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Abstract 

We propose a structural alternative to the Economic Complexity Index (ECI, 
Hidalgo and Hausmann 2009; Hausmann et al. 2011) that ranks countries by their 
complexity. This ranking is tied to comparative advantages. Hence, it reveals infor-
mation different from GDP per capita on the deep underlying economic capabilities of 
countries. Our analysis proceeds in three main steps: (i) We first consider a simplified 
trade model that is centered on the assumption that countries’ global exports are log-
supermodular (Costinot, 2009a), and show that a variant of the ECI correctly ranks 
countries (and products) by their complexity. This model provides a general theoretical 
framework for ranking nodes of a weighted (bipartite) graph according to some under-
lying unobservable characteristic. (ii) We then embed a structure of log-supermodular 
productivities into a multi-product Eaton and Kortum (2002)-model, and show how 
our main insights from the simplified trade model apply to this richer set-up. (iii) We 
finally implement our structural ranking of economic complexity. The derived ranking 
is robust and remarkably similar to the one based on the original ECI. 
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1 Introduction 

The Economic Complexity Index (ECI) (Hidalgo and Hausmann, 2009; Hausmann et al., 

2011) assesses the economic complexity of countries that is revealed through the products 

they make. In essence, it considers a country’s economy to be complex if it successfully ex-

ports complex products. The ECI has been shown to be a good indicator of both a country’s 

current economic strength and its future growth prospects. Yet, while the ECI is based on 

an intuitive narrative, it is less clear how the underlying logic is reflected in the general equi-

librium of international trade, and what precisely the ECI measures. In this paper, we start 

from the motivating rationale of the ECI and assume that comparative advantages are rooted 

in a complementarity between countries’ economic complexity and products’ complexity fol-

lowing Costinot (2009a).1 We embed this structure into a multi-product Eaton and Kortum 

(2002)-model and show that a structural variant of the ECI correctly ranks countries—and 

products, for that matter—by their economic complexity. This ranking is tied to comparative 

advantages as opposed to absolute advantages. Hence, it reveals information different from 

GDP per capita on the deep underlying economic capabilities of countries. 

In a free-trade world, a complementarity between country and product characteristics implies 

that countries’ exports are log-supermodular, i.e. complex economies export relatively more 

of complex products. In turn, this implies that when equipped with a measure for product 

complexity, countries’ economic complexities could directly be inferred from the pattern of 

international specialization—a complex economy being one which concentrates its exports in 

complex products. We do not have good measures for product complexity, however. The 

revolutionary insight underlying the ECI is that such measures are, in fact, not needed to 

learn about countries’ economic complexities. These complexities may instead be inferred 

from the similarities of countries’ exports. The basic idea being that countries with similar 

(different) export baskets should have similar (different) levels of economic complexity. We 

show that with log-supermodular productivities this is indeed the case and how we can exploit 

the ensuing pattern of countries’ similarities to reveal their ranking of economic complexity. 

As part of our analysis, we propose a general theoretical framework for ranking nodes in a 

weighted (bipartite) graph according to some underlying unobservable characteristic. 

We begin with a brief discussion of the Economic Complexity Index and its mathematical 

1More generally, we assume that there is a complementarity between some country and some product 
characteristic, the exact nature of which will not matter for our analysis. For concreteness, we follow Hidalgo 
and Hausmann (2009); Hausmann et al. (2011) and call the country characteristic ‘economic complexity’ and 
the product characteristic ‘complexity’. 
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foundations in Section 2. The ECI was originally introduced as an iterative algorithm that 

considers an economy as being complex if it successfully exports complex products, where 

a product is considered complex if it is exported by economically complex countries (Hi-

dalgo and Hausmann, 2009). It turns out that this procedure ranks countries based on the 

similarities of their export baskets. In fact, it is asymptotically equivalent to first forming 

a symmetric country-country matrix A that indicates for each pair of countries the simi-

larity of their export baskets, and to then ranking countries according to the eigenvector 

corresponding to the second smallest eigenvalue of 

Ly = λDy, (1) 

where λ is an eigenvalue, y the corresponding eigenvector, D is a diagonal matrix with el-

ement D equal to the ith 
ii row sum of A, and L := D − A is the Laplacian matrix of A 

(Hausmann et al., 2011; Caldarelli et al., 2012; Mealy et al., 2019). Our structural alternative 

to the ECI ranks countries according to this same eigenvector, but based on a structurally 

estimated matrix A as opposed to an ad-hoc matrix based on Revealed Comparative Advan-

tages (Balassa, 1965). 

Section 3 presents the main theoretical result of our paper. In this section, we consider a 

stylized trade model that is centered on the assumption that countries’ global exports at the 

product level, Xs 
i , are log-supermodular in countries’ economic complexity i and products’ 

complexity s. That is, for every pair of countries i0 > i and products, s0 > s, we have 

(2) 

Condition (2) implies that complex countries export relatively more of complex products, in

line with the guiding rationale of the ECI. Because this is true for all countries, it implies in 

turn that the export baskets of complex countries are relatively more similar to the export 

baskets of other complex countries than to the export baskets of less complex countries and 

vice versa. Formally, we show in Lemma 1 that the country-country similarity matrix A with 

             

elements 

Xs0 Xs0 

i0 > i . 
Xs Xs 

i0 i 

X 1 s s Ai0i := Xi
ˆ
0 · Xi 

ˆ

S 
ŝ∈S 

Ai0k0 Aik0 
> . 

Ai0k Aik 

inherits the log-supermodularity of the Xs 
i , that is, for every quadruple of countries i0 > i 

and k0 > k it holds 

(3) 

The key point is that this log-supermodularity imposes sufficient structure on country similar-

ities to imply that the second eigenvector of (1) correctly ranks countries by their underlying 
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economic complexity. Precisely, we show in Theorem 1 that for every positive and symmet-

ric matrix A satisfying Condition (3), the second eigenvector of (1) is strictly monotonic. 

We provide Monte Carlo Simulations adding random noise to such matrices and show that 

this monotonicity is very robust as long as the size of the matrix is not too small relative 

to the size of the random shock. In other words, the second eigenvector correctly ranks 

countries by their complexity even if the empirically derived matrix A is not everywhere 

log-supermodular—and in fact even if locally it satisfies Condition (3) only marginally more 

often than an iid random matrix. The basic intuition is that the eigenvector can exploit the 

log-supermodularity of pairs of elements at greater distances, i.e. in rows and columns that 

are further apart. 

In the remainder of the paper, we use our insights from Section 3 to develop a structural 

alternative to the ECI based on a workhorse trade model. Importantly, however, Theorem 1 

not only allows to rank countries by their unobservable economic complexity, but our work 

provides a general theoretical framework for ranking nodes in a weighted unipartite graph— 

or, when combined with Lemma 1, a weighted bipartite graph. To illustrate this point, we 

briefly discuss how our insights can readily be applied to rank academic journals by their 

prestige, or politicians on a left-to-right scale, for example, at the end of Section 3. 

In Section 4, we outline the economic model underlying our structural ranking of economic 

complexity and characterize equilibrium trade flows. We consider a multi-product (or indus-

try) Eaton and Kortum (2002) model, where countries differ in their economic complexity 

i and products differ in their complexity s. 2 The exact nature of these country and prod-

uct characteristics is not of importance. The key point is that we follow Costinot (2009a) 

and Costinot and Vogel (2015) in assuming that the country-product specific fundamental 
s
ĩproductivity T is log-supermodular. To accommodate additional sources of comparative 

advantages at the product level, we augment this fundamental productivity by an idiosyn-

cratic component. In other words, the exporter-product specific location parameter of the 

Fréchet distribution is given by T s
i := s

i T̃ · �si . We further allow for zero trade flows at 

the exporter-product level, assuming that they are governed by the same complementarity 

between country and product complexity as the fundamental productivities. That is, we as-

sume that economically complex countries are relatively (in a ‘diff-in-diff’ sense) more likely 

to be exporting the complex products and, if they do, they tend to have a relatively higher 

2Throughout, we follow the nomenclature in Hidalgo and Hausmann (2009) and speak of products, which 
are available in many different varieties. This is also consistent with the fact that we later on consider trade 
at the 4-digit HS-level. In terms of our modeling choices, however, these products correspond to what is 
typically referred to as sectors or industries in the international trade literature. 
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productivity in these products. 

We discuss how we can rank countries by their economic complexity in Section 5. In a world 

as described by our trade model, this can be achieved by applying Theorem 1 to a similarity 

matrix A with elements " # 

(4) 
X 1 ˆ

0 T ˆ ˆT ˆ0 
s
i 

s
i

s
i

s
iAi0i := E z · z 

S 
ŝ∈S 

where zi is a binary random variable that indicates whether country i is making product s

or not. Interestingly, the same need not be true for the ECI, which is based on a binary 

country-product matrix that indicates for each country the set of products for which it has 

a Revealed Comparative Advantage (RCA) of at least 1 according to the Balassa (1965) 

measure. 

While we cannot observe matrix A as defined in (4) from the data, we discuss how we can 

estimate it in Section 6. In particular, in a first step we can estimate the country-product 

specific productivities T s
i up to a normalization for each country and product from a fixed 

 s               

s
i

effects regression of bilateral tradeflows (Costinot et al., 2012). We estimate these fixed effects 

using both OLS and PPML, respectively. In a second step, we use the estimated T̂ to form 

the sample analogue of matrix A. To rank countries, we finally compute the eigenvector 

corresponding to the second smallest eigenvalue of (1). Our OLS estimator ranks Japan, 

South Korea, and Switzerland at the top, and Yemen, Sudan, and Malawi at the bottom 

of a list of 127 countries included in our sample. This ranking is remarkably robust: The 

rank correlation with the one derived from using PPML in the first step is larger than .995, 

and even with the original ECI that starts from a binary country-product matrix indicating 

country-product pairs with RCA of at least one it has a rank correlation of .96. Hence, our 

work suggests that while theoretically the original ECI may fail to correctly rank countries 

in a world with trade frictions, this may be less of a concern in practice. It may therefore 

also help explaining the astounding success of the ECI in measuring economic strength and 

future growth potential. Importantly, this ranking of countries by their economic complexity 

is fundamentally different from a ranking by their GDP per capita.3 The reason is simple: 

our notion of economic complexity is tied to comparative advantages as opposed to absolute 

advantages. Hence, the structural variant of the ECI proposed here may reveal important 

and novel information on the deep underlying economic capabilities of countries. 

Analogous to the original Economic Complexity Index, the exact same reasoning used to rank 

3One way of seeing this is by noting that the normalized exporter-product fixed effects do not capture 
GDP per capita (the wage). 
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countries by their economic complexity also allows to rank products by their complexity. We 

discuss this and present rankings at the 2-digit HS classification level in Section 7. The 

product ranking is somewhat less robust, which may not come as a surprise given that we 

use export data from 127 countries to evaluate the similarities of 97 products. But yet, this 

ranking may serve as an alternative to proxies typically used in the literature.4 

Our paper contributes to several strands of literature. We build on the works by Hidalgo and 

Hausmann (2009), Hausmann et al. (2011), and Mealy et al. (2019) on the one hand, and by 

Eaton and Kortum (2002), Costinot (2009a), and Costinot et al. (2012) on the other, and 

propose a structural ranking of countries by their economic complexity. While nothing in 

particular hinges on the interpretation of our country characteristic as ‘economic complexity’, 

our ranking is based on international trade data and, hence, our work contributes to the 

literature measuring the ‘economic complexity’ of countries based on trade data (Hausmann 

et al., 2007; Hidalgo and Hausmann, 2009; Hausmann et al., 2011; Tacchella et al., 2012; 

Morrison et al., 2017; Albeaik et al., 2017; Servedio et al., 2018). To the best of our knowledge, 

this paper is the first to start from a theoretical model of how ‘economic complexity’—or, 

more generally, countries’ economic strength—is reflected in international trade flows, and 

to then show that and how the ranking of economic complexity can be uncovered from the 

data. 

Our ranking is closely related to the Economic Complexity Index (Hidalgo and Hausmann, 

2009; Hausmann et al., 2011): It differs in that we start from a structural country-country 

similarity matrix. It is then, however, based on the exact same generalized eigenproblem 

of the respective matrix. The same is true for the product rankings. Moreover, in spite 

of the substantial differences in the way the similarity matrices are constructed, the derived 

rankings are highly correlated. Hence, our work lends support to applications of the Economic 

Complexity Index in empirical studies (e.g. Hausmann et al. 2011; Poncet and Starosta de 

Waldemar 2013; Hartmann et al. 2017; Petralia et al. 2017; Javorcik et al. 2018) and in 

numerous policy reports, and it may guide the way for more structural applications of these 

concepts in future. It further provides an alternative to proxies for product complexity used 

in the literature (e.g. Levchenko 2007; Costinot 2009b; Schetter 2019). 

More generally, our ranking may be seen as a ranking of countries according to their deep 

underlying capabilities, technologies, and know-how that allow them to be competitive in 

4According to our structural ranking using OLS in the first step, the three most complex products are: 
‘Nuclear reactors, boilers, machinery and mechanical appliances’ (84), ‘Electrical machinery and equipment 
and parts thereof’ (85), and ‘Photographic or cinematographic goods’ (37). The three least complex products 
are: ‘Ores, slag, and ash’ (26), ‘Oil seeds and oleaginous fruits’ (12), and ‘Coffee, tea, mate and spices’ (09). 
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complex products. This ranking is conceptually very different from e.g. the Global Competi-

tiveness Index (GCI, Sala-i Martin and Artadi 2004): While the GCI assesses competitiveness 

based on a multitude of observable determinants, we follow Hidalgo and Hausmann (2009) 

and measure the competitiveness that is revealed through what countries actually do. Our 

ranking is also conceptually different from a ranking of countries based on their GDP per 

capita, and our work may thus provide a novel perspective on economic development, allowing 

to separate growth in income from advances in the deep underlying productive capabilities 

of an economy. 

To derive our structural ranking, we follow Costinot et al. (2012); Hanson et al. (2015); 

Levchenko and Zhang (2016) and consider a multi-product (sector) Eaton and Kortum (2002)-

model, which allows extracting productivities at the country-product level from a fixed effects 

gravity regression.5 As opposed to these papers, however, we do not use the estimated 

productivities to learn about the importance of Ricardian comparative advantage for trade 

and welfare, or to study time trends in comparative advantage. Rather, we show that these 

estimated productivities can be used to learn about the deep underlying economic complexity 

of countries and products, respectively, that drive comparative advantage at the country-

product level.6 

To derive our main theoretical result, we consider a simplified trade model first. Our analysis 

of this model provides a general theoretical framework for ranking nodes in a weighted (bipar-

tite) graph. A large literature ranks nodes according to their importance for the network— 

their centrality (e.g. Katz 1953; Freeman 1977; Bonacich 1987; Brin and Page 1998; Kitsak 

et al. 2010).7 In the economics literature, centrality-based rankings have been proposed to 

identify individuals that are important for fast diffusion of innovation (Banerjee et al., 2013), 

to design policies for conflict resolution (König et al., 2017), building state capability (Ace-

moglu et al., 2015), and fostering innovation (König et al., 2018), for example, and, more 

5The fixed effects regression is consistent with alternative foundations for the gravity equation based on 
e.g. Armington (1969), Krugman (1980), Melitz (2003) (see Head and Mayer (2014)). We think of countries’ 
economic complexity and products’ complexity as being reflected in productivities, and we therefore follow 
the above papers in interpreting these fixed effects through the lens of an Eaton and Kortum (2002)-model. 

