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Original research article 

Mapping weather risk – A multi-indicator analysis of satellite-based 
weather data for agricultural index insurance development in semi-arid and 
arid zones of Central Asia 
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A B S T R A C T   

Index insurance has been introduced as a solution to tackle several challenges that prevail in the agricultural 
insurance sector of developing countries. One of the main implementation challenges in these countries is the 
lack of reliable weather data for index development and implementation. The increasing availability of satellite 
data could ease the constraints of data access. Meanwhile, the suitability of various satellite products for yield 
estimation across world regions has to undergo a thorough assessment. This study contributes to the literature by 
systematically analyzing the accuracy of some globally available satellite data, namely the Global Satellite 
Mapping of Precipitation (GSMaP), Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), and 
the Global Land Data Assimilation System (GLDAS) compared to ground-level weather information for 14 
different indicators for the case of Uzbekistan. Our analysis indicates that those sources may provide the 
necessary data for an accessible and adequate climate service. However, a considerable risk of overestimation 
and underestimation depending on the source of satellite data may exist, especially for precipitation data in the 
conditions of Central Asia. Among the tested datasets, GSMaP showed a relatively better performance than 
CHIRPS in precipitation estimation for drought and flood detection. In order to reduce detection inaccuracy, the 
application of satellite weather products for index insurance is possible when temporal aggregation (e.g., 
monthly, seasonal) is considered. Globally available climate data could serve as a good source to establish index 
insurance products in Central Asia; however, a careful selection of source and index is required.   

Practical implications  

In contrast to traditional indemnity-based insurance, which re-
quires field visits to verify actual harvest losses, index insurance 
allows for the identification of yield losses on the basis of a pre-
determined index (e.g., rainfall, temperature, soil moisture). Index 
insurance has a number of further significant advantages 
compared to traditional insurances, such as low transaction and 
administrative costs, as well as the prevention of moral hazard and 
adverse selection (Fisher et al., 2019; World Bank, 2015). Despite 
the promising potential of index insurance, dissemination is slow 
due to a lack of climate services, which would support the prac-
tical operation of index insurance products (Coleman et al., 2018; 
Hazell et al., 2010). The strongest impediment against the 

practical implementation is lacking access to reliable and suffi-
cient long-term weather data, which is lacking in most of the 
developing countries (Barnett and Mahul, 2007; Collier et al., 
2009). Meanwhile, insurance infrastructure may be one of the 
potential areas that may support further dissemination of climate 
services, benefitting agricultural clients beyond the risk sharing 
function of insurance. Due to the large intrinsic interest of insur-
ance companies, the insurance sector could also be one of the 
areas where dissemination of climate information is utilized by 
private companies (Surminsk et al., 2019). 

This study aims to analyze the suitability of globally available 
satellite data, namely the Global Satellite Mapping of Precipitation 
(GSMaP), Climate Hazards Group InfraRed Precipitation with 
Station (CHIRPS), as well as the Global Land Data Assimilation 
System (GLDAS), as a potential source of weather data for devel-
oping and implementing index insurance in Central Asia. The 

* Corresponding authors. 
E-mail addresses: eltazarov@iamo.de (S. Eltazarov), bobojonov@iamo.de (I. Bobojonov), kuhn@iamo.de (L. Kuhn), glauben@iamo.de (T. Glauben).  

Contents lists available at ScienceDirect 

Climate Services 

journal homepage: www.elsevier.com/locate/cliser 

https://doi.org/10.1016/j.cliser.2021.100251 
Received 23 December 2020; Received in revised form 10 August 2021; Accepted 30 August 2021   

mailto:eltazarov@iamo.de
mailto:bobojonov@iamo.de
mailto:kuhn@iamo.de
mailto:glauben@iamo.de
www.sciencedirect.com/science/journal/24058807
https://www.elsevier.com/locate/cliser
https://doi.org/10.1016/j.cliser.2021.100251
https://doi.org/10.1016/j.cliser.2021.100251
https://doi.org/10.1016/j.cliser.2021.100251
http://creativecommons.org/licenses/by/4.0/


Climate Services 23 (2021) 100251

2

prominent advantage of using this data is that it allows imple-
menting index insurance programs even in countries with weak 
climate services. Thus, the development of index insurance mar-
kets would also enable access to climate services, which could be 
used not only for financial instruments but also other, broader 
purposes (Prasada, 2020). 

In order to identify the suitability of the open data, we compared 
the satellite-based weather data with in-situ weather information 
using 14 different statistical indicators for the case of Uzbekistan. 
Moreover, to verify the ability of satellite-based weather products 
to detect and monitor the drought and flood events, we calculated 
and compared the Metrological Drought Indices (MDI) based on 
both satellite and in-situ weather data. MDIs are suggested as one 
potential method to design index insurance in cases of low avail-
ability of historical yield data, which applies to most developing 
countries (Bobojonov et al., 2014; Okpara et al., 2017). According 
to our results, all satellite-based weather products exhibit satis-
factory accuracy in measuring weather parameters and detecting 
drought/flood events in semi-arid and arid zones of Central Asia. 
Meanwhile, GSMaP on its own and in combination with GLDAS, as 
an MDI, demonstrated better performance than CHIRPS. More-
over, all satellite-based weather products achieved slightly higher 
accuracy during rainy and wet seasons. 

After determining the suitability of these products, we created an 
open access platform that would provide climate services to a wide 
range of users. While the variety and quality of the satellite-based 
weather products has significantly increased over the last decades, 
most of them are accessible only to qualified specialists in the field 
of remote sensing. The developed climate service platform bridges 
the gap between raw data and end users by creating visualized and 
regional weather products on a user-friendly, automatic and real 
time web-platform named “Satellite Weather Data Extractor” 
(https://www.klimalez.org/srs-export). This extractor provides 
easy access to satellite-based precipitation and temperature data 
and might serve as a source for individuals and organizations to 
make climate smart decisions worldwide.   

Introduction 

Agricultural insurance is a risk management tool that can assist in 
coping with climate risks in agricultural areas by protecting assets, 
opening access to credits, mitigating risk, maintaining the resilience of 
farmers, and supporting food security. However, because of high costs, 
moral hazard and adverse selection, traditional agricultural insurance, 
known as “loss-indemnifying” insurance has not yet effectively assisted 
and mitigated all of the risks for farmers in developing countries. Index- 
based insurance has been proposed and recommended as a solution by 
various organizations and scholars as a means for developing countries 
to overcome the challenges of traditional insurance (Bobojonov et al., 
2014; Coleman et al., 2018; World Bank, 2011). The most common and 
widely used form of index insurance is weather index insurance, which 
makes use of the typically high correlation between weather data and 
crop yields (Bobojonov et al., 2014; Chantarat et al., 2007; Coleman 
et al., 2018; World Bank, 2011). For the case of index-based insurance, 
indemnity payments are determined by an index that is neither affected 
by farm-individual production decisions nor vulnerable to manipulation 
by third parties. This approach is aimed at reducing adverse selection 
and problems of moral hazard, which are frequent issues in traditional 
agricultural insurances (Fisher et al., 2019; World Bank, 2015). 

Meanwhile, there are several challenges in the implementation of 
index insurance under real-life conditions. One of the largest challenges 
is the availability of historical weather data for implementing such an 
insurance (Barnett et al., 2008; Kath et al., 2019). In many developing 
and transition economies, a complete lack or the poor quality of long- 
term daily climate data with all the necessary parameters hinders 
large scale dissemination (Barnett and Mahul, 2007; Collier et al., 2009). 

Moreover, requesting and obtaining weather data from data holders 
might be challenging, time consuming and costly; in many developing 
countries, high-quality data has been commercialized. 

