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Abstract

We study a commons problem under uncertainty, where individual actions affect the risk of
a future damage event. We show that for risk-averse agents, an extra risk on the amount of the
damage induces more precautionary actions in Nash equilibrium. Similarly, for prudent agents
an extra risk in all states of the world induces more precautionary actions in Nash equilibrium.
We show that this may lead to the result that small extra risks may increase welfare in Nash
equilibrium and derive a condition on the relationship between actions and damage probability
and the opportunity costs of precaution for this result to occur. The model applies to climate
change, where the actions are the countries’ carbon dioxide emissions causing the threat of
climate damage, as well as to the COVID-19 pandemic, where physical social contacts cause the
risk of an infection with the coronavirus. Data from a representative panel survey in Germany
provide evidence that the empirical results are in line with the theoretical predictions.

Keywords: Risk Externalities, Precautionary Effort, Risk Aversion, Prudence, Uncertainty, Cli-
mate Change, COVID-19, Commons
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1 Introduction

The private incentives to contribute to the avoidance of common risk is a key issue in many

important problems. A prime example is climate change. The global emissions of carbon dioxide

cause risks of climate damages – for example due to heat waves, droughts, or sea-level rise – around

the globe. The Paris agreement rests on nationally determined contributions (NDCs) to mitigate

carbon dioxide emissions to avoid the risks of severe climate damages. For this issue, the individual

actors are nation states. The private incentives to contribute to, or reduce, risks in a common pool

situation is highly relevant also at sub-global scales. The COVID19 pandemic is a striking example.

Individual social contacts or social distancing contribute to the individual risk of an infection, and

jointly determine the spread of the virus and thus have repercussions on all individual risks.

In this paper we develop a theory where individual actions of each individual contribute to the

probabilities of future damaging events for the agent themselves, but also cause “risk externalities”

on all others by affecting their risk of a damaging event as well. We derive the conditions for Nash

equilibrium and show that individual actions are strictly higher than in the social optimum. We

are in particular interested how extra zero-mean risks – on the size of the loss in case of a damage

event, or on the outcomes in all states of the world – change behavior in Nash equilibrium. We show

that for risk-averse agents, an extra risk on the amount of the damage induces more precautionary

actions in Nash equilibrium. Similarly, for prudent agents an extra risk in all states of the world

induces more precautionary actions in Nash equilibrium. We show that this may lead to the result

that small extra risks may increase welfare in Nash equilibrium and derive a condition on the

relationship between actions and damage probability and the opportunity costs of precaution for

this result to occur.

The model applies to climate change, where the actions are the countries’ carbon dioxide emis-

sions causing the threat of climate damage, as well as to the COVID 19 pandemic, where physical

social contacts cause the risk of an infection with the coronavirus. Data from a representative panel

survey in Germany shows that the empirical results are in line with the theoretical predictions.

Our paper relates to the literature on common-pool resource use under uncertainty. Bramoullé

and Treich (2009) set up a model where agents contribute to risky climate damage. They show that

increasing the risk of damage will decrease individual emissions in Nash equilibrium and may thus

alleviate the commons problem. Small risks can increase welfare in Nash equilibrium, as even for

risk-averse individuals the beneficial effect of reduced climate damage may dominate. Also Barrett

and Dannenberg (2014), McBride (2006), Tavoni et al. (2011), and Quaas and Baumgärtner (2008)

show that risk-averse individuals may choose more conservative actions and thus uncertainty can

help to alleviate the problem of external effects.

Here, we derive similar results a dynamic setting where the individual actions directly cause

the risk of damaging events. We thus build on the literature on precautionary effort (Eeckhoudt

et al., 2012), which has been applied to the case of climate change by Quaas et al. (2017), and

extend it to explicitly study the commons problem in a setting where the individual actions by

many agents affect the risks faced by all. Importantly, we not only derive new theoretical results,
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but test them using a unique panel data set obtained in a representative survey in Germany during

the COVID-19 pandemic in 2020.

The next section develops the theoretical model and derives the main results in a series of

propositions. Section 3 presents the data and shows that theoretical results are in line with empirical

evidence. The final section concludes.

2 Theory

We build on previous models by Bramoullé and Treich (2009) and Quaas et al. (2017) developed for

the issue of climate change. The generic theory that we develop on this basis is generally applicable

for the private provision of public goods under uncertainty.

Consider a set of n individuals. We focus here on the case where agents are symmetric with

respect to preferences and the risks they face.

The probability p(ci, c−i) that agent i ∈ {1, . . . , n} is affected by a damaging event in the future

depends on this agent’s present action ci, and on all other agents’ actions, written as the vector

c−i, with

∂p(ci, c−i)

∂ci
> 0. (1)

We assume that p(ci, c−i) depends on cj for all j 6= i in a symmetric fashion and write

∂p(ci, c−i)

∂c−i
:=

∂p(ci, c−i)

∂cj
> 0 for all j 6= i. (2)

For the application on climate change, the actions can be interpreted as carbon dioxide emis-

sions; for the application on the COVID-19 pandemic, they are to be interpreted as physical social

contacts. The damaging event can be interpreted as materialization of severe climate change as in

Quaas et al. (2017), or as an individual COVID-19 infection in the other application.

We use x to denote agent i′s base level in the future, and l(c) to denote the potential loss in

case the damaging event occurs. The size of the expected loss is increasing in all agents’ activities

c in a symmetric fashion, l′(c) > 0. Here we assume both x and l to be identical across individuals,

but empirically they may be varying across individuals.

We assume that the agents’ Bernoulli utility function u(c, x) is increasing in both arguments

and concave in c, ∂2u(c, x)/∂c2 < 0. Assuming that future utility is discounted at rate ρ, such that

the discount factor is δ = 1/(1 + ρ), the agent’s decision problem is written, using C to denote

the agent’s action in the second period, which s/he chooses after uncertainty about the damaging

event is resolved

max
ci

{
u (ci, x)+δ E`,ε

[
p(ci, c−i) max

C
{u(C, x− (1 + `) l(c) + ε)}+(1−p(ci, c−i)) max

C
{u(C, x+ ε)}

]}
.

