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Abstract

This paper compares the Kyoto Protocol and the Paris Agreement in the dynamic

game of Battaglini and Harstad (2016). The asymmetric Nash solution of this

game reflects the Paris Agreement, whereas the symmetric Nash solution reflects

the Kyoto Protocol. In a large set of economies, the Kyoto Protocol is Pareto

superior to the Paris Agreement. Although the stable climate coalition is large in

the Paris Agreement and small in the Kyoto Protocol, the emissions reductions

of a single coalition country are much more pronounced in the Kyoto Protocol,

so that this per-country-emissions-reduction effect outweighs the disadvantageous

coalition-size effect.
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1 Introduction

Climate change is one of the greatest challenges facing humanity over the next decades.

Both the Kyoto Protocol and the Paris Agreement have been negotiated to stabilize the

world climate at safe levels. In the Kyoto Protocol, the Annex I countries committed

themselves to reduce their emissions by as much as 18% below 1990 levels until 2020. After

problems of further developing the Kyoto Protocol at the 2009 Copenhagen conference,

countries switched 2015 from the Kyoto Protocol to the Paris Agreement. Although the Paris

Agreement articulates a long-term goal of keeping the increase in global average temperature

to 1.5◦ Celsius, the current commitments to emissions reductions made by the signatories

are not even sufficient to limit global warming to 2◦ Celsius (Hulme 2016, Rogelj 2016).

That raises the question what type of agreement is more appropriate to bring down world

emissions to safe levels.

The Kyoto Protocol and the Paris Agreement exhibit a number of differences. The most

fundamental difference is that the Kyoto Protocol is a ‘top-down’-approach which is man-

aged by a multilateral institution and which legally binds countries to meet their emissions-

reduction commitments. In contrast, the Paris Agreement is a ‘bottom-up’-approach in

which countries submit their Intended Nationally Determined Contributions (pledges) to

reduce carbon emissions. Pledges are voluntary commitments. While only 37 countries

ratified the Kyoto Protocol, the Paris Agreement has been signed or implemented by 195

nations since the 21st Conference of Parties in Paris.1 Although there is almost universal

state participation in the Paris Agreement, it is not clear whether it leads to stronger reduc-

tions of world emissions. Pessimists believe that the Paris Agreement does not represent a

breakthrough but instead incrementally extends the business as usual (Bang et al. 2016).

There is a large literature that analyzes self-enforcing climate agreements and explicitly

refers to the Kyoto Protocol. The prevailing approach is to apply the symmetric Nash

1The Holy Sea cannot accede because it is no member of the UNFCCC, and until today Lybia neither
has ratified the Paris Agreement nor made any pledges.
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(bargaining) solution in coalition formation games in which the climate coalition is both

internally and externally stable. In a basic static game, in which countries choose their efforts

to reduce emissions at the second stage and decide whether to join the climate coalition at

the first stage, the size of stable coalitions is not larger than four (Hoel 1992, Carraro and

Siniscalco 1993, Barrett 1994, Rubio and Ulph 2006).2 Rubio and Casino (2005) and Rubio

and Ulph (2007) extend the basic static game to a dynamic stetting with a pollution stock.

Rubio and Casino (2005) show that the stable coalition remains small if countries decide only

once whether or not to participate in a climate coalition. Rubio and Ulph (2007) consider a

variable membership decision and find that the stable coalition may be large if the potential

gains from cooperation are small.3 In the dynamic game of Battaglini and Harstad (2016),

countries decide to participate in an international climate agreement, to choose emissions,

investments in clean technologies and the duration of the agreement. If climate contracts are

incomplete, the stable coalition may be large up to the grand coalition. The driving force

for large stable coalitions is a hold-up problem. In the last period of the contract, coalition

countries invest too little in order to improve their bargaining power in future negotiations.

All these contributions have in common that coalition countries maximize the sum of their

welfares, which is tantamount to applying the symmetric Nash solution.

Only two recent contributions analyze the impact of the Paris Agreement on emissions,

investments and welfare theoretically. Caparrós (2020) applies a partial commitment bar-

gaining model to determine countries’ emissions pledges. With appropriate transfers, the

mechanism implements the first-best solution in the short term. Introducing investments

in abatement and assuming that these investments are not part of the contract, a hold-up

2The basic static model is refined in various directions. E.g. Barrett (2006) and Hoel and de Zeeuw
(2010) analyzed R&D in breakthrough technologies, Bayramoglu et al. (2018) mitigation and adaptation,
McEvoy and McGinty (2018) emissions taxes and Kornek and Edenhofer (2020) compensation funds.

3Kovác and Schmidt (2021) analyze a dynamic abatement game in which a long-term contract is sus-
pended for one period if some country participates in climate negotiations but does not sign the climate
contract. This delay of the long-term contract reduces the free-riding incentives and enlarges the stable
coalition. Karp and Sakamoto (2021) introduce uncertainty about the outcome if climate negotiations fail
in a dynamic abatement game and show the existence of multiple equilibria. The uncertainty about the
outcome reduces [enhances] the stability of small [large] coalitions and enlarges the stable coalition in the
long-run.
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problem emerges and countries underinvest. However, Caparrós (2020) does not investigate

whether the climate contract is self-enforcing.

Harstad (2021) develops a novel Pledge-and-Review bargaining game in which coun-

tries simultaneously propose pledges. A contract is concluded if no country finds the vector

of pledges unacceptable. Harstad (2021) shows that the solution of the Pledge-and-Review

bargaining game4 maximizes the asymmetric Nash product. Building on this approach,

Harstad (2020) investigates different Nash solutions in a dynamic coalition formation game

in which countries decide on emissions pledges and investments in green energy. Thereby,

the asymmetric Nash solution with low [high] welfare weights is interpreted as Paris Agree-

ment [Kyoto Protocol].5 The symmetric Nash solution is the limiting case with the largest

possible welfare weights. In the asymmetric Nash solution with low welfare weights sta-

ble climate coalitions are large but the emissions reductions of a single coalition country are

small. In contrast, in the symmetric Nash solution stable climate coalitions are small (three)

but a single coalition country undertakes large emissions reductions. In view of total emis-

sions, there is a coalition-size effect and a countervailing per-country-emissions-reduction

effect when moving from an asymmetric to the symmetric Nash solution. Comparing the

Paris Agreement and the Kyoto Protocol, the coalition-size effect overcompensates the per-

country-emissions-reduction effect, so that total emissions are smaller and countries’ welfare

is higher in the Paris Agreement (Harstad 2020, Corollary 1 and Proposition 3).6

The present paper compares the Paris Agreement (asymmetric Nash solution) and the

Kyoto Protocol (symmetric Nash solution) in the dynamic game of Battaglini and Harstad

(2016). There are three differences between Battaglini and Harstad’s (2016) model, which

is applied in the present paper, and Harstad’s (2020) model: First, in Harstad (2020) the

coalition members either expect never to cooperate again or they expect the current contract

4A simplified version of the Pledge-and-Review bargaining game has been tested in the laboratory by
Lippert and Tremewan (2021).

5The welfare weights correspond to the Nash bargaining parameters of the other coalition countries in
the welfare function of a single coalition country.

6Except there are some exogenously given minimum participation rules.
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to be superseded by an identical contract once the current contract expires. By contrast,

in Battaglini and Harstad (2016) the coalition members expect the equilibrium contract to

emerge once the current contract expires. Consequently, members of small coalitions prefer

shorter contracts to admit new members sooner, which amplifies the hold-up problem and

stabilizes larger equilibrium coalitions.7 Second, the investment cost function in green tech-

nology depends on both investments and the technology stock instead of just investments.

Third, the coalition members choose time-dependent pledges instead of constant pledges for

the entire contract duration.8 Comparing the Paris Agreement and the Kyoto Protocol in

the dynamic game of Battaglini and Harstad (2016), we show in line with Harstad (2020)

that there is a coalition-size-effect and a per-country-emissions-reduction effect. Restricting

our attention to economies in which the stable coalition comprises 195 countries in case of

the asymmetric Nash solution and 37 countries in case of the symmetric Nash solution, the

per-country-emissions-reduction effect dominates the coalition-size-effect for a large set of

economies, so that world emissions are lower and countries’ welfare is higher in the latter

case than in the former. That is, in contrast to Harstad (2020) there exists a large set of

economies in which the Kyoto Protocol is Pareto superior to the Paris Agreement.

The remainder of the paper is organized as follows: In Section 2 the building blocks

of the model are presented. In Section 3 we analyze the dynamic coalition formation game

and characterize equilibrium pledges, investments, contract durations and stable coalitions

for different Nash solutions. In Section 4 we characterize the economies in which the Kyoto

Protocol with 37 countries is Pareto superior to the Paris Agreement with 195 countries and

vice versa. Section 5 concludes.

7In contrast to Harstad (2020), Battaglini and Harstad (2016) can thereby explain equilibrium coalitions
of more than three countries in the symmetric Nash solution without relying on minimum participation
rules.

8Only the combination of stock-independent investment costs and time-independent pledges as in Harstad
(2020) can explain the equilibrium contract duration to be finite. For stock-independent investment costs
and time-dependent pledges we refer to Harstad (2020, p. 30). The case of stock-dependent investment
costs and time-independent pledges is dealt with in our Online Appendix.
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2 The model

The world economy consists of n countries. In each period t ≥ 1 country i ∈ N = {1, ..., n}

consumes energy that composes of fossil fuel energy gi,t and green energy Ri,t. The benefit

of energy consumption is

Bi(gi,t, Ri,t) = − b

2
(ȳi − gi,t −Ri,t)

2, (1)

where ȳi is an exogenously given satiation point and b is an energy preference parameter.

Emission units are chosen such that gi,t denotes both fossil fuel energy consumption and

carbon emissions from burning fuel by country i.

The stock of pollution evolves according to

Gt = qGGt−1 +
∑

j∈N

gj,t, (2)

where 1−qG ∈ [0, 1] is the natural depreciation rate. The climate damage from the emissions

stock Gt is given by cGt, where c is the marginal damage.

Green energy is produced by means of a green technology Ri,t. For sake of simplicity,

the generation of green energy is proportional to green technology, whose stock increases

with investments ri,t, and evolves in time according to

Ri,t+1 = qRRi,t + ri,t. (3)

In (3), 1−qR ∈ [0, 1] is the technological depreciation rate. Following Battaglini and Harstad

(2016, p. 167) the investment cost function κ depends on investments ri,t and on technology

stock Ri,t according to

κ
(

ri,t, Ri,t

)

=
k

2

(

r2it + 2qRri,tRi,t

)

, (4)

where k is a positive parameter. Making use of (3) in (4), the investment cost function can

be written as κ (·) = k
2
(R2

i,t+1 − q2RR
2
i,t).
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The time from one consumption decision to the next is ∆ > 0, and the time from the

investment decision to the availability of the developed technology is Λ ∈ (0,∆]. Then, the

utility of country i in period t is given by

ui,t = − b

2

(

ȳi − gi,t −Ri,t

)2 − cGt −
k

2

(

R2
i,t+1 − q2RR

2
i,t

)

e−ρ(∆−Λ), (5)

where ρ > 0 is the discount rate. The present value of current and future utility is given by

vi,t =
∑

τ=t δ
τ−tui,τ , where δ ≡ e−ρ∆ ∈ (0, 1) is the discount factor.