Additionally, an insufficient density of meteorological stations (the 
term “station” will be used from here onwards) in agricultural areas 
significantly affects the reliability of insurance products. Because of 
micro-climatic factors, weather parameters may differ even between 
locations in close proximity (Tadesse et al., 2015). Existing studies have 
shown that using station data for index insurance leads to a very high 
basis risk (i.e., the correlation between index and yields is very low) 
when the station is located >20–25 kms away (Gommes and Göbel, 
2013; Osgood et al., 2007). Consequently, Hazell et al. (2010) have 
suggested keeping a distance of 10–20 km between the station and farms 
in order to decrease basis risk. 

Fig. 1 illustrates the challenge of sufficient station density for the 
case of Central Asia. Here, stations are installed and regulated by 
governmental agencies, but also recognized by the World Meteorolog-
ical Organization (WMO) and included in the dataset of the Global 
Historical Climatology Network (GHCN) (NCEI, 2021). As presented by 
the spatial analysis in Fig. 1, >94% of farmland in Central Asia is located 
beyond a distance of 20 km from the nearest station. Only 6% of the 
region’s cropland (highlighted in dark green) is situated close enough to 
a weather station to allow for reliable yield estimation along the weather 
station data. Any area that is not classified as cropland is shown as a 
transparent area (see also Fig. SM 1.1 in supplementary material (SM) 
1). 

In many high-income countries, the installation of new weather 
stations at the farm level is promoted as a potential solution. However, 
starting from the above conclusion that accurate data for weather 
indices requires a density of one station every 10–20 km, both the 
installation and maintenance of these stations would considerably in-
crease the price of products relying on this data, which is a problem for 
extensive or low-yield production. Furthermore, the lack of historical 
records for these new stations will pose an additional problem for 
product design. 

Under these conditions, satellite remote sensing data (the term 
“satellite data” will be used from here onwards) is increasingly used for 
designing and operating index insurance programs. Numerous recent 
studies have investigated and proposed the use of agronomically suit-
able Meteorological Drought Indices (MDI) that do not require yield data 
for designing and implementing index-based insurance, as yield data is 
often inaccurate or difficult to obtain at sufficient resolution (Bezdan 
et al., 2019; Bobojonov et al., 2014; Ghamghami et al., 2017; Okpara 
et al., 2017; Tarnavsky et al., 2018). Many studies have found a signif-
icant correlation between MDIs and crop yields (Elhag and Zhang, 2018; 
Gunst et al., 2015; Salehnia et al., 2018; Todisco et al., 2008; Vicente- 
Serrano et al., 2012). Moreover, Musshoff et al. (2011) and Odening 
et al. (2007), found a higher risk reduction potential of index insurance 
based on MDIs rather than cumulative rainfall. 

Meanwhile, each of the available satellites differs in terms of reso-
lution, coverage, quality and frequency of data collection. Therefore, 
one can expect differences in accuracy of the produced data for 
measuring weather parameters for each particular region. However, the 
question of how accurate the various satellite products actually are has 
not been studied to a sufficient extent in the region. Our study therefore 
provides two distinct contributions to the literature: First, the accuracy 
of two important satellite-based weather products, as Global Satellite 
Mapping of Precipitation (GSMaP) and Global Land Data Assimilation 
System (GLDAS)1 have never been scientifically tested in the context of 
index insurance. This study undertakes the investigation of the accuracy 
of these, along with CHIRPS data, for various classification, quantitative 
and agreement statistic metrics. Secondly, this is the first attempt at 

1 Details about the selected satellite-based weather products will be discussed 
in the following chapters. 
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undertaking an accuracy assessment of selected satellite-based temper-
ature and precipitation data and calculation of MDIs based on satellite- 
based weather products for Central Asia. While region-specific climate 
challenges need to be taken into account, the results of this case study 
may also provide insights relevant for arid and semi-arid agricultural 
regions elsewhere in the world. 

This paper is structured as follows: The second chapter provides a 
review of the literature on the application of satellite data on index in-
surance in various countries. The third chapter discusses opportunities 
for establishing index insurance in Central Asia, while the fourth chapter 
describes the process of in-situ and satellite-based data selection and 
acquisition. We report on methods selected for the accurate assessment 
of satellite-based weather data and selected MDIs that examine the 
ability of satellite-based weather data to detect droughts and floods. 
Chapter five provides the results from our analyses followed by a 
comprehensive discussion. We conclude with an outlook on opportu-
nities and limitations of satellite-based data in the detection of drought 
and flood events. 

Literature review of the application of satellite remote sensing 
data to index insurance 

A number of studies in developing countries have investigated and 
proven significant accuracy, applicability and the potential of satellite 
data for index insurance in the agricultural sector at various temporal 
and spatial scales. De Leeuw et al. (2014) conducted a systematic search 
of the available literature to review the potential and uptake of remote 
sensing in the insurance industry, concluding that there is particular 
scope for the application of remote sensing by the index insurance in-
dustry. They have also concluded that satellite-based indices can be 
applied when there is a significant correlation with what is insured, as 

such indices serve to lower the cost of the insurance product and create 
new insurance markets and services2. Therefore, this literature review 
focuses on research papers published after De Leeuw et al. (2014). 

Many existing research articles provide evidence of the suitability of 
satellite indices, such as the Normalized Difference Vegetation Index 
(NDVI); the Vegetation Condition Index (VCI); the Temperature Con-
dition Index (TCI); and the Vegetation Health Index (VHI) (see SM 2 for 
detailed information) or Satellite-based Precipitation Estimates (SPE), in 
selected countries and under various agro-climatic conditions (Coleman 
et al., 2018; World Bank, 2015; World Bank, 2011). Some studies have 
focused on assessing the accuracy of single indices: For example, Black 
et al. (2016a) and Black et al. (2016b) analyzed the applicability of the 
Tropical Application of Meteorology Using Satellite Data (TAMSAT) SPE to 
develop an index insurance for cotton fields in Zambia. They found a 
significant relationship between rainfall and soil moisture, and a strong 
association between cotton production losses and rainfall on a national 
scale. Enenkel et al. (2018) investigated the efficiency of using Climate 
Hazards Group InfraRed Precipitation with Station (CHIRPS) SPE for 
detecting drought and developing an advanced index insurance design 
in Ethiopia, Senegal and Zambia. By comparing drought years reported 
by farmers, they identified a high ‘‘hit rate’’, albeit with some limita-
tions when it came to detecting moderate drought events. 

Other studies have conducted comparative analyses of two or more 
indices: Coleman et al. (2018) investigated the suitability of NOAA-based 
African Rainfall Climatology Version 2 (ARC2) and TAMSAT SPE to detect 
drought events and develop a village-scale index insurance for 
groundnut, millet and maize in Senegal. Tarnavsky et al. (2018) tested 
three different SPE products, namely ARC2, CHIRPS and TAMSAT SPEs 
to monitor country-level maize production in Tanzania, and analyzed 
their applicability for designing an index insurance. They discovered a 
higher correlation between SPE and maize when CHIRPS SPE was 

Fig. 1. Geographical distribution of meteorological stations in the croplands of Central Asia. Own presentation based on data from Teluguntla et al. (2015) and 
NCEI (2021). 

2 A more detailed review of literature before 2014 can be found in De Leeuw 
et al. (2014). 
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employed and suggest that CHIRPS SPE is more suitable for the appli-
cation of index insurance. Osgood et al. (2018) tested the link between 
village-level drought years in Ethiopia as reported by farmers and 
drought years detected by SPE products ARC2 and CHIRPS; they found 
evidence that events reported by farmers are independently reflected in 
satellite datasets. Brahm et al. (2019) conducted cross-correlation ana-
lyses with Climate Hazards Group InfraRed Precipitation (CHIRP), 
CHIRPS, Tropical Rainfall Measuring Mission (TRMM), Multisatellite Pre-
cipitation Analysis (TMPA) and MODIS-NDVI to test the accuracy of the 
newly released data source Historical Database for Gridded Daily Precip-
itation Dataset over Latin America (LatAmPrec). They also used a logistic 
regression approach with aggregated farmer-reported data to check the 
ability of the LatAmPrec to detect drought events across regions in Latin 
America. Their results show that LatAmPrec performs better than other 
satellite data sources in Latin America and is able to satisfactorily 
identify those yield losses that are relevant to insurances. 