6Hence, our paper also differs from previous work that tests for a complementarity between a country and 
a product characteristic using proxies for these characteristics (e.g. Levchenko 2007; Nunn 2007; Cuñat and 
Melitz 2012). Closer to our work is Costinot (2009b) who uses a proxy for product complexity to construct 
a measure of ‘revealed institutional quality’ of countries, assuming that there is a complementarity between 
the two. While in principle we could follow a similar approach here, it would imply that the quality of the 
derived country ranking hinges on the quality of the product proxy used. We therefore follow a different 
approach and show how we can exploit the assumed log-supermodularity to reveal the underlying ranking of 
economic complexity without relying on an ad-hoc proxy for product complexity. 

7See Jackson (2008) and Liao et al. (2017) for overviews of these measures, and Bloch et al. (2019) for 
an axiomatic foundation of some of these measures. 
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generally, to identify ‘key players’ in a network (Ballester et al., 2006). Our focus is different: 

We assume that nodes—countries in our case—differ in some unobservable characteristic— 

their economic complexity—and then seek to rank them according to this characteristic.8 

This ranking is based on the similarities of nodes to each other, which can mathematically 

be described as a graph or network, but we are not interested in the importance of individual 

nodes for the network or even the network as such.9 

Finally, our work is related to spectral graph theory (Chung, 1997). More to the point, the 

eigenvector that we use to rank countries—and nodes in a weighted graph more generally—has 

been proposed as an approximate solution to the Ncut problem of partitioning a graph into 

clusters (Shi and Malik, 2000), and as a dimensionality reduction algorithm that ‘optimally 

preserves local neighborhood information in a certain sense’ Belkin and Niyogi (2003, p. 

1374). We show that this is actually true in a global sense if A is log-supermodular. 

2 Mathematical Foundations of the Economic Com-
plexity Index 

In this section, we briefly review the Economic Complexity Index (ECI) and the underlying 

mathematical algorithm. We will highlight that the ECI is, in fact, equivalent to a general-

ized eigenvector of a country-country matrix that summarizes the similarity of their export 

baskets. We will study this eigenvector in the next section and later on use it to develop our 

structural variant of the ECI. 

The Economic Complexity Index is a measure of countries’ economic strength (and products’ 

complexity) based on export data (Hidalgo and Hausmann, 2009; Hausmann et al., 2011). Its 

motivation is as intuitive as it is compelling: If we observe that a given product is produced in 

a country, this reveals that the country has the capability to provide all necessary inputs for 

production and to use them competitively. Hence, the set of products that a country makes is 

informative about its capabilities. Analogously, the set of countries that successfully export a 

given product is informative about its production requirements. Guided by this logic, Hidalgo 

and Hausmann (2009) suggest that a complex country is one that exports complex products 

8The key point is that this country characteristic is unobservable. In that sense, our work also differs 
from e.g. Perry and Reny (2016), who propose an axiomatic approach to ranking scientists based on their 
observable publications and citations. 

9One way of seeing that our ranking is not concerned with a country’s centrality in the network is by 
noting that in a simple Ricardian model of international trade, log-supermodularity of productivities—our 
main assumption underlying our structural alternative to the ECI—gives rise to a ‘ladder’ of international 
specialization (Costinot, 2009a). 
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and vice versa. To measure these complexities, they propose an iterative algorithm that is 

based on a binary country-product matrix that indicates for each country the set of products 

of which it is a significant exporter. They consider a country to be a significant exporter of 

a product if it has a Revealed Comparative Advantage (RCA) of at least one according to 

the Balassa (1965) measure. 

It turns out that asymptotically this iterative procedure ranks countries by an eigenvector of 

a country-country similarity matrix, and this eigenvector is, in fact, used for the Economic 

Complexity Index (ECI) (Hausmann et al., 2011). In particular, let M denote the I × S 

binary country-product matrix with entry Mis = 1 if country i has an RCA of at least 1 in 

product s and Mis = 0 otherwise. Further, let U be the S × S diagonal matrix with entry 

Uss equal to the ubiquity of product s, i.e. Uss is the sum of the sth column of matrix M . 

We can use these matrices to generate a positive and symmetric country-country similarity 

matrix 

A := MU −1MT , 

where here and below we use a superscript T to denote the transpose of a matrix. Matrix A 

specifies for each pair of countries i, i0, the number of products that they have in common, with 

each product weighted by the inverse of its ubiquity. The ECI is the eigenvector corresponding 

to the second smallest eigenvalue of the generalized eigenproblem (Hausmann et al., 2011; 

Mealy et al., 2019) 

Ly = λDy, (5) 

where D is the diagonal matrix with diagonal entries equal to the respective row sum of A, 

and L := D − A is the Laplacian matrix of A.10,11 This eigenvector—which we henceforth 

simply refer to as the second eigenvector of (5)—solves the following minimization problem 

(e.g. Chung 1997; Shi and Malik 2000; Belkin and Niyogi 2003): 

arg min y T Ly 

s.t. y T Dy = 1 

y T D1 = 0, 

(6) 

10This generalized eigenvector is equivalent to the eigenvector corresponding to the second largest eigen-
value of matrix D−1A, where D is the same matrix as in (5), i.e. it is a diagonal matrix with countries’ 
diversities on the diagonal (Mealy et al., 2019). Hausmann et al. (2011) use this representation to define the 
ECI. Our subsequent work will build on the generalized eigenproblem and, hence, we consider this represen-
tation instead. 

11The iterative algorithm proposed in Hidalgo and Hausmann (2009) actually converges to the first eigen-
vector, which is a vector of ones. Hidalgo and Hausmann (2009) stop after N iterations and rescale the 
derived vector to have standard deviation of 1. This rescaled vector converges to the second eigenvector (see 
Caldarelli et al. (2012) for a discussion). 
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where here and below we use 1 to denote a vector of ones. 

Hence, the Economic Complexity Index ultimately ranks countries by reducing the rich struc-

ture of similarities of countries’ export baskets as summarized in A to a single dimension. 

It is therefore not obvious to what extent the ECI is informative about the deep underly-

ing economic capabilities of countries, and the associated literature so far lacks a thorough 

understanding of (i) whether such information is entailed in the similarities of countries’ ex-

ports and (ii) if so, whether the second eigenvector of (5) can reveal this information. In 

the remainder of the paper, we show that the answer to both questions is yes if the guiding 

rationale of the ECI is correct, i.e. if it is indeed the case that economically complex countries 

tend to export complex products. In particular, we show that a variant of the ECI correctly 

ranks countries by their economic complexity if we assume that the fundamental productivity 

of a country in a product is log-supermodular such that—on balance—economically complex 

countries are relatively more productive in complex products. Heuristically, note that the 

objective in (6) can be rewritten as 

(7) 
X 

y T Ly =
1 

(yi − yj )
2Aij , 

2 
ij 

which suggests that the second eigenvector of (5) tends to assign similar values yi and yj to 

similar countries, i.e. to pairs of countries with large values Aij . 12 Indeed, this eigenvector has 

previously been proposed as a dimensionality reduction algorithm that ‘optimally preserves 

local neighborhood information’ (Belkin and Niyogi, 2003). We show in the next section that 

in a ‘log-supermodular world’ this is actually true globally, that is, the second eigenvector 

ranks countries in accordance with the deep underlying economic complexity that drives their 

similarity. 

3 A General Theoretical Framework for Ranking Nodes 
in a Weighted (Bipartite) Graph 

In this section, we present a general theoretical framework for ranking nodes in a weighted 

(bipartite) graph according to some underlying unobservable characteristic. Our main focus 

is on developing a structural alternative to the ECI. We will therefore introduce this general 

framework by means of a stylized version of our economic model from the next section. 

12The two constraints in minimization problem (6) essentially rule out trivial solutions: The first constraint 
rules out solutions where all values of y are zero or arbitrarily close to zero, while the second constraint rules 
out solutions where the entries in y are different from zero but all the same. 
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This allows introducing in a transparent way the connection between our main economic 

assumption and the ability of the second eigenvector of (5) to correctly rank countries by 

their complexity. Importantly, however, our main insights from this section not only apply to 

ranking countries and products, but, in fact, more generally to ranking nodes in a weighted 

(bipartite) graph. We will revert to this point at the end of Section 3.2, and begin with 

introducing some definitions that will prove useful in our subsequent discussions. 

3.1 Definitions 

Our theory will be centered on strictly log-supermodular matrices, which we define as follows: 

Definition 1 (Log-supermodular matrix) 

A positive matrix M is strictly log-supermodular if for every pair of rows, r > r, and

columns, c0 > c it holds that 

             0   

(8) 
0 0 0 Mr c Mrc

> . 
0Mr c Mrc 

Definition 1 may most easily be understood by means of a simple example. In particular, it 

states that a matrix M is log-supermodular if for every quadruple of elements (a, b, c, d) in 

the intersections of any pairs of rows and columns ⎞ ⎛ ⎜⎜⎜⎜⎜⎜⎝ 

. . . . . . 
· · · a · · · b · · · 

. . . . . . 
· · · c · · · d · · · 

. . . . . . 

⎟⎟⎟⎟⎟⎟⎠ 

it holds that 

a · d > b · c. 

This definition of log-supermodularity is a global property of a matrix. It is satisfied if and

only if all 2 by 2 blocks of M are log-supermodular, where, recall, a block of matrix M is 

defined as follows: 

                

Definition 2 (Block of matrix) 

A block of matrix M is a submatrix formed by the elements in the intersection of contiguous 

rows and columns of M . 

In the next section, we will show that for every log-supermodular matrix the solution to prob-

lem (6) is monotonic—i.e. the eigenvector corresponding to the second smallest eigenvalue 

of (5) is monotonic, where we define a monotonic vector as follows: 
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Definition 3 (Monotonic vector) 

A vector v is (strictly) monotonic if its elements are in either (strictly) increasing or (strictly) 

decreasing order. 

With these definitions at hands, we now turn to the main theoretical result of our paper. 

3.2 Theory 

Consider a world with I countries and S products (or industries). Suppose that countries 

differ by some characteristic, which we call a country’s economic complexity, for concreteness. 

Similarly, suppose that products differ by some characteristic, which we call their complex-

ity. To simplify notation, we will henceforth identify countries by their rank of economic 

complexity i ∈ {1, 2, . . . , I} and products by their rank of complexity s ∈ {1, 2, . . . , S} from 

the lowest to the highest, i.e. for any pair of countries i0 > i, country i0 is more complex 

than country i, and analogously for products. Importantly, however, we think of these char-

acteristics and the implied rankings as being unobservable. In fact, our goal is precisely to 

uncover this ranking from the data. 

The exact interpretation of i and s is not important. The key point is that we follow Costinot 

(2009a) and assume that there is a complementarity between i and s such that a high-i 

country has a comparative advantage in a high-s product. We will embed this structure in 

a multi-sector Eaton and Kortum (2002) model in the next section, and show how we can 

exploit the ensuing equilibrium trade flows to correctly rank countries and products. For 

now, we simply assume that comparative advantages are one-for-one reflected in countries’ 

aggregate sales of a product, which we denote by Xs
i > 0. Precisely, we assume that countries’ 

exports are strictly log-supermodular: 

Assumption 1 

Let X be the I × S positive matrix with element Xis = Xs
i equal to the global sales of 

country i and product s. Matrix X is strictly log-supermodular. 

In essence, Assumption 1 implies that high-i countries have relatively higher exports in high-s 

products. Because this holds true for all countries, it implies in turn that the export basket 

of an economically complex country is relatively more similar to the export baskets of other 

complex countries than to the export baskets of less complex countries and vice versa. In 

particular, let A be the positive and symmetric I × I country-country similarity matrix with 
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element 

(9) 
X 1 

Aii0 := Xi
s · Xi

s 
0 . 

S 
s∈S 

As we show in the following lemma, this matrix inherits the log-supermodularity of matrix 

X: 

Lemma 1 

Matrix A as defined in (9) is strictly log-supermodular. 

The proof of Lemma 1 is given in Appendix A.1. In words, Lemma 1 compares the export 

baskets of two countries i0 > i based on how similar they are to the export baskets of countries 

k0 > k. In essence, Lemma 1 implies that—when compared to a less complex country i— 

the export basket of country i0 is systematically more similar to the export baskets of other 

complex countries (k0) than to the ones of less complex countries (k). As we show in the 

following theorem, this imposes sufficient structure such that the second eigenvector of (5) 

correctly ranks countries by their economic complexity when applied to matrix A. 

Theorem 1 

Let A be an I × I positive and symmetric matrix. Let D be the I × I diagonal matrix with 

element Dii equal to the row sum of the ith row of A, and let L := D − A be the Laplacian 

matrix of A. If A is strictly log-supermodular, then the eigenvector corresponding to the 

second smallest eigenvalue of 

Ly = λDy (10) 

is strictly monotonic. 

The proof of Theorem 1 is given in Appendix A.2. Theorem 1 is the main theoretical result 

of our paper. It provides a general theoretical framework for ranking nodes of a weighted 

unipartite graph—or, when combined with Lemma 1, nodes in a weighted bipartite graph— 

according to some unobservable underlying characteristic. 

To simplify the exposition, we have assumed that rows in matrix X and, hence, rows and 

columns in matrix A, are already ordered according to the underlying economic complexity. 

It is in such case that matrix A is indeed log-supermodular. This is, of course, not true 

in general. In fact, it is precisely this order that we would like to uncover from the data, 

and what we might expect to have is a matrix A that can be made log-supermodular by 

appropriate permutations of rows and columns. Note that any such permutation results in 

the exact same permutation of the elements of the second eigenvector of (10). Theorem 1 
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therefore tells us that we can uncover the ranking of economic complexity by rearranging 

rows and columns of A such that the second eigenvector of (10) is indeed monotonic. 

Four remarks are in order: First, while the underlying bipartite graph provides a compelling 

foundation for why matrix A is log-supermodular, it is worth noting that Theorem 1 does 

not hinge on this foundation: We can readily apply Theorem 1 to any unipartite graph whose 

adjacency matrix is log-supermodular. 

Second, of course the eigenvector allows to correctly rank countries up to sign only. Heuris-

tically, this is the case because we rank countries based on the similarity of their export 

baskets, and this similarity does not embed information on the sign of this ranking. Math-

ematically, this is, in fact, inherent to using an eigenvector for this ranking, and is also the 

case for the Economic Complexity Index (Hidalgo and Hausmann, 2009; Hausmann et al., 

2011). In practice, it implies that we need some additional information to determine the sign 

of the ranking, i.e. to determine which countries should be ranked on top. Importantly, this 

is probably more of a theoretical concern, rather than a real issue in practical applications, 

where the underlying theory readily lends itself to a strong prior regarding the direction of 

the ranking. In case of our complexity ranking, for example, we can determine the direction 

of the ranking by requiring that industrialized countries be ranked high. 