(3)
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In addition to the risk of the damaging event, there are two further uncertainties: (a) the zero-

mean risk ` captures uncertainty about the size of the loss, and (b) the zero-mean risk ε captures

a general risk in both states, i.e. with or without the loss event. The distributions of these risks

may depend on the agents’ actions as well, but we focus on the effect on the probability of the

loss event. The interpretations are as follows: For climate change, the exact damage in case of a

loss is uncertain (i.e. it is uncertain what is the damage once the heat wave comes), and there is

general uncertainty about the future climate costs (for some countries there may also be benefits,

e.g. Burke et al. 2015). In case of the COVID-19 application, the severity of the individual sickness

is uncertain, and in general there is uncertainty in face of the pandemic, where anyone could be a

winner (e.g. less ordinary flu) or loser (e.g. limits to the health care system are transgressed).

We simplify notation by writing v(x) = maxC {u(C, x)}. Thus, the agent’s decision problem is

written as

max
ci

{
u (ci, x) + δ E`,ε

[
p(ci, c−i) v(x− (1 + `) l(c) + ε) + (1− p(ci, c−i)) v(x+ ε)

]}
(3’)

An interior symmetric Nash equilibrium is characterized by

∂u (c, x)

∂c
= δ

∂p(c, c−i)

∂c
E`,ε

[
v(x+ ε)− v(x− (1 + `) l(c) + ε)

]
+ δ p(c, c−i)E`,ε

[
v′(x− (1 + `) l(c) + ε) (1− `) l′(c)

]
(4)

The right-hand side is the marginal expected costs of c in terms of the increased probability of a

loss event and the marginal damage in case of a loss event.

In the following we focus on the precautionary effort motive, and assume l′(c) = 0. We have

the following result.

Proposition 1. For risk-averse agents, v′′ < 0, damage uncertainty ` decreases c.

Proof. If and only if v′′ < 0, E[v(x − l + ` + ε)] < v(x − l + ε). The opportunity costs on the

right-hand side of (4) are thus higher if l is uncertain than if ` = 0 in all cases. The marginal

benefit of c, the right-hand side of (4) is strictly decreasing in c. Thus, higher opportunity costs

lead to a lower c for all agents in Nash equilibrium.

Proposition 2. For prudent agents, v′′′ > 0, additional uncertainty ε decreases c.

Proof. Under prudence, the opportunity costs are higher with risk than without (Eeckhoudt and

Schlesinger, 2006). As ∂2u/∂c2 < 0, c is lower under uncertainty about ε.

We define welfare as the sum of the expected utilities of the agents.

W (c) = n

(
u (ci, x) + δ E`,ε

[
p(ci, c−i) v(x− l + `+ ε) + (1− p(ci, c−i)) v(x+ ε)

])
(5)
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The social optimum is characterized by

∂u (c, x)

∂c
= δ

(
∂p(c, c−i)

∂c
+ (n− 1)

∂p(c, c−i)

∂c−i

)
E`,ε

[
v(x+ ε)− v(x− l + `+ ε)

]
(6)

We have the following

Proposition 3. For small risks, and risk-averse agents v′′ < 0, uncertainty about ` increases

welfare in the Nash equilibrium if and only if

(n− 1)

c ∂p(ci,c−i)∂c−i

p(c, c−i)
−
c ∂

2p(c,c−i)
∂c ∂c−i

∂p(c,c−i)
∂c

− c ∂
2p(c,c−i)
∂c2

∂p(c,c−i)
∂c

> −
c ∂

2u(c,x)
∂c2

∂u(c,x)
∂c

(7)

Proof. see Appendix A.

In case when all agents’ actions have symmetric effects on the probability of a damaging event,

the condition in Proposition 3 simplifies to

(n− 1)
c ∂p∂c
p
− n

c ∂
2p
∂c2

∂p
∂c

> −
c ∂

2u(c,x)
∂c2

∂u(c,x)
∂c

(8)

Proposition 4. For small risks, and prudent agents v′′′ > 0, uncertainty about ` increases welfare

in the Nash equilibrium if and only if ((uncertainty about ` or ε?))

(n− 1)

c ∂p(ci,c−i)∂c−i

p(c, c−i)
−
c ∂

2p(c,c−i)
∂c ∂c−i

∂p(c,c−i)
∂c

− c ∂
2p(c,c−i)
∂c2

∂p(c,c−i)
∂c

> −
c ∂

2u(c,x)
∂c2

∂u(c,x)
∂c

(9)

Proof. see Appendix A.

Consider the example where

p(ci, c−i) =
ξ ci

∑
j 6=i cj(

(1− α) cχ−1i + α
(∑

j 6=i cj

)χ−1) 1
χ−1

= ξ
(

(1− α) c1−χi + α c̄1−χ−i

) 1
1−χ

(10)

with parameters ξ, χ > 0 and α ∈ (0, 1), and where c̄−i = 1
N−1

∑
j 6=i cj is the average activ-

ity of all others. Similar specifications are used in labor economics for the matching function of

individuals seeking employment and vacancies (Hagedorn and Manovskii, 2008), and in natural re-

source economics to model mating in wildlife populations (using the specification χ = 2, Pekkarinen

et al. 2017). It seems sensible to use such a specification also for describing the communication of

infectious diseases.

With this specification, condition (7) becomes, using symmetry, i.e. ci = cj = c for all i, j:

α > η, (11)
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where η is the elasticity of marginal utility of c. As in Bramoullé and Treich (2009), for given η < 1

and α, there is a value of n such that the condition is violated (holds) if the number of agents is

smaller (larger) than that number.

3 Empirical Evidence

As explained above, the social distancing behavior and the risks of COVID-19 infections are a

commons problem that is well described by the theory developed in the previous section. Here, we

present panel data on individual social distancing behavior that has been collected in 2020.