As can be seen in this summary, existing studies have not yet tested 
the applicability of the GSMaP and GLDAS datasets, both of which might 
be particularly suitable for developing and transformation countries, as 
their data is publicly available and free of charge. Moreover, none of the 
existing studies have tested the accuracy of precipitation estimates and 
the applicability of these to index insurance or other datasets for the 
Central Asian region. 

Development of index insurance in Central Asia 

Agricultural production has a substantial contribution to the econ-
omy and GDP of Central Asian countries. Between 20 and 50% of the 
population is employed in the agricultural sector (Bobojonov et al., 
2019; Hamidov et al., 2016). In the meantime, systematic extreme 
weather events due to climate change in Central Asia have become more 
frequent, putting agricultural production at risk (Hamidov et al., 2016; 
Zhang et al., 2019). Based on information provided in Christmann et al. 
(2009), Bobojonov and Aw-Hassan (2014) reported that drought events 
during the critical period of rainfed crop growth in 2001 and 2008 had a 
great effect on crop production and the socio-economy of Central Asia, 
particularly in Tajikistan where more than a third of the cropping area 
was damaged, costing US$63 million (Patrick, 2017). In the case of 
Kyrgyzstan, the gross agricultural output significantly decreased in 2009 
due to droughts in preceding years that caused extreme climatic con-
ditions and a deterioration of the economic situation. Generally, in 
Central Asia, the drought of 2001 was the most prolonged and wide-
spread drought, resulting in below-average drops of 40–60% for rainfall 
levels and 35–40% for river flows. This drought event contributed to a 
loss of 80% of rural households’ income, resulting in consequences of 
increased poverty rates and negative impacts on food security and public 
health (Patrick, 2017). In that year, the loss of agricultural production 
was estimated at US$800 million for the whole region, which was a 
significant cost for all countries (World Bank, 2005). All of these im-
plications indicate a need for improving risk management strategies and 
especially agricultural insurance. 

Concerning the potential for the implementation of index insurance 
in Central Asia, the governments of Tajikistan and Kyrgyzstan have 
already initiated and developed a law regarding the use of index in-
surance in the agricultural sector. However, because of little interest 
from insurance companies and farmers, and a lack of weather data for 
designing the index insurance, these initiatives are not being taken up by 
local insurance industries even though both states aim to partially 
finance the insurance premiums (Broka et al., 2016a; Broka et al., 
2016b). In Uzbekistan and Kazakhstan, there are no orders or initiatives 
at the state level for the implementation of index insurance, while both 
states support the implementation of traditional insurances with the 
help of various mechanisms. However, big challenges in the imple-
mentation of traditional insurances create a bottleneck for the devel-
opment of an insurance market in these countries (Bobojonov et al., 
2019; Broka et al., 2016c; Muradullayev et al., 2015). Several 

international organizations have recommended the use of index insur-
ance in the agricultural sector of Kazakhstan and Uzbekistan to solve 
existing challenges in the traditional insurance markets (Broka et al., 
2016c; Sutton et al., 2013), and some feasibility studies and small scale 
piloting activities have started to emerge in recent years. For example, 
Bokusheva and Breustedt (2012) have proved the suitability of drought 
indices based on station data, while Bokusheva et al. (2016) have 
extended this analysis to the applicability of VCI and TCI in index in-
surance for wheat production in northern Kazakhstan. For the same 
location, Conradt et al. (2015) investigated the applicability of station- 
based cumulative rainfall data for designing an index insurance. Bobo-
jonov et al. (2019) reported on the suitability of cumulative precipita-
tion based on weather station data and MODIS-based NDVI to identify 
shortfalls in wheat yields and index design in the Gallaral district, 
Uzbekistan. 

A number of international organizations and projects in cooperation 
with local governmental agencies are attempting to implement satellite- 
based index insurance in Kazakhstan, Uzbekistan and Kyrgyzstan. For 
example, the United Nations Development Programme (UNDP) and the 
Ministry of Agriculture of Kazakhstan (MAK) are introducing an NDVI- 
based index insurance for croplands and livestock in Kazakhstan 
(UNDP, 2016). Swiss insurance company SwissRE and Dutch company 
Vandersat, in cooperation with MAK, have been working on introducing 
a satellite soil-moisture-based index insurance since 2018 (Allinsurance, 
2018). Moreover, the Leibniz Institute of Agricultural Development in 
Transition Economies (IAMO), together with local and international 
insurance companies, has been developing and piloting a satellite NDVI 
and precipitation-based index insurance for croplands in Uzbekistan and 
Kyrgyzstan since 2018 (Bobojonov et al., 2019). 

The above-mentioned studies and projects have not explored the 
accuracy of satellite-based weather data for index development in 
Central Asia. Since farming systems are heterogeneous and risks are 
diverse, weather data could be important for measuring various climate- 
related risks (a review on the need for satellite weather data usage in the 
region can be found in SM 3). 

Methods and materials 

Data sources 

Meteorological data 
Whenever station proximity, historical records and general data 

quality are provided, weather station data remains the most accurate 
source of information for the design of weather indices. Therefore, we 
chose the daily precipitation and temperature data of six meteorological 
stations located in Uzbekistan as a benchmark for our accuracy assess-
ment. The selected weather stations provide information on a time 
period from January 1st, 2000 to December 31st, 2017, which is a suf-
ficient time horizon for comparison. Furthermore, we only compared 
data from a satellite that was in direct proximity3 to the selected 
stations. 

The meteorological data was provided by the Centre of Hydro- 
meteorological Service at the Ministry of Emergency Situations of the 
Republic of Uzbekistan (Uzhydromet), which is responsible for all na-
tional hydro-meteorological network stations (Uzhydromet, 2008). The 
Djizzakh, Gallaral and Lalmikor stations are located in the Djizzakh 
province. The Samarkand station is located in the Samarkand province, 
and the Karshi station in situated in the Kashkadarya province of 
Uzbekistan (Fig. 2) (see SM 4 for detailed information). Among the 
selected stations, only Djizzakh, Samarkand and Karshi stations were 
used during the calibration of all selected satellite-based weather 
products (CHC, 2021; Ji et al., 2015; Mega et al., 2019; NCEI, 2021). 

3 Details about the spatial resolution of the selected satellite-based weather 
products will be discussed in following chapters 
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Satellite remote sensing precipitation and temperature data 
After a systematic review of available satellite-based weather prod-

ucts (see SM 5 for a detailed review), we selected three satellite weather 
products for this study: Firstly CHIRPS, secondly GSMaP, and finally the 
satellite temperature product GLDAS. The selection was made based on 
the coverage area of the case study region, spatial and temporal per-
formances in terms of suitability for index insurance development (e.g., 
extreme large resolution may not be suitable due to high basis risk), as 
well as data accessibility, which would also be relevant for the sus-
tainable application to insurance products. 

CHIRPS4 is a semi-global precipitation product, covering latitudes 
50◦S–50◦N and all longitudes. The product is designed for drought 
monitoring and environmental analyses (Funk et al., 2015). CHIRPS 
data is available starting from 1981 to the near present, and the dataset 
consist of daily, pentadal, decadal and monthly temporal resolution 
data, which were completed and made available to the public in 
February 2015 by the Climate Hazards Group (CHC, 2015). CHIRPS 
integrates a 0.05◦ × 0.05◦ spatial resolution of satellite images and data 
from stations to produce a gridded precipitation time series. A detailed 
description of the CHIRPS dataset has been published in Funk et al. 
(2015). 

