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Abstract

We develop a model of social preferences for network games and study

its predictions in a local public goods game with multiple equilibria.

The key feature is that players’ social preferences are heterogeneous.

This gives room for disagreement between players about the “right”

payoff ordering. When preferences are compatible, however, players

coordinate on a refined equilibrium set. How easily the requirements

for preference compatibility are met crucially depends on a property

of the network structure: neighborhood nestedness. This means that

equilibrium selection succeeds in small, connected structures but also

in centralized networks. All predictions are confirmed in an experi-

ment.

JEL: D85, C70, C91, H41

Keywords: social preferences, network games, equilibrium selection

This study belongs to the research program "Cooperation in Social and Economic Rela-
tions", which enjoys a waiver from Utrecht University’s Institutional Review Board (IRB).
Approval number: FETC17-028.

*Utrecht University School of Economics, Kriekenpitplein 21-22, 3584 EC Utrecht.
†Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081HV, Amsterdam & Tinbergen

Institute & Radboud University, Institute for Management Research, Heyendaalseweg 141,
6525AJ Nijmegen.

‡Fernuniversität Hagen, Universitätsstr. 11, 58097 Hagen. Corresponding author:
bastian.westbrock@fernuni-hagen.de

1



1 Introduction

We are involved in many social interactions in our daily lives and con-
stantly struggle to divide our attention, time, effort, or resources between
our friends, neighbors, and co-workers. Many experimental and empirical
studies suggest that social preferences shape our behavior in such interac-
tions. Yet, it is not clear how social preferences play out in a network of
interdependent social interactions. How do individuals balance their self-
ish interests with a potential desire to achieve a fair(er) distribution across
the many social interactions in which they are involved? Do social pref-
erences help to coordinate behaviour when selfish incentives give rise to
multiple equilibria? Do they help to overcome the inequality imposed by
the macro-level network structure of personal connections?

In this paper, we study these questions in the context of the seminal
local public goods game by Bramoullé and Kranton (2007). The game has
much in common with the social dilemmas described above. Players share
their investments (time, effort, resources) with their neighbors in a fixed
network structure. Yet, players make only so many investments until they
fill the gap between their personally desired level of the public good and the
investments made in their neighborhood. This results in multiple equilibria
that greatly differ in terms of overall welfare and the distribution of payoffs
among players.

Our first contribution is that we introduce social preferences into this
game and show that they limit the number of equilibria. Towards this end,
we incorporate an n-player version of the Charness and Rabin (2002) so-
cial preference model into the game, which captures several types of social
preferences that real people have been shown to care about.1 We then char-
acterize the equilibria with social preferences, what we refer to as the other-
regarding equilibria (ORE). Our main results show that social preferences
imply a very intuitive payoff ranking condition. Only those ORE are sup-
ported in many networks where payoffs are ordered according to the num-
ber of connections the players have. In other words, players in more central
network positions earn more in equilibrium. And, if all players share the
same connections, they earn the same.

Our payoff ranking condition is thus consistent with the social norm
that managers earn more than their subordinates and professors more than
their students. But it is also consistent with the norm that two flatmates
should share the kitchen work equally, just as two coworkers should share
the credit for a joint project.2 However, the condition also implies that social

1See Sobel (2005) for an excellent earlier review of the experimental and empirical evi-
dence and Bellemare, Kröger, and Van Soest (2008), Falk, Becker, Dohmen, Enke, Huffman,
and Sunde (2018), and Kerschbamer and Müller (2020) for more recent evidence.

2Our payoff ranking condition is also consistent with earlier work in the social network
literature. For example, it rationalizes the payoff-ranking assumptions of earlier network
exchange theories (e.g., Cook and Emerson, 1978), and it enters many modern network
formation models in a reduced form (e.g., the co-authorship model of Jackson and Wolin-
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preferences do not necessarily entail more equitable or efficient outcomes
in a network. Rather, they just reinforce the (in-)equality that is already
inherent in the network structure.

Do social preferences impose a payoff ranking on all networks alike?
Our second contribution shows that the answer is no. Social preferences
facilitate equilibrium selection in small, tightly connected networks and
in very centralized star-like structures. They fail to select, in contrast, in
loosely-connected local interaction structures. More generally, we show that
equilibrium selection through social preferences depends on two properties
of the network structure: size and neighborhood nestedness.

While the impact of group size on coordination problems is well un-
derstood, the role of nestedness has not yet received much attention in the
economics literature.3 The neighborhoods of two players are nested if the
neighborhood of one player is contained in the neighborhood of the other
player who has a (weakly) larger number of connections. We show that two
social players only agree on an unambiguous payoff ordering between them
when their neighborhoods are nested. In other words, the central mecha-
nism through which social preferences select equilibria hinges on a stronger
requirement than just that one player has more connections than the other.

The role of nestedness becomes most apparent in our results for the cir-
cle network without any nested neighborhood. There, our theory predicts
the co-existence of equal-split equilibria on one hand and specialized equi-
libria on the other, where some players free ride on the investments of their
neighbors.

However, also for all the networks with nested neighborhoods, the ex-
act organization of these neighborhoods matters if one takes into account
that not all players share the same social preference. It is a well-known fact
that people differ in their social preferences depending on, for instance, age,
gender, and education (e.g., Bellemare, Kröger, and Van Soest, 2008; Falk,
Becker, Dohmen, Enke, Huffman, and Sunde, 2018). Incorporating prefer-
ence heterogeneity adds an additional dimension to our story because it
implies that players might disagree about how payoffs should be ordered
in a network. To capture this dimension, we model a game where each
player’s social preference is randomly determined at the start and players
have incomplete information about other players’ preferences. We then de-
rive sufficient conditions regarding a combination of compatible social pref-
erences that lead to an unambiguous payoff ordering between two players
in a nested neighborhood of a network. How easily this payoff ordering

sky, 1996). Moreover, our equal-sharing prediction for a two-player dyadic interaction is
reminiscent of the experimental evidence on 50:50 sharing in two-player games in the lab
(Andreoni and Bernheim, 2009).

3Nestedness is a well-known topology of many ecological systems (Mariani, Ren, Bas-
compte, and Tessone, 2019) and many emergent social networks (König, Tessone, and
Zenou, 2014; Belhaj, Bervoets, and Deroïan, 2016; Li, 2019; Olaizola and Valenciano, 2020).
All the more surprising, our study is to the best of our knowledge the first to stress the
functional importance of nested neighborhoods.
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is reflected in the entire network structure not only depends on the net-
work’s degree of nestedness but also on how the nested neighborhoods are
organized. Our results on the star network and the complete network most
clearly illustrate that.