3.1 Data

The data was collected in an online survey experiment with more than 3,000 Germans in March,

August, and December 2020.1 The survey respondents are representative for the German population

in terms of gender, age, education, and income. Besides the ability to recruit a representative

sample, the online format also avoid any selection bias in the risk preferences of the recruited

subjects,2 and allows data collection periods independent on any governmental regulations.

Our first data collection period was run from March 20.–27., 2020. This coincided with. . . The

second data collection period took place from August 21.–30., 2020. Finally, we run a third data

collection period from December 09.–22., 2020. Figure 1 shows the daily number of infected persons

with the SARS-CoV-2 virus, which leads to the disease COVID-19, averaged over the past 7 days.

To elicit behavioral responses and to quantify reductions in physical social contacts, we asked re-

spondents: “Compared to the same week last year, by what percentage have you reduced or increased

your physical, social contacts this week?”. In the survey, we defined “physical, social contacts” as

situations in which the respondent came closer than two metres to others. We collected responses

on a 15-point log-scale ranging from “reduction to zero” to “increasing by 10%” which corresponds

to a range of physical social contacts, relative to normal, in the interval [0; 1.1].3

Besides the intrinsic motivation to engage in defense measures, external factors like govern-

mental regulations could also affect private defense measures and potentially crowd out some of

the intrinsic motivation (see, e.g., Yan et al., 2020). We test for this by comparing differences in

responses for those who participate in the survey before and after a contact ban for Germany has

been announced on Sunday, March 22, 2020. While the announcement took place roughly in the

middle of our data collection period, this leaves approximately half of the respondents unaffected

by the contact ban, and at least some share of the week in question subject to regulation for the

other half.

Table 1 shows descriptive statistics.

1This survey has been pre-registered at the AEA RCT Registry (https://doi.org/10.1257/rct.5573-1.1).
2Risk-averse subjects may not participate in on-site laboratory sessions even if those were running during the

pandemic.
3The answer items were: “reduction to zero, ..., reduction to one hundredth, ..., reduction to one tenth, ..., halving,

.., reducing by 10%, ..., reducing by 1%, unchanged, increasing by 1%, ..., increasing by 10%”.
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Figure 1: Data collection periods and the daily infections in Germany during 2020
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Notes: Graph shows the number of infections with SARS-CoV-2 in Germany during 2020. The

black line shows a smoothed trend over the past 7 days and the gray line the daily reported

numbers. The latter have a higher volatility due to non- and under-reporting of local

incidences during weekends. The yellow areas indicate our data collection periods. Data from

Robert Koch Institut (2020).

Table 1: Descriptive statistics.

All Wave

1 2 3

Age 51.33 50.07 51.82 52.16
Female 0.48 0.51 0.47 0.46
Change contacts this week (indiv) 6.27 4.83 7.95 6.22
Avg. daily num. persons <2m 12.62 . 13.54 11.75
Num. residents in county 355732.23 351118.37 357292.74 359049.52
OxGRT Stringency Index 67.32 72.68 57.75 70.57
Avg. change contacts this week (county) 6.28 4.85 7.96 6.22
Median change contacts this week (county) 5.98 4.18 8.06 5.94
Avg infections next 7d (county) 319.03 153.09 45.88 738.52
Avg deaths next 7d (county) 3.87 6.74 0.08 4.37
Ratio: avg. infected / avg. deaths next 7d (county) 312.80 45.24 2171.02 272.12

Observations 10065 3502 3126 3437

Notes: Table shows mean values.
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3.2 Estimating model parameters

We estimate the model parameters with data from our survey.

First, we estimate equation (1). The change in the number of physical social contacts of an

individual ci is given directly by the survey. In particular, we use the relative number of contacts

during our first data collection which we measured on a logarithmic scale.4 As a measure for the

future individual risk pi, we use the information about a positive test result for the coronavirus

until our second and third data collection period. We expect that individuals who have more

contacts increase their future individual risk and are thus more likely to receive a positive test for

SARS-CoV-2. Therefore, we estimate:

ln(pit) = (1− α) ln(cit) + Xit + εit (12)

Table 2 shows our results. As expected, we find a positive effect of contacts on future risk.

While the number of positive tested participants has been low during our second data collection

period, we prefer the model in Columns (4)-(6). It suggests that an increase in the number of

contacts by 1 percent during March 2020 increases the probability to get tested positive by the end

of December 2020 by 0.19 percentage points (?) (Col. 4) or add: marginal effects (Col. 5 + 6).

Coming back to equation 1 and our model parameters, this suggest (1− α) =.

A concern with the results in Table 2 are omitted variables. If there are confounding factors,

that jointly determine the level of contacts in March 2020 and the test result, this will lead to a

biased estimate. We adress this concern in two ways. First, we control for age, gender, education,

and the existence of health issues. Second, we provide a second estimation following an instrumental

variable (IV) approach. To this end, we instrument the change in contacts during March 2020. In

Table ?? we show IV results with the instrument being a dummy indicating if participants engage

in blue collar work. The first stage reveals that blue collar workers reduce their contacts less than

all other employed individuals which turn increases their probability to get tested positive for the

coronavirus. Once we control for more covariates, however, the effect turns insignificant.

4We asked: “” with anwers ranging form . . .
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Table 2: Contact reduction on the risk of a future virus infection.

Wave 2 Wave 3

OLS
(1)

Logit
(2)

Probit
(3)

OLS
(4)

Logit
(5)

Probit
(6)

Rel. contacts to normal (W1) 0.0010∗ 0.0418∗∗ 0.0984∗ 0.0018∗∗ 0.0342∗ 0.0879∗∗

(0.001) (0.021) (0.053) (0.001) (0.018) (0.042)

Age -0.0003∗∗ -0.0157∗∗ -0.0423∗∗∗ -0.0008∗∗∗ -0.0182∗∗∗ -0.0472∗∗∗

(0.000) (0.006) (0.016) (0.000) (0.005) (0.012)

Female -0.0001 -0.0310 -0.1235 0.0026 0.0462 0.1255
(0.004) (0.170) (0.440) (0.006) (0.137) (0.333)

Having health issues 0.0133∗∗∗ 0.5330∗∗∗ 1.4124∗∗∗ 0.0166∗∗ 0.3895∗∗ 0.9844∗∗∗

(0.005) (0.184) (0.479) (0.006) (0.152) (0.365)

University degree 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(.) (.) (.) (.) (.) (.)