GSMaP is a semi-global precipitation product with 0.1ox 0.1◦ spatial 
resolution and 1-hour temporal resolution that uses multi-band passive 
microwave and infrared radiometers from the GPM Core Observatory 
satellite and, with the assistance of a constellation of other satellites, 
covering latitudes 60oS-60oN and all longitudes. The product is designed 
for flood monitoring, meteorology and climatology analyses. GSMaP 
data is available starting from 2000 to the near present, and the dataset 
consist of hourly and daily data, which is available through the JAXA G- 
Portal (2019). This study uses a gauge-data (GG) band, which has 
adjusted precipitation rate to rain gauge. The dataset is processed using 
a GSMaP algorithm version 6 (product version 3). 

GLDAS is a global 3-hourly climate product created by combining 
satellite and ground-based observation datasets, which apply multiple 
advanced land surface modelling and data assimilation methods to 
generate optimal fields of land surface states and fluxes (Rodell et al., 
2004). For this study, we used the Tair_f_inst (air temperature) band 
from 2.1 version of the GLDAS. GLDAS 2.1 is analogous to previous 
versions with upgraded models, which integrate GDAS, GPCP and 

AGRMET datasets. Data from the GLDAS 2.1 is available for the period 
from early 2000 to the near present. The spatial resolution of the product 
is 0.25◦ × 0.25◦ (Chen et al., 2013). The GLDAS data is archived and 
freely available through GSFC DISC (2019). 

In order to obtain daily updates on CHIRPS, GSMaP and GLDAS data, 
we developed an algorithm and programmed an automatic web platform 
(see SM 6 for details and information on the free data platform), which 
allows easy access to the related datasets. This web platform for data 
acquisition can be found under the following link: https://www.klim 
alez.org/srs-export. A large number of existing studies that have 
assessed the accuracy of satellite products are characterized by decadal, 
monthly, seasonal and annual scales (e.g., Darand and Khandu (2020); 
Peng et al. (2020); Rivera et al. (2018); Yu et al. (2020)), especially 
studies in the field of index insurance design (e.g. Bobojonov et al. 
(2014); Odening et al. (2007); Osgood et al. (2007); Westerhold et al. 
(2018); Xu et al. (2008)). To comprehend the pattern of the satellite 
precipitation and temperature measurements at different time scales 
and locations, this study assessed the satellite data in decadal and 
monthly aggregation. The aggregation of hourly, 3-hourly and daily 
data into decadal and monthly values cancels out errors observable in 
short-term data, as mentioned for instance by Usman and Nichol (2020). 
Coleman et al. (2018) have stated that aggregated SPEs are more ac-
curate than daily ones, as there is significant uncertainty in an individual 
precipitation measurement either by the satellite or the station. 

Accuracy measures 

To evaluate the accuracy of the GSMaP, CHIRPS and GLDAS data, we 
used a number of classification metrics, which are based on existing 
indices or adaptions of such as used in the existing research literature 
(Hu et al., 2013; Yu et al., 2020): 

Frequency Bias (BIAS), Critical Success Index (CSI), also known as 
Threat Score, Probability of Detection (POD) and False Alarm Ratio 
(FAR) were used to demonstrate the ability of remote sensing to pre-
cisely measure decadal and monthly precipitation and temperature 
(Schaefer, 1990; Stephenson, 2000). BIAS measures the tendency of a 
satellite to underestimate or overestimate events. POD measures the 
probability of a satellite to detect precipitation events. FAR indicates the 
probability of a satellite-based precipitation event being detected by 
mistake. CSI represents the overall accuracy of a satellite in classifying 
precipitation events. CSI, POD and FAR are recommended and exten-
sively used by the US National Weather Service to verify various weather 
events (Gerapetritis and Pelissier, 2004). The details of these statistics 
can be found in Table 1, where a represents correctly detected precipi-
tation events by a satellite, b stands for precipitation events that are 
detected by the satellite but not confirmed by station data, and c denotes 
precipitation events that are not detected by satellite data but are 
observed by station data. 

Furthermore, we employed a number of quantitative metrics. In 
detail, these are 1) Percentage Bias (PBIAS), which measures the average 
tendency of satellite estimates to be larger or smaller than the bench-
mark; 2) Mean Bias Error (MBE), which measures the average satellite 
estimate error; 3) Mean Absolute Error (MAE), which measures the 
average magnitude of a satellite’s estimate; 4) Root Mean Square Error 
(RMSE), which measures the same as MBE but puts greater weight on 
higher errors than MBE. 

We also applied some agreement metrics such as 1) Spearman’s 
Rank-order Correlation Coefficient (SC), which measures the strength of 
a monotonic relationship between estimations and observations; 2) 
Pearson’s Correlation Coefficient (PC), which measures the linear cor-
relation between estimations and observations; 3) Determination Coef-
ficient (R2), which measures how well data points fit in a regression line, 
as well as the predictability level of the observation data from satellite 
data; 4) Index of Agreement (d), which solves certain problems associ-
ated with PC and R2 and measures the degree to which satellite esti-
mation is free of error; it also measures how well a satellite estimate 

Fig. 2. Selected meteorological stations. Source: Authors’ presentation based 
on data from Teluguntla et al. (2015) and NCEI (2021). 

4 Climate Hazards Group Infrared Precipitation (CHIRP) was not considered 
for this study since we already included CHIRPS, which is the improved version 
of CHIRP, providing higher accuracy than its predecessor, as pointed out by 
(Dinku et al., 2018; Funk et al., 2015; Shen et al., 2020) 
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simulates station data (Willmott, 1981); 5) Linear Error in Probability 
Space (LEPS), which measures the mean absolute difference between the 
estimated cumulative distribution value and the observation (Potts 
et al., 1996); 6) Nash-Sutcliffe Efficiency (NSE), which was first pro-
posed by Nash and Sutcliffe (1970) and originally used for assessing the 
predictive power of hydrological models, but was later widely used for 
quantity accuracy assessment of various models. However, NSE is highly 
sensitive for data that has a high temporal volatility. Therefore, NSE has 
been used only for accuracy assessment of the temperature data. The 
details of these statistical indices can be found in Table 1, where Ei and 
Oi are satellite and station observations, respectively, at a specific time i; 
O is the average of the observed precipitation/temperature. 

Additionally, we used Ordinary Least Squares (OLS) regression and 
Quantile Regression (QR) to measure the relationship between decadal 
and monthly weather measurements by station and satellite. QR was 
used to assess the satellite decadal and monthly weather data in various 
quantiles of the station precipitation measurements, which is not 
possible in traditional regression methods. QR has a number of advan-
tages for measuring the relationship between variables compared to 
traditional regression methods. QR measures the relationship between 
minimum and maximum response and provides a more detailed over-
view of the relationship (Cade and Noon, 2003). QR minimizes the sum 
of absolute residuals and is robust to outliers (Li, 2015). In our study, we 
focused on all lower, median and upper tile quantiles 0.05, 0.1, 0.25, 
0.5, 0.75, 0.9, 0.95 to check the ability of SPE during drought/flood 
periods. All statistical calculations and figures were developed using the 
R project (R Development Core Team, 2018) and just the results of the 
QR analysis were generated with STATA 15 (StataCorp, 2019). 