Third, it is important to note that while our main focus is on developing a structural alter-

native to the Economic Complexity Index and while we therefore think of A as a country-

country similarity matrix here, nothing in particular hinges on this interpretation. In fact, 

Theorem 1 is a general result for ranking nodes in a graph and—when combined with 

Lemma 1—nodes in one part of a bipartite graph. In particular, we can think of the Xi
s 

as the elements of an I × S adjacency matrix X of a bipartite graph. Lemma 1 and The-

orem 1 apply to any such graph as long as the elements of the adjacency matrix satisfy 

Assumption 1. For instance, we may assume that talented scientists are systematically more 

successful at publishing in prestigious journals, or that ‘left-wing’ politicians have a system-

atically higher probability of accepting ‘left-wing’ policies. If so, our work can readily be 

applied to rank politicians on a ‘left-to-right’ scale or academic journals according to their 

prestige. 

Finally, in practical applications it is unlikely that matrix A is indeed perfectly log-supermodular. 

Hence, an ensuing question is whether the result in Theorem 1 is robust to deviations from 

the perfectly log-supermodular structure of matrix A, i.e. whether it holds up in situations 

where Condition (8) is not satisfied for all quadruples of elements in the intersections of pairs 

of rows and columns. We turn to this issue next. 
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3.3 Robustness 

To evaluate the robustness of our result in Theorem 1 to variations of matrix A, we perform 

a simple Monte Carlo study that involves 80k randomly drawn 100 × 100 matrices—10k for 

each column in Table 1. To simulate matrices A, we start from a randomly drawn symmetric 
˜matrix A that is supermodular, i.e. it is log-supermodular when exponentiating it element-

wise. Details on how we generate this matrix are provided in Appendix B. For our purposes 

here it suffices to note that all 2 by 2 blocks are supermodular by a margin that is randomly 

drawn from a uniform distribution on [0, 1], that is for every quadruple of elements in a 2 by 
˜2 block of A we have 

Ãi0k0 + Ãik = Ãik0 + Ãi0k + u (i0 > i, k0 > k), 

where u is iid from a uniform distribution with support [0, 1]. 

˜In a second step, we add to matrix A another symmetric random matrix, whose elements are 

drawn from a uniform distribution with lower bound 0 and upper bound ranging from 0 to 

500 as specified in the column-headers of Table 1. Note that in the rightmost columns these 

shocks are large when compared to the margin with which 2 by 2 blocks are log-supermodular. 

Indeed, as we discuss in a second, these blocks are log-supermodular only marginally more 

often than expected for an iid random matrix. 

Finally, we exponentiate the matrix element-wise to get our simulated matrix A. Further 

details are provided in Appendix B. 

For each random matrix A, we then compute three statistics measuring how successful the 

second eigenvector of (10) is in ranking rows and columns of that matrix, and average these 

statistics over the 10k random matrices in the respective column of Table 1. First, the 

rank correlation between the second eigenvector and the ‘true’ ranking implied by the log-

supermodularity of the unshocked matrix (‘Avg rank correlation’). Second, the share of all 

rows/columns that the second eigenvector ranks exactly correctly (‘Avg share rows correct’). 

Third, an indicator whether the second eigenvector ranks all rows/columns exactly correctly 

(‘Share of iterations all correct’). We finally present a measure of the importance of the 

random shocks: the share of all 2 by 2 blocks of the random matrix that are log-supermodular 

(‘Avg share LSM’). We summarize our findings in Table 1. 

The first column in Table 1 shows our benchmark with no random shocks. By construction, 

all 2 by 2 blocks are log-supermodular and, hence, all random matrices A in this column are 

log-supermodular. As predicted by Theorem 1, the second eigenvector of (10) always ranks 
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Table 1: Robustness of Monotonicity of Eigenvector 

0.0 

Upper bound of uniform distribution 

0.3 1.0 3.0 10.0 50.0 100.0 500.0 

Avg rank correlation 1.000 
Avg share rows/columns correct 1.000 
Share of iterations all correct 1.000 

1.000 
1.000 
1.000 

1.000 
1.000 
1.000 

1.000 
1.000 
1.000 

1.000 
1.000 
1.000 

1.000 
1.000 
0.997 

1.000 
0.988 
0.592 

0.999 
0.416 
0.000 

Avg share LSM 1.000 0.930 0.774 0.608 0.533 0.507 0.503 0.501 

This table shows summarizing statistics for our 80k randomly generated 100 × 100 matrices—10k for each 
column. Random matrices have been generated as described in the main text and further detailed in Ap-
pendix B. The random shocks to the supermodular matrix have been drawn from a uniform distribution 
with support [0, a] where the upper bound a is as specified in the header of the respective column. ‘Avg rank 
correlation’ is the average correlation between the ranking implied by the second eigenvector and the ‘true’ 
ranking of the random matrix—i.e. a vector with elements [1, 2, ..., 100]—, where the average is taken across 
the 10k random matrices in the respective column. ‘Avg share rows/columns correct’ is the average share of 
rows / columns that are ranked exactly correctly by the second eigenvector. ‘Share of iterations all correct’ 
is the share of matrices for which the second eigenvector ranks all rows / columns correctly. ‘Avg share LSM’ 
is the average share of all 2 by 2 blocks of A that are log-supermodular. 

all rows (and columns) correctly.13 

In the remaining columns of Table 1 we introduce the random shocks, increasing their vari-

ance as we move to the right. Note that in the rightmost columns these shocks are large 

compared to the margin with which 2 by 2 blocks in matrix A are log-supermodular. Con-

sider, for example, the third to last column. In this column, the random shocks are drawn 

from a uniform distribution with support [0, 50], implying that—on average across the 10k 

iterations—just over 50% of all 2 by 2 blocks of matrix A are log-supermodular. To put this 

into perspective, note that for a purely random matrix the expected value of this share is 

50%. Nonetheless, the second eigenvector almost always ranks all rows and columns correctly. 

While this is no longer the case when increasing further the variance of the random shocks, 

the rank correlation between the second eigenvector and the ‘true’ ranking is still very high. 

How is that possible? To see this, note that ‘Avg share LSM’ limits attention to 2 by 2 blocks 

of matrix A. The fact that these blocks are only marginally more often log-supermodular 

when compared to an iid matrix does not imply that the same is true for elements in pairs 

of rows and columns that are further apart. Indeed, quadruples of elements in rows and 

columns i, i + 10 and k, k + 10 are log-supermodular in ∼ 57% of the cases, and quadruples of 

13While this is not the main focus here, a perhaps interesting insight that also emerges from these simu-
lations is that supermodularity, as opposed to log-supermodularity, does not impose sufficient structure for 
the second eigenvector to correctly rank rows and columns, even in the absence of random shocks. 
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elements in rows and columns i, i + 30 and k, k + 30 in more than 90% of the cases, even with 

random shocks drawn from a uniform distribution with support [0, 500]. It is this structure of 

log-supermodularity at greater distances that the second eigenvector can successfully exploit. 

Indeed, as we show in Appendix B, smaller matrices, i.e. matrices with less information at 

greater distances to exploit, are less robust to adding noise.14 

In summary, our simulations suggest that our ranking of rows and columns in positive and 

symmetric log-supermodular matrices is very robust to adding random noise. We provide 

further details and additional results in Appendix B. 

4 Economic Model 

In the previous section, we have outlined a general theoretical framework for ranking nodes 

in a weighted (bipartite) graph. In the remainder of the paper, we apply these insights and 

develop a structural alternative to the ECI. We begin with outlining the economic model. 

We consider a multi-product (or industry) Eaton and Kortum (2002) model following Costinot 

et al. (2012).15 There are I countries, indexed by i, j ∈ I, and S products, indexed by s ∈ S. 
To simplify notation, we assume that countries are ranked by their economic complexity from 

the least to the most complex economy such that for every i, i0 ∈ I : i < i0 we have that 

country i0 is economically more complex than country i. Similarly, products are ranked by 

their complexities from the least to the most complex such that for every s, s0 ∈ S : s < s0 we 

have that product s0 is more complex than product s. Importantly, however, we think of these 

characteristics as being unobservable and, in fact, we are ultimately interested in finding a 

way of ranking countries—and products, for that matter—according to their complexities. 

We follow Costinot (2009a) and Costinot and Vogel (2015) in assuming that the country-
s
ĩproduct specific fundamental productivities T are log-supermodular. We augment these 

fundamental productivities by idiosyncratic productivity components at the exporter-product 

level, T s
i = s

ĩT �si , and allow for zeros at the exporter-product level as will be detailed below. 

Trade is subject to an iceberg trade cost such that ds ≥ 1 units of a variety of product s have ij 

to be shipped from country i for one unit to arrive at destination country j. As standard in 

14An interesting insight that emerges from these considerations is that, indeed, for a (noisy) log-
supermodular matrix, the eigenvector corresponding to the second smallest eigenvalue of (10) preserves 
global and not just local neighborhood information, as suggested in Belkin and Niyogi (2003). 

15The literature on international trade typically refers to the upper-tier level of goods-differentiation as 
industries (or sectors) and the lower-tier level as varieties within a given industry. To be consistent with the 
nomenclature chosen in Hidalgo and Hausmann (2009); Hausmann et al. (2011), we refer to the upper-tier 
level as products and the lower-tier level as varieties of a given product. 
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the trade literature, we normalize dii = 1 and assume that trade costs satisfy the triangular 

inequality. There is perfect competition in all markets. 

4.1 Households 

Country i is populated by Li households that inelastically supply one unit of labor. House-

holds receive utility from a two-tier utility function, the upper-tier being Cobb-Douglas with P 
product shares αs , s∈S α

s = 1, and the lower-tier being CES over a continuum of mea-

sure one of varieties within products with elasticity of substitution σ. Accordingly, the total 

expenditure in country i on variety ω of product s is � � 
s 1−σ 
pi (ω) s αs x (ω) = wiLi, i P s 

i 

where wi is the wage rate and, hence, wiLi total income in country i, and where � � 1 Z 1  
1−σ 

s P i
s := p i (ω)

1−σdω 
0 

is the CES-price index for product s in country i. 

4.2 Production 

Production is constant returns to scale using labor as the only input. There is a continuum 

of varieties ω ∈ [0, 1] of each product s. We use ϕs
i (ω) to denote the constant productivity 

of producing variety ω of product s in country i, and assume that it is drawn independently 

for each triplet (i, s, ω) from a Fréchet distribution with dispersion parameter θ > 0 and 

country-product specific location parameter Ti 
s > 0 � � 

F i
s (ϕ) = exp −ϕ−θT i

s , ∀ ϕ > 0. 

The location parameter has two components: Country i’s fundamental productivity in prod-

 ˜uct s, T s 
i > 0, and an idiosyncratic productivity component, �si , that is independently dis-

tributed across countries and products with strictly positive support and mean one 

T s = T ̃s �si , E[�s ] = 1. i i i 

Here and below we use E[·] to denote the expectation operator. The fundamental productiv-

ities T̃ s 
i capture comparative advantages arising from the systematic relationship between a 
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country’s economic complexity and the complexity of a product, while the idiosyncratic com-

ponent captures all other sources of comparative advantage at the product level.16 Following 

Costinot (2009a) and Costinot and Vogel (2015), we assume that the fundamental produc-

tivity is log-supermodular in a country’s economic complexity and a product’s complexity, 

that is: 

Assumption 2 

0 0 
T ̃i

s
0 T ̃si > ∀ i0 > i ∈ I, s 0 > s ∈ S , 

T̃ 0 
s
i T̃ s

i 

In words: the above condition implies that there is a complementarity between countries’ eco-

nomic complexity and products’ complexity such that—on balance—a more complex economy 

is relatively more productive in the complex products. This fundamental pattern of compara-

tive advantages will be reflected in trade flows and will eventually allow identifying countries’ 

economic complexity from trade data. 

Zeros are prevalent in international trade at the country-product level.17 To accomodate 

these, we assume that country i is active in product s with probability ρsi > 0. These proba-

bilities are guided by the same complementarity that governs the fundamental productivities, 

that is, an economically more complex country is relatively more likely to be active in the 

complex products: 

Assumption 3 

0 
ρsi0 ρs

0 
i 0 > ∀ i0 > i ∈ I, s > s ∈ S , 

s
iρ 0 ρsi 

We may think of ρsi as e.g. the probability that country i has acquired the product-specific 

know-how or technologies needed to make product s. In what follows, it will come in handy 

to introduce a binary random variable zsi that takes on value of one with probability ρsi and 

zero otherwise, and that indicates whether country i is active in product s. We assume that 

the realization of zsi is independent across i and s. 

In addition to zeros at the country-product level, there are zeros at the bilateral product 

level, i.e. countries export a product to a subset of destinations only. We will discuss these 

16Of course, in a multi-product Eaton and Kortum (2002)-model, there are also comparative advantages 
within products at the variety-level. See Costinot et al. (2012) for a discussion. 

17In our estimations below, we consider exports at the 4-digit HS classification level. Our cleaned dataset 
has ∼44% zeros at the exporter-product level. 

18 

http:level.17
http:level.16


further in Section 6 below. For now it suffices to denote by Ijs the set of countries that have 

strictly positive exports of product s to destination country j. 

4.3 Equilibrium Trade Flows 

We now characterize equilibrium trade flows in our economy, before turning to measuring 

economic complexity in the following sections. 

Markets are perfectly competitive, i.e. all varieties are offered at their marginal cost and 

consumers in every country shop around the world for the cheapest supplier of each variety. 

With a Fréchet distribution of productivities, this implies for the probability that country 

i ∈ Is 
j is the lowest-cost provider of any given variety of product s to country j the following 

well-known expression (cf. Eaton and Kortum 2002 and Costinot et al. 2012) 
−θ 

wid
s T s 

s ij i 
µ = � . ij �−θ P 

î∈Isj 
ds T s wî ˆ ˆij i 

Moreover, with a Fréchet distribution of productivities, the distribution of prices conditional 

on being the lowest-cost provider of a variety of product s to destination country j is the 

same for all source countries i. In turn, this implies that country i’s total sales of product s 

to country j are given by � �−θ 
wid

s T s 
s ij i 

x ij = P � �−θ αsLj wj . 

î∈Isj 
ds T s wî ˆ ˆij i 

The key observation for our purposes is that equilibrium tradeflows are intimately related to 

productivities. In particular, we have for any importer j, any pair of exporters i and i0, and 

any pair of products s and s0 that they both ship to j, 
−θ 0 0 0 0 

xs /xs T s
0 0 ds /dsi0j ij i0 /T i

s
i0j ij 

= · . 
s T s ds x /xs

i0 /T s /ds 
i0j ij i i0j ij 

� �

(11) 

" #
(12) 

Expression (12) is at the heart of why a variant of the ECI can correctly rank countries—

and products, for that matter—according to their economic complexity based on trade data. 

Ignore, for the sake of the argument, the idiosyncratic component in T s 
i , i.e. suppose that Ti 

s is 

log-supermodular. As long as trade costs do not introduce a bias, Equation (12) then implies 

that economically complex countries systematically specialize in the complex products and 

vice versa.18 Because this is true for all countries, it also implies that countries’ export baskets 
18This may be seen from considering the case of 

ds 
ij = dij d

s
j , 
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are similar to the export baskets of countries with comparable levels of economic complexity. 

