : for any x, y, z ∈ Λ, any π ∈ (0, 1) and

any a, b, c ∈ A with xs = v (a (s)), ys = v (b (s)) and zs = v (c (s)) for each s ∈ S:

P ∗ (x, y) ≥ π ≥ P ∗ (x, z) ⇒ P (a, b) ≥ π ≥ P (a, c)

⇒ P (a, bλc) = π for some λ ∈ [0, 1]

⇒ P ∗ (x, λy + (1− λ) z) = π for some λ ∈ [0, 1]
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where the final inequality uses the linearity of v.

Lemma 2 now follows by the same argument as we used to prove Lemma 1. �

Thus, ≥∗ has a linear representation: there exists θ : S → R such that

x ≥∗ y ⇔
∑
s

θ (s)xs ≥
∑
s

θ (s) ys

for any x, y ∈ ΛS. Using (9) and the fact that Λ is a non-degenerate interval, it is easily

verified that θ (s) ≥ 0 for all s and strictly so for at least one. We may therefore normalise

θ so that it lies in ∆ (S). �

4.2.2 Choquet expected utility

An important generalisation of SEU is the Choquet expected utility (CEU) model of

Schmeidler (1989). If there exists a utility function u : A → R of the CEU form (de-

fined below) such that (3) holds for any a, b, c, d ∈ A, we say that P has a strong CEU

representation.

To discuss CEU we need a couple of additional definitions.

Mappings f : S → R and g : S → R are comonotonic if there do not exist states

s, s′ ∈ S with f (s) > g (s) and g (s′) > f (s′). Analogously, given a weak order % on A
we say that acts a, b ∈ A are %-comonotonic if there do not exist states s, s′ ∈ S with

a (s) � b (s) and b (s′) � a (s′), where � is the asymmetric part of %. The notion of
comonotonicity is central to the CEU model.

A capacity on S is a mapping ω : 2S → [0, 1] that satisfies ω (∅) = 0, ω (S) = 1 and

ω (A) ≤ ω (B) whenever A ⊆ B. Capacities are non-additive generalisations of probability

measures.

A utility function u : A → R has the CEU form if there exists a linear function

v : C → R and a capacity ω : 2S → [0, 1] such that

u (a) =

0∫
−∞

[ω ({s ∈ S | v (a (s)) > z})− 1] dz +

∞∫
0

ω ({s ∈ S | v (a (s)) > z}) dz

We may write this more compactly using the Choquet integral (Denneberg, 1994):

u (a) =

∫
(v ◦ a) dω (10)

If ω is additive —a probability measure —then (10) is just the usual expected value of

v ◦ a with respect to ω. It is well known (Denneberg, 1994) that the Choquet integral is
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homogeneous and comonotonically additive. That is, given any two comonotonic functions

f and g, any α > 0 and any capacity ω:∫
αf dω = α

∫
f dω.

and ∫
(f + g) dω =

∫
f dω +

∫
g dω.

Suppose the binary choice probability function P is such that %P has CEU represen-
tation (10). Then acts a, b ∈ A are %P -comonotonic iff the mappings v ◦ a and v ◦ b are
comonotonic. The linearity of v therefore implies that

u (aλb) = λu (a) + (1− λ)u (b)

whenever a, b ∈ A are %P -comonotonic.
Since b ∈ Ac is %P -comonotonic with any a ∈ A, the CEU utility function (10) is

Ac-linear.20 Strong Ac-Independence is therefore necessary for the existence of a strong

CEU representation. However, Strong Ac-Independence, together with SST, MS and

Stochastic State Monotonicity, do not suffi ce.21 We need the following additional condition

to complete Step I:22

Stochastic Comonotonic Independence For any pairwise%P -comonotonic acts a, b, c ∈
A and any λ ∈ (0, 1),

P (a, b) ≥ 1

2
⇒ P (aλc, bλc) ≥ 1

2
.