The present value vi,t can be represented by a discounted utility stream that depends

on the two choice variables (di,t and Ri,t+1) and is independent of past stock variables (Gt−τ

and Ri,t−τ with τ ≥ 1):

Lemma 1 (Battaglini and Harstad 2016) At any time t, the utility of country i ∈ N

is independent of all past stocks and can be represented by the continuation value function

vi,t =
∑

τ=t δ
τ−tûi,τ , where

ûi,t ≡ − b

2
d2i,t − δ

K

2
R2

i,t+1 − C
∑

j∈N

(

ȳi − dj,t − δRj,t+1

)

, (6)

with

di,t ≡ ȳi − gi,t −Ri,t, K ≡ k
(

1− δq2R
)

eρΛ, C ≡ c

1− δqG
.

The variable di,t represents energy reduction (relative to the satiation point ȳi), K is an

aggregated cost parameter and C represents the social cost of carbon.

Throughout the paper we restrict our attention to Markov-perfect equilibria (MPE) in

pure strategies. For later use as benchmarks we briefly characterize the first-best allocation

and the non-cooperative MPE. The latter is referred to as business as usual (BAU). The

first-best allocation follows from maximizing
∑

j∈N vj,t from (6) with respect to di,t and

Ri,t+1 which yields

−bdi,t + nC = 0 ⇔ di,t = n
C

b
∀t ≥ 1, (7)
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δ
(

−KRi,t+1 + nC
)

= 0 ⇔ Ri,t+1 = n
C

K
∀t ≥ 1. (8)

In contrast, in BAU each country i maximizes vi,t from (6) with respect to di,t and

Ri,t+1. The associated first-order conditions can be rearranged to

−bdi,t + C = 0 ⇔ di,t =
C

b
∀t ≥ 1, (9)

δ
(

−KRi,t+1 + C
)

= 0 ⇔ Ri,t+1 =
C

K
∀t ≥ 1. (10)

Comparing (7)-(8) and (9)-(10) shows that emissions are inefficiently high and investments

are inefficiently low in BAU. All countries suffer a welfare loss in BAU, because non-

cooperative governments ignore the negative impact of their emissions and the positive

impact of their green energy investments on all other countries. The ratio between energy

reduction and green investment both in the first best and in BAU is

di,t
Ri,t

= x ≡ K

b
∀t ≥ 1. (11)

The parameter x reflects the marginal costs of investments relative to the energy preference

and is referred to as relative cost of technology.

3 The dynamic game

In the sequel, we analyze a game between coalition countries and non-signatories when con-

tracts are incomplete, i.e. coalition countries commit on emissions but not on investments.

Non-signatories choose their emissions and green investments non-cooperatively. Since the

stocks do not affect the countries’ choices, BAU emissions and BAU investments are domi-

nant strategies when countries stay outside the coalition.

Coalition countries choose non-cooperatively investments due to the incomplete con-

tract. If m countries have agreed to join a climate coalition, each coalition country i ∈ M ⊆

N makes pledges zi,t to curb emissions below BAU emissions gBAU
i,t , such that its emissions

7



commitment is given by

gi,t = gBAU
i,t − zi,t. (12)

It is straightforward to show that from a coalition country’s perspective, it is equivalent to

choose zi,t or di,t. The coalition countries choose their emissions by maximizing the Nash

product, formally

d∗i,t = argmax
di,t

∏

j∈M

vj,t(di,t,d
∗
−i,t)

ωj
i , (13)

where d∗
−i,t is the vector of other coalition countries’ (j ∈ M\i) equilibrium energy reduction.

In (13), ωj
i /ω

i
i ∈ [0, 1) is country j’s bargaining power vis-a-vis country i. Presupposed

countries are symmetric, (13) is equivalent to

d∗i,t = argmax
di,t



vi,t(di,t,d
∗
−i,t) + ω

∑

j∈M\i

vj,t(di,t,d
∗
−i,t)



 . (14)

The terms in square brackets in (14) can be interpreted as welfare function of coalition

country i, where ω ≡ ωj
i /ω

i
i is the relative welfare weight of the other coalition countries

(j ∈ M \ i). For the polar case ω = 1 coalition countries maximize the symmetric Nash

product or tantamount the sum of welfares. We refer to (14) with ω < 1 as asymmetric

Nash (bargaining) solution and to (14) with ω = 1 as symmetric Nash (bargaining) solution.

Harstad (2021) has shown that the Paris Agreement can be modeled as a Pledge-and-

review bargaining game whose solution is the asymmetric Nash solution. In contrast, the

symmetric Nash solution is to date the standard approach in the literature of self-enforcing

climate agreements9 and maps Kyoto-Protocol. In the remainder of this section, we are

interested in how emissions, investments, the contract length and the stable coalition of

climate agreements change upon variations of the welfare weight ω.

The timing of the game is illustrated in Figure 1. If there is no coalition, each country

i ∈ N decides whether to join a coalition or to stay outside. Then, coalition countries

9See the literature mentioned in the Introduction.
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negotiate on emissions pledges. Next, non-signatories non-cooperatively choose emissions

and coalition countries pollute as agreed. Finally, non-signatories and coalition countries

non-cooperatively choose investments. If an agreement already exists, the participation

decision and the negotiations are omitted.

144444444424444444443

144444444424444444443

144444444424444444443

i
participate

M
negotiate

pledges

p
ollute

invest
ri,t−1 gi,t ri,t gi,t+1

time

Λ
∆

period t

Figure 1: Timing of the game

The MPE of the dynamic game between the coalition and non-signatories is character-

ized by countries’ policies (d∗i,t(M,T ), R∗
i,t+1(M,T ))Tt=1, the duration T ∗(M) of the agreement

and the stable coalition M∗.10 By virtue of backward induction we first derive the equilib-

rium emissions and investments for given M and T , then the equilibrium duration for given

M and finally the stable coalition.

As mentioned before non-signatories set BAU emissions and BAU investments ac-

cording to (9) and (10). In the Appendix we derive the coalition countries’ emissions and

investments of incomplete contracts

di,t = [1 + (m− 1)ω]
C

b
∀i ∈ M, t ∈ {1, ..., T}, (15)

Ri,t+1 = [1 + (m− 1)ω]
C

K
, but Ri,T+1 =

C

K
∀i ∈ M, t ∈ {1, ..., T}, (16)

10The concept of self-enforcement or stability was originally introduced by D’Aspremont et al. (1983) in
the context of cartel formation.
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which yields the pledges

zi,t = (m− 1)ω

(

C

b
+

C

K

)

, but zi,1 = (m− 1)ω
C

b
∀i ∈ M, t ∈ {1, ..., T}. (17)

In view of (15) and (17) each coalition country reduces its energy consumption relative to

its BAU level, and emissions pledges are the higher the larger the welfare weight ω and the

larger the coalition m. The larger ω the stronger is the internalization of climate externalities

within the coalition, and the larger m the more coalition countries’ climate externalities

are (partly) internalized. A coalition country’s technology investment is greater than its

BAU level and increasing in ω and m except for the last period of the agreement.11 In

the last period each coalition country realizes that technology investment will be sunk in

the next period and chooses BAU investments as non-signatories do. This phenomenon is

known as hold-up problem. Recalling that non-signatories choose BAU emissions and BAU

investments elucidates the free-riding problem. Coalition countries reduce emissions and

step up their green investments to mitigate the climate damage, whereas non-signatories

stay at their BAU levels and benefit at zero costs. The larger ω and m the more pronounced

are the non-signatories’ free-riding incentives.

Next, we determine the optimal duration of the agreement for given coalition M .

The coalition country’s investments and emissions pledges (R∗
i,t+1, z

∗
i,t+1) from (16) and (17)

depend on the contract period at which they are made and offered, respectively. The next

lemma specifies the optimal contract length for given coalition size m.

Lemma 2 Let M∗ denote an equilibrium coalition size m∗ ≡ |M∗|. Then, a coalition of size

m = |M |, satisfying M ⊆ M∗ or M∗ ⊆ M , finds it optimal to contract for T (m) periods,

11In the first period of the agreement, Ri,1 is given, such that zi,1 = di,1 − dBAU
i,1 = (m− 1)ωC

b
.

10



where

T (m) =































1 if m < m̂(x, δ,m∗)

{1, ...,∞} if m = m̂(x, δ,m∗)

∞ if m > m̂(x, δ,m∗),

(18)

with

m̂(x, δ,m∗) ≡ 1 + (m∗ − 1)

√

x+ δ

x+ 1
< m∗.

According to Lemma 1 there is a threshold coalition size m̂ such that the coalition of size m

concludes a short-term agreement (T = 1) if m < m̂, and a long-term agreement (T = ∞)

if m > m̂. Each country expects that once the current contract expires, the next contract

will be concluded by the equilibrium coalition. For given contract duration, each coalition

country’s utility is increasing in the coalition size, and for a given coalition size, each coalition

country’s utility is increasing in the contract duration due to the hold-up problem. To put it

differently, the underinvestment of the hold-up problem creates a cost of signing a short-term

contract, which stands against the benefit of waiting for a larger coalition in the future. A

coalition greater than or equal to the equilibrium coalition (m ≥ m∗) finds it optimal to

conclude a long-term agreement (T = ∞). However, also a coalition smaller than the

equilibrium coalition (m ∈ (m̂,m∗)) can find it optimal to sign a long-term contract if it

is not too small: It then forgoes a larger (equilibrium) coalition in the future to prevent

the hold-up problem. If the coalition is very small (m < m̂), then it signs a short-term

contract (T = 1) to achieve a larger coalition in the next period. For m = m̂, the benefit

of a short-term contract, i.e. the larger coalition in the next period, and its cost, i.e. the

underinvestment in the current period, exactly cancel out such that any contract duration

is an equilibrium. Note that the equilibrium coalition M∗ always concludes a long-term

agreement (T (m∗) = ∞).

It is worth mentioning that m̂(x, δ,m∗) does not depend on the welfare weight ω.

11



Variations of ω cause opposing effects: On the one hand, a smaller ω reduces the difference

between the investment of each coalition country and that of each non-signatory, which mit-

igates the hold-up problem. Contracting for just one period and allowing for the equilibrium

coalition in the next period becomes more attractive (m̂ ↑). On the other hand, a smaller ω

reduces the internalization of climate externalities within any coalition, which reduces the

welfare loss of a narrowed coalition. Contracting forever with a coalition smaller than the

equilibrium coalition becomes less costly (m̂ ↓). These two effects exactly cancel out.