Meteorological drought indices and anomaly detection 

In order to check the ability of satellite-based MDIs to detect weather 
shocks during the vegetation period of rainfed crops (March-May) and 
irrigated crops (May, September, October), we calculated MDIs using 
both in-situ weather and satellite data and applied correlation analyses. 
For the analyses, we selected two drought indices, namely the 

Standardized Precipitation Index (SPI) and the Standardized 
Precipitation-Evapotranspiration Index (SPEI). According to Wanders 
et al. (2017), the SPI and SPEI are among the most frequently used 
drought indices worldwide. Ghamghami et al. (2017) and Okpara et al. 
(2017) have found the SPI well-suited for index insurance purposes. SPI 
is based on the conversion of precipitation data into probabilities using 
gamma distribution. The negative output value of SPI represents 
drought intensity, with the following categories: > 0 is no drought, 0 to 
− 0.99 is mild drought, − 1.00 to − 1.49 is moderate drought, − 1.50 to 
− 1.99 is severe drought and ≤ -2.00 is extreme drought (McKee et al., 
1993). The main advantages of the SPI are a simple calculation that uses 
only precipitation data and its multi-temporal character. Meanwhile, the 
SPI measures only the water supply and does not take into account any 
temperature changes over the given period, thus ignoring the problem of 
evapotranspiration. In this regard, SPEI is an improvement of SPI, by 
taking into account both precipitation and Potential Evapotranspiration 
(PET) in defining drought (Vicente-Serrano et al., 2010). Bezdan et al. 
(2019) have proposed the use of SPEI in decision-making at both na-
tional and regional levels and in the agricultural insurance sector. In our 
calculations, the PET have been calculated according to the Hargreaves 
and Samani (1982) method, which has an option of calculating the PET 
using only Tmax and Tmin data. Categories of output values are similar 
to the SPI. A detailed explanation of the SPI index calculation can be 
found in McKee et al. (1993), and for SPEI calculation in Vicente- 
Serrano et al. (2010). SPI and SPIE were calculated using the R package 
developed by Beguería and Maintainer (2017), who are the authors of 
SPEI itself. 

Additionally, we tested the ability of SPEs to detect the extreme 
weather events by using the percentiles as a threshold for anomaly 
detection. We applied <10th and <20th percentiles for drought (March, 
April and May) and >80th and >90th percentiles for flood events (May, 
September, October) detection. Classification accuracy measures listed 
in Table 1 were applied to examine the performance of products. 

Table 1 
Details of accuracy measures.  

Statistics Formula Range Unit Perfect Value 

Frequency Bias BIAS =
a + b
a + c  

0 to ∞ None 1 

Critical Success Index CSI =
a

a + b + c  
0 to 1 None 1 

Probability of Detection POD =
a

a + c  
0 to 1 None 1 

False Alarm Ratio FAR =
b

a + b  
0 to 1 None 0 

Percentage Bias 
PBIAS =

∑n
i=1(Ei − Oi)
∑n

i=1(Oi)
× 100%  

–∞ to ∞ % 0 

Mean Bias Error MBE =
∑n

i=1(Ei − Oi) –∞ to ∞ mm or Co 0 

Mean Absolute Error MAE =
1
n
∑n

i=1
|Ei − Oi|

0 to ∞ mm or Co 0 

Root Mean Square Error 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Ei − Oi)

2
√ 0 to ∞ mm or Co 0 

Linear Error in Probability Space LEPS =
1
n
∑n

i=1
|CDFO(EI) − CDFO(OI)|

0 to 1 None 0 

Spearman’s Correlation 

SC =

1
n
∑n

i=1

(
Oi − O

)(
Ei − E

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
Oi − O

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1

(
Ei − E

)2
√

–1 to 1 None 1 

Pearson’s Correlation 
PC =

∑n
i=1

(
Oi − O

)(
Ei − E

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Oi − O

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1

(
Ei − E

)2
√

–1 to 1 None 1 

Determination Coefficient 
R2 = 1 −

∑n
i=1

(
Ei − O

)2

∑n
i=1

(
Oi − O

)2  

–1 to 1 None 1 

Index of Agreement 
d = 1 −

∑n
i=1(Oi − Ei)

2

∑n
i=1

(⃒
⃒
⃒Ei − O

⃒
⃒
⃒+

⃒
⃒
⃒Oi − O

⃒
⃒
⃒

)2  

0 to 1 None 1 

Nash-Sutcliffe Efficiency 
NSE = 1 −

∑n
i=1(Oi − Ei)

2

∑n
i=1

(
Oi − O

)2  

–∞ to 1 None 1  
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Results 

Accuracy of satellite precipitation data 

Fig. 3 provides a comparison of decadal and monthly precipitation 
levels as measured by satellites at the Djizzakh station in the period of 
March-December 2017. A similar visualization for the remaining five 
stations can be found in SM 7.1 and 7.2. While both satellites did record 
the local precipitation events, we noticed that monthly precipitation, in 
comparison with our benchmark stations, was overestimated by 
CHIRPS, while it was underestimated by GSMaP. 

To quantify this difference in precipitation data, Table 2 and SM 8.1 
provide the results of classification, quantitative and agreement statis-
tics of continuous decadal and monthly precipitation for all six stations. 
The results obtained from BIAS show that GSMaP slightly overestimate 
the precipitation events while CHIRPS underestimates; mean values are 
equal to 1.12 and 0.91 for monthly scale and 1.24 and 0.91 for decadal 
scale, respectively. According to POD, GSMaP has almost perfect values 
and significantly better probability to detect precipitation events than 
CHIRPS. Meanwhile, based on FAR results, CHIRPS has a lower proba-
bility of false positives in terms of precipitation events than GSMaP. The 
values of CSI, which measures comprehensive detection probability of 
satellite to precipitation events, vary from 0.78 to 0.91 on a monthly 
scale and from 0.71 and 0.86 on a decadal scale for GSMaP; and from 
0.82 to 0.89 on a monthly scale and from 0.82 to 0.98 for CHIRPS. 

According to results from PBIAS and MBE in both temporal aggre-
gations, GSMaP underestimates precipitation in all locations while 
CHIRPS overestimates. MBE and RMSE shows that GSMaP has a lower 
difference from benchmark measurements and a higher accuracy 
compared to CHIRPS in all locations. Results of SC, PC, R2, d and LEPS 
for GSMaP are close to perfect values in all locations, except for the 
Takhtakupir station, which is located in an arid zone. Meanwhile, these 
agreement metrics are also high for CHIRPS but slightly lower than 
GSMaP. As shown in Table 2 and SM 8.1, the results of all statistical 
metrics for the Takhtakupir station are slightly lower in both SPEs. 
Overall, the results of all statistical metrics for all stations are on a 
satisfactorily accurate level. GSMaP showed a stronger ability to mea-
sure precipitation variance than CHIRPS in terms of most statistical 
metrics. 

In both SPE products for the decadal and monthly scales, the quantile 
coefficients and their 95% confidence intervals do not lie within the 95% 
confidence interval (Fig. 4, SM 9.3 and 9.5); furthermore, there is a 
significant difference between coefficients in the upper and lower 
quantiles compared to OLS (Table 3, SM 9.2 and 9.4). This indicates a 
different relationship between precipitation by station and SPE along 
the quantiles, showing that the OLS regression slope is not sufficient to 
describe this relationship. Both Fig. 4 and Table 3 show that the 
magnitude of coefficients is increasing as they approach the upper 
quantiles of the distribution of station precipitation. Coefficients of 
GSMaP in the lowest quantiles (low precipitation decades and months) 
are below one, as opposed to the quarter quantiles coefficients, which 
exceed one. Correspondingly, GSMaP overestimates the precipitation in 

lower quantiles, but starts underestimating after quarter quantiles. 
Structurally, the results for CHIRPS are similar; however, CHIRPS 
overestimates the precipitation until about the median, after which it 
starts underestimating precipitation. Overall, both SPE products have a 
significant correlation with station precipitation measures, according to 
both OLS and quantile regression. 