Proposition 3 If P satisfies SST, MS, StrongAc-Independence, Stochastic State Monotonic-
ity and Stochastic Comonotonic Independence, then P has a strong CEU represen-

tation.
20One may verify that u (Ac) = u (A) as follows. The function

F (z) = ω ({s ∈ S | v (a (s)) ≤ z })

is the cumulative distribution function for a random variable whose range is contained in v (C) and (10)

is the expected value of this random variable. It follows that u (A) ⊆ v (C) = u (Ac).
21Consider preferences %⊆ A×A which have a maxmin expected utility representation u : A→ R (see

Section 4.2.3) but no CEU representation. Let Z = u (A) − u (A) and let P (a, b) = g (u (a)− u (b)) for

some continuous and strictly increasing function g : Z → [0, 1] with g (z) + g (−z) = 1. Note that %=%P .
Then P satisfies SST, MS, Strong Ac-Independence and Stochastic State Monotonicity, but it does not

have a strong CEU representation: if it did, then %P would have a CEU representation.
22Stochastic Comonotonic Independence is the restriction on P imposed by comonotonic independence

(Schmeidler, 1989) of the binary relation %P .
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Proof. We first show that %P defined by (2) has a CEU representation. Our argument
follows the structure in Ryan (2009; Section 5).

As in the proof of Proposition 2, we first consider the restriction of P to Ac ×Ac and
the associated restriction of %P to Ac. By the same argument as in the earlier proof,23

%P restricted to Ac has a linear representation, which we denote v : C → R. As before,
we let Λ = v (C), a closed interval. The result is trivial if Λ is a singleton, so we assume

otherwise henceforth.

Define the binary relation ≥∗ on ΛS as before: x ≥∗ y if a %P b for some a, b ∈ A with
xs = v (a (s)) and ys = v (b (s)) for each s ∈ S.
For each permutation ρ : S → {1, 2, ..., |S|} we define the associated (convex) comonotonic-

ity region C (ρ) as in Ryan (2009): x ∈ C (ρ) iff

xρ(1) ≥ xρ(2) ≥ · · · ≥ xρ(|S|).

Let ≥∗ρ denote ≥∗ restricted to C (ρ). Strong Comonotonic Independence ensures that

each ≥∗ρ satisfies

x ≥∗ρ y ⇒ λx+ (1− λ) z ≥∗ρ λy + (1− λ) z

for all x, y, z ∈ C (ρ) and all λ ∈ [0, 1]. We may therefore follow the same logic as in the

proof of Proposition 2 to show that each ≥∗ρ has a linear representation. That is, for each
permutation ρ, there exists θρ ∈ ∆ (S) such that

x ≥∗ρ y ⇔
∑
s

θρ (s)xs ≥
∑
s

θρ (s) ys (11)

for any x, y ∈ C (ρ). The argument in Ryan (2009, pp.345-7) now shows that there exists

a capacity ω : 2S → [0, 1] such that x ≥∗ y iff
0∫

−∞

[ω ({s ∈ S | xs > z})− 1] dz +

∞∫
0

ω ({s ∈ S | xs > z}) dz ≥

0∫
−∞

[ω ({s ∈ S | ys > z})− 1] +

∞∫
0

ω ({s ∈ S | ys > z}) dz

This gives the desired CEU representation for %P .
To complete the proof, apply Corollary 0. �

23In particular, Strong Ac-Independence of P ensures that the restriction of P to Ac × Ac satisfies
Strong Independence.
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4.2.3 Maxmin expected utility

A utility function u : A→ R has the maxmin expected utility (MEU) form if there exists

a linear function v : C → R and a closed and convex set P ⊆ ∆ (S) such that

u (a) = min
θ∈P

∑
s∈S

θ (s) v (a (s)) (12)

(Gilboa and Schmeidler, 1989). Note that (12) is Ac-linear.

To obtain a SUR with u of the MEU form, we shall require:

Stochastic Uncertainty Aversion For any a, b ∈ A and any λ ∈ (0, 1),

P (a, b) =
1

2
⇒ P (aλb, b) ≥ 1

2
.

Proposition 4 If P satisfies SST, MS, Stochastic State Monotonicity, Stochastic Uncer-
tainty Aversion and Strong Ac-Independence, then P has a strong utility represen-

tation with respect to some u of the MEU form (12).