Finally, we analyze the stability of the climate coalition. When doing so, we have

to make a case distinction depending on the contract length in case of deviation. If a

single country deviates by not participating, the remaining coalition sets T = 1 only if

m∗ − 1 ≤ m̂(x, δ,m∗) ⇔ m∗ ≤ mM(x, δ), where

mM(x, δ) ≡ 1 +
1

1−
√

x+δ
x+1

. (19)

The inequality m∗ ≤ mM(x, δ) is referred to as discipline constraint. mM(x, δ) depends on

the relative cost of technology x ≡ K
b
. When x increases, the technology investment becomes

more expensive and countries rely more on consumption reduction than on technology in-

vestment, which mitigates the hold-up problem. Signing a short-term contract if a single

country deviates by not participating becomes less expensive and relaxes the participation

constraint
(

∂mM

∂x
> 0
)

.

If the discipline constraint is violated (m∗ > mM(x, δ)), the coalition signs a long-term

contract (T = ∞) even if a single country deviates by not participating. In that case the

internal and external stability condition, respectively, is given by

m∗ ≤ m
¯
I(ω) ≡ 1 + 2/w and m∗ > 2/ω. (20)

In view of (20), the stable coalition size is determined by m∗ =
⌊

m
¯
I(ω)

⌋

, where ⌊·⌋ is the

function that maps its argument to the largest weakly smaller integer.12 We refer to m
¯
I(ω)

12If the discipline constraint is violated, the incomplete contract is identical to the complete contract in
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as participation constraint
¯
I. The stable coalition size

⌊

m
¯
I(ω)

⌋

decreases in ω. Recall that

for exogenously given coalition M , an increase in ω enhances the internalization of climate

externalities within the coalition. As a consequence coalition countries decrease emissions

and raise investments. This in turn enhances the free-riding incentives of non-signatories

and decreases the size of the stable coalition.

Approximating the coalition size by m∗ = 1 + 2/ω in the MPE of the dynamic game

(i.e. for M = M∗), the coalition countries’ emissions and investments are d∗i,t = 3C
b

and

R∗
i,t+1 = 3C

K
for t ∈ {1, ...,∞}, and hence they are independent of ω. Since the stable

coalition is the smaller the larger ω, in the MPE total energy consumption and the climate

damage are increasing and total technology investment is decreasing in ω, such that each

coalition country’s utility is decreasing in ω. Note, however, that even if ω is so small

that m∗ = n, total consumption [investment] is n/3 times too high [low] compared to the

first-best allocation.

If the discipline constraint is satisfied (m∗ ≤ mM(x, δ)), then the coalition signs a

short-term contract (T = 1) if a single country deviates by not participating. In this one-

period agreement, the hold-up problem leads to underinvestment such that the punishment

of free riding is higher than with T = ∞. The hold-up problem serves as credible threat to

restrain countries from leaving the coalition. Now, the internal stability condition is given

by

m∗ ≤ mĪ(x, δ, ω) ≡ 1 +
2/ω

1− 2−ω
ω

δ
x

> m
¯
I(ω), (21)

whereas the external stability condition remains unchanged m∗ > 2/ω. mĪ(x, δ, ω) is re-

ferred to as participation constraint Ī. Presupposed mĪ(x, δ, ω) < min{mM(x, δ), n} the

stable coalition is given by m∗ =
⌊

mĪ(x, δ, ω)
⌋

. Due to the hold-up problem, the participa-

tion constraint Ī is less restrictive than the participation constraint
¯
I and leads to larger

stable coalitions (mĪ > m
¯
I). The comparative static effects of increasing ω are qualitatively

terms of emissions, investments, contract length and stable coalition size.

13



the same in case of the participation constraints
¯
I and Ī. With the same interpretation

as before, increases in ω enhance free-riding incentives and reduce the size of the stable

coalition
(

∂mĪ

∂ω
< 0
)

. The participation constraint Ī also depends on the relative cost of

technology. When x increases, the technology investment becomes more expensive, coun-

tries rely more on energy reduction than on green investment and the hold-up problem is

mitigated. Thus, deviating by not participating if the remaining coalition signs a one-period

contract becomes less costly, which reduces the size of the stable coalition
(

∂mĪ

∂x
< 0
)

. A

complete characterization of the stable coalition is provided in13

Proposition 1 M∗ is an equilibrium coalition if and only if either m∗ =
⌊

m
¯
I(ω)

⌋

or

⌊

m
¯
I(ω)

⌋

< m∗ ≤ min{n,m(x, δ, ω)}, where

m(x, δ, ω) = min{mM(x, δ),mĪ(x, δ, ω)} =















mM(x, δ) if x < x̂(δ, ω)

mĪ(x, δ, ω) if x ≥ x̂(δ, ω),

(22)

with

x̂(δ, ω) ≡
1 + δ +

√

(1 + δ)2 + 4δω(4−ω)
(2−ω)2

2ω(4−ω)
(2−ω)2

∈
[

max

{

1

3
,
2− ω

ω
δ

}

,
2− ω

ω

]

, ∂x̂
∂δ

> 0, ∂x̂
∂ω

< 0.

Proposition 1 shows that either the participation constraint
¯
I, the participation constraint

Ī or the discipline constraint mM(x, δ) is relevant for the stable coalition. One constraint of

the set {mM(x, δ),m
¯
I(ω),mĪ(x, δ, ω)} ‘binds’ and determines the size of the stable coalition.

4 Kyoto Protocol versus Paris Agreement

In this section, we compare the Kyoto Protocol with the Paris Agreement in our dynamic

game. We assume that the total number of countries is n = 197. The symmetric Nash

solution (ω = 1) reflects the Kyoto-Protocol, whereas the asymmetric Nash solution with

ω < 0.5 reflects the Paris Agreement. Since the Kyoto Protocol has been signed by 37

13Proposition 1 is proved in the Appendix.
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countries (Canada withdrew in 2012) and the Paris Agreement has been implemented by

195 countries,14 we consider those economies which provide m∗ = 37 if ω = 1 and m∗ = 195

if ω < 0.5 as stable coalitions in the dynamic game. There are three types of feasible

economies, denoted as economies E1 - E3, that are different with respect to the binding

constraints. Table 1 provides an overview of the relevant constraints in economies E1 - E3.

For each economy we present an example.15,16

Economies Paris Agreement Kyoto Protocol

(ω < 0.5) (ω = 1)

E1 discipline constraint participation constraint Ī

E2 participation constraint
¯
I participation constraint Ī

E3 participation constraint
¯
I discipline constraint

Table 1: Binding constraints in the feasible economies E1-E3
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Figure 2: Stable coalitions in Example 1 (δ = 0.979, ω = 0.0174)

We begin with numerical Example 1 which represents the economies E1. The parameter

values are δ = 0.979, ω = 0.0174 and ω = 1. Figure 2 illustrates the associated size of the

stable coalition m∗ in dependence of the relative cost of technology x. The discipline curve

mM is increasing in x and independent of ω, while the participation curve mĪ is decreasing

in x and it shifts downwards if ω increases. The left panel shows that the stable coalition

for ω = 1 is characterized by the polyline ABD. At AB the discipline constraint is binding,

14Libya has signed and ratified the Paris Agreement, but did not make any pledges.
15Following Harstad (2020) we assume ω < 0.5 for the Paris Agreement. Therefore, the case that with the

Paris Agreement the participation constraint Ī binds, which emerges if and only if ω = 0.977, is excluded.
16A complete characterization of the economies E1-E3 is given in Lemma A1 in the Appendix.
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whereas at BD the participation constraint Ī is binding. Reducing ω from 1 to 0.0174 shifts

the participation curve mĪ to the right as shown in the right panel of Figure 2. Now the

stable coalition lies on the polyline AEFG, where AE is in the left panel and FG is in the

right panel of Figure 2. For ω = 0.0174 the grand coalition (m∗ = 197) is stable if x is on

the line EF .

0��0 0��� 0��0 0��� 1.00 1.05 1.10 1.15 1.20

50

100

150

200

H

Q

mM (x, δ)

m = 195

mĪ(x, δ, 1)

m = 37

m

x

Figure 3: Stable coalitions in Example 1 (δ = 0.979, ω = 0.0174)

Next, consider Figure 3 which is an enlarged segment of Figure 2. In order to compare

the Paris Agreement with the Kyoto Protocol we select x∗ = 1.037 such that the stable

coalition is m∗ = 195 for ω = 0.0174 (point H) and m∗ = 37 for ω = 1 (point Q). At

point Q (ω = 1) the participation constraint Ī is binding, whereas at point H (ω = 0.0174)

the discipline constraint is binding (see Table 1). In both agreements the hold-up problem

is existent. Closer inspection of the two MPE reveals the following: If the discipline con-

straint is satisfied as in point H, then the coalition countries’ emissions and investments

are characterized by bdi,t = KRi,t+1 = [1 + (mM(x, δ) − 1)ω]C = 4.37C. In contrast, if the

participation constraint is satisfied as in point Q, then the coalition countries’ emissions and

investments are characterized by bdi,t = KRi,t+1 = [1+ 2xω
ω(x+δ)−2δ

]C = 37C. In the transition

from H (ω = 0.0174) to Q (ω = 1) there are two countervailing effects. On the one side

each coalition country emits less and invests more. On the other side the coalition size de-

creases such that more countries free ride. In the transition from the Kyoto Protocol to the

16



Paris Agreement, the stable coalition becomes broader and shallower. Aggregate emissions

increase and aggregate investments decline. In Example 1, ω is chosen such that a coalition

country’s welfare in the Kyoto Protocol exactly coincides with a coalition country’s welfare

in the Paris Agreement. Reducing [enhancing] ω below [above] the threshold ω = 0.0174

increases [decreases] a coalition country’s emissions and reduces [enhances] its investments

such that each coalition country’s welfare decreases [increases].17,18 In the Appendix, we

prove that the economies E1 satisfy x = 1.037, δ = 0.979 and ω ∈
[

1
97
, 0.5

)

. We summarize

these results in

Proposition 2 In economies E1 the welfare of a coalition country is higher with the Kyoto

Protocol (m∗ = 37, ω = 1) than with the Paris Agreement (m∗ = 195, ω < 0.5) if and only if

ω < 0.0174.
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¯
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mĪ(x, δ, 1)

m = 37

m

x

Figure 4: Stable coalitions in Example 2 (δ = 0.97, ω = 1
97

)

In economies E2 for the Kyoto Protocol the participation constraint Ī is still binding

but for the Paris Agreement the participation constraint
¯
I is binding. The hold-up problem

17Observe that reducing ω below 0.0174 does not change Figure 3. Only curve FG in the right panel of
Figure 2 is further shifted to the right.