The second part of our paper validates the central mechanisms and pre-
dictions of our theory in an experiment. Our experiment has a number of
design features to facilitate the test. First, subjects play the Bramoullé and
Kranton (2007) game on a set of networks that differ widely in terms of
nestedness. Second, we employ a large strategy space to allow for the full
set of equilibria in the Bramoullé and Kranton (2007) game and for social
comparison-motivated deviations thereof to emerge. Third, to ensure that
subjects play equilibria at all, we let them play in continuous-time such as in
Callander and Plott (2005), Berninghaus, Ehrhart, and Ott (2006), or Goyal,
Rosenkranz, Weitzel, and Buskens (2017).

In the next section, we relate our contributions to the literature. Section
3 presents the game and our theoretical predictions. Section 4 describes the
experiment. Sections 5–7 present the findings, and Section 8 discusses their
implications. The proofs of all our statements, additional evidence from our
experiment, and the replication instructions can be found in the appendix.

2 Related literature

Our study relates to the literature on social networks and on social pref-
erences.4 Our first contribution that social preferences facilitate equilibrium
selection is related to one of the central topics in the recent network litera-
ture. As Charness, Feri, Meléndez-Jiménez, and Sutter (2014) put it:

A critical problem for network theory is that even simple games
have multiple equilibria, so that a great variety of outcomes are
consistent with theoretical analysis. This naturally limits the pre-
dictive power of the theory and the scope of policy recommenda-
tions, since multiple equilibria make it difficult-to-impossible to
offer definitive advice regarding how such labor markets, search
markets, etc. should be organized. To make meaningful policy
recommendations, it is crucial to determine which equilibrium
is likely to occur (Charness, Feri, Meléndez-Jiménez, and Sutter,
2014, p. 1617).

The studies of Bramoullé, Kranton, and D’Amours (2014) and Allouch (2015)
make clear when the problem of equilibrium multiplicity is most severe:
in local interaction games where players’ investments are strategic substi-
tutes, hence just the class of games looked at in this study. The theoreti-

4A comprehensive overview of theoretical and experimental work on social and eco-
nomic networks can be found in Bramoullé, Galeotti, and Rogers (2016) and Choi, Kariv,
and Gallo (2016). For a comprehensive overview of the work on social preferences, see
Sobel (2005).
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cal literature has proposed several equilibrium refinement concepts so far.
Bramoullé and Kranton (2007) study the equilibria that are stable with re-
gard to Nash tâtonnement, and Boncinelli and Pin (2012) look at the stochas-
tically stable equilibria. Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv
(2010), in turn, show that a limitation of the agents’ information about the
network structure can lead, probably paradoxically, to a sharp refinement
of the equilibrium set.5 All these concepts roughly select the same type of
equilibria: the periphery-sponsorship equilibria where players with fewer
connections contribute more to the local public good in their neighborhood
than players with more connections. We develop a novel refinement con-
cept that selects just the same type of equilibria in the class of asymmetric,
star-like network structures. The new feature of our social preference theory
is that it also provides a very natural, and as our experiment shows, empiri-
cally relevant refinement of the equilibria in symmetric network structures.
These refined equilibria receive no support by the previous concepts.

The experimental literature on equilibrium selection has tested the role
of incomplete information and Nash tâtonnement stability. In the most com-
prehensive study to date, Charness, Feri, Meléndez-Jiménez, and Sutter
(2014) investigate the role of uncertainty about the network structure in a
series of one-shot binary-choice games where the strategies of two network
neighbors are either strategic substitutes or strategic complements. They
conclude, however, that uncertainty does not facilitate coordination per
se. Rather, the guiding principle to equilibrium selection in their strategic-
substitutes games is risk dominance. In an experiment similar to ours on the
original Bramoullé and Kranton (2007) game with the same large strategy
space as in our experiment, but a non-continuous-time design, Rosenkranz
and Weitzel (2012) compare the predictions of risk dominance with those
of Nash tâtonnement stability and quantal response theory. Their findings
provide partial support for all three theories, mainly because the rate of
equilibrium play is so low that discrimination between the theories is diffi-
cult. Common to both experiments is that most of their evidence stems from
asymmetric network structures where they find just the class of equilibria as
predicted by all the theories, including ours, that is, periphery-sponsorship
equilibria. Thus, in a sense, social preferences and fairness considerations
have never been given a chance in these experiments; either because equal
division of payoffs was ruled out by design or because coordination on any
equilibrium at all was already so difficult that attempts to equalize payoffs
were not discernible from the data. Our experimental design gives social
preferences a chance to play a role in equilibrium selection.

There are a few other network theories with socially concerned play-

5One should not forget the literature on network formation at this point and one of its
main findings that an expansion of the players’ strategy sets to also include the selection
or exclusion of partners can help to refine the equilibrium set of the game played on the
network (e.g., Galeotti and Goyal, 2010; Goyal, Rosenkranz, Weitzel, and Buskens, 2017;
Riedl and Ule, 2002).
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ers, notably Ghiglino and Goyal (2010), Immorlica, Kranton, Manea, and
Stoddard (2017), Bourlès, Bramoullé, and Perez-Richet (2017), and Richefort
(2018). Different from our setting, they investigate environments without
local strategic interactions so that coordination is not an issue. Social pref-
erences merely “shift” the unique equilibrium points in these theories.6 An-
other difference between these studies and ours is that they focus on one
specific type of social preference, whereas we allow for the empirically more
relevant case of heterogeneous preferences. The only other experimental
study of social preferences in network games that we are aware of next to
ours is Zhang (2018). The author compares the predictive power of two so-
cial preference types (altruism and inequity aversion) in two network struc-
tures (star and circle) and concludes that altruism is the better predictor.
Yet, just as the above-mentioned studies, Zhang (2018) considers a game
without any strategic interaction so that social preferences merely shift the
observed investments in the experiment. By contrast, social preferences in
our context can make the difference between an equilibrium with a center-
and a periphery-sponsored public good and thus the difference between
being the sole contributor and a free rider.