As we have shown in Section 3, this is precisely what allows the second eigenvector of (10) to 

correctly rank countries by their complexity. When applied to an appropriate country-country 

similarity matrix, this will also be true with stochastic T i
s and zeros at the exporter-product 

level. We show this next. 

5 A Structural Ranking of Economic Complexity 

In this section, we describe how we can rank countries by their economic complexity in a world 

as described by our model. We begin with re-considering the measure originally proposed 

in Hidalgo and Hausmann (2009); Hausmann et al. (2011). As we will show, this measure 

may fail to correctly rank countries in a world with trade frictions. We then propose an 

alternative measure based on our theoretical model. 

5.1 Economic Complexity Index in a World with Trade Frictions 

As already discussed in Section 2, the ECI starts from a binary country-product matrix 

indicating for each country the products for which it has a Revealed Comparative Advantage 

(RCA) of at least one according to the Balassa (1965) measure. The RCA of country i for 

product s is defined as 

s
i Xˆ

XP 
s
i 

RCAs
i = P ŝ∈S , 

i 
Xî∈I ˆP P 

s
i 

X ̂̂î∈I ŝ∈S 

s 

where Xs 
i are total global sales of product s by country i. According to our model, this 

simplifies to 

(13) P 
 

Xs 

RCAs
i = i , 

wiLiαs 

where the equality follows from balanced trade, which implies that ŝ
ŝ∈S Xi = wiLi, and 

from the fact that the expenditure share of product s is αs . Now suppose that there was free 

trade. Then, for any pair of exporters i and i0 and any pair of products s and s0 we would 

have 

(14) 
0 0 0 0 0 0 

RCAs
i0 /RCAs Xi

s
0 /Xs T s /T si i i0 i = = , 

RCAs
i0 /RCAs Xi

s 
0 /Xs T i

s 
0 /T s 

i i i 

which implies (Costinot et al., 2012, Corollary 1) 

 
xs0 s0 s 0 s 0 

i0j xij T i0 T  ≥ ⇔ ≥ i

xs xs  . s  s 
i0j ij T i0 T i 
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where, for the purpose of our discussions here, we have simplified by assuming that ρsi = 1 

for all i, s. The second equality follows from using free trade in Equation (11) and summing 

over export destinations. Equation (14) shows that in a world without trade frictions, the 

RCA inherits the log-supermodularity of the country-product specific productivities T s
i . In 

principle, this would allow to infer countries’ economic complexities from a country-product 

matrix of RCAs. Yet, this is not necessarily true in a world with trade frictions.19 And 

even in a free-trade world, the ECI may fail to correctly rank countries by their complexity 

because the log-supermodularity of the RCAs is not necessarily preserved when discretizing 

the country-product matrix of RCAs. 

Importantly, however, these potential problems are tied to the way the country-country 

similarity matrix is constructed, and they do not reflect conceptual shortcomings of the ECI. 

That is, we can correctly rank countries by applying Theorem 1 to an alternative similarity 

matrix. To show this, it will be instructive to first consider the case where T s
i and ρsi are 

known, before turning to their estimation in the next section. 

5.2 A Structural Variant of the Economic Complexity Index 

Remember that T s
i is random, that is 

T s
i = s

ĩT �si , 

where T̃ s
i is the fundamental productivity that is governed by the complementarity between a 

country’s economic complexity and a product’s complexity, and where �si is an independently 

s
k

s
i

distributed idiosyncratic source of comparative advantage at the country-product level with 

mean one. This ‘error’ term may imply that a country with low economic complexity has a 

high productivity for a complex product. If anything, we can therefore hope to exploit the 

19This may most easily be seen by means of a stylized example. In particular, consider a world with 
4 countries i < i0 < k < k0 where, as before, these countries are identified by their respective economic 
complexities. Suppose that there is free trade between countries i and i0 and between countries k and k0 , 
but no trade between these pairs of countries. Suppose further that all countries are of equal size, i.e. that 
Ll = L for all l ∈ {i, i0, k, k0}, and that for all sectors s it holds that 

T 0 T 0 
= . 

T s
i T s

k 

In this stylized example we have for all products s 

s 
0 i

and a similarity matrix based on RCAs will not be log-supermodular, i.e. we cannot apply Theorem 1 to 
correctly rank countries. 
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structure imposed on trade flows by the fundamental productivities (and the probabilities of 

positive exports ρsi ). It turns out that we can do so by jointly considering countries’ exports 

across all products. In particular, let us define the country-country similarity matrix A with 

elements " # 

(15) s
i

s
i

X X X 1 1 1 
0 z 0 z T 0 ρ 0 . 0 0 

s
i

s
i

s
i

s
i

h i 
˜ s

i:= E E s
i

s
i

s
i

s
i Aii0 T T T̃ s

i � T̃ 0 �si T̃ s
i ρ z = z = 

S S S 
s∈S s∈S s∈S 

T̃ s s ˜s s
i and ρi are both log-supermodular, by Assumption 2 and 3, respectively. Hence, Ti ρi is 

log-supermodular as well, and A is log-supermodular by Lemma 1. Applying Theorem 1 to 

matrix A as defined in (15) therefore allows to correctly rank countries by their economic 

complexity. We summarize these insights in the following proposition. 

Proposition 1 

Consider matrix A as defined in Equation (15). The eigenvector corresponding to the second 

smallest eigenvalue of the generalized eigenproblem (16) 

Ly = λDy (16) 

correctly ranks countries by their economic complexity up to sign. As before, D denotes the 

diagonal matrix with entries Dii equal to the respective row sum of A, and L := D − A the 

Laplacian matrix of A. 

Proposition 1 presents our structural alternative to the ECI. As previously noted, this al-

ternative uses the exact same eigenvector as the original ECI, but based on a structural 

country-country similarity matrix. In the next section, we implement this alternative and 

compare the ensuing country ranking to the one implied by the original ECI. 

6 Estimated Country Rankings 

In this section, we implement the ranking of economic complexity proposed in Proposition 1. 

Matrix A as defined in Equation (15) is not directly observable from the data. We therefore 

begin with a discussion of the estimation of this matrix. 

6.1 Estimating Matrix A 

Matrix A as defined in Equation (15) can be estimated using a simple two-step estimator. 

In a first step, we can follow Costinot et al. (2012) and estimate the country-product specific 
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productivities Ti 
s using a fixed effects regression for log tradeflows 

ln x s j + δs + υs 
ij = δij + δs i ij , (17) 

where δij , δs s 
j , and δi are importer-exporter, importer-product, and exporter-product fixed 

effects, respectively. In particular, according to our theoretical model log trade-flows satisfy 

ln x sij = δij + δj
s + ln(T i

s ) + υij
s , 

where υs 
ij is an error that captures e.g. idiosyncratic components of variable trade costs and 

is assumed to be orthogonal to the regressors. In such case, we can estimate T s 
i by first 

estimating Equation (17) using OLS and then exponentiating the estimated country-product 

fixed effects 

T s,OLS δs,OLS ˆ
i = exp(ˆi ). (18) 

As noted in Costinot et al. (2012), this allows estimating the Ti 
s up to normalization by some 

reference country and some reference product, i.e. it allows estimating 

T s s 
i /T i 

ˆ

s T ̂s /T ̂ˆ
i i 

for some reference country î and some reference product ŝ. We will further discuss this 

normalization in Section 6.3. Importantly, the exact choice of this normalization does not 

matter for our asymptotic ability to rank countries based on our estimated matrix A. 

In our implementation of the country ranking below, we will use the same data as the one 

used for computation of the original ECI. That is, we start from bilateral trade flows at the 

4-digit HS level, and include 127 countries in our sample. This dataset includes many zeros. 

In our theoretical set-up, we have introduced zeros at the country-product level, which are 

systematically related to a country’s economic complexity and a product’s complexity in the 

same way as  ˜the fundamental productivities T s 
i . In addition, there are zeros at the bilateral-

product level. The OLS-estimate then hinges on the assumption that υs 
ij is orthogonal to the 

regressors also when conditioning on xs 
ij > 0. 

As an alternative, we can follow Silva and Tenreyro (2006) and estimate � � 
x sij = exp j + δs + υ̃s δij + δs i ij (19) 

using Poisson Pseudo Maximum Likelihood (PPML), which allows for zero trade flows at the 
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� � 
bilateral product level.20 Under the assumption that E υ̃s s 

ij|δij , δj , δs 
i = 0, T s 

i  can then again 

be estimated as 

T s,P P ML δs,P P ML ˆ
i = exp(ˆi ). 

We use both the OLS and the PPML estimator. As we will show in the next section and 

in Online Appendix D, the country rankings are very robust to using either of them, with— 

ceteris paribus—rank correlations between the two implied rankings of around 0.99 or higher 

across a broad set of robustness checks. 

Equipped with our estimated T̂ s 
i , we can in a second step estimate matrix A using its sample 

analogue. In particular, we can estimate element Aii0 as X 1 ˆ s T ̂s s T ̂s Aii0 = z i i z i0 i0 , S 
s∈S 

where zs 
i is a binary variable that takes on value of one if country i is exporting product 

s at all (i.e. if we were able to estimate T s 
i ) and zero otherwise. Applying Kolmogorov’s 

strong law of large numbers (Sen and Singer, 1993, Theorem 2.3.10), it follows ˆthat Aii0 is a 

consistent estimator of A given that our first step regressions are consistent.21 
ii0 

6.2 Data 

To estimate economic complexity, we use data on bilateral trade flows at the product level as 

provided by the Atlas of Economic Complexity.22 This data covers more than 200 countries 

and is available for several years at the 4-digit HS classification level (1239 products). In our 

baseline specification, we use data for year 2016. From this data, we exclude all importers 

and exporters that are not part of the list of 127 countries included in the country rankings 

20As noted in Hanson et al. (2015), when using PPML we can interpret the exporter product fixed effects 
as technologies at the country-product level in the Eaton et al. (2012) model. This model explicitly allows 
for zeros in international trade by considering a discrete number of random productivity draws by country 
(and product). It gives rise to a gravity equation in expected trade shares that can be estimated using a 
Multinomial Pseudo Maximum Likelihood Estimator (Eaton et al., 2012). With destination fixed effects, 
this estimator is equivalent to the Poisson Pseudo Maximum Likelihood Estimator (Sotelo, 2019). We do 
not have data on home shares and therefore estimate the gravity equation using levels. As noted by Sotelo 
(2019), using levels is also consistent with the Eaton et al. (2012) model, and it is asymptotically equivalent 
to using trade shares, with the estimators differing only in the way observations are weighted. 

21This follows  ˆfrom rewriting Aii0 as X X h � �i 1 1 ˆ  s  s  s  s   s  s  ̂s ˆ[z  s  Aii0 = s s 

S i zi0 Ti Ti0 ] + zi zi0 Ti Ti0 − T T 
S i i0 

s∈S s∈S 

and from our Assumption that zs s 
i and T i are independently distributed across i and s. 

22The data was downloaded from http://www.atlas.cid.harvard.edu in March 2019. 
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available on http://www.atlas.cid.harvard.edu.23 To reduce noise, we then set to 0 export 

values of less than USD 1000 at the bilateral-product level, and drop countries’ exports of a 

given product if they are not shipped to at least 3 destinations in that year (after dropping 

export values of less than USD 1000). We provide robustness checks with regards to the 

choice of the year and the data cleaning thresholds in Online Appendix D. 

6.3 Rankings 

To derive our country ranking of economic complexity, we first estimate Equation (17) by 

OLS and Equation (19) by PPML, respectively. To do so, we use the Stata reghdfe (Correia, 

2017) and ppmlhdfe command (Correia et al., 2019a,b), respectively. As discussed above, this 

allows estimating the T s
i up to a scaling factor for each country and product. We normalize 

the estimated exporter-product fixed effects such that for every country i and every product 

s it holds 

s
i

X 
δˆ = 0 

ŝ∈Si X 
i
δˆ
s = 0 . 

î∈Is 

(20a) 

(20b) 

where Is denotes the set of countries that are exporting product s and Si denotes the set 
of products that country i exports. Importantly, the exact choice of the normalization will 

not matter for our asymptotic ability to rank countries by their economic complexity, which, 

remember, relies solely on the log-supermodularity of T s
i (and ρsi ), and is therefore invariant 

to the normalization. We choose normalization (20) to balance countries and products and 

to avoid that normalized productivities scale with the random T s
i in one reference country 

and product. We provide robustness checks with regards to the normalization in Online 

Appendix D. 

s
îTo derive our estimated T , we exponentiate the normalized exporter-product fixed effects, 

and then take their square root, because our country-country similarity matrix is based on a 

23The list of countries was downloaded in March 2019 and may be seen from Table C.1. To come up with 
this list, the Center for International Development at Harvard University starts from the list of countries 
included in the UN Comtrade database and then eliminates countries with at least one of the following: (i) 
population of less than 1m; (ii) average exports over the preceding three years of less than USD 1bn; (iii) 
unsatisfactory data quality due to e.g. failure of disclosure or war. 
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X 1 
Âii0 = 

S 
s∈S 

z si T̂
s
i

s z 0 i T̂ 0 , s
i

ˆquadratic form.24 Finally, the estimated T s are highly skewed to the right.25 
i To avoid that 

our country rankings are heavily influenced by outliers, we therefore censor our estimated 

T̂ s
i at the top. In our baseline specification, we set all values above the 95th percentile equal 

to the value at the 95th percentile,  ˆtreating missing T s
i as zeros. We vary this threshold in 

Online Appendix D and show that the implied country rankings are similar across different 

choices for the threshold. 

We   ˆuse the estimated T s
i to compute the country-country similarity matrix Â with element 

where zsi is as previously defined. Using this estimated similarity matrix in the generalized 

eigenproblem (16), eventually allows to derive our alternative measure of economic complexity 

as the eigenvector corresponding to the second smallest eigenvalue, which following Hausmann 

et al. (2011) we then normalize to have mean zero and standard-deviation one. To determine 

the order of the ranking, we choose Japan to be ranked at the top, which implies that 

industrialized countries are ranked high. 

Table 2 shows the original Economic Complexity Index along with the implied ranking for the 

top 15 and bottom 15 countries in 2016, and contrasts these with the normalized eigenvectors 

and implied rankings derived from our PPML and our OLS estimator, respectively. The full 

ranking for our list of 127 countries is provided in Appendix C. 

The country rankings are surprisingly similar across the three different estimators. The 

rank correlation between the different rankings is 0.96 or even higher, as shown in Table 3. 

Interestingly, if anything, our alternative estimators tend to rank Continental European EU 

member states higher when compared to the original ECI (see AUT, CZE, SVN, FRA), 

and countries like SGP, GBR, USA, IRL, ISR lower. This pattern is actually consistent 

with what one might have expected based on our economic theory: Continental European 

countries are exposed to relatively intense competition from other complex economies which, 

in turn, makes exporting of the complex products more demanding for them. As opposed to 

the RCA, our structural estimator can account for such differences in the trade environment. 