18If ω = 0.0174 each non-signatory’s welfare is higher with the Kyoto Protocol than with the Paris Agree-
ment. Recall that non-signatories always set BAU emissions and BAU investments. Each non-signatory’s
welfare depends over aggregate emissions indirectly on the welfare weight ω. Aggregate emissions are de-
creasing in ω. Thus, there exists a second threshold of ω such that a non-signatory’s welfare is higher
with the Kyoto Protocol than with the Paris Agreement if and only if ω < 0.0352. See Lemma A2 in the
Appendix.
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is existent in the Kyoto Protocol, but non-existent in the Paris Agreement. To shift the

participation line m
¯
I to the top such that m = 195, the welfare weight ω has to be reduced

to ω = 1
97

. Economies E2 satisfy x ∈
(

35
37
, 18
17

]

, δ = 17
18
x and ω = 1

97
. In Example 2, which is

illustrated in Figure 4, we have chosen δ = 0.97. Again point H reflects the Paris Agreement

and point Q captures the Kyoto Protocol. The small welfare weight 1
97

< 0.0174 implies

that a coalition country’s welfare decreases in the transition from the Kyoto Protocol to the

Paris Agreement.19

Proposition 3 In economies E2 the welfare of a coalition country is higher with the Kyoto

Protocol (m∗ = 37, ω = 1) than with the Paris Agreement (m∗ = 195, ω = 1
97
).
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Figure 5: Stable coalitions in Example 3 (δ = 0.92, ω = 1
97

)

Finally, we turn to economies E3. In these economies the participation constraint
¯
I

is binding for the Paris Agreement and the discipline constraint is binding for the Kyoto

Protocol. Again, the hold-up problem is existent in the Kyoto Protocol, but non-existent

in the Paris Agreement. To ensure that the participation constraint
¯
I provides m∗ = 195,

we have to set ω = 1
97

. Furthermore, the stable coalition m∗ = 37 lies on the discipline

constraint if x ∈
(

0, 35
37

]

and δ = 1225
1296

− 71
1296

x and ω = 1
97

. Example 3, in which we have

set δ = 0.92, is depicted in Figure 5 with H and Q being the MPE for ω = 1
97

and ω = 1,

respectively. Due to ω < 0.0174 we infer

19For the proof of that claim we refer to Lemma A2 in the Appendix.
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Proposition 4 In economies E3 the welfare of a coalition country is higher with the Kyoto

Protocol (m∗ = 37, ω = 1) than with the Paris Agreement (m∗ = 195, ω = 1
97
).

The set of feasible economies is illustrated in Figure 6. The economies E2 [E3] are

on the line AB [BG]. In these economies the Kyoto Protocol performs better for coalition

countries (Proposition 3 and 4). The line ED captures the economies E1 and the point F is

the ‘threshold’ economy E1 satisfying ω = 0.0174. For all economies E1 on the line FD [EF ]

a coalition country’s welfare is higher [lower] with the Kyoto Protocol than with the Paris

Agreement (Proposition 2). The welfare rankings apply not only for coalition countries but

also for non-signatories. To sum up, in the economies on the lines AB, BG and FD the

Kyoto Protocol is Pareto superior to the Paris Agreement. Figure 6 shows that this set

of economies is considerably larger than the set of economies in which the Kyoto Protocol

is Pareto inferior to the Paris Agreement. There exists only one discount factor for which

the Paris Agreement performs better and this will only happen if the welfare weight ω is

sufficiently large.
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E

E1

E3
ω

x

0.9
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1

97

0.0174

0.02

1

0.5
0

Figure 6: Feasible economies

Finally, it is worth mentioning that our results of Proposition 1-4 are robust with

respect to reversing the timing of investments and emissions decisions, and with respect to

the time-dependence of pledges. So far, we have assumed that coalition countries set time-

dependent pledges. The analysis of time-independent pledges can be found in the Online

Appendix.
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5 Concluding remarks

The present paper has compared the Kyoto Protocol with the Paris Agreement in a dynamic

game in which countries choose emissions reductions and investments in green energy, decide

whether to join a climate coalition and negotiate the duration of the agreement. It is shown

that the stable coalition is large in the Paris Agreement and small in the Kyoto Protocol,

but coalition countries’ efforts to reduce emissions are much stronger in the Kyoto Protocol.

It turns out that there is a large set of feasible economies in which world emissions are lower

and countries’ welfare is higher in the Kyoto Protocol than in the Paris Agreement. Our

results contrast with Harstad (2020) who finds that countries prefer the Paris Agreement.

The conclusion of our analysis is not that countries should go back to the Kyoto Protocol.

Instead, our analysis may be interpreted in the way that countries’ efforts to mitigate climate

change with the Paris Agreement are even smaller than with the Kyoto Protocol and thus

still not strong enough to keep global warming below 2◦ Celsius.

The present analysis can be extended in various directions. Country-specific asymme-

tries, especially the distinction between industrialized and developing countries, have played

an important role in the transition from the Kyoto Protocol to the Paris Agreement. In

the same vein, transfers between asymmetric countries may affect the performance of the

asymmetric and symmetric Nash solutions in coalition formation games differently. Finally,

trade sanctions and positive spillovers from research and development of breakthrough tech-

nologies stand on the agenda for future research when comparing the asymmetric with the

symmetric Nash solution in the analysis of self-enforcing climate agreements.
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Appendix

Derivation of equations (15)-(17)

Rewriting (6) yields

vi =
T
∑

t=1

δt−1



− b

2
d2i,t − δ

K

2
R2

i,t+1 − C
∑

j∈N

(

ȳi − dj,t − δRj,t+1

)



+ δTvi

=
T
∑

t=1

δt−1



− b

2

(

ȳi − gi,t −Ri,t

)2 − δ
K

2
R2

i,t+1 − C
∑

j∈N

(

gj,t +Rj,t − δRj,t+1

)



+ δTvi

=
T
∑

t=2

δt−1



− b

2

(

ȳi − gi,t −Ri,t

)2 − K

2
R2

i,t − C
∑

j∈N

gj,t



+ δTvi

− b

2

(

ȳi − gi,1 −Ri,1

)2 − δT
K

2
R2

i,T+1 − C
∑

j∈N

(

gj,1 +Rj,1 − δTRj,T+1

)

. (A1)

The participants’ technology investment is given by maximizing vi from (A1) for given gi,t

over Ri,t:

δt−1
[

b
(

ȳi − gi,t −Ri,t

)

−KRi,t

]

= 0 ⇔ Ri,t =
b

b+K

(

ȳi − gi,t
)

∀t ∈ {2, ..., T}, (A2)

−δTKRi,T+1 + δTC = 0 ⇔ Ri,T+1 =
C

K
. (A3)

Substituting (A2) and (A3) into (A1), we get

vi =
T
∑

t=2

δt−1



− b

2

(

K

b+K

(

ȳi − gi,t
)

)2

− K

2

(

b

b+K

(

ȳi − gi,t
)

)2

− C
∑

j∈N

gj,t



+ δTvi

− b

2

(

ȳi − gi,1 −Ri,1

)2 − δT
K

2

(

C

K

)2

− C
∑

j∈N

(

gj,1 +Rj,1 − δT
C

K

)

. (A4)

The participants’ fossil fuel consumption is given by maximizing vi+ω
∑

j∈M\i vj from (A4)

over gi,t:

b
(

ȳi − gi,1 −Ri,1

)

− Ω(m)C = 0 ⇔ ȳi − gi,1 −Ri,1 = Ω(m)
C

b
, (A5)
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δt−1

[

b

(

K

b+K

)2
(

ȳi − gi,t
)

+K

(

b

b+K

)2
(

ȳi − gi,t
)

− Ω(m)C

]

= 0

⇔ ȳi − gi,t = Ω(m)
C(b+K)

bK
∀t ∈ {2, ..., T}, (A6)

where Ω(m) ≡ 1+(m−1)ω. Substituting (A5) and (A6) into (A2) and di,t = ȳi− gi,t−Ri,t,

we get

Ri,t =
b

b+K
Ω(m)

C(b+K)

bK
= Ω(m)

C

K
∀t ∈ {2, ..., T}, (A7)

di,t = ȳi − gi,t −Ri,t = Ω(m)
C

b
∀t ∈ {1, ..., T}. (A8)

Equation (15) then follows from (A8), and equation (16) then follows from (A3) and (A7).

From (12), di,t = ȳi − gi,t −Ri,t, (9) and (10) for BAU emissions and investments, and (A3),

(A7) and (A8) for the coalition countries’ emissions and investments, we get

zi,t = gBAU
i,t − gi,t = [ȳi − dBAU

i,t −RBAU
i,t ]− [ȳi − di,t −Ri,t]

=















[

ȳi − C
b
−Ri,1

]

−
[

ȳi − Ω(m)C
b
−Ri,1

]

if t = 1

[

ȳi − C
b
− C

K

]

−
[

ȳi − Ω(m)C
b
− Ω(m)C

K

]

if t ∈ {2, ..., T}.
(A9)

Equation (17) then follows from (A9).

Proof of Lemma 2

We first prove that the optimal contract duration T ∗ of the equilibrium coalition M∗ is

infinity. If m∗ countries contract for T ∗ ≤ ∞ periods, each participant’s continuation value

from (6), (9) and (10) for i /∈ M , and (15) and (16) for i ∈ M is given by

v(m∗, T ∗) =
T ∗−1
∑

t=1

δt−1

{

− b

2

(

Ω(m∗)
C

b

)2

− δ
K

2

(

Ω(m∗)
C

K

)2

− C

[

ȳ −
(

m∗Ω(m∗) + n−m∗
)

(

C

b
+

δC

K

)

]}

+ δT
∗−1

{

− b

2

(

Ω(m∗)
C

b

)2

− δ
K

2

(

C

K

)2

− C

[

ȳ −
(

m∗Ω(m∗) + n−m∗
) C

b
− n

δC

K

]

}

+ δT
∗

v(m∗, T ∗)
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= −1− δT
∗

1− δ
C



ȳ − C

(

m∗Ω(m∗)− Ω(m∗)2

2
+ n−m∗

)

(

1

b
+

δ

K

)





− δT
∗ C2

2K
[Ω(m∗)− 1][2m∗ − 1− Ω(m∗)] + δT

∗

v(m∗, T ∗)

= − C

1− δ



ȳ − C

(

m∗Ω(m∗)− Ω(m∗)2

2
+ n−m∗

)

(

1

b
+

δ

K

)





− δT
∗

1− δT ∗

C2

2K
[Ω(m∗)− 1][2m∗ − Ω(m∗)− 1], (A10)

where ȳ ≡
∑

j∈N ȳj. From (A10), we get the difference in each participant’s continuation

value between T ∗ = ∞ and T ∗ < ∞

v(m∗, T ∗ = ∞)− v(m∗, T ∗ < ∞) =
δT

∗

1− δT ∗

C2

2K
[Ω(m∗)− 1][2m∗ − Ω(m∗)− 1] > 0, (A11)

such that T ∗ < ∞ cannot be optimal.