Our second contribution regarding the role of network size and network
nestedness for equilibrium selection is closely related to the early literature
on coordination games in symmetric local interaction structures (e.g., El-
lison, 1993; Goyal and Janssen, 1997). A typical finding in this literature
is that coordination is impeded by group size and is facilitated by a high
level of clustering in each player’s neighborhood. These predictions have
been experimentally confirmed by, for example, Berninghaus, Ehrhart, and
Keser (2002). The existing work on the link between network topology
and coordination in more complex network structures is, to the best of our
knowledge, exclusively experimental. Cassar (2007) and Charness, Feri,
Meléndez-Jiménez, and Sutter (2014) show that the positive impact of clus-
tering on coordination extends to various richer network structures. This
conclusion is also confirmed by the findings in Rosenkranz and Weitzel
(2012). They also find, however, that coordination is equally likely in highly
centralized but otherwise non-clustered networks. Compared to these stud-
ies, our contribution is the theoretical underpinning and experimental sup-
port for a so-far overlooked property of the network structure: neighbor-
hood nestedness.7 In particular, our findings on the complimentary role of
the degree of nestedness and the ideal organization of nested neighbor-

6To be precise, the general-equilibrium economy of Ghiglino and Goyal (2010) and the
multiple public goods game of Richefort (2018) entail some form of strategic interaction.
Yet, their interactions yield a unique equilibrium point with or without socially concerned
players.

7Even though the level of clustering and the number of nested neighborhoods are poten-
tially correlated in many network structures, the most conducive network for coordination
in our context is the star network, that is, a network with zero clustering but a single player
who nests the neighborhoods of all other players. In contrast, the fully clustered complete
network is hardly any more conducive than a cirle network.
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Figure 1: Networks in the experiment

hoods helps to explain the puzzle in Rosenkranz and Weitzel (2012). At
least some degree of nestedness is important for coordination. But even
more important is that a few players nest the neighborhoods of all others.

Finally, there is a link between our experimental findings and the large
literature on social preferences.8 The main contribution is that our network
games fill the gap between the two extremes that are typically looked at in
experiments: the complete interaction structure (n : n) and the star struc-
ture (1 : n), which are studied as stylized cases for market and bargaining
interactions but which are less representative for many other social interac-
tions.

3 Theory

3.1 Rules of the network game

We study the role of heterogeneous social preferences in the Bramoullé
and Kranton (2007) public goods game. The rules are as follows: n players
are embedded in a fixed network g ∈ G. Figure 1 illustrates some examples.
All players simultaneously choose an investment that contributes to their
own local public good and to that of their direct neighbors in g. Examples
of such partner-independent investment are organizing parties for friends,
project-specific investments by coworkers, experimentation with new tools,
and neighborhood beautification expenses, all vis-à-vis the time or effort a
person spends on her personal “projects”.

Let e−i = {e1, e2, ..., ei−1, ei+1, ..., en} denote the contributions in all nodes
of the network except in node i, and letNi(g) denote the set of nodes in the

8Our findings are most closely related to those studies that go beyond pro-social behav-
ior in small (1:1) interactions, notably the experiments on one-to-many bargaining (e.g.,
Roth, Prasnikar, Fujiwara, and Zamir, 1991; Schotter, Weiss, and Zapater, 1996), n-player
public goods games with heterogeneous endowments (e.g., Fehr and Fischbacher, 2002;
Buckley and Croson, 2006), and heterogeneous Cournot games (e.g., Maurice, Rouaix, and
Willinger, 2013).
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neighborhood of node i. The payoff of a player in node i is

π(ei, e−i, i) = b
(
ei + ein

)
− cei , (1)

where ein ≡ ∑j∈Ni(g) ej and where b(·) denotes the public-good benefit func-
tion, which satisfies b′(0) > c > b′(∞) and b′′(·) < 0, and c denotes a con-
stant unit investment cost. In our experiment and at some points in our
theory, we make use of the following linear-quadratic specification:

π(ei, e−i, i) =


(
ei + ein

)(
α− ei − ein

)
− cei if ei + ein ≤ α−x

2
(α−x)2

4 + x
(
ei + ein

)
− cei otherwise

, (2)

where x is the minimal social benefit of an investment and α an intercept
parameter.

A well-known prediction for the Bramoullé and Kranton (2007) game is
that there exists a strictly positive investment level e∗, such that all players
aim to fill the gap between e∗ and the investments in their neighborhood
(given that the latter do not already exceed e∗). In other words, the payoff-
maximizing best-response function is given by

f (e−i, i) =

e∗ − ein if ein ≤ e∗

0 otherwise
. (3)

Moreover, there are multiple equilibria for every network structure. In the
dyad in Figure 1, for example, or its n-player extension, the complete net-
work, any investment profile is a Nash equilibrium as long as the sum of
investments is equal to e∗. Similarly, in the star network, there are two Nash
equilibria, one equilibrium where the center player provides the desired
level e∗ and another equilibrium where the periphery players invest each
e∗.9

It is obvious that all these equilibria differ markedly in terms of the
overall welfare and the payoff distribution they induce. In the context of
coworker teams, for example, the prediction for a star-like team structure is
that either the team leader does all the work or her subordinates do. Simi-
larly, one prediction for a non-hierarchical team is that the workload is split
equally among the team members; another prediction is that one coworker
does all the work. This calls for reasonable equilibrium refinement concepts
and experiments testing their importance. As we will see, social preferences
serve both purposes; they can lead to a fine-grained selection in the equilib-
rium set and the equilibria they select are empirically relevant.

9More generally, in any network structure there exists a class of specialized equilibria,
where some players contribute the desired investment level e∗, while their neighbors ex-
ert no effort, and a class of distributed equilibria, where every player exerts some effort
(Bramoullé and Kranton, 2007).
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3.2 A social preference function for network games

We first present our social preference model. The theoretical literature
on social preferences has produced various meaningful preference models
for two-player games or n-player symmetric games (see Sobel, 2005, for a re-
view). Games on more complex interaction structures have been left out of
the perspective, however.10 Our model is an n-player extension of the dis-
tributional preference models of Charness and Rabin (2002) and Schulz and
May (1989), which nests various distributional preferences such as altruism,
inequity aversion, competitiveness, and spite.11 It formulates a player’s
preferences in the following way:

Us(ei, e−i, i) = πi +
1
|Rs| ∑

j∈Rs

(
ρs rij + σs sij

)
πj , (4)

where Rs denotes the player’s reference group that satisfies Ni(g) ⊆ Rs ⊆
N\{i}, ρs and σs denote two real-numbered preference parameters, ρs ≥ σs,
and

rij = 1 if πi > πj and rij = 0 otherwise,

sij = 1 if πi < πj and sij = 0 otherwise.

This formulation says that utility is a linear combination of material payoffs
and a social preference component. The latter captures the (dis-)utility play-
ers derive from comparing their payoffs with those of other players in the
game. With whom a player compares is defined by the reference set Rs. The
set might comprise any number of players in a network. It seems natural,
however, that players only compare with their neighbors who they can di-
rectly influence, Rs = Ni(g), or benchmark their payoffs against everyone
else in a network, Rs = N\{i}.