SM 8.3 and Fig. 5 illustrate the average results from all six stations 
for classification, quantitative and agreement accuracy metrics of the 
decadal and monthly precipitation records for each period from March 
2000 to December 2017. This means that each month offers 18 periodic 
precipitation observations for analysis, except January to March, for 
which there are 17 periodic precipitation observations. According to the 
averaged results, GSMaP shows a significantly higher accuracy than 
CHIRPS in most decades and months in all accuracy metrics. The values 
of classification accuracy metrics (BIAS, CSI, POD and FAR) for GSMaP 
are close to a perfect value in all months excluding the dry season (June 
to September), which indicates a higher classification accuracy for 
GSMaP in wet seasons (winter, spring and fall). Meanwhile, the classi-
fication accuracy metrics for CHIRPS are lower than GSMaP, while 
CHIRPS also has a significantly lower classification accuracy in the 
summer season, as compared to other seasons. Based on these results, 
the average values of PBIAS and MBE confirm that GSMaP under-
estimated precipitation levels in the vast majority of decades and 
months; meanwhile, CHIRPS overestimated the amount of precipitation 
in decades and months from January to May and from October to 
December, even though for both satellite products, the MAE and RMSE 
in summer season are significantly lower than in other seasons. GSMaP 
has higher and moderately close to perfect values in SC, PC, R2, d and 
LEPS than CHIRPS provides in all months, and a decrease of quantitative 
and agreement accuracy can be observed during the summer season for 
both products. Overall, GSMaP has a significantly higher accuracy in 
terms of all statistics than CHIRPS, which can be observed from both 
continuous decadal and monthly precipitation analyses and analyses for 
each decades’ and months’ precipitation. 

Accuracy of satellite temperature data 

Using the Djizzakh station as an example, Fig. 6 demonstrates the 
decadal and monthly average Tmax and Tmin estimates by GLDAS and 
the stations between January 2000 and December 2017. A similar 
visualization for the remaining five stations can be found in SM 7.3 and 
7.4. According to results, GLDAS has a high ability to detect average 
Tmax and Tmin, and performs extremely accurate measurements at the 
1% level in both temporal aggregation for all periods and all locations. 

SM 8.1 and Table 4 illustrate the results of classification, quantitative 
and agreement statistics of continuous decadal and monthly Tmax and 
Tmin in all six station locations between January 2000 and December 
2017, all in all 642 decades and 214 months. According to this data, 
GLDAS has perfect classification accuracy in all indices, which means 
that GLDAS captured Tmax and Tmin in all decades and months of the 
study period in selected locations. 

The obtained results from the quantitative statistic metrics 

Fig. 3. Decadal (a) and monthly (b) precipitation by stations, GSMaP and CHIRPS at the Djizzakh station.  
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demonstrate a satisfactory accuracy of both Tmax and Tmin measure-
ments by GLDAS in both temporal aggregations according to Yu et al. 
(2020). According to PBIAS and MBE values, GLDAS slightly over-
estimated Tmax in four locations and underestimated in two locations. 
Similarly, GLDAS overestimated Tmin in five locations and under-
estimated in one location. Meanwhile, the results of MAE and RMSE 
values show that these over-/underestimations, as well as the difference 
between station and GLDAS measurements, can be disregarded. Overall, 
results of SC, PC, R2, d, LEPS and NSE for Tmax and Tmin are near to the 
perfect value of zero or one, respectively, which indicates the strong 
ability of GLDAS to measure variance of decadal and monthly mean 
Tmax and Tmin, even though agreement statistical metrics of Tmax are 
slightly and insignificantly higher than Tmin. 

SM 9.3 and Fig. 7 show that OLS is sufficient to describe the 

relationship between temperature (decadal and monthly) measurements 
by satellite and station. The quantile slope estimates are not statistically 
different from the OLS estimate. Therefore, we conducted only OLS 
regression for satellite temperature data (see Table 5). The average R2 of 
Tmax is 0.99, ranging from 0.98 to 0.99, and Tmin varies from 0.95 to 
0.98, with a mean of 0.97. P-values in all locations are below 0.001, 
which means the results are statistically significant at the 1 % level. 
Coefficients of GLDAS Tmax in all locations are less than one, as opposed 
to GLDAS Tmin, which reach higher than one. Correspondingly, GLDAS 
slightly overestimates the decadal and monthly mean Tmax and un-
derestimates the Tmin. Overall, both GLDAS Tmax and Tmin in all lo-
cations have a significant correlation with station temperature 
measurements according to both OLSs. 

SM 8.3 and Fig. 8 illustrate the average results (from six stations) of 

Table 2 
Accuracy assessment of continuous monthly precipitation in selected locations (March 2000–December 2017).   

Djizzakh Gallaral Lalmikor Samarkand Karshi Takhtakupir Average  

GSMaP CHIPRS GSMaP CHIPRS GSMaP CHIPRS GSMaP CHIRPS GSMaP CHIPRS GSMaP CHIPRS GSMaP CHIRPS 

BIAS  1.09  0.89  1.11  0.90  1.08  0.88  1.10  0.87  1.28  1.02  1.08  0.91  1.12  0.91 
CSI  0.91  0.89  0.90  0.86  0.91  0.86  0.91  0.86  0.78  0.91  0.89  0.82  0.88  0.87 
POD  0.99  0.89  1.00  0.88  0.99  0.87  1.00  0.87  1.00  0.97  0.98  0.86  0.99  0.89 
FAR  0.08  0.00  0.10  0.02  0.08  0.01  0.09  0.01  0.22  0.05  0.09  0.05  0.11  0.02 
PBIAS  − 14.20  10.60  − 9.10  18.00  − 18.90  4.00  − 12.90  4.90  − 6.80  28.50  − 13.90  9.50  − 12.63  12.58 
MBE  − 4.68  3.50  − 2.79  5.52  − 6.48  1.37  − 3.81  1.46  − 1.22  5.11  − 1.41  0.96  − 3.40  2.99 
MAE  6.45  10.37  7.77  11.74  9.25  10.93  6.27  8.33  3.69  6.97  4.15  4.86  6.26  8.87 
RMSE  11.13  15.76  12.37  16.98  14.11  15.71  10.64  12.77  6.59  11.57  7.58  7.26  10.40  13.34 
SC  0.97  0.92  0.94  0.91  0.95  0.91  0.98  0.94  0.96  0.95  0.84  0.84  0.94  0.91 
PC  0.96  0.90  0.93  0.88  0.93  0.89  0.95  0.92  0.96  0.91  0.79  0.80  0.92  0.88 
R2  0.93  0.81  0.86  0.78  0.87  0.79  0.91  0.84  0.92  0.84  0.63  0.65  0.85  0.79 
p  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
d  0.97  0.94  0.96  0.93  0.95  0.94  0.97  0.96  0.97  0.94  0.88  0.88  0.95  0.93 
LEPS  0.05  0.08  0.06  0.09  0.07  0.09  0.04  0.07  0.04  0.06  0.10  0.13  0.06  0.09  

Fig. 4. Estimated results of quantile regressions for monthly scale precipitation by (a) GSMaP and (b) CHIRPS in Djizzakh station (a similar visualization for the 
remaining five stations can be found in SM 9.1 and for decadal scale in SM 9.3). 

Table 3 
Quantile regression results of satellite-based monthly precipitation estimates for the Djizzakh station (n = 214). A similar table for the remaining five stations can be 
found in SM 9.2 and for decadal scale in SM 9.4.    