Now we derive the optimal contract duration T of a given coalition M . If m countries

contract for T periods and T ∗ = ∞, each participant’s continuation value from (6), (9) and

(10) for i /∈ M , and (15) and (16) for i ∈ M is given by

v(m,T ) = −1− δT

1− δ
C



ȳi − C

(

mΩ(m)− Ω(m)2

2
+ n−m

)

(

1

b
+

δ

K

)





− δT
C2

2K
[Ω(m)− 1][2m− Ω(m)− 1]

− δT

1− δ
C



ȳi − C

(

m∗Ω(m∗)− Ω(m∗)2

2
+ n−m∗

)

(

1

b
+

δ

K

)



 . (A12)

Note that the derivative of v(m,T ) with respect to T or, equivalently, with respect to −δT

is always negative if and only if

C2

1− δ

(

mΩ(m)− Ω(m)2

2
+ n−m

)

(

1

b
+

δ

K

)

+
C2

2K
[Ω(m)− 1][2m− Ω(m)− 1] ≤

C2

1− δ

(

m∗Ω(m∗)− Ω(m∗)2

2
+ n−m∗

)

(

1

b
+

δ

K

)

⇔ x+ 1

x+ δ

(m− 1)2ω(2− ω)

2
− 1

2
≤ (m∗ − 1)2ω(2− ω)

2
− 1

2
, (A13)
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where x ≡ K/b. From (A13), the optimal contract duration is one period if m < m̂(x, δ,m∗),

infinity if m > m̂(x, δ,m∗), and arbitrary if m = m̂(x, δ,m∗), where m̂(x, δ,m∗) is defined in

Lemma 2. QED

Proof of Proposition 1

We first derive the condition for external stability. If a non-participant joins in equilibrium,

then m = m∗ + 1, which is not beneficial to him if his continuation value in case of partici-

pation for m = m∗ + 1 from (A10) for T ∗ = ∞ falls short of his continuation value in case

of non-participation for m = m∗ from (6) for di,t and Ri,t+1 from (9) and (10):

− C

1− δ



ȳ − C

(

(m∗ + 1)Ω(m∗ + 1)− Ω(m∗ + 1)2

2
+ n− (m∗ + 1)

)

(

1

b
+

δ

K

)



 <

− C

1− δ

[

ȳ − C

(

m∗Ω(m∗)− 1

2
+ n−m∗

)(

1

b
+

δ

K

)

]

⇔
[

(m∗ + 1)Ω(m∗ + 1)− Ω(m∗ + 1)2

2
−m∗Ω(m∗)− 1

2

]

C2

1− δ

(

1

b
+

δ

K

)

< 0

⇔ −m∗ω2

(

m∗ − 2

ω

)

C2

2(1− δ)

(

1

b
+

δ

K

)

< 0, (A14)

requiring m∗ > 2/ω for external stability.

Now we derive the conditions for internal stability. Suppose m∗ > mM(x, δ). If a

participant deviates in equilibrium, then m = m∗ − 1 > m̂(x, δ,m∗); so T = ∞ by Lemma

2. Such a permanent deviation is not beneficial to him if his continuation value in case of

participation for m = m∗ from (A10) for T ∗ = ∞ exceeds his continuation value in case of

non-participation for m = m∗ − 1 from (6) for di,t and Ri,t+1 from (9) and (10):

− C

1− δ



ȳ − C

(

m∗Ω(m∗)− Ω(m∗)2

2
+ n−m∗

)

(

1

b
+

δ

K

)



 ≥

− C

1− δ

[

ȳ − C

(

(m∗ − 1)Ω(m∗ − 1)− 1

2
+ n− (m∗ − 1)

)(

1

b
+

δ

K

)

]

⇔
[

m∗Ω(m∗)− Ω(m∗)2

2
− (m∗ − 1)Ω(m∗ − 1)− 1

2

]

C2

1− δ

(

1

b
+

δ

K

)

≥ 0
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⇔ (m∗ − 1)ω2

(

2

ω
− (m∗ − 1)

)

C2

2(1− δ)

(

1

b
+

δ

K

)

≥ 0, (A15)

requiring m∗ ≤ m
¯
I(x, ω) = 1 + 2/ω for internal stability. From (A14), the coalition is

externally stable if m∗ > 2/ω, which is only fulfilled for the largest internally stable coalition.

Thus, m∗ > mM(x, δ) implies m∗ =
⌊

1 + 2/ω
⌋

.

Now suppose m∗ ≤ mM(x, δ). If a participant deviates in equilibrium, then m =

m∗ − 1 ≤ m̂(x, δ,m∗); so T = 1 by Lemma 2, and the participant is expected to join the

coalition next period. Such a one-period deviation is not beneficial to him if his one-period

utility in case of participation for m = m∗ from (A10) for T ∗ = ∞ exceeds his one-period

utility in case of non-participation for m = m∗ − 1 from (6) for di,t and Ri,t+1 from (9) and

(10):

− C



ȳ − C

(

m∗Ω(m∗)− Ω(m∗)2

2
+ n−m∗

)

(

1

b
+

δ

K

)



 ≥

− b

2

(

C

b

)2

− δ
K

2

(

C

K

)2

− C

[

ȳ −
(

(m∗ − 1)Ω(m∗ − 1) + n− (m∗ − 1)
) C

b
− n

δC

K

]

⇔
[

m∗Ω(m∗)− Ω(m∗)2

2
− (m∗ − 1)Ω(m∗ − 1)− 1

2

]

C2

b

+

[

m∗Ω(m∗)− Ω(m∗)2

2
−m∗ +

1

2

]

δ

x

C2

b
≥ 0

⇔ (m∗ − 1)ω2

[

2

ω
+ (m∗ − 1)

(

2− ω

ω

δ

x
− 1

)

]

C2

2b
≥ 0, (A16)

requiring m∗ ≤ mĪ(x, δ, ω) = 1 + 2/ω

1− 2−ω
ω

δ
x

for internal stability. For x ≤ 2−ω
ω

δ, any coali-

tion is internally stable. From (A14), the coalition is externally stable if m∗ > 2/ω,

which is definitely fulfilled for the largest internally stable coalition. Furthermore, m∗ =

mM(x, δ) <
⌊

1 + 2/ω
⌋

would imply m∗ = mM(x, δ) ≤ 2/ω, such that the coalition would

not be externally stable and m∗ > mM(x, δ) would hold. Thus, m∗ ≤ mM(x, δ) implies

m∗ ∈
[

⌊

1 + 2/ω
⌋

,min{n,mĪ(x, δ, ω)}
]

.
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Comparing mM(x) from (19) with mĪ(x, δ, ω) from (21) yields mM(x, δ) R mĪ(x, δ, ω) ⇔

x R x̂(δ, ω) as defined in Proposition 1, which proves the cases in (22). Differentiating x̂(δ, ω)

from Proposition 1 with respect to δ and ω, we get

∂x̂
∂δ

=
1 + δ + 2ω(4−ω)

(2−ω)2
+
√

(1 + δ)2 + 4δω(4−ω)
(2−ω)2

2ω(4−ω)
(2−ω)2

√

(1 + δ)2 + 4δω(4−ω)
(2−ω)2

> 0, (A17)

∂x̂
∂ω

=
(1 + δ)2 + 2δω(4−ω)

(2−ω)2
+ (1 + δ)

√

(1 + δ)2 + 4δω(4−ω)
(2−ω)2

ω2(4−ω)2

4(2−ω)

√

(1 + δ)2 + 4δω(4−ω)
(2−ω)2

< 0, (A18)

which proves the signs of the derivatives in Proposition 1. Finally,

x̂(δ, ω)− 2− ω

ω
δ =

4δ(1− δ)/ω

ω(1+δ)−2+6δ
2−ω

+
√

(1 + δ)2 + 4δω(4−ω)
(2−ω)2

≥ 0, (A19)

x̂(0, ω) = 1/3 and x̂(1, ω) = (2− ω)/ω proves the bounds of x̂(δ, ω) in Proposition 1. QED

To prove Propositions 2-4, we first characterize the feasible economies E1-E3 in Lemma

A1 and then derive the welfare difference of each participant and that of each non-participant

between the Kyoto Protocol and the Paris Agreement in Lemma A2.

Lemma A1 Suppose m∗ = 37 holds for ω = 1 (Kyoto Protocol) and m∗ = 195 holds for

ω ≤ 0.5 (Paris Agreement). Then, Table A1 characterizes the feasible economies.

Economy Paris Agreement Kyoto Protocol x ∈ δ ∈ ω ∈
E1 m∗ = mM(x, δ) m∗ = mĪ(x, δ, 1) 1.037 0.979 [0.01, 0.5)

E2 m∗ = m
¯
I(ω) m∗ = mĪ(x, δ, 1) (0.946, 1.059] (0.893, 1] 0.01

E3 m∗ = m
¯
I(ω) m∗ = mM(x, δ) (0, 0.946] [0.893, 0.945) 0.01

Table A1: Feasible economies E1-E3

Proof of Lemma A1

For the Kyoto Protocol, m∗ = 37 and ω = 1 imply that either m∗ ≤ mM(x, δ) or m∗ ≤

mĪ(x, δ, ω = 1) is binding. Else, m∗ = m
¯
I(ω = 1) = 3 or m∗ = n = 197 would hold. First

suppose m∗ ≤ mM(x, δ) and m∗ = mĪ(x, δ, ω = 1) hold for the Kyoto Protocol. From (19)
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and (21), we then get

mM(x, δ) = 1 +
1

1−
√

x+δ
x+1

≥ 37 ⇔ δ ≥ 1225− 71x

1296
, (A20)

mĪ(x, δ, ω = 1) = 1 +
2x

x− δ
= 37 ⇔ x =

18

17
δ. (A21)

Substituting (A21) into (A20) and rearranging yields δ ≥ 595
666

≈ 0.893, and substituting this

into (A21) yields x ≥ 35
37

≈ 0.946. δ ≤ 1 then implies δ ∈
[

595
666

, 1
]

and x ∈
[

35
37
, 18
17

]

.

For the Paris Agreement, m∗ = 195 and ω ≤ 0.5 imply that m∗ ≤ m
¯
I(ω), m∗ ≤

mM(x, δ) or m∗ ≤ mĪ(x, δ, ω) is binding. Else, m∗ = n = 197 would hold. Substituting

x = 18
17
δ from (A21) into (19) and (21), we get

mM

(

x =
18

17
δ, δ

)

= 1 +
1

1−
√

35δ
18δ+17

= 195 ⇔ δ =
633233

646778
≈ 0.979, (A22)

mĪ

(

x =
18

17
δ, δ, ω

)

= 1 +
36

35ω − 34
= 195 ⇔ ω =

3316

3395
≈ 0.977. (A23)

mĪ

(

x = 18
17
δ, δ, ω

)

= 195 cannot hold since ω < 0.5, and mM

(

x = 18
17
δ, δ
)

= 195 holds for δ ≈

0.979 and x = 18
17
δ ≈ 1.037. Finally, m

¯
I(ω) = 1 + 2

ω
= 195 holds for ω = 1

97
≈ 0.010. Thus,

economies E1 are characterized by mĪ(x, δ, ω = 1) = 37, mM(x, δ) = 195 and m
¯
I(ω) ≥ 195,

which implies the values in the second line of Table A1, and economies E2 are characterized

by mĪ(x, δ, ω = 1) = 37, mM(x, δ) ≥ 37 and m
¯
I(ω) = 195, which implies the values in the

third line of Table A1.