Players thereby distinguish between peers in their reference group who
are behind (πi > πj) and peers who are ahead (πi < πj). The parame-
ters ρs and σs then govern the (dis-)utility players derive from comparing
with those behind and those ahead. Depending on the specific parameter
combination, the model describes various meaningful preference types. Un-
conditional altruists (ρs ≥ σs > 0), for example, are always willing to give
up some of their own payoffs to help others. Social-welfare types, in contrast,
withdraw their assistance when they are behind everyone else (ρs > σs = 0).
In the negative domain, spiteful types (0 > ρs ≥ σs) are always willing
to forego some of their own payoffs to lower the payoffs of others, while

10The exception here is the studies on social networks mentioned in the literature re-
view that have developed their own interdependent preference models. Utility model (4)
nests several of these as special cases. In particular, Ghiglino and Goyal (2010) consider
what we define as spitefulness, and Immorlica, Kranton, Manea, and Stoddard (2017) con-
sider competitiveness. The model in Bourlès, Bramoullé, and Perez-Richet (2017), in contrast,
describes a situation where players know each other well and, accordingly, include each
others’ utilities rather than payoffs in their own utility functions.

11For a recent experimental test of this model, see Bruhin, Fehr, and Schunk (2019).
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competitive types (0 = ρs > σs) refrain from these welfare-reducing actions
when they are ahead of everyone else. The two domains are connected by
the inequity-averse types (ρs > 0 > σs) who forfeit some of their payoffs
to players who are behind but who are willing to incur welfare-reducing
actions to lower the payoffs of those who are ahead.

Model (4) thus captures a wide range of empirically relevant preference
types and, as we will see, is nevertheless simple enough to produce sharp
predictions in the context of the Bramoullé and Kranton (2007) game.12

3.3 Other-regarding equilibria: general results

Equipped with this utility model, we now turn to the characterization of
the equilibria of the extended Bramoullé and Kranton (2007) game, hence-
forth the ORE. We think of a game where the parameters of utility model
(4) are randomly determined for each player before the start of the game.
Specifically, the type ts ≡ (ρs, σs, Rs) of a player in node i is determined
by an i.i.d. draw from a probability distribution over the support Ti =

{τ1, τ2, ..., τt}, where Ti defines a finite subset of the set of all feasible com-
binations of τs. The actual combination of player types in a game, ω ≡
(ts1, ts′2, ..., ts′′n), is then an i.i.d. random variable drawn from the set Ω ≡
T1 × ...× Tn. Moreover, an ORE is a Bayesian Nash equilibrium of a game
with incomplete information about each player’s type, where the strategy
of a player is a mapping Σi : Ti → R+.

Let f or(ts, i, e−i) denote the best-response investment of a type-ts player
in node i against the “expected” investments in the other nodes:

e−i ≡
(
eτ11, ..., eτt1, ..., eτ1i−1, ..., eτti−1, eτ1i+1, ..., eτti+1, ..., eτ1n, ..., eτtn

)
.

Point predictions for this best-response investment are difficult to make.
The reason is that the optimal response of a player not only depends on
her social preference type but also on her relative standing vis-à-vis every
single other player (τs, i) in her reference group. Nevertheless, we can define
several general conditions that a best response, and an ORE, must satisfy.

First, players do not deviate “too much” from a payoff-maximizing best
response. Instead, a player’s type ts defines how far away her best-response
investment is from a pure payoff-maximizing investment. To measure this
deviation, we define

f non((0, 0), i
)
≡ f non((ρs = 0, σs = 0), i, e−i

)
as the unconstrained (thus possibly negative) optimal response of a payoff

12In fact, model (4) circumvents an ambiguity of the original Charness and Rabin (2002)
model in the context of the Bramoullé and Kranton (2007) game. Apart from the n-player
extension, another major difference between the two models is that the absolute level of
other players’ payoffs enters utility (4), rather than their relative payoff vis-à-vis the focal
player. This modification avoids a counter-intuitive prediction of the original model, which
we address more explicitly in our robustness analysis in Experimental Appendix B.3.
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maximizer that would make the investment in a player’s stead. When pay-
offs are given by the linear-quadratic function (2), for example, then this
optimal response is simply given by

f non((0, 0), i
)

= e∗ − E[ein] ,

where E[ein] denotes the expected investments of i’s neighbors.
We then define the scalar εs ∈ R+ that measures the maximal absolute

deviation that a type ts would be willing to make for the sake of a fairer
outcome. It then follows that f or(ts, i, e−i) is constrained by

max
{

f non((0, 0), i
)
− εs ; 0

}
≤ f or(ts, i, , e−i

)
≤ f non((0, 0), i

)
+ εs. (5)

In other words, εs is a measure of the strength of a player’s social preferences
and

ε ≡ max{ετ | τ ∈ Ti, i ∈ N}

measures the maximal preference strength of a player group. The following
result shows how to map a player’s ts into a value for εs.

Lemma 1. Suppose that players’ utilities are defined by payoff function (1) and
the social preference model (4) with parameters ts = (ρs, σs, Rs). A player’s social
preference strength, εs, is given by

for an altruist or a social-welfare type (ρs ≥ σs ≥ 0) : ε
p
s

for an inequity-averse type (ρs > 0 > σs > −1) : max{εp
s ; εn

s }
for a competitive or spiteful type (0 ≥ ρs ≥ σs > −1) : εn

s

where

ε
p
s = (b′)−1( c

1 + ρs

)
− e∗ (6)

εn
s = e∗ −max

{
(b′)−1( c

1 + σs

)
; 0
}

.

See Theoretical Appendix A.1 for the proof. The expressions in (12) are
intuitive. Because the optimal investment of a payoff maximizer, e∗, is de-
fined by e∗ ≡ (b′)−1(c), the expressions suggest that social preferences do
nothing but alter the personal unit cost of a public goods investment. Com-
petitive and spiteful players choose an investment as if they had a higher
cost, altruists and social-welfare types invest as if their cost was lower.

Thus, at first sight, social preferences do not seem to facilitate equilib-
rium selection. Quite on the contrary, the expressions in (5) and (12) sug-
gest that the set of ORE is wider than the set of payoff-maximizing equilibria
because additional equilibria can be maintained where some or all players
deviate from a payoff-maximizing investment. Yet, other-regarding play-
ers do not deviate from a payoff maximum in an arbitrary way. As they
ultimately strive for a certain payoff ordering, the set of ORE profiles is con-
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Figure 2: Payoff-maximizing and refined other-regarding equilibria
NOTES: Panel (a) shows one of three specialized payoff-maximizing equilibrium profiles
that is not a refined ORE. Panel (b) exhibits a refined ORE, which coincides with one of
the other two specialized payoff-maximizing equilibrium profiles when ε ≡ max{ετ | τ ∈
Ti, i ∈ N} → 0. The gray and black nodes indicate players in nested neighborhoods.

strained in a systematic way. To see how the equilibrium set is constrained,
let us look at the following example.