A-levels / vocational training -0.0130∗∗ -0.7772∗∗ -2.0831∗ -0.0096 -0.2125 -0.6032
(0.006) (0.386) (1.081) (0.009) (0.227) (0.569)

Secondary school -0.0088∗ -0.3516 -1.0543∗ 0.0013 0.0244 0.0844
(0.005) (0.222) (0.595) (0.008) (0.176) (0.421)

Secondary general school 0.0028 0.0548 0.0910 -0.0048 -0.0929 -0.2936
(0.006) (0.210) (0.524) (0.009) (0.209) (0.518)

No degree -0.0145 0.0000 0.0000 -0.0226 0.0000 0.0000
(0.043) (.) (.) (0.044) (.) (.)

Median change cont. in county 0.0003 0.0094 0.0327 -0.0000 0.0051 -0.0006
(0.001) (0.047) (0.118) (0.002) (0.043) (0.103)

Observations 2377 2372 2372 2148 2139 2139
N Positive 22 22 22 41 41 41

Standard errors in parentheses
Notes: Dependent variable: Binary indicator of being tested positive at our 2nd or 3rd data collection
period. The relative number of contacts to normal in the past week is given on a log scale and ranges
from reduction to zero (1) to increase by 10 percent (15).
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: Contact reduction on the risk of a future virus infection. (IV Approach)

w/out controls w/ controls

Wave 2
(1)

Wave 3
(2)

Wave 2
(3)

Wave 3
(4)

Rel. contacts to normal (W1) 0.0098∗ 0.0065 0.0077 0.0037
(1.651) (0.539) (1.084) (0.267)

Age -0.0004 -0.0012∗∗

(-1.485) (-2.508)

Female 0.0049 0.0041
(0.649) (0.309)

Having health issues 0.0198∗∗∗ 0.0451∗∗∗

(2.920) (4.165)

University degree 0.0000 0.0000
(.) (.)

A-levels / vocational training -0.0135∗ -0.0131
(-1.649) (-1.019)

Secondary school -0.0108 0.0054
(-1.424) (0.466)

Secondary general school 0.0070 -0.0035
(0.701) (-0.229)

No degree -0.0130 -0.0122
(-0.211) (-0.152)

Observations 1571 1353 1553 1343
First stage F-Stat. 28.33 14.52 6.10 5.00

t statistics in parentheses
Notes: Dependent variable: Binary indicator of being tested positive at our 2nd or 3rd
data collection period. Instrument: Binary dummy if engaged in blue collar work.
Sample only includes employed participants. The relative number of contacts to normal in
the past week is given on a log scale and ranges from reduction to zero (1) to increase by
10 percent (15).
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Descriptive statistics by infection status

Blue Collar Positive COVID-19 Test?

No Yes p-value No Yes p-value

Education
Studium 0.30 0.08 (0.000)∗∗∗ 0.21 0.30 (0.162)
Abitur 0.25 0.12 (0.000)∗∗∗ 0.22 0.15 (0.119)
Realschule 0.34 0.48 (0.000)∗∗∗ 0.32 0.38 (0.394)
Hauptschule 0.11 0.33 (0.000)∗∗∗ 0.24 0.16 (0.122)
Kein Schulabschluss 0.00 0.00 (0.673) 0.01 0.02 (0.507)

Monthly household income (in EUR)
< 1,500 0.09 0.18 (0.000)∗∗∗ 0.20 0.15 (0.235)
1,500 – 3,000 0.35 0.47 (0.000)∗∗∗ 0.39 0.41 (0.769)
3,000 - 4,000 0.26 0.23 (0.151) 0.20 0.25 (0.445)
≥ 4,000 0.30 0.12 (0.000)∗∗∗ 0.20 0.20 (0.902)

Employment status
Full-time 0.71 0.59 (0.000)∗∗∗ 0.42 0.63 (0.002)∗∗

Part-time 0.22 0.29 (0.003)∗∗ 0.14 0.21 (0.164)
Marginal / irregular empl. 0.07 0.12 (0.002)∗∗ 0.04 0.00 (0.000)∗∗∗

Not employed 0.00 0.00 (.) 0.40 0.16 (0.000)∗∗∗

Occupation
Self-employed 0.14 0.00 (0.000)∗∗∗ 0.10 0.12 (0.777)
Blue-collar worker 0.00 1.00 (.) 0.30 0.33 (0.665)
White-collar worker 0.77 0.00 (0.000)∗∗∗ 0.54 0.50 (0.589)
Civil servant 0.06 0.00 (0.000)∗∗∗ 0.04 0.02 (0.215)
Apprentice / trainee 0.03 0.00 (0.000)∗∗∗ 0.02 0.04 (0.432)

Household size
1 person 0.08 0.07 (0.531) 0.17 0.10 (0.112)
2 persons 0.48 0.45 (0.395) 0.51 0.29 (0.001)∗∗∗

3 persons 0.24 0.26 (0.472) 0.17 0.28 (0.086)
4 persons 0.15 0.16 (0.766) 0.10 0.28 (0.004)∗∗

≥ 5 persons 0.05 0.06 (0.473) 0.05 0.05 (0.875)
Household members < 18 years

0 members 0.66 0.62 (0.085) 0.76 0.47 (0.000)∗∗∗

1 member 0.20 0.23 (0.142) 0.14 0.29 (0.014)∗

2 members 0.11 0.12 (0.447) 0.08 0.22 (0.011)∗

≥ 3 members 0.03 0.03 (0.875) 0.02 0.02 (0.771)
Household members > 60 years

0 members 0.75 0.76 (0.633) 0.57 0.72 (0.015)∗

1 member 0.14 0.15 (0.665) 0.20 0.16 (0.331)
≥ 2 members 0.11 0.09 (0.228) 0.22 0.12 (0.023)∗

Observations 1266 485 1751 3349 63 3412

Notes: Table shows mean values and results of t-tests.
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Next, we specify the utility function as

u(c, x) =
1

1− η
c1−η + v(x), (13)

such that η > 0 is the elasticity of marginal utility.