Now suppose m∗ = mM(x, δ) and m∗ ≤ mĪ(x, δ, ω = 1) hold for the Kyoto Protocol.

From (19) and (21), we then get

mM(x, δ) = 1 +
1

1−
√

x+δ
x+1

= 37 ⇔ δ =
1225− 71x

1296
, (A24)

mĪ(x, δ, ω = 1) = 1 +
2x

x− δ
≥ 37 ⇔ x ≤ 18

17
δ. (A25)

Substituting (A25) into (A24) and rearranging yields δ ≥ 595
666

≈ 0.893, and substituting this

into (A25) yields x ≤ 35
37

≈ 0.946. x ≥ 0 then implies δ ∈
[

595
666

, 1225
1296

]

and x ∈
[

0, 35
37

]

.
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For the Paris Agreement, m∗ = 195 and ω ≤ 0.5 imply that m∗ ≤ m
¯
I(ω) or m∗ ≤

mĪ(x, δ, ω) is binding. Else, mM(x, δ) = 37 or m∗ = n = 197 would hold. Substituting

x = 1225−1296δ
71

from (A24) into (21), we get

mĪ

(

x =
1225− 1296δ

71
, δ, ω

)

= 1 +
142δ − 2450(1− δ)

142δ − 1225ω(1− δ)
= 195 ⇔ ω =

12478δ + 1225

118825(1− δ)
.

(A26)

mĪ

(

x = 1225−1296δ
71

, δ, ω
)

= 195 cannot hold since δ ≥ 595
666

implies ω ≥ 3316
3395

> 0.5. Finally,

m
¯
I(ω) = 1 + 2

ω
= 195 holds for ω = 1

97
≈ 0.010. Thus, economies E3 are characterized by

mM(x, δ) = 37, mĪ(x, δ, ω = 1) ≥ 37 and m
¯
I(ω) = 195, which implies the values in the last

line of Table A1. QED

Lemma A2 Suppose m∗ = 37 holds for ω = 1 (Kyoto Protocol) and m∗ = 195 holds

for ω ≤ 0.5 (Paris Agreement). Then, the welfare of each participant [non-participant] is

higher with the Kyoto Protocol than with the Paris Agreement if and only if ω < 0.0174

[ω < 0.0352]. Furthermore, the intertemporal climate damage is smaller with the Kyoto

Protocol than with the Paris Agreement if and only if ω < 0.0352.

Proof of Lemma A2

For the Kyoto Protocol, we have m∗ = 37 and ω = 1, and for the Paris Agreement, we

have m∗ = 195 and ω ≤ 0.5. From (A10) for T ∗ = ∞, we get the welfare difference of each

participant

v(m = 37, ω = 1)− v(m = 195, ω < 1) =
C2

1− δ

[

648− 18818ω(2− ω)
]

(

1

b
+

δ

K

)

, (A27)

which is positive [negative] for ω < [>]0.0174, and from the first line’s right-hand side of

(A14), we get the welfare difference of each non-participant

v(m = 37, ω = 1)− v(m = 195, ω < 1) =
C2

1− δ
[1332− 37830ω]

(

1

b
+

δ

K

)

, (A28)

which is positive [negative] for ω < [>]0.0352. Since each nonparticipant always chooses

the business-as-usual energy consumption and technology investment, its welfare difference

30



stems from the difference in the intertemporal climate damage, such that ω < [>]0.0352

implies a smaller [greater] intertemporal climate damage with the Kyoto Protocol than with

the Paris Agreement. QED

Proof of Proposition 2

From Lemma A1, ω ∈ [0.1, 0.5] holds in economies E1, such that the welfare of each par-

ticipant is higher with the Kyoto Protocol than with the Paris Agreement if and only if

ω < 0.0174 in economies E1 from Lemma A2. QED

Proof of Proposition 3

From Lemma A1, ω = 0.1 holds in economies E2, such that the welfare of each participant is

higher with the Kyoto Protocol than with the Paris Agreement in economies E2 from Lemma

A2. QED

Proof of Proposition 4

From Lemma A1, ω = 0.1 holds in economies E3, such that the welfare of each participant is

higher with the Kyoto Protocol than with the Paris Agreement in economies E3 from Lemma

A2. QED
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Online Appendix: Time-independent pledges

Derivation of the coalition countries’ emissions, investments and pledges

The participants’ technology investment is given by (A2) and (A3). Substituting (A2) and

(A3) into (A1) for gi,t = gBAU
i,t − zi, we get

vi =
T
∑

t=2

δt−1







− b

2

(

K

b+K

(

ȳi − gBAU
i,t + zi

)

)2

− K

2

(

b

b+K

(

ȳi − gBAU
i,t + zi

)

)2

− C
∑

j∈N

(

gBAU
j,t − zj

)







+ δTvi −
b

2

(

ȳi − gBAU
i,1 + zi −Ri,1

)2

− δT
K

2

(

C

K

)2

− C
∑

j∈N

(

gBAU
j,1 − zj +Rj,1 − δT

C

K

)

. (B1)

The participants’ pledges are given by maximizing vi + ω
∑

j∈M\i vj from (B1) over zi:

δ − δT

1− δ

[

−b

(

K

b+K

)2(
C

b
+

C

K
+ zi

)

−K

(

b

b+K

)2(
C

b
+

C

K
+ zi

)

+ Ω(m)C

]

− b

(

C

b
+ zi

)

+ Ω(m)C = 0

⇔ zi = [Φ(m,T )− 1]

(

C

b
+

C

K

)

∈
(

ω(m− 1)
C

b
, ω(m− 1)

(

C

b
+

C

K

)

)

, (B2)

where Φ(m,T ) ≡ 1 + Ω(m)−1

1+ 1−δ

1−δT
b
K

∈
(

1,Ω(m)
)

. Substituting (B2) into (A2) and di,t = ȳi −

gi,t −Ri,t for gi,t = gBAU
i,t − zi, we get

Ri,t =
b

b+K

(

ȳi − gBAU
i,t + zi

)

=
b

b+K
Φ(·)

(

C

b
+

C

K

)

= Φ(·)C
K

∀t ∈ {2, ..., T}, (B3)

di,t = ȳi − gBAU
i,t + zi −Ri,t =















Φ(·)C
b
+ [Φ(·)− 1]C

b
if t = 1

Φ(·)
(

C
b
+ C

K

)

− Φ(·)C
K

= Φ(·)C
b

if t ∈ {2, ..., T}.
(B4)

The next lemma specifies the optimal contract length for given coalition size m.

Lemma B1 Let M∗ denote an equilibrium coalition size m∗ ≡ |M∗|. Then, a coalition of

size m = |M |, satisfying M ⊆ M∗ or M∗ ⊆ M , finds it optimal to contract for T (m) periods,
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where

T (m) =































1 if m < m̌(x, δ,m∗)

{1, ...,∞} if m = m̌(x, δ,m∗)

∞ if m > m̌(x, δ,m∗),

(B5)

with

m̌(x, δ,m∗) ≡ 1 + (m∗ − 1)

√

x+ 1

x+ 2− δ
< m∗.

Proof of Lemma B1

We first prove that the optimal contract duration T ∗ of the equilibrium coalition M∗ is

infinity. If m∗ countries contract for T ∗ ≤ ∞ periods, each participant’s continuation value

from (6), (9) and (10) for i /∈ M , and (B3) and (B4) for i ∈ M is given by

v(m∗, T ∗) =

{

− b

2

(

Φ(m∗, T ∗)
C

b
+ [Φ(m∗, T ∗)− 1]

C

K

)2

− δ
K

2

(

Φ(m∗, T ∗)
C

K

)2

− C

[

ȳ −
(

m∗Φ(m∗, T ∗) + n−m∗
)

(

C

b
+

δC

K

)

−m∗[Φ(m∗, T ∗)− 1]
C

K

]}

+
T ∗−1
∑

t=2

δt−1

{

− b

2

(

Φ(m∗, T ∗)
C

b

)2

− δ
K

2

(

Φ(m∗, T ∗)
C

K

)2

− C

[

ȳ −
(

m∗Φ(m∗, T ∗) + n−m∗
)

(

C

b
+

δC

K

)

]}

+ δT
∗−1

{

− b

2

(

Φ(m∗, T ∗)
C

b

)2

− δ
K

2

(

C

K

)2

− C

[

ȳ −
(

m∗Φ(m∗, T ∗) + n−m∗
) C

b
− n

δC

K

]

}

+ δT
∗

v(m∗, T ∗)

= −1− δT
∗

1− δ
C







ȳ − C

(

m∗Ω(m∗, T ∗)− Ω(m∗, T ∗)2

2
+ n−m∗

)

(

1

b
+

1

K

)

+
C(1− δ)(2n− 1)

2K







− C2[Φ(m∗, T ∗)− 1]2(b+K)

2K2
+ δT

∗

v(m∗, T ∗)
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= − C

1− δ







ȳ − C

(

m∗Φ(m∗, T ∗)− Φ(m∗, T ∗)2

2
+ n−m∗

)

(

1

b
+

1

K

)

+
C(1− δ)(2n− 1)

2K







− C2[Φ(m∗, T ∗)− 1]2(b+K)

2(1− δT ∗)K2
. (B6)

Differentiating (B6) with respect to T ∗ yields

∂v(m∗,T ∗)
∂T

= ∂Φ(m∗,T ∗)
∂T

C2[m∗ − Φ(m∗, T ∗)](b+K)

(1− δ)bK

− ∂Φ(m∗,T ∗)
∂T

C2[Φ(m∗, T ∗)− 1](b+K)

(1− δT ∗)K2
− ln(δ)δT

∗C2[Φ(m∗, T ∗)− 1]2(b+K)

2(1− δT ∗)2K2

= ∂Φ(m∗,T ∗)
∂T

C2[m∗ − Ω(m∗)](b+K)

(1− δ)bK
− ln(δ)δT

∗C2[Φ(m∗, T ∗)− 1]2(b+K)

2(1− δT ∗)2K2
, (B7)

where ∂Φ(m∗,T ∗)
∂T

= − ln(δ)δT
∗

1−δT
∗

1−δ

1−δT
∗

b
K
[Ω(m∗)−1]

(

1+ 1−δ

1−δT
∗

b
K

)2 ≥ 0, such that T ∗ < ∞ cannot be optimal.