Example 1. Consider the investment profile in Figure 2 Panel (a). Suppose
that all players are inequity-averse and suppose they include only their di-
rect neighbors in their reference group, both of which is common knowl-
edge for all players. In that case, the profile cannot be maintained in an ORE,
despite being a payoff-maximizing equilibrium. This is because player c1
(and player t3) would necessarily want to reduce their investments below e∗

as they are the only ones who contribute in their neighborhood and there-
fore feel exploited. At the same time, their neighbors would necessarily
want to increase their investments (from zero) because they feel guilty. The
profile in Panel (a) can thus be ruled out as an ORE.

To avoid any such deviations, we need to look for a profile where player
c1 earns more than at least one of her neighbors, say player p1. This is be-
cause player c1’s envy of players p2 or c2 may then be balanced out against
her guilt towards p1. Such a profile is displayed in Panel (b). In fact, that
profile can be maintained in an ORE, despite the fact that the other central
player c2 is one of the players who earns the least.

Why are the central players c1 and c2 treated differently in this example?
The reason is that the payoff ordering in player c1’s neighborhood is tied to
the fact that the neighborhood of c1 nests the neighborhoods of players p1
and p2. This nestedness, in turn, implies that players p1 and p2 do not re-
ceive any investments that c1 does not have access to. Combined with their
aversion to inequity, players p1 and p2 thus cannot earn more than player c1
because their feelings of guilt would make them increase their investments
to help c1. The same cannot be said about player c2 and her neighbors,

12



however. All three of them have access to at least one other player, who
c2 does not have access to and who contributes to their local public good.
And, because the total investments that c2’s neighbors receive in Panel (b)
are far beyond their personally desired level of the public good (when their
εs is sufficiently), they are not willing to make the extra investment that
would be needed for a more equitable outcome for player c2. The profile in
Panel (b) can thus be maintained in an ORE.

Equilibrium selection through social preferences is tied to an additional
condition, however. To see which, consider the profile in Panel (a) again.

Example 2. Suppose that, instead of all players being inequity-averse, player
c1 is of a social-welfare type while players p1, p2, and c2 are competitive or
spiteful. The profile in Panel (a) can then be maintained in an ORE—in ad-
dition to the ORE in Panel (b)—because c1’s neighbors do not feel guilty
any longer (maintain ej = 0), while c1 looks after herself (plays ec1 = e∗).

Why can the profile in Panel (a) been ruled out as an ORE when all play-
ers are inequity-averse, but not when they have the preference constellation
of Example 2? The reason is that the preferences of the players must be
compatible, in the sense that players must prefer a payoff ordering that “fits”
the position they occupy in a network. As we have seen above, competitive
or spiteful types in the central positions of a network and social-welfare or
altruistic types in the peripheral positions do not meet this requirement. But
a group of only inequity-averse types does meet them.

Generalizing from here, we define a refined ORE as an other-regarding
equilibrium profile where at least some (or all) players’ social preferences
are compatible so that their payoffs must be ordered in an arbitrary net-
work g. The following result derives the general conditions under which
this payoff-ordering property must be satisfied.

Lemma 2. Consider two neighbors i and j in a nested neighborhood in a network g,
that is, Nj(g) ∪ {j} ⊆ Ni(g) ∪ {i}. Suppose that i’s and j’s social preferences are
compatible and that this is common knowledge. That is, their type sets Ti = T ∗i
and Tj = T ∗j satisfy

T ∗i ≡ {comp., spite, inequity av.} ∧ T ∗j ≡ T \{spite}
∨ (7)

T ∗i ≡ T \{altruist} ∧ T ∗j ≡ {social welfare, altruist, inequity av.}.

In a refined ORE, it must be that π(i, ω) ≥ mink∈Ri{π(k, ω)} OR π(j, ω) ≤
maxk∈Rj{π(k, ω)} for at least one ω ∈ Ω∗ ≡ T1 × ...T ∗i × ...T ∗j × ...Tn.

The proof is as follows. Suppose that player j’s neighborhood is nested
in player i’s, and suppose their preferences are compatible but that, contrary
to the statement, all types of player i (j) earn strictly less (more) than all play-
ers in their respective reference groups, that is, π(i, τ) < mink∈Rτ

{π(k, ω)}
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AND π(j, τ′) > maxk∈Rτ′
{π(k, ω)} for all ω ∈ Ω∗. Then, it must hold that13

0 < eτi ≤ f non((0, 0), i
)
< f non((0, 0), j

)
≤ eτ′ j , (8)

because either player i feels exploited or player j feels guilty (or both).
However, this implies for the type ts with the highest investment among

all τ ∈ T ∗i and the type tt with the lowest investment among all τ′ ∈ T ∗j
(for which etsi < ett j still holds) that Eπ(ts, i) > Eπ(tt, j). This is because ts

receives, in expectation, a larger local public good than tt and pays a lower
cost. Hence, we arrive at a contradiction to the supposed payoff ordering.
�

The intuition extends immediately from Examples 1 and 2. The fact
that player j feels obliged to increase her investment beyond the payoff-
maximizing level to “help player i out” makes it impossible that all types of
i earn the least in their reference group and all types of j earn the most. In
a refined ORE, the payoffs of i and j must, therefore, be ranked according
to the ordering property in Lemma 2. There are several remarks to be made
about this property:

1) The required condition on the preference constellation of players i and
j is, for example, satisfied when all types of i and j are either competi-
tive, social welfare-concerned, or inequity-averse.

2) The assumption that the types of players i and j are drawn from the
restricted sets T ∗i and T ∗j is crucial. Otherwise, there could be a type of
player j who is not willing to help player i and who thus earns more
than everybody else in her reference group (even though the actual
tt is not that type). The assumption of common knowledge is also
important. Otherwise, a player j of the correct type tt ∈ T ∗j might still
mistakenly believe that player i is not needy or player i might believe
that j is not willing help her out, etc. In other words, it is immaterial
for Lemma 2 which social preference types players i and j exactly have
as long as their types stem from the compatible sets T ∗i and T ∗j , and
this is common knowledge.

3) When the exact type of each player is commonly known, Lemma 2 can
be significantly strengthened. This is because the state set Ω∗ reduces

13To see why f non((0, 0), i) < f non((0, 0), j), note that f non((0, 0), k) for k ∈ {i, j} is given
by the solution to the first-order condition

∂Eπ

∂ek
(k, f non((0, 0), k), e−k) = ∑

ω∈Ω
p(ω) b′

(
f non((0, 0), k) + ∑

l∈Nk(g)
eτl
)
− c = 0 .