OLS QR0.5 QR 0.1 QR 0.25 QR 0.5 QR 0.75 QR 0.9 QR 0.95  

Coef.  1.150***  0.914***  0.940***  1.039***  1.126***  1.249***  1.480***  1.640*** 
Djizzakh-GSMaP SE  0.022  0.054  0.022  0.022  0.013  0.029  0.066  0.159  

R2/pR2  0.925  0.605  0.6708  0.7529  0.8046  0.7897  0.7531  0.711   

Coef.  0.876***  0.558***  0.535***  0.681***  0.900***  1.044***  1.168***  1.137*** 
Djizzakh-CHIRPS SE  0.029  0.048  0.033  0.034  0.026  0.034  0.077  0.106  

R2/pR2  0.807  0.3273  0.4044  0.5469  0.6408  0.6534  0.6123  0.5873 

Coef. = Coefficient; SE = standard error; R2 = R-square for OLS; pR2 = pseudo R-square for quantiles; * p < 0.05, ** p < 0.01, *** p < 0.001. 
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classification, quantitative and agreement accuracy metrics of decadal 
and monthly temperature records for each period between January 2000 
and December 2017, which means each month has 18 periodic tem-
perature data measurements. Both Tmax and Tmin have perfect values 
for all classification accuracy metrics in all decades and months, which 
means that GLDAS is capturing all decadal and monthly temperature 
events and there is no data missing in any of the locations. In quanti-
tative and agreement accuracy metrics, Tmax has a slightly higher ac-
curacy than Tmin in most periods. PBIASs of Tmax and Tmin are 
significantly higher during the winter season, as average Tmax and Tmin 
during the winter season are very close to zero, and a slight difference 
between measurements might cause high PBIAS values. The PBIAS 
values are 107.55% in January and − 7.75% in February for Tmax. The 
PBIAS values of Tmin are 19.06%, 102.85%, 45.6%, 14.43%, 35.83% 
and − 203.85% in January, February, March, September, October and 
December, respectively. Despite this, the MBE, MAE and RMSE values of 
Tmax and Tmin during the winter season are lower than in other sea-
sons, which demonstrates the low relevance of high PBIAS values to the 

overall quantitative and agreement accuracy. As shown in the figure, 
Tmax has higher and closer to perfect values in SC, PC, R2, d and LEPS 
than Tmin in the majority of decades and months. Even though the SC, 
PC, d, LEPS and R2 values are lower in summer seasons, those do not 
significantly affect the MBE, MAE and RMSE. Overall, both Tmax and 
Tmin have significant classification, quantitative and agreement accu-
racy, which can be observed from both continuous decadal and monthly 
temperature analyses and analyses for each decades’ and months’ 
temperature. 

Additionally, accuracy comparisons were performed over the sea-
sonal scale for the Djizzakh station only and results can be found in SM 
10. 

Meteorological drought indices and anomaly detection 

In the previous two sections, we have assessed the accuracy of 
satellite-based weather data. Our findings indicate the occurrence of 
considerable over- and underestimations. The following analysis 

Fig. 5. Average results of classification, quantitative and agreement accuracy metrics of monthly precipitation for all stations, by (a) GSMaP and (b) CHIRPS (a 
similar visualization of results for decadal scale can be found in SM 8.1). 

Fig. 6. Decadal (a) and monthly (b) average Tmax and Tmin by stations and GLDAS for the Djizzakh station.  
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illustrates the impact of these deficiencies on drought indices, as they 
might find application in index-based insurance products. In this chapter 
we focused on drought during the vegetation period of rainfed crops 
(March-May), on flood during the seeding of irrigated crops (May) and 
on flood during the harvesting of irrigated crops (September-October). 
Fig. 9 compares the SPI values during March, April, May, September and 
October based on precipitation data from stations, GSMaP and CHIRPS 
for the Djizzakh station (a similar visualization for the remaining five 
stations can be found in SM 11.1). In general, SPI values from both SPEs 
are able to detect drought and flood, and performed reasonably accurate 
measurements in most locations. The PC between GSMaP-SPI and 
station-SPI is slightly higher than CHIRPS-SPI in all cases. Another 

finding is that the agreement between SPIs located in the semi-arid agro- 
climatic zone was higher than in the arid agro-climatic zone. 

Moreover, Fig. 9 illustrates the calculated SPEI values based on the 
data combinations station & station (M & M), GSMaP & GLDAS (G & G) 
and CHIRPS & GLDAS (C & G) for the months of March, April, May, 
September and October for the Djizzakh station (a similar visualization 
for the remaining five stations can be found in SM 11.2). Generally, SPEI 
values from satellite precipitation and temperature products are able to 
detect drought and gave reasonably accurate measurements in most 
locations. This was confirmed by the SPEI results. The weather data 
combination involving GSMaP has a slightly higher agreement than the 
C&G combination. In addition, the PC of SPEIs located in the semi-arid 

Table 4 
Accuracy assessment of continuous monthly average temperature in selected locations (January 2000–December 2017). A similar table for the decadal scale analyses 
can be found in SM 8.1.   

Djizzakh Gallaral Lalmikor Samarkand Karshi Takhtakupir Average  

Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin 

BIAS  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00 
CSI  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00 
POD  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00 
FAR  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
PBIAS  3.40  4.60  2.80  28.60  1.30  − 11.60  − 3.70  2.30  0.10  11.60  − 0.70  58.80  0.53  15.72 
MBE  0.73  0.43  0.58  1.86  0.25  − 1.03  − 0.81  0.21  0.03  1.21  − 0.13  3.39  0.11  1.01 
MAE  1.11  1.13  0.95  2.14  0.89  1.42  1.34  1.02  0.88  1.95  0.72  3.40  0.98  1.84 
RMSE  1.36  1.42  1.20  2.68  1.16  1.87  1.72  1.35  1.14  2.31  0.95  3.88  1.26  2.25 
SC  0.99  0.99  0.99  0.97  0.99  0.98  0.99  0.99  0.99  0.97  1.00  0.98  0.99  0.98 
PC  1.00  0.99  1.00  0.97  0.99  0.98  0.99  0.99  1.00  0.98  1.00  0.98  1.00  0.98 
R2  0.99  0.98  0.99  0.95  0.99  0.96  0.98  0.98  0.99  0.95  0.99  0.97  0.99  0.97 
p  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
d  1.00  0.99  1.00  0.97  1.00  0.99  0.99  0.99  1.00  0.98  1.00  0.97  1.00  0.98 
LEPS  0.04  0.05  0.03  0.07  0.03  0.06  0.05  0.04  0.03  0.07  0.02  0.09  0.03  0.06 
NSE  0.98  0.97  0.99  0.88  0.99  0.95  0.97  0.97  0.99  0.92  0.99  0.86  0.99  0.93  

Fig. 7. Estimated results of quantile regressions for (a) GLDAS Tmax and (b) GLDAS Tmin in Djizzakh station (a similar visualization for the remaining five stations 
can be found in SM 9.1 and for decadal scale in SM 9.3). 

Table 5 
Estimated results of OLS regressions for monthly GLDAS Tmax and GLDAS Tmin in all locations. A similar table for the remaining five stations can be found in 9.2 and 
for decadal scale in SM 9.4.   

Djizzakh Gallaral Lalmikor Samarkand Karshi Takhtakupir  

GLDAS 
Tmax 

GLDAS 
Tmin 

GLDAS 
Tmax 

GLDAS 
Tmin 

GLDAS 
Tmax 

GLDAS 
Tmin 

GLDAS 
Tmax 

GLDAS 
Tmin 

GLDAS 
Tmax 

GLDAS 
Tmin 

GLDAS 
Tmax 

GLDAS 
Tmin 

Coef.  0.947***  1.255***  0.982***  1.276***  0.979***  1.253***  0.934***  1.188***  0.945***  1.155***  1.016***  1.249*** 
SE  0.006  0.014  0.006  0.019  0.007  0.019  0.009  0.015  0.006  0.017  0.005  0.015 
R-sq  0.991  0.973  0.991  0.953  0.989  0.954  0.981  0.967  0.992  0.954  0.995  0.972 

Coef. = Coefficient; SE = standard error; R-square; * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Fig. 8. Average results of classification, quantitative and agreement accuracy metrics of monthly precipitation for all stations, for (a) GLDAS Tmax and (b) GLDAS 
Tmin (a similar visualization of results for the decadal scale can be found in SM 8.2). 

Fig. 9. Monthly values of Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI) and detected anomalies at 10th and 
20th (March, April and May) percentiles for drought and 80th and 90th (May, September, October) percentiles for flood by stations, GSMaP and CHIRPS at the 
Djizzakh station (CHIRPS-SPI for September was not calculated due to a lack of measurements in this month). 
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agro-climatic zone was higher than that in the arid agro-climatic zone, in 
line with SPI results. 