T ∗ = ∞ raises the pledges and prevents the hold-up problem.

Now we derive the optimal contract duration T of a given coalition M . If m countries

contract for T periods and T ∗ = ∞, each participant’s continuation value from (6), (9) and

(10) for i /∈ M , and (B3) and (B4) for i ∈ M is given by

v(m,T ) = −1− δT

1− δ
C







ȳ − C

(

mΦ(m,T )− Φ(m,T )2

2
+ n−m

)

(

1

b
+

1

K

)

+
C(1− δ)(2n− 1)

2K







− C2[Φ(m,T )− 1]2(b+K)

2K2

− δT

1− δ
C







ȳ − C

(

m∗Φ(m∗,∞)− Φ(m∗,∞)2

2
+ n−m∗

)

(

1

b
+

1

K

)

+
C(1− δ)(2n− 1)

2K







− δT
C2[Φ(m∗,∞)− 1]2(b+K)

2K2
. (B8)

Differentiating (B8) with respect to T yields

∂v(m,T )
∂T

=
ln(δ)δT

1− δ
C







ȳ − C

(

mΦ(m,T )− Φ(m,T )2

2
+ n−m

)

(

1

b
+

1

K

)
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+
C(1− δ)(2n− 1)

2K







+ (1− δT )∂Φ(m,T )
∂T

C2[m− Ω(m)](b+K)

(1− δ)bK

− ln(δ)δT

1− δ
C







ȳ − C

(

m∗Φ(m∗,∞)− Φ(m∗,∞)2

2
+ n−m∗

)

(

1

b
+

1

K

)

+
C(1− δ)(2n− 1)

2K







− ln(δ)δT
C2[Φ(m,T )− 1]2(b+K)

2K2

= (1− δT )∂Φ(m,T )
∂T

C2[m− Ω(m)](b+K)

(1− δ)bK
− ln(δ)δT

C2[Φ(m∗,∞)− 1]2(b+K)

2K2

− ln(δ)δTC2

1− δ

(

mΦ(m,T )− Φ(m,T )2

2
−m

)

(

1

b
+

1

K

)

+
ln(δ)δTC2

1− δ

(

m∗Φ(m∗,∞)− Φ(m∗,∞)2

2
−m∗

)

(

1

b
+

1

K

)

. (B9)

Substituting the definitions of Φ(m,T ) and Ω(m) into (B9) and simplifying yields

∂v(m,T )
∂T

= − ln(δ)δTω(2− ω)C2

2b(1− δ)

(x+ 1)
(

x+ 2 1−δ
1−δT

)

(

x+ 1−δ
1−δT

)2 [(m− 1)2 − (m∗ − 1)2Λ(T )], (B10)

with

Λ(T ) ≡

(

x+ 1−δ
1−δT

)2

(x+ 1− δ)
(

x+ 2 1−δ
1−δT

) with ∂Λ(T )
∂T

=
2 ln(δ)δT (1− δ)2

(

x+ 1−δ
1−δT

)

(1− δT )3(x+ 1− δ)
(

x+ 2 1−δ
1−δT

)2 < 0.

∂Λ(T )
∂T

< 0 implies that ∂v(m,T )
∂T

is positive [negative] for all T if it is positive [negative] for

T = 1 [T = ∞]. By contrast, if ∂v(m,T )
∂T

is negative for T = 1 but positive for T = ∞, it is

minimal for some T ∈ (1,∞) and it is either maximal for T = 1 or for T = ∞. Thus, the

optimal contract duration T of a given coalition M is either T = 1 or T = ∞. From (B8),

we get the difference in each participant’s continuation value between T = 1 and T = ∞

v(m, 1)− v(m,∞) = −C







ȳ − C

(

mΦ(m, 1)− Φ(m, 1)2

2
+ n−m

)

(

1

b
+

1

K

)

+
C(1− δ)(2n− 1)

2K







− C2[Φ(m, 1)− 1]2(b+K)

2K2
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− δ

1− δ
C







ȳ − C

(

m∗Φ(m∗,∞)− Φ(m∗,∞)2

2
+ n−m∗

)

(

1

b
+

1

K

)

+
C(1− δ)(2n− 1)

2K







− δ
C2[Φ(m∗,∞)− 1]2(b+K)

2K2

+
C

1− δ







ȳ − C

(

mΦ(m,∞)− Φ(m,∞)2

2
+ n−m

)

(

1

b
+

1

K

)

+
C(1− δ)(2n− 1)

2K







+
C2[Φ(m,∞)− 1]2(b+K)

2K2
. (B11)

Substituting the definitions of Φ(m,T ) and Ω(m) into (B11) and simplifying yields

v(m, 1)− v(m,∞) = −δω(2− ω)C2

2b(1− δ)

x+ 2− δ

x+ 1− δ

[

(m− 1)2 − (m∗ − 1)2
x+ 1

x+ 2− δ

]

. (B12)

From (B12), the optimal contract duration is one period if m < m̌(x, δ,m∗), infinity if

m > m̌(x, δ,m∗), and arbitrary if m = m̌(x, δ,m∗), where m̌(x, δ,m∗) is defined in Lemma

B1. QED

Defining

m̌M(x, δ) ≡ 1 +
1

1−
√

x+1
x+2−δ

, m̌Ī(x, δ, ω) ≡ 1 +
2/ω

1− 2−ω
ω

δ
x+1−δ

> m
¯
I(ω), (B13)

the next proposition specifies the equilibrium coalition size m∗. Note that m̌Ī < m̂Ī and

m̌M > mM ⇔ x+ 1

x+ 2− δ
>

x+ δ

x+ 1
⇔ (1− δ)2

(x+ 2− δ)(x+ 1)
> 0,

such that it is more likely that the incentive constraint is binding with time-independent

pledges than with time-dependent pledges.

Proposition B1 M∗ is an equilibrium coalition if and only if either m∗ =
⌊

m
¯
I(ω)

⌋

or

⌊

m
¯
I(ω)

⌋

< m∗ ≤ min{n, m̌(x, δ, ω)}, where

m̌(x, δ, ω) = min{m̌M(x, δ), m̌Ī(x, δ, ω)} =















m̌M(x, δ) if x < x̌(δ, ω)

m̌Ī(x, δ, ω) if x ≥ x̌(δ, ω),

(B14)

36



with

x̌(δ, ω) ≡ x̂(δ, ω)− (1− δ) ≤ 2− ω

ω
, ∂x̌

∂δ
> 0, ∂x̌

∂ω
< 0,

where δ ≥ 0.36 ∨ ω ≤ 0.59 =⇒ x̌(δ, ω) > 0.

Proof of Proposition B1

We first derive the condition for external stability. If a non-participant joins in equilibrium,

then m = m∗ + 1, which is not beneficial to him if his continuation value in case of partici-

pation for m = m∗ + 1 from (B6) for T ∗ = ∞ falls short of his continuation value in case of

non-participation for m = m∗ from (6) for di,t and Ri,t+1 from (9) and (10):

− C

1− δ







ȳ − C

(

(m∗ + 1)Φ(m∗ + 1,∞)− Φ(m∗ + 1,∞)2

2
+ n− (m∗ + 1)

)

(

1

b
+

1

K

)

+
C(1− δ)(2n− 1)

2K







− C2[Φ(m∗ + 1,∞)− 1]2(b+K)

2K2
<

− C

1− δ

[

ȳ − C

(

m∗Φ(m∗,∞)− 1

2
+ n−m∗

)(

1

b
+

δ

K

)

]

+
C2m∗[Φ(m∗,∞)− 1]

K

⇔
[

(m∗ + 1)Φ(m∗ + 1,∞)− Φ(m∗ + 1,∞)2

2
−m∗Φ(m∗,∞)− 1

2

]

C2

1− δ

(

1

b
+

δ

K

)

− (1− δ)[Φ(m∗ + 1,∞)− 1]2

2x

C2

1− δ

(

1

b
+

δ

K

)

< 0

⇔ −m∗ω2

(

m∗ − 2

ω

)

C2

2(1− δ)

(

1

b
+

δ

K

)

x

x+ 1− δ
< 0, (B15)

requiring m∗ > 2/ω for external stability.

Now we derive the conditions for internal stability. If a single country deviates by

not participating, the remaining coalition sets T = 1 only if m∗ − 1 ≤ m̌(x, δ,m∗) ⇔

m∗ ≤ m̌M(x, δ) as defined in Proposition B1. Suppose m∗ > m̌M(x, δ). If a participant

deviates in equilibrium, then m = m∗ − 1 > m̌(x, δ,m∗); so T = ∞ by Lemma B1. Such a

permanent deviation is not beneficial to him if his continuation value in case of participation

for m = m∗ from (B6) for T ∗ = ∞ exceeds his continuation value in case of non-participation
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for m = m∗ − 1 from (6) for di,t and Ri,t+1 from (9) and (10):

− C

1− δ







ȳ − C

(

m∗Φ(m∗,∞)− Φ(m∗,∞)2

2
+ n−m∗

)

(

1

b
+

1

K

)

+
C(1− δ)(2n− 1)

2K







− C2[Φ(m∗,∞)− 1]2(b+K)

2K2
≥

− C

1− δ

[

ȳ − C

(

(m∗ − 1)Φ(m∗ − 1,∞)− 1

2
+ n− (m∗ − 1)

)(

1

b
+

δ

K

)

]

+
C2(m∗ − 1)[Φ(m∗ − 1,∞)− 1]

K

⇔
[

m∗Φ(m∗)− Φ(m∗)2

2
− (m∗ − 1)Φ(m∗ − 1)− 1

2

]

C2

1− δ

(

1

b
+

δ

K

)

− (1− δ)[Φ(m∗,∞)− 1]2

2x

C2

1− δ

(

1

b
+

δ

K

)

≥ 0

⇔ (m∗ − 1)ω2

(

2

ω
− (m∗ − 1)

)

C2

2(1− δ)

(

1

b
+

δ

K

)

x

x+ 1− δ
≥ 0, (B16)

requiring m∗ ≤ m
¯
I(ω) = 1+2/ω for internal stability. From (B15), the coalition is externally

stable if m∗ > 2/ω, which is only fulfilled for the largest internally stable coalition. Thus,

m∗ > m̌M(x, δ) implies m∗ =
⌊

1 + 2/ω
⌋

.