Now, because (i) the neighborhood of j is nested in the neighborhood of i, it follows that
∑k∈Ni(g)\{j} eτk ≥ ∑k∈Nj(g)\{i} eτk. Moreover, because (ii) eτ′ j ≥ f non((0, 0), j

)
for all τ′ ∈

T ∗j while eτi ≤ f non((0, 0), i
)

for all τ ∈ T ∗i (with one inequality being strict), it follows that
the first-order condition of j is binding at a larger value of f non((0, 0), j) than the first-order
condition of i.
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to a singleton in this case. Straightforward application of the condi-
tions in Lemma 2 implies that either player i must earn more than
everybody else in her reference group or player j must earn less. That
is, it must holds that

π(i, ti) ≥ min
k∈Rti

{π(k, tk)} OR π(j, tj) ≤ max
k∈Rtj

{π(k, tk)}

for all k ∈ Rti and k ∈ Rtj . The same can be said about a dynamic ex-
tension of our incomplete information game—like the extension im-
plemented in our experiment—where the game is repeated over T
round and players observe in every round t all the investments of
the other players. A myopic best-response dynamic will lead to an
ORE in which the payoffs of players i and j are ordered according to
Lemma 2. All that is required in this case is that the actual types of i
and j are compatible.

4) The payoff-ranking property can also be significantly strengthened
when assuming a narrower preference constellation or a narrower class
of networks. If Ti = T ∗∗i and Tj = T ∗∗i , for example, where

T ∗∗i ≡ {comp., spite} ∧ T ∗∗j ≡ {payoff max., social welfare, altruist}, (9)

player j must earn weakly less than player i, that is, π(j, ω) ≤ π(i, ω)

in at least one state ω ∈ Ω∗∗ ≡ T1× ...T ∗∗i × ...T ∗∗j × ...Tn. If player i is
of type τ ∈ T ∗∗i and is connected to all other players j in the network,
who have compatible preferences (i.e., τ′ ∈ T ∗∗j ), it even holds that
π(i, ω) ≥ maxj 6=i{π(j, ω)} for at least one ω. The same can be said
when only a single one of player i’s neighbors has compatible prefer-
ences. What is needed in this case, instead, is that players include only
their direct neighbors in their reference group, that is, Rτ = Nk(g) for
all players k and their types τ.

Even more can be said when we assume that the social preferences of
all players are sufficiently “small” in addition and assume that players are
paid according to the linear-quadratic function (2). Our first result shows
that, as expected, the set of ORE converges to the set of money-maximizing
equilibria in that case.

Proposition 1. Suppose that payoffs are given by the linear-quadratic function (2).
When ε→ 0, the set of ORE coincides with the set of money-maximizing equilibria.

The proof is simple. In an ORE, it holds for all active players with eτi > 0
that the total investment in their neighborhood, eτin ≡ eτi + E[ein], is con-
strained by

f
(
(0, 0), i

)
+ ε + E[ein] ≥ eτin ≥ f

(
(0, 0), i

)
− ε + E[ein] ,
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where the boundaries follow from condition (5). Using the best-response
condition of a payoff maximizer who makes the decision in their position,
f
(
(0, 0), i

)
= e∗ −E[ein], this simplifies to

e∗ + ε ≥ eτin ≥ e∗ − ε.

Thus, in the limit of ε → 0, we obtain the necessary and sufficient equilib-
rium condition for an active payoff maximizer, ein = e∗. Similar, the total
investment received by a passive type with eτi = 0 must satisfy eτin ≥ e∗− ε

because a payoff maximizer in position i would just be indifferent between
contributing and not when she receives e∗ from her neighbors and so there
are social types that are just satisfied with e∗− ε. Thus, again, we obtain the
equilibrium condition of a passive payoff maximizer, eτin ≥ e∗, in the limit.

Together, this also implies that all types in the same position must invest
the same. The reason is that there cannot be two types τ and τ′ in position
i for which eτi > eτ′i ≥ 0, limε→0 eτin = e∗, and limε→0 eτ′in ≥ e∗ simultane-
ously hold. �

Together, Lemma 2 and Proposition 1 have some strong implications for
the equilibrium investments in a network. Remember that our social pref-
erence theory does not help to refine the set of equilibria in a non-nested
network structure, such as the circle network of Figure 1. However, when a
network has at least one nested neighborhood and players in this neighbor-
hood have compatible social preferences, then refined ORE even become a
proper subset of the money-maximizing equilibria. Our next result char-
acterizes the set of refined ORE for a group of players who mutually nest
each others’ neighborhoods and who only include these neighbors in their
reference group.

Proposition 2. Consider a network g with a fully interconnected, but otherwise
isolated, component C(g′), with g′ ⊆ g such that ∀i, j ∈ C(g′) and k ∈ N\C(g′),
gij = 1 and gik = 0. Suppose that all players i ∈ C(g′) only compare with their
direct neighbors (i.e., Ri = C(g′)\{i}) and that ε → 0. In a refined ORE, it must
be

ei = ej =
e∗

|C(g′)| for all i, j ∈ C(g′).

The result, which is proven in Theoretical Appendix X, shows that so-
cial preferences lead to a very fine-grained selection in the set of money-
maximizing equilibria when they are compatible. Remember that in a fully
interconnected component, any investment profile can be a money-maximizing
equilibrium as long as ∑i∈C(g′) ei = e∗. These equilibria cannot be refined by
means of several established concepts, such as Nash tâtonnement stability,
efficiency, or stochastic stability. In a refined ORE, in contrast, all players
make the exact same investment. The intuition extends immediately from
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Lemma 2. Suppose that the players i ∈ C(g′) have compatible preferences,14

but that contrary to the statement not all their investments are equal. The
fact that their neighborhoods are mutually nested means that there is at least
one player who earns (weakly) less than everybody else, and another player
who earns (weakly) more. At least one of them would feel insulted in her
understanding of fairness and adjust her strategy. Such an adjustment can
only be avoided when all players make the exact same investment.

We now turn to our equilibrium characterization for a general network
structure g. Here, we can say more when we focus on the set of specialized
investment profiles. Bramoullé and Kranton (2007, p. 482) define a spe-
cialized profile as a profile where every player either exerts the maximum
amount of effort ei = e∗ (active) or exerts no effort ei = 0 (inactive). The
authors then show that a specialized profile is a money-maximizing equi-
librium if and only if its set of of specialists is a maximal independent set of a
network g (Bramoullé and Kranton, 2007, Theorem 1).15 Social preferences
refine the equilibrium set in the following way.