Proof. As for the proof of Proposition 2, we may show that the restriction of %P to Ac

possesses a linear representation, v : C → R. We let Λ = v (C) and exclude the trivial

cases in which Λ is a singleton. We may therefore assume (WLOG) that Λ contains 0 in

its interior. The binary relation ≥∗ on ΛS is defined in the usual way, with asymmetric

part >∗ and symmetric part =∗.

We also identify Λ with the set of constant vectors in ΛS.

Note that ≥∗ is a weak order that satisfies the following conditions for any x, y ∈ ΛS,

any k ∈ Λ and any λ ∈ (0, 1):

x ≥∗ y ⇒ λx+ (1− λ) k ≥∗ λy + (1− λ) k (13)

x =∗ y ⇒ λx+ (1− λ) y ≥∗ x (14)

Furthermore, Stochastic State Monotonicity implies that ≥∗ satisfies the following strict
monotonicity condition: for any x, y ∈ ΛS and any k, k′ ∈ Λ,

x ≥ y ⇒ x ≥∗ y (15)

and

k > k′ ⇒ k >∗ k′ (16)
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We next prove that there exists a closed and convex set P ⊆ ∆ (S) such that ≥∗ is
represented by

u (x) = min
θ∈P

∑
s∈S

θ (s)xs (17)

The result will then follow by Corollary 0. The following lemmata establish the required

representation (17).

Lemma 3 For any x ∈ ΛS, there exists a unique k ∈ Λ such that x =∗ k.

Proof. Define P ∗ as in the proof of Lemma 2, and note that it satisfies mixture solvability
by the same argument as before. Let x = mins∈S xs and x = maxs∈S xs. Then (15) implies

P ∗ (x, x) ≥ 1

2
≥ P ∗ (x, x) .

Mixture solvability ensures that x =∗ λx + (1− λ)x for some λ ∈ [0, 1]. Uniqueness

follows by (16). �

In view of Lemma 3, for each x ∈ Λ we let kx denote the unique k ∈ Λ satisfying

x =∗ k.

Lemma 4 For any x, y ∈ ΛS, any k ∈ Λ and any λ ∈ (0, 1):

x >∗ y ⇒ λx+ (1− λ) k >∗ λy + (1− λ) k

Proof. If x >∗ y then λkx + (1− λ) k > λky + (1− λ) k. Since

λx+ (1− λ) k =∗ λkx + (1− λ) k

and

λy + (1− λ) k =∗ λky + (1− λ) k

by (13), the result follows. �

Combining this result with (13) we have:

Corollary 1 For any x, y ∈ ΛS, any k ∈ Λ and any λ ∈ (0, 1):

x ≥∗ y ⇔ λx+ (1− λ) k ≥∗ λy + (1− λ) k (18)
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Lemma 5 There is a closed, convex cone K ⊆ RS such that{
x ∈ ΛS

∣∣ x ≥∗ 0
}

= K ∩ ΛS.

Moreover, for any k ∈ Λ,{
x ∈ ΛS

∣∣ x ≥∗ k} = (K + {k}) ∩ ΛS.

Proof. Lemma 2 and Corollary 2 in Ryan (2009) ensure the existence of a suitable convex
cone K. It remains to show that K is closed, for which it suffi ces to show that the set{

x ∈ ΛS
∣∣ x ≥∗ 0

}
(19)

is closed, since 0 lies in the interior of Λ.

Suppose there exists a sequence {xm}∞m=1 ⊆ ΛS with limit x̂ ∈ ΛS such that xm ≥∗ 0

for all m and 0 >∗ x̂. Since the set (19) is convex, x̂ must be a boundary point. Let k̂ > 0

be from the interior of Λ. Then k̂ ∈ ΛS is in the interior of (19) and we have

P ∗ (0, x̂) >
1

2
≥ P ∗

(
0, k̂
)
.

Given π ∈
(
1
2
, P
(

0, k̂
))

there exists some λ ∈ (0, 1) such that

P ∗
(

0, x̂λk̂
)

= π.

But x̂λk̂ must lie in the set (19), which is a contradiction. �

From Lemma 5 and the fact that RS+ ⊆ K the desired representation (17) follows by

the argument on p.338 of Ryan (2009).