In addition, Fig. 9, SM 11.3 and SM 11.4 illustrate the capacity of 
GSMaP and CHIRPS to detect precipitation anomalies at < 10th and <
20th (March, April and May) percentiles for droughts as well as > 80th 
and > 90th (May, September, October) percentiles for floods. The results 
show that in the vast majority cases, SPEs detected the anomalies 
correctly, but there are minor false alarms and gaps that exist in both 
products. The capacity of SPEs to detect drought is slightly better than 
flood detection. In both types of extreme events and temporal aggre-
gations, the GSMaP showed slightly better performance than CHIRPS, 
which is clearly evident from Fig. 9, SM 11.3 and SM 11.4. Regarding the 
accuracy of the applied temporal scales, we obtained ambiguous results 
since the classification accuracy varies across months and percentiles. 

Overall, both satellite-based MDIs and detected anomalies align with 
the station-based estimates, and have the potential to some extent to 
detect the drought and flood events in focused periods. However, MDIs 
provide a more clear picture of drought and flood events with its 
strength, which is not possible with an anomaly detection approach 
based on percentiles. It was reported that drought events during the 
critical period of rainfed crop growth in 2001 and 2008 had a significant 
effect on crop production and the socio-economy of the region (Bobo-
jonov and Aw-Hassan, 2014). These drought events were also precisely 
detected by both station and satellite-based MDIs, as well as anomaly 
detection. GSMAP itself, and in combination with GLDAS as MDIs, 
performed slightly better than CHIRPS in detecting these events. Ac-
cording to Fig. 9, in 2001, drought was moderate in March and followed 
by more severe drought in April and May, while in 2008 severe drought 
in March was followed by mild drought in April and May. Also, we can 
see some months with drought in other years, but these drought events 
were not prolonged that mitigate the effect of them, which are not re-
ported as extreme drought years in any publications. 

Discussion and conclusion 

The main aim of the study was to investigate the suitability of freely 
available satellite temperature and precipitation data for designing and 
implementing an index insurance in Central Asia by analyzing the sat-
ellites products’ accuracy and ability to detect droughts or floods using 
MDIs. For this assessment, the study used weather data acquired from six 
stations located in arid and semi-arid agro-climatic zones between 2000 
and 2017. An accuracy analysis was conducted for those locations in 
pixel scale. Fourteen classification, quantitative and agreement statis-
tical metrics were used to evaluate the accuracy and applicability of the 
satellite products in decadal and monthly time-series as well as on a per- 
decade and per-month scale. Additionally, we investigated the ability of 
these satellite-based weather products to detect drought and flood using 
SPI and SPEI. 

Our assessments of decadal and monthly precipitation data by 
GSMaP indicate a better accuracy for the selected locations than CHIRPS 
can offer. Additionally, GSMaP spatially covers the full region of Central 
Asia. Nevertheless, we found a number of limitations, such as underes-
timation of precipitation during wet/rainy seasons and overestimation 
in the dry season, which have also been investigated by Trinh-Tuan et al. 
(2019) in Vietnam, Reddy et al. (2019) in India and Fatkhuroyan and 
TrinahWati (2018) in Indonesia. Additionally, we observed a slight 
overestimation of precipitation events by GSMaP, caused by minor 
GSMaP precipitation records during the summer period that do not exist 
in station observations. Moreover, we found that GSMaP performs better 
SPE during wet/rainy seasons compared to the dry season, which is in 
line with Hu et al. (2013), Fu et al. (2011) and Thiemig et al. (2012). 
Nevertheless, in the region observed by us, GSMaP performs better 
measurements in the dry season compared to CHIRPS. A novel quantile 
regression analysis checking the relationship between SPE products and 
in-situ weather data in various tiles confirms that both SPE products 
overestimate precipitation during low precipitation periods and 

underestimate it during high precipitation periods. GLDAS was in sig-
nificant agreement with in-situ temperature data in both time series and 
per period scale in all locations. Similar to GSMaP and CHIRPS, we 
found lower accuracy results during the dry season for GLDAS temper-
ature estimates, which have also been investigated by Wang et al. (2016) 
in China. Lower quantitative and agreement accuracy metrics for Tmax 
and Tmin by GLDAS during the summer season can be explained by a 
low diversity of average decadal and monthly Tmax and Tmin in the 
summer season. Overall, all three satellite products have shown slightly 
better accuracy in measuring weather parameters in the semi-arid zones 
than in the arid zones. Additionally, we observed similar accuracy and 
performance for each climatic zone despite the fact that not all studied 
stations were used during the development of selected satellite-based 
weather products. 

After calculating various classifications, quantitative and agreement 
statistical metrics to test the accuracy of satellite-based weather data, we 
found this combination of metrics to be useful and worth testing. Some 
of them, however, we found more useful than others and sufficient to 
assess the accuracy of satellite-based weather data: these are BIAS, POD 
and FAR for classification metrics; MBE and RMSE for quantitative 
metrics; SC, PC and d for agreement metrics. This combination of metrics 
allows an assessment of the accuracy of event classification, bias and 
variation between station and satellite-based weather data. In addition, 
for the first time, we could show the potential of using QR to access the 
accuracy of satellite-based weather data: By applying QR we were able 
to observe the relationship between station and satellite-based weather 
data among various quantiles, which cannot be achieved by using OLS. 

Over- and underestimations of SPEs observed from accuracy and QR 
analyses are likely to lead to missing triggers. Consequently, it in-
troduces basis risk, which is when the developed index estimations do 
not match with actual losses of insured farmers. However, these limi-
tations might be mitigated or eliminated by the application of bias 
correction methods. As Yeh et al. (2020) for GSMaP particularly and 
Kimani et al. (2018) for CHIRPS demonstrated, significant improve-
ments of SPE measures can be obtained after the application of bias 
correction methods. 

In general, the years with extreme events reported by publications 
and detected by satellite products are matching, where the frequency is 
around once in eight years. As long as moderate frequency of risk serves 
to lower prices and premiums, making it affordable for farmers (Hazell 
et al., 2010), it may ease introducing index insurance in the region. 
Despite some limitations, GSMaP itself, and in a combination with 
GLDAS as MDIs and anomaly detection, performed better than CHIRPS 
not only in detecting drought but also in detecting floods during the 
vegetation period of rainfed and irrigated crops. Consequently, GSMaP 
data should increasingly be taken into account for index generation in 
Central Asia. Moreover, the obtained results demonstrate the potential 
of satellite-based weather data for designing and implementing index 
insurances focused on drought during the vegetation period of rainfed 
crops (March-May), on floods during the seeding of irrigated crops 
(May) and on floods during the harvesting of irrigated crops (September- 
October). Drought events from March-May (the critical period for 
rainfed vegetation), for instance, have a significant influence on wheat, 
barley and potato yields and quality. Extended wet spells in May (the 
beginning of the cotton vegetation period) hit and damage the cotton-
seeds, significantly affecting cotton yields and requiring re-seeding, 
which means additional technical efforts and expenses are needed. 
Floods during the cotton harvesting period significantly decrease the 
quality of the harvested cotton, which affects the price paid by buyers. 

Accuracy comparisons between decadal, monthly and seasonal pre-
cipitation measurements by GSMaP and CHIRPS show that the agree-
ment among stations and SPE improved as higher aggregation was 
applied. This finding shows the reasonability of using precipitation 
measurements in larger time intervals for better accuracy. Overall, 
globally available climate data could serve as a good source for estab-
lishing index insurance products in Central Asia; however, a careful 
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selection of source and index is required. 
Our study is limited to stations located in the arid and semi-arid 

climatic zones of Uzbekistan. It would be interesting to also investi-
gate the accuracy of these and other satellite-based weather data at 
stations located in similar and other climatic zones of neighboring 
countries. Nevertheless, the vast majority of Central Asian countries are 
located in arid and semi-arid zones (Bobojonov et al., 2016). Moreover, 
there are limitations regarding crop quality, re-seeding and yield data. 
For that reason, we think it would also prove interesting to investigate 
the relationship between SPE/MDIs and various crop quality, re-seeding 
and yield data in the region. 
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