Proposition 3. Suppose that all players compare with their direct neighbors (i.e.,
Ri = Ni(g)) and that ε → 0. If a specialized profile is a refined ORE, then its set
of active players is a maximal independent set I of network g with the property that
every player i who nests another player’s neighborhood in g is inactive (i.e., i /∈ I).

The first part that a specialized profile is a refined ORE only if its ac-
tive players form a maximial independent set I of g follows immediately
from Proposition 1 and Bramoullé and Kranton (2007, Theorem 1). The sec-
ond part that a nesting player must be inactive follows by contradiction.
In particular, suppose to the contrary that player i nests another player j’s
neighborhood but that i is active. It must then be ej = 0. In fact, it must
be ek = 0 for all k ∈ Nj(g) since i nests j’s neighborhood. Hence, player
j earns the most in her reference group and player i earns the least where
in fact π(i) < π(j). This is however a contradiction to Lemma 2 according
to which the payoffs of players i and j with compatible social preferences
must be conversely ordered. �

For example, applied to the star, the line, and the d-box networks in
Figure 1, the result implies that the public good must be sponsored entirely
by the peripheral players.16 Intuitively, the reason is that the requirement

14This means that for all i ∈ C(g′) (a) no T c
i contains a type of the set {altruist, spite}, (b)

no two or more T c
i contain a money maximizer, and (c) no two or more T c

i contain a distinct
type of the set {money max., social welfare, comp.}.

15The graph-theoretic concept of a maximal independent set is defined as follows. An in-
dependent set I of a graph g is a set of nodes such that no two nodes that belong to I are
linked; i.e., ∀i, j ∈ I, gij = 0. An independent set I is maximal when it is not a proper
subset of any other independent set. Moreover, it satisfies the property that every node
either belongs to I or is connected to a node that belongs to I.

16In contrast, no specialized profile can be a refined ORE in the core-periphery network
because Proposition 1 would clash with the requirement that the duo players want to re-
ceive at least e∗. As we will see in our experimental predictions, the core-periphery network
has a non-specialized ORE though.
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of Lemma 2 that the center player must earn more than at least one other
peripheral player can only be met when the investments are made in the
periphery. Hence, the payoff ranking of Lemma 2 even translates into an
investment ranking so that players who nest other players’ neighborhoods
will also invest less. We will make extensive use of this refinement of the
equilibrium set in our experimental predictions.

4 Experiment

Broadly speaking, our theory predicted that (i) compatible social prefer-
ences facilitate coordination in a local interaction game with multiple equi-
libria, but (ii) whether coordination succeeds also depends on the nested-
ness of the network structure. In the following, we test these predictions
in an experimental implementation of the Bramoullé and Kranton (2007)
game.

4.1 Experimental game

We administered a dynamic extension of the Bramoullé and Kranton
(2007) game on the whole set of two- and four-player networks shown in
Figure 1. These networks are ideal for our theory testing because they dif-
fer widely in terms of their degree of nestedness and their organization of
nested neighborhoods. The circle network, for example, is a network with-
out any nested neighborhoods, while the dyad and complete networks only
consist of mutually nesting neighborhoods. In the set of asymmetric net-
works, in turn, we have two networks with a single player in the central
nesting position (star, core periphery) and two flatter hierarchies with two
nesting centers (line, d-box).

Our experimental games differ from the original static game in Bramoullé
and Kranton (2007) because experience with earlier experiments on this
game made it clear that subjects find it difficult to coordinate their choices.
Coordination was particularly difficult in versions of the game that adopted
the original large strategy space (e.g., Rosenkranz and Weitzel, 2012). How-
ever, as at least some equilibrium play is essential for our theory testing,
we administered a dynamic extension that nevertheless retains some key
properties of the original game.

Specifically, following Callander and Plott (2005) and Berninghaus, Ehrhart,
and Ott (2006), every experimental game lasted between 30 and 90 seconds.
The final decision moment, tmax, was randomly determined during a game
by a draw from the uniform distribution on [30, 90]. Starting from a situ-
ation of zero investments, subjects could continuously update their invest-
ments, choosing from the entire set of positive integer values. Full infor-
mation about the momentary investments of all other players was continu-
ously provided and updated five times per second. Moreover, information
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about the momentary payoffs was indicated by the size of each player’s
node on the screen (see the screenshot in Appendix C.2). Nevertheless, the
actual payoff of a game was solely determined by the momentary invest-
ments at tmax. All earlier decisions were payoff-irrelevant. Specifically, sub-
jects were rewarded based on the linear-quadratic payoff function (2) with
x = 1, α = 29, and c = 5. This means that the individual payoff-maximizing
contribution level is given by e∗ = 12 and that after a total investment of 14
units in a player’s neighborhood, payoffs change linearly.

Coordination is facilitated in our dynamic extension of the original game
for at least two reasons. First, subjects can observe the entire history of
play, allowing them to learn about the preferences and motives of the other
players. Second, subjects can observe all momentary investments, which is
all a player with a distributional social preference needs to make a “fair”
best response. At the same time, the implemented random stopping rule
avoids last round effects.17

4.2 Predictions and hypotheses

In the following, we fully characterize the sets of refined ORE for the
seven networks in the experiment, whereby we look at the empirically rel-
evant case of significant deviations from a pure money-maximizing best
response (i.e., large values for ε). The proofs of all our statements can be
found in Theoretical Appendix A.3.18

Star, core periphery, and d-box: Remember that two markedly different
investment profiles can be supported in a Nash equilibrium in these net-
works when players are pure payoff maximizers: one periphery-sponsorship
equilibrium where the center player(s) (denoted as i ∈ C) free ride(s) on all
the other players, who each contribute ej = e∗, and another center-sponsorship
equilibrium where the other players, in particular the peripheral players
(denoted as j ∈ P), free ride on the center(s).

When players have social preferences and these preferences are compat-
ible, Lemma 2 predicts that the center player earns weakly more than at
least one other player,

π(i, ω) ≥ min
j 6=i
{π(j, ω)} for all i ∈ C, j ∈ N\C, ω ∈ Ω∗.

The combination of compatible preferences and limited preference strength

17In fact, as shown in Section 5, we observe a strong increase in the frequency of (static)
equilibria being played compared with, for example, Rosenkranz and Weitzel (2012).
Moreover, although our setup may make it likely that subjects collude at the beginning
of a game to reach Pareto-superior outcomes in its continuation, we find no indication of
collusion.