This completes the proof of Proposition 4. �

4.3 Dual theory

For our final application we return to the domain of risk. We consider a SUR whose

core theory is Yaari’s (1987) special case of the rank-dependent expected utility (RDEU)

model, also known as the Dual Theory (DT). To expedite the analysis, we exploit the

close relationship between CEU and RDEU, originally pointed out by Wakker (1990).

Let us therefore adopt the set-up of Section 4.2.2, but with consequences specified as

amounts of money, so that C = R+ (endowed with the usual mixture operation). We also
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endow S with a probability measure p so that acts embody risk rather than uncertainty.

Thus, elements of A are real-valued random variables. We let F a denote the distribution

function of the random variable a ∈ A.
Because of the finiteness of S, this structure induces a rather limited range of distri-

butions on C. It is therefore conventional to work with a richer set of states (such as

S = [0, 1]) when studying risk. We could have done so here. However, the more restric-

tive environment allows us to leverage off our efforts in Section 4.2.2. The reader who is

interested in the elaborations necessary to accommodate a richer state space is referred

to Ryan (2009, Appendix 5 of the Supplementary Material).

Given our current specification of A, a utility function u : A → R has the RDEU

form if it satisfies (10) with ω = φ ◦ p for some non-decreasing and surjective function
φ : [0, 1]→ [0, 1].24 It has the DT form if, in addition, v is linear. Since the Ac-linearity of

(10) relies on the linearity of v : C → R, we can only use our recipe to establish a strong
utility representation with DT at its core, rather than the more general RDEU theory.

We will require the following strengthening of Stochastic State Monotonicity.

Stochastic Monotonicity For any a, b ∈ A, if F a first-order stochastically dominates

F b, then

P (a, b) ≥ 1

2
.

Proposition 5 If P satisfies SST, MS, Stochastic Monotonicity, Strong Ac-Independence
and Stochastic Comonotonic Independence, then P has a strong utility representa-

tion with respect to some u of the DT form.

Proof. We first show that %P defined by (2) has a DT representation. This binary

relation shares the same properties as ≥∗ in the proof of Proposition 3. By the argument
in that proof, %P therefore possesses a CEU representation

u (a) =

∫
a dω

for some capacity ω. By Stochastic Monotonicity, ω = φ ◦ p for some non-decreasing and
surjective mapping φ : [0, 1]→ [0, 1] (Wakker, 1990).

Since u is Ac-linear, we may apply Corollary 0 to complete the proof. �

24It is easily checked that φ ◦ p is a capacity.
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5 Concluding remarks

Much of the empirical literature on binary stochastic choice uses experimental data in

which alternatives embody risk or uncertainty. Non-(S)EU forms for utility are often

tested against (S)EU comparators. The present paper provides suffi cient conditions for

the validity of several such models.

Despite their simple —and hence restrictive — form, Fechner models continue to be

workhorses for the empirical analysis of choice behaviour. Amongst the Fechner models,

the strong utility form (3) is almost always employed, albeit implicitly. To see why, note

that empirical implementations of Fechner models typically assume

P (a, b) = Pr [X ≤ u (a)− u (b)]

for some random variable X that is symmetrically distributed about zero, with a distrib-

ution function that is continuous and strictly increasing (such as the Normal distribution

function). That is:

P (a, b) = F [u (a)− u (b)] (20)

for some continuous and strictly increasing distribution function F : Z → [0, 1] satisfying

φ (z) +φ (−z) = 1, where Z is the interval (symmetric about zero) on which the distribu-

tion is supported. Since F is strictly increasing, specification (20) implies a strong utility

representation.25

It is therefore important to understand the axiomatic foundations of strong utility

models for choices between risky or uncertain prospects. It is also important to understand

the axiomatic distinctions between strong utility models with different core theories. In an

early (and elegant) empirical test, Loomes and Sugden (1998) rejected a strong expected

utility representation (SEUR) for their experimental data. They argue that the fault

lies predominantly with the assumption of linear utility rather than the strong utility

model. In a similar vein, Loomes and Pogrebna (2014) reject the stochastic version of the

independence axiom (Dagsvik, 2008) in their data. Recalling Hey’s (1995) quote from the