Now suppose m∗ ≤ m̌M(x, δ). If a participant deviates in equilibrium, then m =

m∗ − 1 ≤ m̌(x, δ,m∗); so T = 1 by Lemma 2, and the participant is expected to join the

coalition next period. Such a one-period deviation is not beneficial to him if his one-period

utility in case of participation for m = m∗ from (B6) for T ∗ = ∞ exceeds his one-period

utility in case of non-participation for m = m∗ − 1 from (6) for di,t and Ri,t+1 from (9) and

(10):

− C







ȳ − C

(

m∗Φ(m∗,∞)− Φ(m∗,∞)2

2
+ n−m∗

)

(

1

b
+

δ

K

)

+
C(1− δ)(2n− 1)

2K







− (1− δ)
C2[Φ(m∗,∞)− 1]2(b+K)

2K2
≥

− b

2

(

C

b

)2

− δ
K

2

(

C

K

)2

+
C2(m∗ − 1)[Φ(m∗ − 1, 1)− 1]

K
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− C

[

ȳ −
(

(m∗ − 1)Φ(m∗ − 1, 1) + n− (m∗ − 1)
) C

b
− n

δC

K

]

⇔
[

m∗Φ(m∗,∞)− Φ(m∗,∞)2

2
− (m∗ − 1)Φ(m∗ − 1, 1)− 1

2

]

1 + x

x

C2

b

− (1− δ)[Φ(m∗,∞)− 1]2

2

δ

x2

C2

b
≥ 0

⇔ (m∗ − 1)ω2

[

2

ω
+ (m∗ − 1)

(

2− ω

ω

δ

x+ 1− δ
− 1

)

]

C2

2b
≥ 0, (B17)

requiring m∗ ≤ m̌Ī(x, δ, ω) = 1 + 2/ω

1− 2−ω
ω

δ
x+1−δ

for internal stability. For x ≤ 2δ−ω
ω

, any

coalition is internally stable. From (A14), the coalition is externally stable if m∗ > 2/ω,

which is definitely fulfilled for the largest internally stable coalition. Furthermore, m∗ =

m̌M(x, δ) <
⌊

1 + 2/ω
⌋

would imply m∗ = m̌M(x, δ) ≤ 2/ω, such that the coalition would

not be externally stable and m∗ > m̌M(x, δ) would hold. Thus, m∗ ≤ m̌M(x, δ) implies

m∗ ∈
[

⌊

1 + 2/ω
⌋

,min{n, m̌Ī(x, δ, ω)}
]

.

Comparing m̌M(x, δ) with m̌Ī(x, δ, ω) yields m̌M(x, δ) R m̌Ī(x, δ, ω) ⇔ x R x̌(δ, ω)

as defined in Proposition B1, which proves the cases in (B14). Differentiating x̌(δ, ω) from

Proposition 1 with respect to δ and ω, we get ∂x̌
∂δ

= ∂x̂
∂δ

+ 1 and ∂x̌
∂ω

= ∂x̂
∂ω

, which proves the

signs of the derivatives in Proposition B1. Finally,

x̌(δ, 1) =
[7 +

√
17− δ][δ − 7 +

√
17]

5− 7δ +
√
1 + 14δ + δ2

R 0 ⇔ δ R 0.36, (B18)

x̌(0, ω) =
[2 +

√
2− ω][2−

√
2− ω]

0.5ω(4− ω)
R 0 ⇔ ω ⋚ 0.59 (B19)

and x̌(1, ω) = (2− ω)/ω proves the bounds of x̌(δ, ω) in Proposition B1. QED

The next proposition compares the welfare of a coalition country with the Kyoto

Protocol and with the Paris Agreement.

Proposition B2 In economies Ě2 and Ě3 [Ě1] the welfare of a coalition country is higher

with the Kyoto Protocol (m∗ = 37, ω = 1) than with the Paris Agreement (m∗ = 195, ω = 1
97
)

[if and only if ω < 0.0174].
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To prove Proposition B2, we first characterize the feasible economies Ě1-Ě3 in Lemma

B2 and then derive the welfare difference of each participant and that of each non-participant

between the Kyoto Protocol and the Paris Agreement in Lemma B3.

Lemma B2 Suppose m∗ = 37 holds for ω = 1 (Kyoto Protocol) and m∗ = 195 holds for

ω ≤ 0.5 (Paris Agreement). Then, Table 5 characterizes the feasible economies.

Economy Paris Agreement Kyoto Protocol x ∈ δ ∈ ω ∈
Ě1 m∗ = m̌M(x, δ) m∗ = m̌Ī(x, δ, 1) 1.016 0.979 [0.01, 0.5)

Ě2 m∗ = m
¯
I(ω) m∗ = m̌Ī(x, δ, 1) (0.839, 1.059] (0.893, 1] 0.01

Ě3 m∗ = m
¯
I(ω) m∗ = m̌M(x, δ) (0, 0.839] [0.893, 0.942) 0.01

Table B1: Feasible economies Ě1-Ě3

Proof of Lemma B2

For the Kyoto Protocol, m∗ = 37 and ω = 1 imply that either m∗ ≤ m̌M(x, δ) or m∗ ≤

m̌Ī(x, δ, ω = 1) is binding. Else, m∗ = m
¯
I(ω = 1) = 3 or m∗ = n = 197 would hold. First

suppose m∗ ≤ m̌M(x, δ) and m∗ = m̌Ī(x, δ, ω = 1) hold for the Kyoto Protocol. From (B13),

we then get

m̌M(x, δ) = 1 +
1

1−
√

x+1
x+2−δ

≥ 37 ⇔ δ ≥ 1154− 71x

1225
, (B20)

m̌Ī(x, δ, ω = 1) = 1 +
2

1− δ
x+1−δ

= 37 ⇔ x =
35δ − 17

17
. (B21)

Substituting (B21) into (B20) and rearranging yields δ ≥ 595
666

≈ 0.893, and substituting this

into (B21) yields x ≥ 559
666

≈ 0.839. δ ≤ 1 then implies δ ∈
[

595
666

, 1
]

and x ∈
[

559
666

, 18
17

]

.

For the Paris Agreement, m∗ = 195 and ω ≤ 0.5 imply that m∗ ≤ m
¯
I(ω), m∗ ≤

m̌M(x, δ) or m∗ ≤ m̌Ī(x, δ, ω) is binding. Else, m∗ = n = 197 would hold. Substituting

x = 35δ−17
17

from (B21) into (B13), we get

m̌M

(

x =
35δ − 17

17
, δ

)

= 1 +
1

1−
√

35δ
18δ+17

= 195 ⇔ δ =
633233

646778
≈ 0.979, (B22)
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m̌Ī

(

x =
35δ − 17

17
, δ, ω

)

= 1 +
36

35ω − 34
= 195 ⇔ ω =

3316

3395
≈ 0.977. (B23)

m̌Ī

(

x = 35δ−17
17

, δ, ω
)

= 195 cannot hold since ω < 0.5, and m̌M

(

x = 35δ−17
17

, δ
)

= 195 holds

for δ ≈ 0.979 and x = 35δ−17
17

≈ 1.016. Finally, m
¯
I(ω) = 1 + 2

ω
= 195 holds for ω = 1

97
≈

0.010. Thus, economies Ě1 are characterized by m̌Ī(x, δ, ω = 1) = 37, m̌M(x, δ) = 195 and

m
¯
I(ω) ≥ 195, which implies the values in the second line of Table 5, and economies Ě2 are

characterized by m̌Ī(x, δ, ω = 1) = 37, m̌M(x, δ) ≥ 37 and m̌
¯
I(ω) = 195, which implies the

values in the third line of Table 5.

Now suppose m∗ = m̌M(x, δ) and m∗ ≤ m̌Ī(x, δ, ω = 1) hold for the Kyoto Protocol.

From (B13), we then get

m̌M(x, δ) = 1 +
1

1−
√

x+1
x+2−δ

= 37 ⇔ δ =
1154− 71x

1225
, (B24)

m̌Ī(x, δ, ω = 1) = 1 +
2

1− δ
x+1−δ

≥ 37 ⇔ x ≤ 35δ − 17

17
. (B25)

Substituting (B25) into (B24) and rearranging yields δ ≥ 595
666

≈ 0.893, and substituting this

into (B25) yields x ≤ 559
666

≈ 0.839. x ≥ 0 then implies δ ∈
[

595
666

, 1154
1225

]

and x ∈
[

0, 559
666

]

.

For the Paris Agreement, m∗ = 195 and ω ≤ 0.5 imply that m∗ ≤ m
¯
I(ω) or m∗ ≤

m̌Ī(x, δ, ω) is binding. Else, m̌M(x, δ) = 37 or m∗ = n = 197 would hold. Substituting

x = 1154−1225δ
71

from (B24) into (B13), we get

m̌Ī

(

x =
1154− 1225δ

71
, δ, ω

)

= 1 +
142δ − 2450(1− δ)

142δ − 1225ω(1− δ)
= 195 ⇔ ω =

12478δ + 1225

118825(1− δ)
.

(B26)

m̌Ī

(

x = 1154−1225δ
71

, δ, ω
)

= 195 cannot hold since δ ≥ 595
666

implies ω ≥ 3316
3395

> 0.5. Finally,

m
¯
I(ω) = 1 + 2

ω
= 195 holds for ω = 1

97
≈ 0.010. Thus, economies Ě3 are characterized by

m̌M(x, δ) = 37, m̌Ī(x, δ, ω = 1) ≥ 37 and m
¯
I(ω) = 195, which implies the values in the last

line of Table 5. QED

Lemma B3 Suppose m∗ = 37 holds for ω = 1 (Kyoto Protocol) and m∗ = 195 holds for
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ω ≤ 0.5 (Paris Agreement). Then, the welfare of each participant [non-participant] is higher

with the Kyoto Protocol than with the Paris Agreement if and only if ω < 0.0174 [ω < 0.0352].

Furthermore, the intertemporal climate damage is smaller with the Kyoto Protocol than with

the Paris Agreement if and only if ω < 0.0352.

Proof of Lemma B3

For the Kyoto Protocol, we have m∗ = 37 and ω = 1, and for the Paris Agreement, we

have m∗ = 195 and ω ≤ 0.5. From (B6) for T ∗ = ∞, we get the welfare difference of each

participant

v(m = 37, ω = 1)− v(m = 195, ω < 1) =
C2(x+ 1)[648− 18818ω(2− ω)]

b(1− δ)(x+ 1− δ)
, (B27)

which is positive [negative] for ω < [>]0.0174, and from the first line’s right-hand side of

(B15), we get the welfare difference of each non-participant

v(m = 37, ω = 1)− v(m = 195, ω < 1) =
C2(x+ 2− δ)[1332− 37830ω]

b(1− δ)(x+ 1− δ)
, (B28)

which is positive [negative] for ω < [>]0.0352. Since each nonparticipant always chooses

the business-as-usual energy consumption and technology investment, its welfare difference

stems from the difference in the intertemporal climate damage, such that ω < [>]0.0352

implies a smaller [greater] intertemporal climate damage with the Kyoto Protocol than with

the Paris Agreement. QED

Proof of Proposition B2

From Lemma B2, ω = 0.1 [ω ∈ [0.1, 0.5]] holds in economies Ě2 and Ě3 [Ě1], such that the

welfare of each participant is higher with the Kyoto Protocol than with the Paris Agreement

in economies Ě2 and Ě3 [if and only if ω < 0.0174 in economies Ě1] from Lemma B3. QED
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