3.3 Testing hypotheses

First, Table 5 provides evidence that individual behavior is consistent with the predictions of the

Nash equilibrium, equation (4). Respondents who face a higher risk of an infection (measured in

Table 5: Private public good contributions and objective indivividual risk

Past Planned

Contacts
Hand

cleaning
Contacts

Hand
cleaning

Deaths in past 7d (log) -0.128∗∗∗ 0.065∗∗∗ -0.216∗∗∗ 0.174∗∗∗

(-9.563) (5.882) (-13.274) (12.261)

Observations 9747 9720 9749 9719

t statistics in parentheses

Notes: Fixed effects regressions. Covariates include a constant.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001

terms of the number of COVID-19 related deaths in the county) reduce contacts to a greater extent

and clean hands to a greater extent than individuals who live in safer counties.

Table 2 provides empirical evidence for Proposition 1. It shows that the willingness to take

health risks is positively correlated to the number of physical social contacts. Respondents who

care less about an extra health risk thus undertake riskier actions, both for the contacts in the past

week and for the contacts planned for the next week. Similarly, respondents who report a higher

willingness to take health risk seem to engage less in the protective activity of hand cleaning,

although this effect is not statistically significant.

4 Conclusion

In this paper we have extended the theory of endogeneous risks in a commons setting, where

each agent’s activities affect the risks faced by all others as well. Such a setting prevails in many

important problems, including climate change and the recent COVID 19 pandemic. We have

derived conditions under which risk, risk aversion, and prudence alleviate the commons problem.

In particular we have shown that an extra risk can increase welfare even for risk-averse agents.

Complementing the recently expanding literature on the role of risks and in particular tipping

points in climate change (Barrett and Dannenberg, 2014; Cai and Lontzek, 2019), we provide a

general theory and hypotheses that may inform climate policies.
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Table 6: Private public good contributions and risk aversion (I)

Past Planned

Contacts
Hand

cleaning
Contacts

Hand
cleaning

Will. health risk 0.123∗∗∗ -0.038 0.056∗ -0.001
(3.956) (-1.538) (1.813) (-0.033)

Observations 10107 10084 10112 10079

t statistics in parentheses
Notes: Fixed effects regressions. Covariates always include age, gender,
educ, health issue and a wave dummy. Further covariates may include
HH income (4 groups), HH size (5 groups), and the number of friends
and family members. Each willingness ranges from 1 (not willing) to
11 (very willing).
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001

Table 7: Private public good contributions and subjective indivividual risk (I).

Past Planned

Contacts Hand cleaning Contacts Hand cleaning

Prob. get infected 0.003 0.013∗∗∗ 0.006∗ 0.009∗∗∗

(0.993) (5.229) (1.785) (3.370)

Prob. get ill 0.013∗∗∗ 0.000 0.009∗∗ 0.004
(3.902) (0.009) (2.547) (1.310)

Prob. get endangered 0.006∗ 0.015∗∗∗ 0.007∗ 0.008∗∗

(1.771) (5.192) (1.800) (2.318)

Observations 9913 9899 9917 9889

t statistics in parentheses

Notes: Fixed effect regressions. Covariates include a wave dummy.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001
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We applied the theory to the case of the COVID 19 pandemic, using unique panel data from

a representative household survey in Germany. We estimate model parameters and test the model

implications. Preliminary evidence suggests that extra uncertainty about health consequences of a

corona infection would increase individual precautionary efforts to avoid an infection, but the effect

on the overall infection rates would not have been strong enough to increase overall welfare.

Appendix

A Proof of proposition 3

For a small risk, i.e. small values of ` and ε, we get from a Taylor series expansion to the second order

W (c) ≈ n
(
u (ci, x) + δ

(
v(x) + v′′(x)σ2

ε − p(ci, c−i)ω
))

(14)

where we used the abbreviation

ω := v(x) + v′′(x)σ2
ε − v(x− l)− v′′(x− l)

(
σ2
` + σ2

ε

)
(15)

which is the expected utility loss in case of a damaging event.

The condition for the symmetric Nash equilibrium becomes

∂u (c, x)

∂c
= δ

∂p(c, c−i)

∂c
ω (16)

Thus, as cj = c for all j,(
∂2u (c, x)

∂c2
− δ

(
∂2p(c, c−i)

∂c2
+ (n− 1)

∂2p(c, c−i)

∂c ∂c−i

)
ω

)
∂c

∂σ2
`

= −δ ∂p(c, c−i)
∂c

v′′(x− l), (17)

which confirms ∂c/∂σ2
` < 0 (note that the term in brackets on the left-hand side of the equation is negative

due to the second-order condition of utility maximization).

Similarly,(
∂2u (c, x)

∂c2
− δ

(
∂2p(c, c−i)

∂c2
+ (n− 1)

∂2p(c, c−i)

∂c ∂c−i

)
ω

)
∂c

∂σ2
ε

= δ
∂p(c, c−i)

∂c
(v′′(x)− v′′(x− l)) , (18)

which confirms ∂c/∂σ2
ε < 0 whenever v′′′ > 0.