Introduction, embedding EU in a strong utility structure does not make it empirically

respectable in an absolute sense — the question is one of relative performance against

alternative core theories.
25Continuity of F further implies that mixture solvability (MS) is satisfied. For any of the core theories

in Propositions 1-5, our axioms are therefore necessary as well as suffi cient for the Fechner models typically

assumed in empirical work.
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Of course, our axiomatisations are restricted to M -linear utility classes and there-

fore exclude important core theories, such as rank-dependent expected utility (RDEU).26

Filling these gaps is an important item for the future research agenda.
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Appendices

A Proofs of Theorem 0 and Corollary 0

A.1 Proof of Theorem 0

To prove Theorem 0, suppose that π : Σ× Σ→ [0, 1] satisfies (i)—(v). Let us define

Λ = {(x, y) ∈ Σ× Σ | x− y = 0}

for ease of reference. Property (i) says that Λ is the level curve corresponding to π = 1
2
.

We need to show that all the other level curves are parallel to this one.
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First observe that we may strengthen the monotonicity condition (iv).27

Lemma A The function π is strictly increasing (respectively, decreasing) in its first (re-

spectively, second) argument.

Proof. Suppose x > x′ but π (x, y) = π (x′, y). Properties (i) and (iv) imply that x′ > y

or y > x. Assume the former (i.e., y > x > x′), the latter case being handled similarly.

Thus

π (x, y) = π (x′, y) >
1

2
(21)

from (i) and (iv).

Define x0 = x, x1 = x′ and

λ =
x1 − y
x0 − y ,

so x1 = x0λy. For each k ∈ {2, 3, ...} let

xk = xk−1λy = x0λky.

Since λ ∈ (0, 1) we have xk → y as k →∞. By (v) and (i), we therefore have

lim
k→∞

π
(
xk, y

)
= π (y, y) =

1

2
(22)

Since π (x0, y) = π (x1, y), successive applications of (iii) give

π
(
xk, y

)
= π (x, y)

for all k, so (21) and (22) deliver the required contradiction. �

Now suppose, contrary to what we seek to show, that there exist x, y, x′, y′ ∈ Σ with

x− y = x′ − y′ 6= 0

but

π (x, y) > π (x′, y′) .

It suffi ces to consider the case28

x− y = x′ − y′ < 0.
27Since π (x, y) ≥ 1

2 iff x ≥ y from (i), Lemma A implies that π exhibits the following substitutability

property:

π (x, y) ≥ 1

2
iff π (x, z) ≥ π (y, z) .

28The other case follows directly, since π (x, y) > π (x′, y′) implies π (y, x) < π (y′, x′) by virtue of (ii).
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Thus, (x, y) and (x′, y′) are distinct points lying above Λ and on a line parallel to it. See

Figure 1 (which assumes x′ > x).

Figure 1

From (i) and Lemma A we have

π (x′, y′) < π (x, y) < π (y, y) =
1

2
= π (x′, x′) .

Therefore, using (v) and Lemma A, we have π (x, y) = π (x′, y′′) for some y′′ ∈ (x′, y′).

Since the line joining (x, y) and (x′, y′′) is not parallel to Λ we have

(x′, y′′) = (xλz, yλz) (23)

for some z ∈ R and some λ ∈ (0, 1). Figure 2 illustrates (again for the case x < x′). We

may assume that z ∈ Σ; otherwise, we can use (iii) to contract (x, y) and (x′, y′′) towards

(0, 0) until this condition is satisfied.29

Starting from (23), repeated applications of (iii) give that

1

2
> π (x, y) = π (xλnz, yλnz) for each n ∈ {1, 2, ...} (24)

Since (xλnz, yλnz)→ (z, z) as n→∞ and π (z, z) = 1
2
, we shall show that (24) contradicts

(v).

29Recall that 0 ∈ int (Σ).