Still, it is remarkable how similar overall our structural alternatives are to the original ECI, 

24Note that taking the square-root will again not impact the log-supermodularity of T̂ s
i . It will, however, 

imply that two countries that share two products and both have productivity T in both products have the 
same similarity as two countries that also share two products and both have productivity T +δ in one product 
and T − δ in the other product. We provide a robustness check with regards to this normalization in Online 
Appendix D. 

25 ˆThe skewness of our estimates T s
i is 22.6 when estimated using OLS and 37.3 when using PPML. 
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Table 2: Country Rankings of Economic Complexity 

Country ECI ECIrank PPML PPMLrank OLS OLSrank 

JPN 2.08 1 1.49 1 1.42 1 
CHE 1.99 2 1.27 4 1.20 3 
DEU 1.84 3 1.32 3 1.19 4 
KOR 1.74 4 1.35 2 1.26 2 
SGP 1.72 5 1.11 15 0.96 20 
GBR 1.59 6 1.14 9 1.03 11 
SWE 1.58 7 1.19 7 1.13 8 
AUT 1.53 8 1.20 6 1.14 7 
CZE 1.52 9 1.21 5 1.16 6 
USA 1.48 10 1.11 14 1.01 13 
FIN 1.46 11 1.18 8 1.16 5 
IRL 1.38 12 0.95 22 1.01 14 
ISR 1.37 13 0.94 23 0.92 25 
SVN 1.36 14 1.12 13 1.11 9 
FRA 1.31 15 1.14 11 1.00 15 
. . . . . . . . . . . . . . . . . . . . . 
TZA -1.30 113 -1.32 112 -1.25 111 
MDG -1.31 114 -1.24 110 -1.22 107 
LAO -1.35 115 -1.59 120 -1.67 121 
LBR -1.38 116 -1.10 105 -0.73 97 
COG -1.38 117 -1.33 113 -1.51 118 
TJK -1.44 118 -1.87 122 -2.23 122 
MWI -1.45 119 -2.39 124 -2.49 125 
MRT -1.51 120 -1.67 121 -1.27 112 
CMR -1.51 121 -1.02 103 -0.96 102 
YEM -1.60 122 -2.90 127 -3.18 127 
SDN -1.66 123 -2.83 126 -3.08 126 
CIV -1.67 124 -1.47 117 -1.38 116 
NGA -1.78 125 -1.14 107 -1.13 106 
PNG -1.92 126 -2.20 123 -2.30 124 
GIN -2.10 127 -2.42 125 -2.28 123 

This table shows country rankings of economic complexity for the year 2016 using trade data at the HS4d 
classification level. Rankings are shown for the top 15 and bottom 15 countries according to the original 
Economic Complexity Index. ECI refers to the original Economic Complexity Index, PPML (OLS) to the 
normalized eigenvector using PPML (OLS) in the first-step regression. 

given that, remember, the original ECI starts from a binary country-product matrix that 

indicates for each country the set of products for which it has an RCA of at least 1. 
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Table 3: Rank Correlations Between Different Country Rankings 

ECI PPML OLS 

ECI 
PPML 
OLS 

1.00 0.97 
1.00 

0.96 
1.00 
1.00 

This table shows rank correlations between the different rankings of economic complexity for the year 2016 
using trade data at the HS4d classification level. ECI refers to the original Economic Complexity Index, 
PPML (OLS) to the alternative ranking using PPML (OLS) in the first-step regression. 

7 Ranking Products by their Complexity 

As already noted in the original paper by Hidalgo and Hausmann (2009); Hausmann et al. 

(2011), the same logic used to rank countries according to their economic complexity can 

also be used to rank products according to their complexity. In particular, our economic 

theory implies that, on balance, products of similar levels of complexity should be inten-

sively exported by similar sets of countries. Indeed, the same reasoning as applied to our 

country-country similarity matrix A implies that the product-product similarity matrix B 

with elements " # 

(21) 
X X 1 s s 1 0 0 0 0 

Bss0 := E T i
s z i T i

s z i = T ̃i
s ρsi T ̃i

s ρsi I I 
i∈I i∈I 

is log-supermodular as well. Hence, the eigenvector corresponding to the second smallest 

eigenvalue of 

LBy = λDBy 

correctly ranks products by their complexity. Analogous to the above, DB denotes the 

diagonal matrix with entries Dss equal to the respective row sum of B, and LB := DB − B 

the Laplacian matrix of B. 

To derive our product ranking, we aggregate trade data to the 2-digit HS level, because we 

have 127 countries in our sample based on which to evaluate the similarities of products. 

We then follow the exact same procedure as outlined in Sections 6.2 and 6.3, with matrix 

B replacing matrix A. To determine the order of the ranking, we require ‘Nuclear reactors, 

boilers, machinery and mechanical appliances’ (84) to be ranked high. 

The different rankings for the 15 most and least complex products according to the origi-

nal Product Complexity Index (PCI) are shown in Table 4. The full ranking of products is 

provided in Appendix C. According to our structural ranking using OLS in the first step, 
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Table 4: Product Rankings of Complexity 

Product PCI PCIrank PPML PPMLrank OLS OLSrank 

37 2.37 1 1.83 2 1.53 3 
82 2.01 2 0.66 29 1.01 17 
84 1.89 3 0.64 30 1.75 1 
92 1.72 4 0.62 32 0.53 35 
59 1.46 5 1.64 4 1.33 7 
87 1.41 6 0.78 23 1.42 5 
95 1.37 7 1.11 10 1.13 13 
90 1.31 8 0.76 24 1.50 4 
30 1.23 9 0.79 22 0.97 19 
86 1.19 10 0.59 34 0.42 38 
83 1.18 11 0.96 15 1.21 10 
73 1.13 12 0.20 48 1.22 9 
94 1.06 13 0.82 20 1.10 15 
38 1.05 14 0.32 43 0.92 21 
32 1.01 15 0.64 31 0.64 30 
. . . . . . . . . . . . . . . . . . . . . 
28 -1.14 83 -0.64 69 -0.16 59 
67 -1.16 84 0.43 38 -0.47 67 
52 -1.17 85 -1.21 82 -1.31 83 
46 -1.25 86 0.15 52 -0.75 71 
25 -1.29 87 -1.04 78 -0.81 74 
8 -1.30 88 -1.84 95 -1.66 91 
74 -1.32 89 -1.42 84 -1.08 79 
15 -1.34 90 -1.08 79 -1.22 82 
75 -1.35 91 0.97 14 1.13 12 
9 -1.36 92 -1.73 93 -1.80 95 
12 -1.38 93 -1.76 94 -1.88 96 
31 -1.55 94 -0.36 64 -0.41 66 
71 -1.87 95 -1.50 88 -0.32 62 
26 -2.40 96 -2.27 97 -2.14 97 
27 -2.94 97 -1.87 96 -1.19 80 

This table shows rankings of product complexity for the year 2016 using trade data at the HS4d classification 
level. Rankings are shown for the top 15 and bottom 15 products according to the original Product Complexity 
Index. PCI refers to the original Product Complexity Index, PPML (OLS) to the normalized eigenvector 
using PPML (OLS) in the first-step regression. 

the three most complex products are: ‘Nuclear reactors, boilers, machinery and mechanical 

appliances’ (84), ‘Electrical machinery and equipment and parts thereof’ (85), and ‘Photo-

graphic or cinematographic goods’ (37). The three least complex products are: ‘Ores, slag, 
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Table 5: Rank Correlations Between Different Product Rankings 

PCI PPML OLS 

PCI 
PPML 
OLS 

1.00 0.72 
1.00 

0.84 
0.84 
1.00 

This table shows rank correlations between the different rankings of product complexity for the year 2016 
using trade data at the HS4d classification level. PCI refers to the original Product Complexity Index, PPML 
(OLS) to the alternative ranking using PPML (OLS) in the first-step regression. 

and ash’ (26), ‘Oil seeds and oleaginous fruits’ (12), and ‘Coffee, tea, mate and spices’ (09). 

The product rankings are somewhat less robust when compared to the country rankings (see 

Table 5 and the robustness checks in Online Appendix D). For instance, ‘Musical instru-

ments, parts and accessories of such articles’ (92) are ranked 4th by the original PCI, but 35th 

according to our structural alternative using OLS in the first step. Given that we use 127 

countries to evaluate the similarities of 97 products, this may not come as a surprise. Still, 

the product rankings capture important aspects of product complexity, and they may serve 

as an alternative to proxies previously used in the literature (e.g. Levchenko 2007; Costinot 

2009b; Schetter 2019). 

8 Conclusion 

In this paper, we proposed a structural variant of the Economic Complexity Index (Hidalgo 

and Hausmann, 2009; Hausmann et al., 2011) and showed that it correctly ranks countries 

according to their deep underlying economic strength. This ranking is rooted in comparative 

as opposed to absolute advantages, i.e. it is not necessarily reflected in countries’ GDP per 

capita. Our work may therefore allow for a novel perspective on the development process of 

countries, disentangling changes in incomes from progress in the deep underlying productive 

capabilities of an economy. 

While our main focus was on ranking countries—and products, for that matter—by their 

complexity, along the way, we developed a general theoretical framework for ranking nodes in 

a weighted (bipartite) graph according to some unobservable characteristics. This framework 

may prove useful in other contexts where our main assumption of log-supermodularity is 

naturally satisfied. For example, we may postulate that talented scientists are systematically 

more successful at publishing in prestigious journals, or that ‘left-wing’ politicians have a 
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systematically higher probability of accepting ‘left-wing’ policies. If so, our work can readily 

be applied to rank politicians according to their ideological orientation or academic journals 

according to their prestige. 

Appendix 

A Proofs 

A.1 Proof of Lemma 1 

We need to show that for every quadruple of countries (i, i0, k, k0) such that i < i0 and k < k0 

it holds 

Aik · Ai0k0 > Aik0 · Ai0k. 

This follows from the following chain of (in)equalities: " # " # 

(A.1) 

X X 1 1 
Aik0 · Ai0k = Xi

s Xk
s 
0 · Xi

s 
0 Xs 

k S S 
s∈S s∈S " # " # X Xs Xk

s 
0 

X 1 1 
Xi

s 
0 Xs Xi

s 
0 Xs = i · 

Xs Xs k k S S i0 k s∈S s∈S " # " # X Xs X Xs 1 1 
<

X
i
s Xi

s 
0 Xk

s · 
X

k
s 

0 
Xi

s 
0 Xk

s 

S S i0 k s∈S s∈S " # " # X X 1 1 
= Xs Xs · Xi

s 
0 Xk

s 
0 i k S S 

s∈S s∈S 

= Aik · Ai0k0 . 

         Xs

The inequality follows from noting first that XsXs i 
i0 k > 0 and second that s is decreasing in 

X 0 i
s

s while 
X 0 k

s is increasing in s by Assumption 1, and from then applying Chebyshev’s Sum 
Xk 

Inequality (Hardy et al., 1934, Theorem 43).26 Inequality (A.1) shows the desired result. 

Xs s

and 
X26Note that 0 i k

s s are both non-constant, i.e. the inequality is indeed strict. X 0 X
i k 
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A.2 Proof of Theorem 1 

We show the desired result by means of two lemmata. In particular, recall from (6) that 

the eigenvector corresponding to the second smallest eigenvalue of (10) solves a constrained 

minimization problem. Our strategy is therefore to show first that if we augment minimiza-

tion problem (6) by an additional constraint y ∈ A, where A is a closed set, the optimal 

solution to the augmented minimization problem is either the second eigenvector of (10), or 

it must be on the boundary of A (Lemma 2). Second, we find a closed set A such that the 

optimal solution to the augmented minimization problem is both strictly monotonic and in 

the interior of A (Lemma 3). The desired result then follows. 

Throughout, we will use λk to denote the kth smallest eigenvalue of the generalized eigen-

problem (10), and uk to denote the corresponding eigenvector which we will henceforth refer 

to as the kth eigenvector of (10). 

Lemma 2 � 
For every closed set A such that set Y := y ∈ RI : yT Dy = 1, yT D1 = 0, y ∈ A is nonempty, 

vector y ∗ defined as 

y ∗ := arg min y T Ly 

s.t. y ∈ Y , 

is either u2, or it is on the boundary of set A. 

Proof: 

Substituting z := D1/2y, we get 

y ∗ = D−1/2 z ∗ , 

where 

∗ T ˜z := arg min z Lz, 
T z z=1,zT D1/21=0,D−1/2z∈A 

(A.2) 

with L :=D LD . Let us then consider this problem instead.

L̃ is symmetric. Let vk be the eigenvector corresponding to λk, the kth smallest eigenvalue 

of L̃. Note that λk is the exact same eigenvalue as previously defined and that v 1/2
k = D uk. 

It follows that v = D1/21.27  
1 Hence, constraint zT D1/21 = 0 requires z to be orthogonal to 

the first eigenvector of L̃. 

27Note that u1 = 1 is the eigenvector corresponding to the smallest eigenvalue λ1 = 0 of the generalized 
eigenproblem (10). 

  ˜  −1/2 −1/2         
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Now, suppose that u2 ∈ A. The Courant-Fischer Minimax Theorem then immediately 

implies that z ∗ = v and, hence, y ∗ 
2 = u2 (Shi and Malik 2000; Golub and van Loan 2013, 

Theorem 8.1.2), which proves our desired result for the case of u2 ∈ A. 

To show the desired result for the case of u2 ∈/ A, we proceed by contradiction. Using the 

eigendecomposition of L̃, we get 

T ˜z Lz = z T V ΛV T z = (V T z)T ΛV T z, 

where Λ is a diagonal matrix with element Λkk = λk and V is the matrix whose kth column is 

the eigenvector of L̃ corresponding to λk, normalized to have length 1. Substituting r := V T z 

 

therefore yields that 

y ∗ = D−1/2V r ∗ , 

where28 

r ∗ := arg min r TΛr. 
rT r=1,rT e1=0,D−1/2V r∈A 

  (A.3) 

Now, suppose by way of contradiction that y∗ = D−1/2V r∗ ∈ Ao, where Ao denotes the

interior of set A. On the one hand, we have r ∗ ∈ span ({e2, e3, ..., en}). On the other hand, 

u2 ∈/ A and, hence, r ∗ , e2, by assumption. Hence, there exists an r̃ with 

                

r̃j := 

⎪⎨ ⎪⎩ 

r j 
∗ + dr2 if j = 2 
∗ r j + drk 

∗ 

if j = k 

r j 

for some k > 2, such that 

(r̃k)
2 < (r k

∗ )2 , 

otherwise 

(r̃2)
2 + (r̃k)

2 = (r 2
∗ )2 + (r k

∗ )2 , 

⎧ 

28To see this, note that using r := V T z allows re-writing the objective in (A.2) as 

r T Λr. 