Using the condition for the symmetric Nash equilibrium (16), Welfare in Nash equilibrium changes with

σ2
` as follows:

1

n

∂W (c)

∂σ2
`

= −δ (n− 1)
∂p(ci, c−i)

∂c−i

∂c

∂σ2
`

ω + δ p(c, c−i) v
′′(x− l) (19)

This is positive if and only if

0 < δ (n− 1)
∂p(ci, c−i)

∂c−i

δ ∂p(c,c−i)
∂c v′′(x− l)

∂2u(c,x)
∂c2 − δ

(
∂2p(c,c−i)

∂c2 + (n− 1) ∂2p(c,c−i)
∂c ∂c−i

)
ω
ω + δ p(c, c−i) v

′′(x− l) (20)
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(n− 1)
∂p(ci, c−i)

∂c−i

δ ∂p(c,c−i)
∂c v′′(x− l)

∂2u(c,x)
∂c2 − δ

(
∂2p(c,c−i)

∂c2 + (n− 1) ∂2p(c,c−i)
∂c ∂c−i

)
ω
ω + p(c, c−i) v

′′(x− l) > 0

(21)

δ (n− 1) ∂p(c,c−i)
∂c

∂p(ci,c−i)
∂c−i

∂2u(c,x)
∂c2 − δ

(
∂2p(c,c−i)

∂c2 + (n− 1) ∂2p(c,c−i)
∂c ∂c−i

)
ω
ω + p(c, c−i) < 0

(22)

δ ω (n− 1)
∂p(c, c−i)

∂c

∂p(ci, c−i)

∂c−i
+ p(c, c−i)

(
∂2u (c, x)

∂c2
− δ ω

(
∂2p(c, c−i)

∂c2
+ (n− 1)

∂2p(c, c−i)

∂c ∂c−i

))
> 0

(23)

Using η to denote the elasticity of marginal utility with respect to c, this condition becomes

δ ω c

(n− 1)

∂p(c,c−i)
∂c

∂p(ci,c−i)
∂c−i

p(c, c−i)
− ∂2p(c, c−i)

∂c2
− (n− 1)

∂2p(c, c−i)

∂c ∂c−i

 > η
∂u (c, x)

∂c
(24)

and using the condition for the symmetric Nash equilibrium (16),

c

(n− 1)

∂p(c,c−i)
∂c

∂p(ci,c−i)
∂c−i

p(c, c−i)
− ∂2p(c, c−i)

∂c2
− (n− 1)

∂2p(c, c−i)

∂c ∂c−i

 > η
∂p (c, c−i)

∂c
(25)

(n− 1)

c ∂p(ci,c−i)
∂c−i

p(c, c−i)
−
c ∂2p(c,c−i)

∂c ∂c−i

∂p(c,c−i)
∂c

− c ∂2p(c,c−i)
∂c2

∂p(c,c−i)
∂c

> η (26)
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B Correlation Analysis

Table 8: Estimate for (1− α) via an IV approach.

Outcome: Number of deaths in next 7 days

# FF
(1)

# FF > 60
(2)

HH inc
to Feb

(3)

Health
status

(4)

Will
vacc.
(5)

Time Pref.
(6)

Contacts this week (indiv level) 9.772 25.429 -1.246 -1.496∗∗ -2.776 -0.975
(117.485) (568.319) (0.886) (0.668) (3.622) (0.878)

Observations 9139 9106 5718 5716 5695 4967

Standard errors in parentheses
Notes: IV estimation for a panel. Fixed effects on the subject level. Instruments are number of friends
and family members (1), the number of friends and familiy members above 60 (2), the monthly hh income
compared to February 2020 (3), self-reported health status (4), willingess to vaccinate (5), the revealed
time preferences from the staircase method from Falk et al. (6). Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001
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Table 9: Estimate for (1− α) via an IV approach. (II)

Outcome: Prob. to get infected

# FF > 60
(1)

HH inc
to Feb

(2)

Working time
home
(3)

Protect
FF
(4)

Contacts this week (indiv level) 0.616 -3.432 -1.059 -2.192∗

(4.837) (2.762) (1.637) (1.327)

Observations 9859 6487 3961 9652

Standard errors in parentheses
Notes: IV estimation for a panel. Fixed effects on the subject level. Instruments are given in the column
titles. Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001

Table 10: Estimate for (1− α) via an IV approach. (III)

Outcome: Prob. to get endangered

HH inc
to Feb

(1)

Time Pref
(2)

Patience
(3)

Contacts this week (indiv level) 0.484 1.120 -0.117
(1.905) (2.357) (0.504)

Observations 6415 5553 9806

Standard errors in parentheses
Notes: IV estimation for a panel. Fixed effects on the subject level. Instruments are given in the column
titles. Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001
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Table 11: Correlation Analysis.