30



Given Lemma A and the fact that x < y, (24) can only hold if z > y > x (as in Figure

2) or z < x < y. Consider the former case, the latter being handled similarly. Then

π (x, z) < π (x, y) <
1

2
= π (z, z)

and (v) ensures that π (x, y) = π (xµz, z) for some some µ ∈ (0, 1). Hence, by (iv),

π (x, y) < π (xηz, z) < π (xηz, yηz)

for all η < µ. This contradicts (24).

We have therefore shown that π is constant on {(x, y) ∈ Σ× Σ | x− y = k} for any
fixed k ∈ R. From this fact and Lemma A we deduce (5). This completes the proof of

Theorem 0.

Figure 2

A.2 Proof of Corollary 0

Let Σ = u (M) = u (A). Since u is M -linear, Σ is an interval in R. The result is trivial if
Σ is a singleton, so we assume otherwise henceforth. It is without loss of generality to sup-

pose that 0 is contained in the interior of Σ —if not, apply a suitable affi ne transformation

to u.

The weak substitutability condition (4), together with (1), imply that

u (a) = u (b) ⇔ P (a, b) =
1

2
⇒ P (a, c) = P (b, c) ⇔ P (c, a) = P (c, b)
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for any a, b, c ∈ A. It follows that there exists a function π : Σ × Σ → [0, 1] such that

P (a, b) = π (u (a) , u (b)) for any a, b ∈ A. It suffi ces to show that π satisfies properties
(i)—(v) of Theorem 0.

Property (i) is immediate from the definition of u. Property (ii) follows from (1).

Strong M -Independence and the M -linearity of u imply

π (x, y) = π (x′, y′) ⇒ π (xλz, yλz) = π (x′λz, y′λz)

for any x, y, x′, y′ ∈ Σ and any z ∈ u (M). Since u (M) = u (A) = Σ, property (iii) holds.

Property (iv) follows from SST via the weak substitutability property (4).

Finally, to establish (v) note that π inherits solvability: for any x, y, z ∈ Σ and any

q ∈ [0, 1], if π (z, x) ≥ q ≥ π (z, y) then π (z, w) = q for some w ∈ Σ. From solvability (of

π) and weak monotonicity —property (iv) —we easily deduce that π is continuous in its

second argument. Continuity in its first argument therefore follows from (ii).

B Strengthening Theorem D

The following theorem strengthens Theorem D.

Theorem D∗ If A is the unit simplex in Rn and P satisfies SST, D2, D3 and Strong

Independence, then P has a strong expected utility representation.

Proof. The proof is the same as for Proposition 1, except that we can no longer appeal
to Lemma 1. Instead, we show that %P possesses a linear representation by an alternative
route.

As per the proof of Proposition 1, we may assume that %P is a weak order satisfying

a %P b ⇒ aλc %P bλc (25)

for all a, b, c ∈ A and all λ ∈ (0, 1). Since the result is obvious if %P is trivial (i.e., a ∼P b
for all a, b ∈ A), let us assume otherwise. From D3, we also know that %P satisfies the
following Archimedean property: for any a, b, c ∈ A

a �P b �P c ⇒ aλc �P b �P aµc (26)

for some λ, µ ∈ (0, 1). It therefore suffi ces (Fishburn, 1982, Chapter 2) to establish that

a �P b ⇒ aλc �P bλc (27)

for all a, b, c ∈ A and all λ ∈ (0, 1).
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Lemma B Condition (27) holds on the interior of A (that is, for any a, b, c ∈ A ∩Rn++).

Proof. Suppose a, b, c ∈ A ∩ Rn++ with a �P b and aλc ∼P bλc.30 That is,

P (a, b) >
1

2
and P (aλc, bλc) =

1

2
(28)

We claim that

P (a, b) ≥ P (d, e) ≥ 1

2
⇒ P (dλc, eλc) =

1

2
(29)

for any d, e ∈ A. To see why, observe that Strong Independence and

P (d, e) ≥ 1

2
= P (c, c)

give

P (dλc, eλc) ≥ 1

2
.

The reverse inequality follows by applying Strong Independence to P (a, b) ≥ P (d, e) and

using (28).

We next show that d = aµb and e = b satisfy the antecedent in (29) for any µ ∈ [0, 1].

The cases µ ∈ {0, 1} are trivial so we focus on µ ∈ (0, 1).