Moreover, the orthogonality of V implies that z = V r and, hence, 

y = −1/2 D z = D−1/2V r 

T  T    T z z = (V r) V r = r V T T V r = r r, 

where the last equality in the second line follows again from the fact that V is orthogonal. Lastly, using 

z T D1/2  T 1/2      1 = (V r) D 1 = r TV TD1/21 = rT e1, 

where ei denotes the ith unit vector, implies that y ∗ = D−1/2V r∗ with r ∗ as defined in (A.3). In the above, 
the last equality follows from the fact that v := D1/2

1 1 is the first eigenvector of L̃. 
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and 

y ̃:= D−1/2V r ̃∈ A. � 
Clearly, r̃ ∈ r ∈ RI : rT r = 1, rT e = 0, D−1/2

1 V r ∈ A . Moreover, λi < λj for all i < j, 

implies that XI I

 T    2 r̃ ˜ <  ∗  Λr̃ = λ r λ r 2 = r ∗T ∗ 
k k k k Λr , 

k=1 k=1 

 X
a contradiction to r ∗—and, hence, y ∗—being optimal.29 This concludes the proof of the 

lemma. 

Lemma 3 

The optimal solution to minimization problem 

arg min y T Ly 

s.t. y ∈ Y , 	� 
where Y := y ∈ RI : yT Dy = 1, yT D1 = 0, yi ≤ yj ∀i ≤ j , is such that yi < yj for all 

i < j. 

Proof: 

Note first that the set Y is compact.30 Hence, the continuous function yT Ly attains a 

minimum on the set Y by the Extreme Value Theorem. It remains to be shown that this 

minimum is such that yi < yj for all i < j. To do so, we proceed by contradiction. 

Let y ∗ be the solution to the above minimization problem and suppose by way of contradiction � 	
that y ∗ ∈/ Ao, where A := y ∈ RI : yi ≤ yj ∀i ≤ j . Then, there exists a set of m ≥ 2 

consecutive numbers {i, ..., i + m − 1} ⊂ {1, ..., I} such that y ∗ 
k = y ∗ 

l ∀ k, l ∈ {i, ..., i + m − 1}. 
Moreover, y ∗ 

i−1 < y ∗ 
i (if i > 1) and, similarly, y ∗ ∗ 

i+m−1 < yi +m (if i + m − 1 < I), where it 

cannot be that both i = 1 and i + m − 1 = I, for if not, y ∗ ∈/ Y . Let j := i + m − 1 and 

consider an alternative vector ỹ satisfying (
y ∗ if k = i, j k ỹk = 
y k 
∗ + dyk if k = i, j 

6

29Strictly speaking, this assumes that λ2 is unique. With multiplicity larger than one of this eigenvalue, 
our arguments imply that y ∗ must either be a linear combination of the eigenvectors corresponding to the 
second smallest eigenvalue, or it must be on the boundary of set A. Lemma 3 then implies that all of the 
eigenvectors corresponding to the second smallest eigenvalue must be monotonic—see Footnote 32. 

30The definition of Y immediately implies that it is closed. The constraint yT Dy = 1 implies that 
 y 2 ≤ 1

i for all i ∈ I which proves that Y is bounded. Dii 

34 

2 

http:compact.30
http:optimal.29


with dyi, dyj small and where 

Diidyi = −Djj dyj. (A.4) 

Clearly, ỹT D1 = 0. Moreover, totally differentiating f(y) := yT Ly and using dyk = 0 for 

k = i, j, we get 6 X X X X 
df(y) = (yi − yk)Aikdyi − (yk − yi)Akidyi + (yj − yk)Ajkdyj − (yk − yj )Akj dyj 

k∈I k∈I k∈I k∈I " # " # X X 
= 2 (yi − yk)Aikdyi + 2 (yj − yk)Ajkdyj , 

k∈I k∈I 

where the second equality follows from the symmetry of A. Using (A.4) and the fact that 

y ∗ 
i = y ∗ 

j this implies " � �# 

(A.5) 

� � 
D

X
∗ ∗ Djj 

df(y ∗ ) = 2 (y j − y k) Ajk − Aik dyj " k∈I 
Dii # � � X Aik Djj 

= 2 (y j 
∗ − y k

∗ ) 1 − Ajk dyj . 
Ajk Dii 

k∈I 

Now, (y ∗j − y ∗ 
k) is decreasing in k by the definition of Y , and 1 − Aik jj increasing by the 

Ajk Dii 

log-supermodularity of A and the fact that j > i. Moreover, Ajk > 0 for all j, k. Chebyshev’s 

Sum Inequality (Hardy et al., 1934, Theorem 43) therefore implies that h � � i 

(A.6) 

� � 
The inequality in (A.6) is strict because both (y ∗j − y ∗ 

k) and   Aik D1− jj are non-constant.31 
Ajk Dii 

Equation (A.5) and Inequality (A.6) imply that for dyj > 0 but small, moving from y ∗ to ỹ 

strictly decreases the objective function. ỹ is, however, not feasible as it violates constraint 

31Recall that we cannot have y ∗ ∗ 
j = yk  for all k by the definition of set Y. 
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�P P" # � � � ∗ ∗ 1 − Aik Djj X (y − y )Ajk · Ajk k∈I k∈I ∗ ∗ Aik Djj j k Ajk Dii 
(y j − y k) 1 − Ajk < P 

Ajk Dii k∈I Ajk 
k∈I 

= 0, 

where the equality follows from the fact that " # � � � � X X Aik Djj Ajk Aik 
1 − Ajk = Djj − = 0. 

Ajk Dii Djj Dii 
k∈I k∈I 
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yT Dy = 1. In particular, X 
y ̃T Dy ̃= y ̃k

2 Dkk 

k∈I 

∗T ∗ 2 ∗ 2= y Dy ∗ + 2y i dyiDii + dyi Dii + 2y j dyj Djj + dyj Djj 

∗T 2 2= y Dy ∗ + dyi Dii + dyj Djj 

> 1, 

where the last equality follows from using Equation (A.4) in combination with y ∗ 
i = y ∗ 

j , and 

the inequality follows from y ∗T Dy∗ = 1. It follows, however, that we can scale ỹ by some 

factor β ∈ (0, 1) such that β ỹT Dβ ỹ = 1. Clearly, the vector β ỹ ∈ Y . Moreover, 

β y ̃T Lβ y ̃= β2 y ̃T Ly ̃< y ̃T Ly ̃< y ∗T Ly ∗ , (A.7) 

where the first inequality follows from Equation (7) in combination with the facts that A is 

     positive valued and that ỹ is non-constant. Inequality (A.7) is a contradiction to y ∗TLy∗ 

being minimal. This concludes the proof of the lemma. 

2 

Lemmata 2 and 3 jointly imply Theorem 1. In particular, according to Lemma 3 

y ∗ := arg min y T Ly 
yT Dy=1,yT D1=0,yi≤yj ∀i≤j � 

is in the interior of set A := y ∈ RI : yi ≤ yj ∀i ≤ j . On the one hand, this implies that 

y ∗ must be strictly monotonic by the definition of set A. On the other hand, the fact that 

y ∗ is in the interior of set A implies that it must be the eigenvector corresponding to the 

second smallest eigenvalue of (10), by Lemma 2.32 

2 

B Details on Numerical Simulations of Section 3.3 

In this appendix, we provide details and further results for the Monte Carlo simulation of 

Section 3.3. 

32Note that Inequality (A.7) is strict, i.e. moving from the boundary of set A to the interior strictly 
decreases the objective function. It follows that in case of multiplicity of λ2, all associated eigenvectors must 
be strictly monotonic, for if not, moving in the direction of the non-monotonic eigenvector would allow to 
approach the boundary of set A without changing the objective function. 
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As discussed in Section 3.3, the figures shown in Table 1 are based on 80k randomly gener-

ated matrices A—10k for each column. To generate these matrices, we generate symmetric 

supermodular matrices Ã, add noise to these matrices, and finally exponentiate them ele-

mentwise. 

To generate the supermodular matrices Ã, we make use of the fact that local (log-)supermodularity 

is necessary and sufficient for a matrix to be (log-) supermodular, that is for every 2 by 2 

block of A with elements in contiguous rows and columns, i0 > i and k0 > k, respectively, we 

must have 

Aik · Ai0k0 > Ai0k · Aik0 . 

˜Hence, to randomly draw a positive supermodular and symmetric I ×I matrix A, we proceed 

as follows: 

1. Randomly draw an I × I matrix R with elements Rij iid from a uniform distribution 

on [0, 1]. 

2. Randomly draw an index i from the discrete uniform distribution with support i ∈ 

{1, 2, ..., I}. 

3.  ˜ ˜Set Ai,: = Ri,: ∗ 100 and A:,i = RT 33 
i,: ∗ 100.

4. Fill Ã ˜ ˜by choosing Al,k = Ak,l as follows: 

   ˜  ˜ ˜ ˜ ˜ ˜(a) Set element Ak,l = Ak,l−1 + Ak+1,l − Ak+1,l−1 − |Rk,l| and element Al,k = Ak,l for 

k = i − 1, i − 2, ..., 1 and l = i + 1, i + 2, ..., I. 

   ˜  ˜  ˜ ˜ ˜ ˜(b) Set element Ak,l = Ak+1,l + Ak,l+1 − Ak+1,l+1 + |Rk,l| and element Al,k = Ak,l for 

k = i − 1, i − 2, ..., 1 and l = i − 1, i − 2, ..., k. 

˜ ˜ ˜ ˜(c) Set element Ak,l = Ak,l−1 + Ak−1,l − Ak−1,l−1 + | ˜ ˜Rk,l| and element Al,k = Ak,l for 

k = i + 1, i + 2, ..., I and l = k, k + 1, ..., I. 

This procedure results in a matrix that is positive, symmetric and supermodular. We add to 

this matrix another I ×I symmetric random matrix S, drawn iid from a uniform distribution 

with lower bound 0 and upper bound as shown in the respective column-header in Table 1. 

33We scale these elements to increase the variance of elements in this initial row / column vis-à-vis the 
variance of shocks that govern the log-supermodularity of the matrix (see next step). We do this to emphasize 
that log-supermodularity is a ‘diff-in-diff’ condition and not concerned with absolute sizes of elements in 
different rows and columns. Note that simulation results are virtually the same when using a scaling factor 
of 1. 
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Table 6: Robustness with 50 × 50 Matrices 

0.0 

Upper bound of uniform distribution 

0.3 1.0 3.0 10.0 50.0 100.0 500.0 

Avg rank correlation 1.000 
Avg share rows/columns correct 1.000 
Share of iterations all correct 1.000 

1.000 
1.000 
1.000 

1.000 
1.000 
1.000 

1.000 
1.000 
1.000 

1.000 
1.000 
1.000 

1.000 
0.950 
0.282 

0.999 
0.698 
0.000 

0.979 
0.154 
0.000 

Avg share LSM 1.000 0.929 0.773 0.607 0.533 0.507 0.503 0.501 

This table shows summarizing statistics for our 80k randomly generated 50 × 50 matrices—10k for each 
column. All else is the same as described in the footer of Table 1. 

Table 7: Robustness with 10 × 10 Matrices 

0.0 

Upper bound of uniform distribution 

0.3 1.0 3.0 10.0 50.0 100.0 500.0 

Avg rank correlation 1.000 
Avg share rows/columns correct 1.000 
Share of iterations all correct 1.000 

1.000 
1.000 
1.000 

1.000 
1.000 
1.000 

0.999 
0.987 
0.939 

0.960 
0.611 
0.090 

0.435 
0.168 
0.000 

0.301 
0.138 
0.000 

0.219 
0.122 
0.000 

Avg share LSM 1.000 0.926 0.766 0.603 0.532 0.507 0.504 0.500 

This table shows summarizing statistics for our 80k randomly generated 10 × 10 matrices—10k for each 
column. All else is the same as described in the footer of Table 1. 

We then normalize all elements in this matrix by 1/5 of the largest element.34 Finally, we 

exponentiate this matrix element-by-element to get the positive and symmetric matrix A. 

For each of these matrices, we then compare the ranking of rows and columns implied by the 

eigenvector corresponding to the second smallest eigenvalue of (10) to the ‘true’ ranking of 
˜the underlying log-supermodular matrix A, i.e. to a vector with elements [1, 2, ..., I], where 

I is the size of the matrix. To determine the sign of the eigenvector, we require that the 

sum of its first three elements must be positive, analogous to some outside information that 

we might use in practical applications, e.g. the requirements that industrialized countries be 

ranked high in case of our complexity ranking. 

Summarizing statistics for these simulations are provided in Table 1. The insights from this 

table do not hinge on the assumption of a uniform distribution, and the main message is the 

34We choose this normalization to avoid very large values in our final matrix A that might cause com-
putational problems. Note that this normalization does not affect the generalized eigenvectors (5) of matrix 
A. 
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same when using e.g. normal distributions instead. The ranking is, however, somewhat less 

robust to noise when considering smaller matrices as shown in Tables 6 and 7, respectively. 

Considering our discussion from Section 3.3 this may not come as a surprise. The noise added 

to the log-supermodular matrix has a bigger impact on log-supermodularity of neighboring 

elements than on the log-supermodularity of elements at greater distances. For large enough 

matrices, the second vector exploits this structure at greater distances. For small matrices 

this is not possible. Still, the results in Tables 6 and 7 confirm that the ranking is very robust 

to random noise as long as the size of this noise is not too big relative to the size of matrix 

A. 