Change in contacts
this week

Number of deaths
in next 7d

ρ p-value N ρ p-value N

Age -0.004 0.696 10125 -0.026 0.012∗ 9291
Education 0.009 0.369 10112 -0.027 0.010∗∗ 9283
HH size (persons) -0.029 0.004∗∗ 9763 0.020 0.064 8948
HH members above 60 0.004 0.714 9759 -0.040 0.000∗∗∗ 8946
Friends and family (persons) -0.059 0.000∗∗∗ 10107 -0.000 0.990 9274
Friends and family above 60 -0.046 0.000∗∗∗ 10065 -0.009 0.398 9241
Monthly hh inc relative to Feb. 2020 0.046 0.000∗∗∗ 6572 -0.010 0.436 5741
Employment status -0.020 0.053 9345 -0.030 0.006∗∗ 8472
Working time at employer 0.054 0.001∗∗∗ 4021 -0.055 0.001∗∗ 3517
Share working time spend at home -0.093 0.000∗∗∗ 4021 0.065 0.000∗∗∗ 3517
Religious group 0.006 0.827 1448 -0.001 0.962 1123
Q8: Level of fear at the moment -0.203 0.000∗∗∗ 10113 0.088 0.000∗∗∗ 9225
Q12: Investment into risky lottery 0.029 0.003∗∗ 10177 -0.022 0.033∗ 9291
Q13: Having health issues -0.020 0.042∗ 10066 -0.013 0.201 9219
Health status (self-reported) 0.066 0.000∗∗∗ 6570 -0.012 0.366 5739
Q15a: Willingness to get tested -0.098 0.000∗∗∗ 10147 0.074 0.000∗∗∗ 9265
Number of COVID-19 tests -0.000 0.989 6530 0.101 0.000∗∗∗ 5702
Tested positive for COVID-19 0.005 0.670 6531 0.019 0.144 5707
Q14: Already corona infection? 0.055 0.000∗∗∗ 10003 -0.076 0.000∗∗∗ 9142
Q16a: Probability to get infected -0.048 0.000∗∗∗ 10086 0.033 0.001∗∗ 9216
Q16b: Probability to get slightly ill if infected 0.046 0.000∗∗∗ 9924 0.039 0.000∗∗∗ 9074
Q16c: Probability to get in acute danger -0.064 0.000∗∗∗ 9924 -0.026 0.013∗ 9074
Q28: Number of infections among ff -0.004 0.727 6554 0.051 0.000∗∗∗ 5725
Q28: Number of ff hospitalized 0.033 0.306 988 0.000 0.995 818
Q28: Number of ff died 0.040 0.208 981 0.000 0.997 810
Q19: To protect me -0.027 0.006∗∗ 10108 0.004 0.714 9227
Q19: To protect family and friends 0.044 0.000∗∗∗ 9857 -0.021 0.044∗ 9015
Q19: To protect others 0.024 0.017∗ 9700 -0.004 0.725 8873
Q24: Number of tails -0.005 0.614 10177 0.020 0.053 9291
Q8: Level of fear at the moment -0.203 0.000∗∗∗ 10113 0.088 0.000∗∗∗ 9225
Exp. ’back to normal’ date 0.015 0.221 6533 -0.029 0.029∗ 5703
Q40: Willingness to get vaccinated voluntarily -0.117 0.000∗∗∗ 6546 -0.005 0.710 5716
Agreement compulsory vacc. -0.051 0.000∗∗∗ 6564 -0.078 0.000∗∗∗ 5734
Falk: Time pref -0.043 0.001∗∗ 5674 -0.001 0.964 4986
Falk: Patience -0.094 0.000∗∗∗ 10168 0.073 0.000∗∗∗ 9280
Falk: Neg reciprocity (I) 0.026 0.034∗ 6554 -0.021 0.116 5724
Falk: Neg reciprocity (II) -0.065 0.000∗∗∗ 10159 0.057 0.000∗∗∗ 9277
Falk: Altruism -0.129 0.000∗∗∗ 10160 0.058 0.000∗∗∗ 9275

Notes: Change in contacts ranges from reduction to zero (1) to increase by 10 percent (15).
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Table 12: Correlation Analysis (II).

Change in contacts
this week

Prob
get infected

ρ p-value N ρ p-value N

Age -0.004 0.696 10125 -0.149 0.000∗∗∗ 10048
Education 0.009 0.369 10112 -0.051 0.000∗∗∗ 10033
HH size (persons) -0.029 0.004∗∗ 9763 0.072 0.000∗∗∗ 9688
HH members above 60 0.004 0.714 9759 -0.119 0.000∗∗∗ 9685
Friends and family (persons) -0.059 0.000∗∗∗ 10107 0.057 0.000∗∗∗ 10030
Friends and family above 60 -0.046 0.000∗∗∗ 10065 -0.006 0.531 9988
Monthly hh inc relative to Feb. 2020 0.046 0.000∗∗∗ 6572 0.018 0.140 6509
Employment status -0.020 0.053 9345 -0.133 0.000∗∗∗ 9271
Working time at employer 0.054 0.001∗∗∗ 4021 0.032 0.046∗ 3977
Share working time spend at home -0.093 0.000∗∗∗ 4021 -0.007 0.653 3977
Religious group 0.006 0.827 1448 0.047 0.076 1424
Q8: Level of fear at the moment -0.203 0.000∗∗∗ 10113 0.205 0.000∗∗∗ 10033
Q12: Investment into risky lottery 0.029 0.003∗∗ 10177 0.039 0.000∗∗∗ 10098
Q13: Having health issues -0.020 0.042∗ 10066 0.001 0.927 9990
Health status (self-reported) 0.066 0.000∗∗∗ 6570 -0.073 0.000∗∗∗ 6507
Q15a: Willingness to get tested -0.098 0.000∗∗∗ 10147 0.113 0.000∗∗∗ 10083
Number of COVID-19 tests -0.000 0.989 6530 0.119 0.000∗∗∗ 6468
Tested positive for COVID-19 0.005 0.670 6531 0.047 0.000∗∗∗ 6469
Q14: Already corona infection? 0.055 0.000∗∗∗ 10003 0.141 0.000∗∗∗ 9925
Q16a: Probability to get infected -0.048 0.000∗∗∗ 10086 1.000 10098
Q16b: Probability to get slightly ill if infected 0.046 0.000∗∗∗ 9924 0.147 0.000∗∗∗ 9925
Q16c: Probability to get in acute danger -0.064 0.000∗∗∗ 9924 0.231 0.000∗∗∗ 9925
Q28: Number of infections among ff -0.004 0.727 6554 0.014 0.263 6491
Q28: Number of ff hospitalized 0.033 0.306 988 -0.027 0.406 952
Q28: Number of ff died 0.040 0.208 981 -0.027 0.410 945
Q19: To protect me -0.027 0.006∗∗ 10108 -0.049 0.000∗∗∗ 10029
Q19: To protect family and friends 0.044 0.000∗∗∗ 9857 0.011 0.294 9782
Q19: To protect others 0.024 0.017∗ 9700 0.044 0.000∗∗∗ 9625
Q24: Number of tails -0.005 0.614 10177 -0.013 0.180 10098
Q8: Level of fear at the moment -0.203 0.000∗∗∗ 10113 0.205 0.000∗∗∗ 10033
Exp. ’back to normal’ date 0.015 0.221 6533 0.027 0.030∗ 6470
Q40: Willingness to get vaccinated voluntarily -0.117 0.000∗∗∗ 6546 0.117 0.000∗∗∗ 6483
Agreement compulsory vacc. -0.051 0.000∗∗∗ 6564 0.057 0.000∗∗∗ 6501
Falk: Time pref -0.043 0.001∗∗ 5674 0.083 0.000∗∗∗ 5626
Falk: Patience -0.094 0.000∗∗∗ 10168 0.130 0.000∗∗∗ 10091
Falk: Neg reciprocity (I) 0.026 0.034∗ 6554 0.075 0.000∗∗∗ 6491
Falk: Neg reciprocity (II) -0.065 0.000∗∗∗ 10159 0.102 0.000∗∗∗ 10080
Falk: Altruism -0.129 0.000∗∗∗ 10160 0.100 0.000∗∗∗ 10081