Since

P (a, b) >
1

2
= P (b, b) = P (a, a)

we have

P (aµb, b) ≥ 1

2
(30)

and

P (a, aµb) = P (a, b (1− µ) a) ≥ 1

2

by Strong Independence. From the latter inequality and weak substitutability (SST) we

have

P (a, b) ≥ P (aµb, b) (31)

Thus, from (29)—(31):

P ((aµb)λc, bλc) =
1

2
(32)

for any µ ∈ [0, 1].

30Note that bλc �P aλc is ruled out by (25) and a �P b.
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Figure 3

From (32) we obtain a linear segment of strictly positive length,31 parallel to the line

joining a and b, which forms part of an indifference curve for %P . Since a and b are in
the interior of the simplex, we can use the existence of this linear segment, together with

transitivity of % and the independence property (25), to deduce that the line segment
joining a and b must also be part of an indifference curve. Figure 3 illustrates the required

construction (for the case n = 3). By moving point z along the segment from x to y we

sweep out an indifference curve joining a to b.32 This is the desired contradiction, since

a �P b. �

Since A ∩ Rn++ is a mixture set (under the usual mixing operation for Rn), it follows
that %P possesses a linear representation on A ∩ Rn++. Let u be such a representation.
Observe that D3 is not required for the proof of Lemma B —Strong Independence does

all the work. We now use D3 to extend the linear representation to the boundary of the

simplex.

31Recall that a �P b, so a 6= b.
32Let â = aλc and b̂ = bλc. The points x and y are chosen such that a = xγâ and b = yγb̂ for some

γ ∈ (0, 1). The independence property (25) implies that u
((
âµb̂
)
γ (xηy)

)
is constant in µ ∈ [0, 1] for

any η ∈ [0, 1].
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First, u has a unique linear extension to A. We use u to denote the extended function,

as no confusion should arise. Let a be a boundary point of A. There are two possibilities:

either (i) u (a) = u (b) for some b ∈ A∩Rn++ or else (ii) the face of the simplex containing
a is part of a contour of u.

For case (i) we show that a ∼P b. (It follows that a ∼P b for any boundary point a and
any interior point b on the same utility contour as a.) If, for example, a �P b then we can
find some c ∈ A∩Rn++ with u (c) < u (b) = u (a). Hence a �P b �P c, but u (aλc) < u (b)

for all λ ∈ (0, 1) by the linearity of u. Since aλc ∈ A ∩ Rn++ for any λ ∈ (0, 1), we have

b �P aλc for all λ ∈ (0, 1), which contradicts the Archimedean property (26). Assuming

b �P a leads similarly to contradiction.
Now consider case (ii). Thus, u is constant on the face of the simplex containing a.

Suppose, in particular, that u (a) > u (b) for all b ∈ A ∩ Rn++. The alternative scenario,
in which u (a) < u (b) for all b ∈ A ∩ Rn++, may be handled similarly. We will show that
a ∼P b for any b on the same face as a, and a �P b for any b ∈ A not on the same face as
a. Combining with case (i), this shows that %P is represented by u on all of A.
Suppose b ∈ A with u (a) = u (b), so b lies on the same face of the simplex as a.

If a �P b then a �P b �P c for any c ∈ A ∩ Rn++. Since b �P aλc ∈ A ∩ Rn++ for
any λ ∈ (0, 1), we deduce a contradiction to (26). Assuming b �P a leads similarly to

contradiction.

Finally, let b ∈ A with u (a) > u (b). Assume, contrary to what we seek to show, that

b %P a. Since u (a) > u (b) we may choose some c, d ∈ A ∩ Rn++ with

u (a) > u (d) > u (c) > u (b) .

Therefore, d �P c �P b %P a and

u (dλa) = λu (d) + (1− λ)u (a) > u (d) > u (c)

It follows that dλa �P c for all λ ∈ (0, 1). This contradicts the Archimedean property

(26).

This completes the proof of Theorem D∗. �

We conjecture, but have not been able to prove, that Theorem D∗ could be strength-

ened further, by dropping D3. This would yield a result that implies both Proposition 1

and Theorem D∗.
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