C Detailed Rankings 

C.1 Full List of Country Rankings 

Table 8: Country Rankings of Economic Complexity 

Country ECI ECIrank PPML PPMLrank OLS OLSrank 

JPN 2.08 1 1.49 1 1.42 1 
CHE 1.99 2 1.27 4 1.20 3 
DEU 1.84 3 1.32 3 1.19 4 
KOR 1.74 4 1.35 2 1.26 2 
SGP 1.72 5 1.11 15 0.96 20 
GBR 1.59 6 1.14 9 1.03 11 
SWE 1.58 7 1.19 7 1.13 8 
AUT 1.53 8 1.20 6 1.14 7 
CZE 1.52 9 1.21 5 1.16 6 
USA 1.48 10 1.11 14 1.01 13 
FIN 1.46 11 1.18 8 1.16 5 
IRL 1.38 12 0.95 22 1.01 14 
ISR 1.37 13 0.94 23 0.92 25 
SVN 1.36 14 1.12 13 1.11 9 
FRA 1.31 15 1.14 11 1.00 15 
HUN 1.25 16 1.04 17 0.97 19 
BEL 1.20 17 1.14 10 1.07 10 
ITA 1.18 18 1.12 12 0.97 18 
SVK 1.17 19 1.03 18 1.00 16 
DNK 1.12 20 0.94 24 0.94 22 
POL 1.10 21 1.02 19 0.93 23 
NLD 1.09 22 0.97 20 0.89 27 
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Table 8: Country Rankings of Economic Complexity 

Country ECI ECIrank PPML PPMLrank OLS OLSrank 

EST 1.04 23 0.88 29 0.85 30 
CHN 0.99 24 1.09 16 1.02 12 
NOR 0.96 25 0.96 21 0.99 17 
MYS 0.95 26 0.91 27 0.87 29 
MEX 0.91 27 0.73 41 0.72 41 
ROU 0.88 28 0.87 31 0.87 28 
HRV 0.86 29 0.80 35 0.79 35 
HKG 0.85 30 0.93 25 0.95 21 
ESP 0.81 31 0.93 26 0.80 34 
LTU 0.79 32 0.85 32 0.82 32 
CAN 0.78 33 0.88 30 0.93 24 
THA 0.77 34 0.85 33 0.78 36 
BLR 0.77 35 0.74 37 0.75 38 
LVA 0.65 36 0.75 36 0.78 37 
SRB 0.62 37 0.66 46 0.69 44 
PRT 0.60 38 0.81 34 0.81 33 
BGR 0.59 39 0.74 39 0.82 31 
RUS 0.57 40 0.89 28 0.90 26 
PAN 0.55 41 0.55 49 0.43 54 
UKR 0.55 42 0.64 47 0.66 46 
PHL 0.55 43 0.54 50 0.63 48 
BIH 0.54 44 0.44 55 0.40 56 
TUR 0.53 45 0.71 42 0.72 40 
ARE 0.50 46 0.74 40 0.70 43 
IND 0.46 47 0.74 38 0.72 39 
SAU 0.46 48 0.57 48 0.60 50 
ZAF 0.38 49 0.66 45 0.62 49 
LBN 0.37 50 0.17 64 0.24 63 
NZL 0.36 51 0.49 52 0.58 51 
GRC 0.31 52 0.52 51 0.66 47 
CRI 0.26 53 0.28 60 0.23 64 
BRA 0.25 54 0.71 43 0.66 45 
MKD 0.22 55 0.18 63 0.21 65 
SLV 0.20 56 0.08 69 0.15 68 
TUN 0.19 57 0.37 56 0.42 55 
JOR 0.19 58 0.05 71 0.09 71 
COL 0.14 59 0.31 58 0.31 58 
URY 0.14 60 0.04 72 0.04 75 
AUS 0.13 61 0.67 44 0.71 42 
OMN 0.06 62 0.15 67 0.15 69 
KAZ 0.01 63 0.16 66 0.07 74 
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Table 8: Country Rankings of Economic Complexity 

Country ECI ECIrank PPML PPMLrank OLS OLSrank 

EGY 0.00 64 0.13 68 0.30 60 
ARG -0.04 65 0.34 57 0.32 57 
CHL -0.07 66 0.27 61 0.29 61 
VNM -0.10 67 0.47 53 0.58 52 
DOM -0.11 68 -0.10 76 0.00 76 
IDN -0.18 69 0.47 54 0.51 53 
KGZ -0.18 70 -0.66 95 -0.66 95 
MUS -0.19 71 -0.06 74 -0.06 78 
GTM -0.20 72 -0.12 77 -0.00 77 
MDA -0.25 73 -0.13 78 -0.10 81 
QAT -0.26 74 0.21 62 0.30 59 
KWT -0.28 75 0.17 65 0.15 70 
BWA -0.31 76 0.31 59 0.27 62 
GEO -0.35 77 -0.17 81 -0.10 80 
LKA -0.38 78 -0.14 79 0.08 72 
JAM -0.40 79 -0.73 97 -0.81 99 
IRN -0.43 80 0.08 70 0.17 67 
HND -0.45 81 -0.39 87 -0.24 84 
PER -0.45 82 -0.23 83 -0.10 79 
PAK -0.48 83 -0.02 73 0.18 66 
ALB -0.51 84 -0.38 86 -0.34 86 
MNG -0.55 85 -0.45 91 -0.58 94 
NAM -0.56 86 -0.20 82 -0.14 82 
TTO -0.56 87 -0.62 94 -0.50 90 
MAR -0.61 88 -0.07 75 0.08 73 
SEN -0.61 89 -0.74 98 -0.74 98 
PRY -0.62 90 -0.97 101 -0.87 100 
CUB -0.62 91 -1.31 111 -1.29 114 
AZE -0.65 92 -0.43 90 -0.51 91 
KEN -0.66 93 -0.70 96 -0.66 96 
KHM -0.75 94 -0.35 85 -0.35 87 
UZB -0.85 95 -0.96 100 -0.97 103 
BOL -0.85 96 -1.50 119 -1.55 120 
MLI -0.86 97 -0.96 99 -0.98 104 
VEN -0.88 98 -0.33 84 -0.42 88 
ZMB -0.95 99 -1.18 108 -1.25 110 
LBY -0.95 100 -1.07 104 -1.35 115 
DZA -0.97 101 -0.41 88 -0.52 92 
ECU -0.97 102 -0.54 93 -0.42 89 
BGD -1.02 103 -0.43 89 -0.27 85 
NIC -1.02 104 -1.37 115 -1.23 108 
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Table 8: Country Rankings of Economic Complexity 

Country ECI ECIrank PPML PPMLrank OLS OLSrank 

UGA -1.05 105 -1.46 116 -1.41 117 
ETH -1.08 106 -0.99 102 -0.88 101 
TKM -1.08 107 -1.33 114 -1.24 109 
ZWE -1.14 108 -1.49 118 -1.52 119 
AGO -1.22 109 -0.14 80 -0.17 83 
GAB -1.23 110 -0.52 92 -0.57 93 
MOZ -1.27 111 -1.22 109 -1.28 113 
GHA -1.27 112 -1.12 106 -1.05 105 
TZA -1.30 113 -1.32 112 -1.25 111 
MDG -1.31 114 -1.24 110 -1.22 107 
LAO -1.35 115 -1.59 120 -1.67 121 
LBR -1.38 116 -1.10 105 -0.73 97 
COG -1.38 117 -1.33 113 -1.51 118 
TJK -1.44 118 -1.87 122 -2.23 122 
MWI -1.45 119 -2.39 124 -2.49 125 
MRT -1.51 120 -1.67 121 -1.27 112 
CMR -1.51 121 -1.02 103 -0.96 102 
YEM -1.60 122 -2.90 127 -3.18 127 
SDN -1.66 123 -2.83 126 -3.08 126 
CIV -1.67 124 -1.47 117 -1.38 116 
NGA -1.78 125 -1.14 107 -1.13 106 
PNG -1.92 126 -2.20 123 -2.30 124 
GIN -2.10 127 -2.42 125 -2.28 123 

This table shows country rankings of economic complexity for the year 2016 using trade data at the 
HS4d classification level. ECI refers to the original Economic Complexity Index, PPML (OLS) to 
the normalized eigenvector using PPML (OLS) in the first-step regression. 

C.2 Full List of Product Rankings 

Table 9: Product Rankings of Complexity 

Product PCI PCIrank PPML PPMLrank OLS OLSrank 

37 
82 
84 
92 
59 
87 

2.37 
2.01 
1.89 
1.72 
1.46 
1.41 

1 
2 
3 
4 
5 
6 

1.83 
0.66 
0.64 
0.62 
1.64 
0.78 

2 
29 
30 
32 
4 
23 

1.53 
1.01 
1.75 
0.53 
1.33 
1.42 

3 
17 
1 
35 
7 
5 
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Table 9: Product Rankings of Complexity 

Product PCI PCIrank PPML PPMLrank OLS OLSrank 

95 1.37 7 1.11 10 1.13 13 
90 1.31 8 0.76 24 1.50 4 
30 1.23 9 0.79 22 0.97 19 
86 1.19 10 0.59 34 0.42 38 
83 1.18 11 0.96 15 1.21 10 
73 1.13 12 0.20 48 1.22 9 
94 1.06 13 0.82 20 1.10 15 
38 1.05 14 0.32 43 0.92 21 
32 1.01 15 0.64 31 0.64 30 
85 0.96 16 0.79 21 1.71 2 
68 0.95 17 0.49 37 0.55 34 
70 0.93 18 0.31 44 0.71 27 
93 0.86 19 1.54 6 1.39 6 
66 0.84 20 1.94 1 1.31 8 
49 0.83 21 0.17 50 0.44 36 
91 0.83 22 1.01 13 1.05 16 
54 0.82 23 1.22 9 0.90 22 
88 0.78 24 0.15 51 0.30 47 
35 0.77 25 0.90 16 0.62 31 
39 0.77 26 0.11 54 1.11 14 
96 0.70 27 0.90 17 0.73 26 
48 0.63 28 0.38 42 1.01 18 
29 0.62 29 0.57 36 0.96 20 
55 0.58 30 1.10 11 0.69 28 
56 0.55 31 0.58 35 0.40 41 
33 0.55 32 0.13 53 0.41 40 
42 0.53 33 1.01 12 0.60 33 
69 0.51 34 0.68 28 0.75 25 
40 0.50 35 -0.05 59 0.84 23 
34 0.46 36 -0.01 57 0.41 39 
57 0.41 37 0.68 27 0.33 45 
60 0.38 38 1.24 8 0.42 37 
58 0.37 39 0.88 19 0.34 44 
97 0.33 40 -1.17 81 -0.86 76 
45 0.32 41 1.57 5 1.20 11 
72 0.32 42 -0.50 67 0.19 49 
4 0.31 43 -0.33 63 -0.58 68 
21 0.21 44 -0.26 62 0.00 55 
64 0.19 45 0.73 25 0.37 42 
19 0.18 46 -0.14 61 -0.15 58 
43 0.14 47 0.89 18 -0.04 56 
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Table 9: Product Rankings of Complexity 

Product PCI PCIrank PPML PPMLrank OLS OLSrank 

89 0.08 48 0.39 41 0.10 52 
47 0.04 49 0.22 47 -0.27 61 
22 0.02 50 -0.61 68 -0.20 60 
36 -0.02 51 0.31 45 0.32 46 
50 -0.08 52 1.73 3 0.83 24 
99 -0.10 53 -0.91 76 0.60 32 
63 -0.12 54 0.06 55 0.24 48 
51 -0.14 55 0.03 56 -0.37 65 
2 -0.16 56 -0.06 60 -0.63 69 
79 -0.18 57 0.40 40 -0.06 57 
1 -0.20 58 -0.70 70 -1.20 81 
80 -0.20 59 1.28 7 0.69 29 
62 -0.29 60 0.42 39 0.34 43 
76 -0.32 61 -0.82 74 0.02 54 
20 -0.32 62 -0.76 73 -0.84 75 
61 -0.34 63 0.29 46 0.12 51 
11 -0.40 64 -0.37 65 -0.73 70 
81 -0.44 65 0.20 49 0.08 53 
53 -0.49 66 0.59 33 -0.32 63 
6 -0.49 67 -0.85 75 -1.49 86 
5 -0.55 68 -0.74 71 -1.35 84 
65 -0.55 69 0.70 26 0.16 50 
16 -0.60 70 -0.49 66 -0.76 72 
23 -0.60 71 -1.49 87 -1.51 87 
10 -0.61 72 -0.02 58 -0.77 73 
24 -0.63 73 -1.11 80 -1.51 88 
17 -0.79 74 -1.24 83 -1.52 89 
41 -0.93 75 -1.72 92 -1.68 92 
14 -0.95 76 -1.02 77 -1.70 93 
44 -1.01 77 -1.43 85 -0.36 64 
78 -1.01 78 -1.55 89 -1.79 94 
13 -1.04 79 -0.75 72 -1.06 78 
3 -1.08 80 -1.61 90 -1.40 85 
7 -1.11 81 -1.65 91 -1.63 90 
18 -1.11 82 -1.45 86 -1.05 77 
28 -1.14 83 -0.64 69 -0.16 59 
67 -1.16 84 0.43 38 -0.47 67 
52 -1.17 85 -1.21 82 -1.31 83 
46 -1.25 86 0.15 52 -0.75 71 
25 -1.29 87 -1.04 78 -0.81 74 
8 -1.30 88 -1.84 95 -1.66 91 
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Table 9: Product Rankings of Complexity 

Product PCI PCIrank PPML PPMLrank OLS OLSrank 

74 -1.32 89 -1.42 84 -1.08 79 
15 -1.34 90 -1.08 79 -1.22 82 
75 -1.35 91 0.97 14 1.13 12 
9 -1.36 92 -1.73 93 -1.80 95 
12 -1.38 93 -1.76 94 -1.88 96 
31 -1.55 94 -0.36 64 -0.41 66 
71 -1.87 95 -1.50 88 -0.32 62 
26 -2.40 96 -2.27 97 -2.14 97 
27 -2.94 97 -1.87 96 -1.19 80 

This table shows rankings of product complexity for the year 2016 using trade data at the HS2d 
classification level. PCI refers to the original Product Complexity Index, PPML (OLS) to the 
normalized eigenvector using PPML (OLS) in the first-step regression. 
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Online Appendix 

D Robustness of Rankings 

In this part of the appendix, we provide robustness checks for the country rankings of Sec-

tion 6.3 and for the product rankings of Section 7. We will in turn vary our choices of thresh-

olds for data-cleaning, the censoring threshold for outliers, our normalization of exporter-

product fixed effects, and the year. For each of these robustness checks, we provide rank 

correlations for the implied country and product rankings, respectively, across the different 

specifications. Apart from the respective robustness check under consideration, data and 

data cleaning choices are the same as in our baseline specification of Sections 6.2 and 6.3. 

That is, we use bilateral trade data for 127 exporters and importers at the 4-digit HS level 

(2-digit HS level for the case of product rankings) for the year 2016. We drop export values 

of less than USD 1000 at the bilateral-product level, as well as all of a country’s exports of 

a given product if it does not sell this product to at least 3 destinations. We normalize the 

estimated exporter-product fixed effects such that for every country i and every product s it 

holds X 
δŝ = 0 i 

ŝ∈Si X 
δs 
ˆ = 0 , i 

î∈Is 

and take the square root of the exponentiated fixed effects to account for the fact that our 

objective is a quadratic form. We finally censor outliers by setting exporter-product fixed-

effects in the top 5% equal to the value at the 95th percentile. 