Notes: Change in contacts ranges from reduction to zero (1) to increase by 10 percent (15).
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Table 13: Correlation Analysis (III).

Change in contacts
this week

Prob
get endangered

ρ p-value N ρ p-value N

Age -0.004 0.696 10125 0.318 0.000∗∗∗ 9891
Education 0.009 0.369 10112 0.050 0.000∗∗∗ 9876
HH size (persons) -0.029 0.004∗∗ 9763 -0.088 0.000∗∗∗ 9543
HH members above 60 0.004 0.714 9759 0.232 0.000∗∗∗ 9540
Friends and family (persons) -0.059 0.000∗∗∗ 10107 -0.039 0.000∗∗∗ 9875
Friends and family above 60 -0.046 0.000∗∗∗ 10065 0.074 0.000∗∗∗ 9831
Monthly hh inc relative to Feb. 2020 0.046 0.000∗∗∗ 6572 0.013 0.288 6439
Employment status -0.020 0.053 9345 0.209 0.000∗∗∗ 9145
Working time at employer 0.054 0.001∗∗∗ 4021 -0.041 0.010∗∗ 3950
Share working time spend at home -0.093 0.000∗∗∗ 4021 0.032 0.042∗ 3950
Religious group 0.006 0.827 1448 -0.023 0.382 1405
Q8: Level of fear at the moment -0.203 0.000∗∗∗ 10113 0.203 0.000∗∗∗ 9872
Q12: Investment into risky lottery 0.029 0.003∗∗ 10177 -0.032 0.001∗∗ 9939
Q13: Having health issues -0.020 0.042∗ 10066 0.386 0.000∗∗∗ 9834
Health status (self-reported) 0.066 0.000∗∗∗ 6570 -0.380 0.000∗∗∗ 6437
Q15a: Willingness to get tested -0.098 0.000∗∗∗ 10147 0.055 0.000∗∗∗ 9923
Number of COVID-19 tests -0.000 0.989 6530 0.029 0.020∗ 6403
Tested positive for COVID-19 0.005 0.670 6531 -0.025 0.042∗ 6401
Q14: Already corona infection? 0.055 0.000∗∗∗ 10003 -0.000 0.998 9766
Q16a: Probability to get infected -0.048 0.000∗∗∗ 10086 0.231 0.000∗∗∗ 9925
Q16b: Probability to get slightly ill if infected 0.046 0.000∗∗∗ 9924 -0.429 0.000∗∗∗ 9939
Q16c: Probability to get in acute danger -0.064 0.000∗∗∗ 9924 1.000 9939
Q28: Number of infections among ff -0.004 0.727 6554 0.001 0.967 6421
Q28: Number of ff hospitalized 0.033 0.306 988 -0.025 0.442 946
Q28: Number of ff died 0.040 0.208 981 -0.025 0.441 939
Q19: To protect me -0.027 0.006∗∗ 10108 0.065 0.000∗∗∗ 9871
Q19: To protect family and friends 0.044 0.000∗∗∗ 9857 -0.049 0.000∗∗∗ 9625
Q19: To protect others 0.024 0.017∗ 9700 -0.057 0.000∗∗∗ 9469
Q24: Number of tails -0.005 0.614 10177 -0.046 0.000∗∗∗ 9939
Q8: Level of fear at the moment -0.203 0.000∗∗∗ 10113 0.203 0.000∗∗∗ 9872
Exp. ’back to normal’ date 0.015 0.221 6533 0.044 0.000∗∗∗ 6402
Q40: Willingness to get vaccinated voluntarily -0.117 0.000∗∗∗ 6546 0.307 0.000∗∗∗ 6413
Agreement compulsory vacc. -0.051 0.000∗∗∗ 6564 0.247 0.000∗∗∗ 6431
Falk: Time pref -0.043 0.001∗∗ 5674 -0.003 0.800 5573
Falk: Patience -0.094 0.000∗∗∗ 10168 -0.000 0.963 9928
Falk: Neg reciprocity (I) 0.026 0.034∗ 6554 0.021 0.085 6422
Falk: Neg reciprocity (II) -0.065 0.000∗∗∗ 10159 0.040 0.000∗∗∗ 9925
Falk: Altruism -0.129 0.000∗∗∗ 10160 0.066 0.000∗∗∗ 9926

Notes: Change in contacts ranges from reduction to zero (1) to increase by 10 percent (15).
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C Reweighting of deaths

Approach:

 0km 5km 10km

5km 0km 20km

10km 20km 0km

⇒
 0.0255 0.0242 0.0209

0.0242 0.0255 0.0231

0.0209 0.0231 0.0255

×
 10

0

5

 =

 10 ∗ 0.0255 + 0 ∗ 0.0242 + 5 ∗ 0.0209

. . .

. . .


Weights are given by:

weightd =
exp(−δ × d)∑dlim

d=0 exp(−δ × d)

Figure 2: Weight for a given distance δ parameter
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Figure 3: Death rates during Wave 3

(a) Before (b) After

Notes: δ = 0.1.

References

Barrett, S., Dannenberg, A., 2014. Sensitivity of collective action to uncertainty about climate

tipping points. Nature Climate Change 4, 36–39.
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