Further details on the various robustness checks are provided in the footnotes to the respective 

table. 
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D.1 Robustness of Country Rankings 

Table 10: Robustness of Country Rankings to Minimum Threshold for Number of Export 
Destinations by Exporter-Product 

cut 1 cut 3 cut 5 

ECI PPML OLS ECI PPML OLS ECI PPML OLS 

ECI cut 1 
PPML cut 1 
OLS cut 1 
ECI cut 3 
PPML cut 3 
OLS cut 3 
ECI cut 5 
PPML cut 5 
OLS cut 5 

1.00 0.95 
1.00 

0.95 
0.99 
1.00 

0.99 
0.96 
0.96 
1.00 

0.95 
0.99 
0.99 
0.97 
1.00 

0.95 
0.98 
1.00 
0.96 
1.00 
1.00 

0.97 
0.97 
0.96 
0.99 
0.97 
0.96 
1.00 

0.94 
0.99 
0.99 
0.97 
1.00 
0.99 
0.97 
1.00 

0.94 
0.98 
0.99 
0.96 
0.99 
0.99 
0.96 
1.00 
1.00 

This table shows rank correlations between different rankings of economic complexity. ECI refers to the 
original Economic Complexity Index, PPML (OLS) to the alternative ranking using PPML (OLS) in the 
first-step regression. ‘cut x’ indicates that prior to our first-step regression, we dropped all exporter-product 
observations if the product has not been shipped to at least x destinations. All other specifications are as 
described at the onset of this appendix. 
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Table 11: Robustness of Country Rankings to Minimum Threshold for Tradeflows at the 
Bilateral Product Level 

minx 0 minx 1000 minx 10000 

ECI PPML OLS ECI PPML OLS ECI PPML OLS 

ECI minx 0 
PPML minx 0 
OLS minx 0 
ECI minx 1000 
PPML minx 1000 
OLS minx 1000 
ECI minx 10000 
PPML minx 10000 
OLS minx 10000 

1.00 0.96 
1.00 

0.96 
0.99 
1.00 

1.00 
0.96 
0.96 
1.00 

0.97 
1.00 
0.99 
0.97 
1.00 

0.96 
0.99 
0.99 
0.96 
1.00 
1.00 

1.00 
0.97 
0.96 
1.00 
0.97 
0.97 
1.00 

0.97 
0.99 
0.99 
0.97 
1.00 
0.99 
0.97 
1.00 

0.96 
0.99 
0.98 
0.96 
0.99 
0.99 
0.97 
0.99 
1.00 

This table shows rank correlations between different rankings of economic complexity. ECI refers to the 
original Economic Complexity Index, PPML (OLS) to the alternative ranking using PPML (OLS) in the 
first-step regression. ‘minx x’ indicates that prior to our first-step regression, we dropped export values of 
less than USD x at the bilateral-product level. All other specifications are as described at the onset of this 
appendix. 
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Table 12: Robustness of Country Rankings to Normalization of Exporter-Product Fixed 
Effects 

norm lsum norm cossim norm vECI norm nsqrt 

ECI PPML OLS PPML OLS PPML OLS PPML OLS 

ECI 1.00 0.97 0.96 0.97 0.96 0.97 0.97 0.97 0.95 
PPML norm lsum 1.00 1.00 0.99 0.98 1.00 0.99 0.99 0.98 
OLS norm lsum 1.00 0.99 0.99 0.99 1.00 0.98 0.98 
PPML norm cossim 1.00 0.99 0.99 0.98 0.97 0.96 
OLS norm cossim 1.00 0.98 0.99 0.96 0.95 
PPML norm vECI 1.00 0.99 0.98 0.97 
OLS norm vECI 1.00 0.97 0.96 
PPML norm nsqrt 1.00 0.99 
OLS norm nsqrt 1.00 

s
i

P 
0 

s
i 

s
iT̂

s
iT̂ 0 s∈S z zˆ rhP 

Aii0 = 
s
i

s
i

i hP i . 

0 0 s∈S z
s
i 

s
iT̂ zsi 

s
i T̂ s

iT̂ 0 z s
iT̂ 0 · s∈S z

This table shows rank correlations between different rankings of economic complexity. ECI refers to the 
original Economic Complexity Index, PPML (OLS) to the alternative ranking using PPML (OLS) in the 
first-step regression. ‘norm x’ indicates which normalization has been used. ‘norm lsum’ denotes our baseline 
normalization. All other normalizations start from this baseline. ‘norm cossim’ denotes the cosine similarity, 

ˆthat is, the country-country similarity matrix A with elements 

In rows and columns ‘norm vECI’, each product is normalized by its ‘ubiquity’ when computing the country-
ˆcountry similarity matrix, that is matrix A has elements 

X s
i

s
i

s
i

s
i 0 0 

= P . 
T̂ T̂z z

Âii0 
ˆ
i 

Tˆ
s s 

s∈S i î∈I zˆ

Finally, in rows and columns ‘norm nsqrt’, the exponentiated exporter-product fixed effects have been used 
directly, instead of the square-root thereof. All other specifications are as described at the onset of this 
appendix. 
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Table 13: Robustness of Country Rankings to Censoring Threshold for Outliers of Exporter-Product Fixed Effects 

cens 90 cens 92.5 cens 95 cens 97.5 cens 99 

ECI PPML OLS PPML OLS PPML OLS PPML OLS PPML OLS 

ECI 
PPML cens 90 
OLS cens 90 
PPML cens 92.5 
OLS cens 92.5 
PPML cens 95 
OLS cens 95 
PPML cens 97.5 
OLS cens 97.5 
PPML cens 99 
OLS cens 99 

1.00 0.96 
1.00 

0.96 
0.99 
1.00 

0.97 
1.00 
0.99 
1.00 

0.96 
0.99 
1.00 
0.99 
1.00 

0.97 
1.00 
0.99 
1.00 
0.99 
1.00 

0.96 
0.99 
1.00 
0.99 
1.00 
1.00 
1.00 

0.97 
0.99 
0.98 
0.99 
0.99 
1.00 
0.99 
1.00 

0.97 
0.99 
0.99 
0.99 
0.99 
0.99 
1.00 
1.00 
1.00 

0.98 
0.98 
0.97 
0.98 
0.98 
0.99 
0.99 
1.00 
0.99 
1.00 

0.97 
0.98 
0.98 
0.99 
0.99 
0.99 
0.99 
0.99 
1.00 
0.99 
1.00 

This table shows rank correlations between different rankings of economic complexity. ECI refers to the original Economic Complexity Index, PPML 
(OLS) to the alternative ranking using PPML (OLS) in the first-step regression. ‘cens x’ indicates that normalized exporter-product fixed effects have 
been censored if they were above the xth percentile. All other specifications are as described at the onset of this appendix. 
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Table 14: Rank Correlations of Country Rankings Across Different Years 

year 2012 year 2013 year 2014 year 2015 year 2016 

ECI PPML OLS ECI PPML OLS ECI PPML OLS ECI PPML OLS ECI PPML OLS 

ECI year 2012 1.00 0.95 0.95 0.99 0.95 0.94 0.98 0.95 0.95 0.98 0.96 0.95 0.98 0.95 0.95 
PPML year 2012 1.00 0.99 0.95 1.00 0.99 0.95 0.99 0.98 0.95 0.98 0.97 0.95 0.98 0.98 
OLS year 2012 1.00 0.95 0.99 1.00 0.95 0.99 0.99 0.95 0.98 0.98 0.95 0.98 0.98 
ECI year 2013 1.00 0.95 0.95 0.99 0.95 0.95 0.98 0.96 0.95 0.98 0.95 0.94 
PPML year 2013 1.00 0.99 0.96 0.99 0.99 0.95 0.99 0.98 0.96 0.99 0.98 
OLS year 2013 1.00 0.95 0.99 0.99 0.95 0.99 0.98 0.95 0.99 0.99 
ECI year 2014 1.00 0.96 0.96 0.99 0.96 0.96 0.97 0.95 0.95 
PPML year 2014 1.00 0.99 0.96 0.99 0.99 0.96 0.99 0.98 
OLS year 2014 1.00 0.96 0.99 0.99 0.96 0.98 0.99 
ECI year 2015 1.00 0.97 0.96 0.98 0.96 0.95 
PPML year 2015 1.00 0.99 0.96 0.99 0.99 
OLS year 2015 1.00 0.96 0.98 0.99 
ECI year 2016 1.00 0.97 0.96 
PPML year 2016 1.00 1.00 
OLS year 2016 1.00 

This table shows rank correlations between different rankings of economic complexity. ECI refers to the original Economic Complexity Index, PPML 
(OLS) to the alternative ranking using PPML (OLS) in the first-step regression. ‘year x’ indicates that trade data for year x has been used. All other 
specifications are as described at the onset of this appendix. 



D.2 Robustness of Product Rankings 

Table 15: Robustness of Product Rankings to Minimum Threshold for Number of Export 
Destinations by Exporter-Product 

cut 1 cut 3 cut 5 

PCI PPML OLS PCI PPML OLS PCI PPML OLS 

PCI cut 1 
PPML cut 1 
OLS cut 1 
PCI cut 3 
PPML cut 3 
OLS cut 3 
PCI cut 5 
PPML cut 5 
OLS cut 5 

1.00 0.72 
1.00 

0.85 
0.81 
1.00 

1.00 
0.74 
0.86 
1.00 

0.69 
0.98 
0.79 
0.72 
1.00 

0.83 
0.84 
0.99 
0.84 
0.84 
1.00 

0.99 
0.74 
0.86 
0.99 
0.73 
0.84 
1.00 

0.67 
0.95 
0.76 
0.70 
0.99 
0.82 
0.72 
1.00 

0.79 
0.86 
0.95 
0.81 
0.89 
0.98 
0.82 
0.89 
1.00 

This table shows rank correlations between different rankings of product complexity. PCI refers to the 
original Product Complexity Index, PPML (OLS) to the alternative ranking using PPML (OLS) in the 
first-step regression. ‘cut x’ indicates that prior to our first-step regression, we dropped all exporter-product 
observations if the product has not been shipped to at least x destinations. All other specifications are as 
described at the onset of this appendix. 
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Table 16: Robustness of Product Rankings to Minimum Threshold for Tradeflows at the 
Bilateral Product Level 

minx 0 minx 1000 minx 10000 

PCI PPML OLS PCI PPML OLS PCI PPML OLS 

PCI minx 0 
PPML minx 0 
OLS minx 0 
PCI minx 1000 
PPML minx 1000 
OLS minx 1000 
PCI minx 10000 
PPML minx 10000 
OLS minx 10000 

1.00 0.70 
1.00 

0.84 
0.77 
1.00 

1.00 
0.71 
0.84 
1.00 

0.71 
0.99 
0.78 
0.72 
1.00 

0.84 
0.84 
0.99 
0.84 
0.84 
1.00 

0.99 
0.67 
0.82 
0.99 
0.68 
0.81 
1.00 

0.75 
0.97 
0.80 
0.75 
0.98 
0.86 
0.73 
1.00 

0.79 
0.91 
0.92 
0.79 
0.92 
0.96 
0.77 
0.94 
1.00 

This table shows rank correlations between different rankings of product complexity. PCI refers to the 
original Product Complexity Index, PPML (OLS) to the alternative ranking using PPML (OLS) in the 
first-step regression. ‘minx x’ indicates that prior to our first-step regression, we dropped export values of 
less than USD x at the bilateral-product level. All other specifications are as described at the onset of this 
appendix. 
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Table 17: Robustness of Product Rankings to Normalization of Exporter-Product Fixed 
Effects 

norm lsum norm cossim norm vECI norm nsqrt 

PCI PPML OLS PPML OLS PPML OLS PPML OLS 

PCI 1.00 0.72 0.84 0.71 0.83 0.67 0.83 0.74 0.86 
PPML norm lsum 1.00 0.84 1.00 0.85 0.99 0.89 0.96 0.74 
OLS norm lsum 1.00 0.84 1.00 0.78 0.99 0.84 0.96 
PPML norm cossim 1.00 0.85 0.99 0.89 0.96 0.74 
OLS norm cossim 1.00 0.78 0.99 0.84 0.96 
PPML norm vECI 1.00 0.84 0.95 0.67 
OLS norm vECI 1.00 0.88 0.93 
PPML norm nsqrt 1.00 0.78 
OLS norm nsqrt 1.00 

This table shows rank correlations between different rankings of product complexity. PCI refers to the 
original Product Complexity Index, PPML (OLS) to the alternative ranking using PPML (OLS) in the first-
step regression. ‘norm x’ indicates which normalization has been used. ‘norm lsum’ denotes our baseline 
normalization. All other normalizations start from this baseline. ‘norm cossim’ denotes the cosine similarity, 

ˆthat is, the product-product similarity matrix B with elements 

In rows and columns ‘norm vECI’, each country is normalized by its ‘diversity’ when computing the product-
ˆproduct similarity matrix, that is matrix B has elements 

X
Finally, in rows and columns ‘norm nsqrt’, the exponentiated exporter-product fixed effects have been used 
directly, instead of the square-root thereof. All other specifications are as described at the onset of this 
appendix. 
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Table 18: Robustness of Product Rankings to Censoring Threshold for Outliers of Exporter-Product Fixed Effects 

cens 90 cens 92.5 cens 95 cens 97.5 cens 99 

PCI PPML OLS PPML OLS PPML OLS PPML OLS PPML OLS 

PCI 
PPML cens 90 
OLS cens 90 
PPML cens 92.5 
OLS cens 92.5 
PPML cens 95 
OLS cens 95 
PPML cens 97.5 
OLS cens 97.5 
PPML cens 99 
OLS cens 99 

1.00 0.70 
1.00 

0.82 
0.85 
1.00 

0.71 
1.00 
0.86 
1.00 

0.83 
0.84 
1.00 
0.85 
1.00 

0.72 
0.99 
0.86 
1.00 
0.85 
1.00 

0.84 
0.82 
0.99 
0.84 
1.00 
0.84 
1.00 

0.72 
0.98 
0.85 
0.98 
0.84 
0.99 
0.83 
1.00 

0.84 
0.81 
0.99 
0.83 
0.99 
0.84 
1.00 
0.83 
1.00 

0.69 
0.93 
0.78 
0.93 
0.78 
0.95 
0.77 
0.98 
0.78 
1.00 

0.85 
0.80 
0.97 
0.82 
0.98 
0.83 
0.99 
0.83 
1.00 
0.78 
1.00 

This table shows rank correlations between different rankings of product complexity. PCI refers to the original Product Complexity Index, PPML 
(OLS) to the alternative ranking using PPML (OLS) in the first-step regression. ‘cens x’ indicates that normalized exporter-product fixed effects have 
been censored if they were above the xth percentile. All other specifications are as described at the onset of this appendix. 
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Table 19: Rank Correlations of Product Rankings Across Different Years 

year 2012 year 2013 year 2014 year 2015 year 2016 

PCI PPML OLS PCI PPML OLS PCI PPML OLS PCI PPML OLS PCI PPML OLS 

PCI year 2012 1.00 0.67 0.75 0.95 0.66 0.77 0.94 0.69 0.78 0.90 0.67 0.79 0.94 0.65 0.77 
PPML year 2012 1.00 0.86 0.67 0.99 0.85 0.68 0.99 0.86 0.66 0.99 0.86 0.73 0.98 0.86 
OLS year 2012 1.00 0.75 0.85 0.99 0.80 0.84 0.99 0.78 0.84 0.99 0.82 0.82 0.99 
PCI year 2013 1.00 0.67 0.77 0.96 0.68 0.77 0.92 0.67 0.78 0.93 0.64 0.76 
PPML year 2013 1.00 0.85 0.68 0.98 0.85 0.65 0.98 0.85 0.72 0.98 0.86 
OLS year 2013 1.00 0.81 0.85 0.99 0.78 0.84 0.99 0.82 0.82 0.99 
PCI year 2014 1.00 0.70 0.81 0.95 0.68 0.82 0.96 0.66 0.81 
PPML year 2014 1.00 0.86 0.66 0.99 0.85 0.76 0.98 0.86 
OLS year 2014 1.00 0.79 0.85 0.99 0.84 0.84 0.99 
PCI year 2015 1.00 0.65 0.80 0.93 0.62 0.79 
PPML year 2015 1.00 0.85 0.74 0.99 0.86 
OLS year 2015 1.00 0.85 0.83 0.99 
PCI year 2016 1.00 0.72 0.84 
PPML year 2016 1.00 0.84 
OLS year 2016 1.00 

This table shows rank correlations between different rankings of product complexity. PCI refers to the original Product Complexity Index, PPML 
(OLS) to the alternative ranking using PPML (OLS) in the first-step regression. ‘year x’ indicates that trade data for year x has been used. All other 
specifications are as described at the onset of this appendix. 
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