18The proofs contain the equilibrium characterizations for both the incomplete-
information game of Section 3 and the perfect-information game implemented in the ex-
periment. For an easier link with our empirical analysis, we present below the more fine-
grained predictions for the perfect-information game.
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leads to another powerful refinement of this conditions. The reason is that
the above payoff-ordering property can only be guaranteed for when the
public goods is entirely provided by the non-center players. To formalize
this, suppose that players’ social preferences are compatible and small, that
is, suppose that ω ∈ Ωh ≡ Ωh1 ∪Ωh2 with h ∈ {star, core, dbox} and

Ωh1 : Ti = T ∗i for all i ∈ C, Tj = T ∗j for all j ∈ N\C, and ε < εh,

Ωh2 : Ti = T ∗i for all i ∈ C, Tj = T ∗j for at least one j ∈ P , Rτ = Nk(g) for
all τ ∈ Tk, k ∈ N , and ε < εh,

where T ∗i and T ∗j are defined in Lemma 2 and εstar = εcore > εdbox are
defined in the proof. Then, all refined ORE entail a periphery-sponsored
public good where

eτi = 0 and e∗ − ε ≤ eτ j ≤ e∗ + ε for all i ∈ C, j ∈ P , ω ∈ Ωh.

Hence, social preferences select the “natural” equilibrium in the star, the
core periphery, and the d-box, where the center player(s) earn strictly more
than every other player.

Dyad and complete networks: Suppose that all players’ social preferences
are compatible. That is, suppose that ω ∈ Ωc = T c

1 × ... × T c
n where

c ∈ {dyad, comp} and where the conditions for players i and j in Lemma 2
mutually apply to every pair of nodes. In a refined ORE, it must be

eτi = eτ′ j = e for all ω ∈ Ωc , where
e∗ − ε

n
≤ e ≤ e∗ + ε

n
.

Hence, our experimental predictions extend the result in Proposition 2 in
that social preferences also select an equal-split equilibrium when players
have significant social preferences. As we see above, the strength of pref-
erences solely matters for the maximum distance between the total group
investment and e∗.

Line network: When players are payoff maximizers, every profile is an
equilibrium where (epi = e∗, eci = 0, ecj + epj = e∗) for i ∈ {1, 2}. Now, con-
sider an ORE and suppose that players’ social preferences are compatible
and small and that players only compare with their direct neighbors. That
is, suppose that ω ∈ Ωline with

Rτ = Nk(g) for all τ ∈ Tk, k ∈ N ,

Ti = T ∗∗i for all i ∈ C,

Tj = T ∗∗j for all j ∈ P ,

ε < e∗/5,
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and where T ∗∗i and T ∗∗j are defined in (9). Then, all refined ORE entail
a periphery-sponsored public good for which π(ci, ω) ≥ π(pi, ω) for all
ω ∈ Ωline and i ∈ {1, 2}.

Thus, preference compatibility also selects among the ORE in the line
network. Yet, it does so less effectively than in the star, core periphery, and
d-box because Lemma 2 can only be applied to the line end players and
their direct neighbors in the middle of the line.

Circle: The absence of any nested neighborhoods in the circle network puts
an end to the equilibrium selection property of social preferences. All that
can be said about the set of ORE is thus summarized in condition (5): The
ORE set is wider than the payoff-maximizing equilibrium set and collapses
with it if ε → 0. In particular, when ε is small, other-regarding players
coordinate on either a (near) distributed investment profile, reminiscent of
the egalitarian profiles in the complete network, or a (near) specialized profile
where every second player free rides on the investments of her neighbors.

Maybe surprisingly, a specialized profile can even be supported in the
circle network when all players are social-welfare concerned or inequity-
averse. The intuition extends immediately from what we said about the role
of nestedness in Section 3.3. Even though the contributing players might
feel exploited, they maintain their investments for the sake of their own
payoffs. The free riders, therefore, receive a total contribution beyond their
personal desired level of the public good and consequently see no reason to
bear the extra cost of a more equal outcome.

Network ranking: So far, our theory predicted marked differences be-
tween the networks in our experiment in terms of how well they facilitate
coordination in a group of heterogeneous, socially concerned players. Our
theory does predict more, however. It allows for an exact ranking of these
networks in terms of how likely they facilitate coordination on a refined
ORE set when player groups are randomly assembled.

A first observation is that for a random draw on the entire state set Ω, the
likelihood that we yield a combination of compatible preference types de-
clines, ceteris paribus, with the size of a network. That type of coordination
problem is well known in the literature (e.g., Fehr and Schmidt, 1999; Bolton
and Ockenfels, 2000), and it has immediate consequences for the dyad and
complete networks:19

P
(
ω ∈ Ωdyad) ≥ P

(
ω ∈ Ωcomp).

There is a second type of coordination problem, however, that is related

19In the theory of Fehr and Schmidt (1999), for example, the number of players adversely
affects the likelihood of cooperation in public goods games with punishment options be-
cause this reduces the likelihood that a sufficient number of conditional cooperators is
present.
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to the existence and the organization of nested neighborhoods in a network.
We have seen above that in the absence of any nested neighborhoods, such
as in the circle, a network is prone to produce multiple equilibria even when
all players have homogeneous preferences. Nevertheless, even between the
nested networks in Figure 1, our theory predicts some differences with re-
gard to how likely coordination is expected to succeed. The reason is that
there is asymmetry with regard to the ideal number of central players, nc,
who nest other players neighborhoods and the ideal number of peripheral
players, np, whose neighborhoods are nested. The larger nc, the more likely
it is that there is one central player who is of a social-welfare or altruistic
type so that this player would be willing to sponsor the local public good
when no one else in her neighborhood does. The reverse is true with np.
The more peripheral players in a network, the more likely it is that at least
one of them is willing to help out a center player who earns less than her.
In other words, the likelihood of assembling a group of players with com-
patible social preferences decreases with the number of central players but
increases with the number of peripheral players in a network. This logic
leads to the following ranking:20

P
(
ω ∈ Ωstar2

)
≥ y ∈

{
P
(
ω ∈ Ωcore2

)
, P
(
ω ∈ Ωdbox2

)}
(10)

≥ P
(
ω ∈ Ωline).

Furthermore, coordination is easier in an asymmetric than in a symmetric
network:

y ∈
{

P(ω ∈ Ωcore2) , P(ω ∈ Ωdbox2)
}
≥ P(ω ∈ Ωcomp).

Both claims follow immediately from inspection of the conditions leading
to equilibrium selection in the different networks. Comparing the star and
the d-box, for instance, makes clear that any preference constellation that
does not meet the compatibility requirements in the star also does not meet
the requirements in the d-box. For example, an altruist in the star center
position is sufficient to support a center-sponsored public good in an ORE.
But one altruist in the center of the d-box has the same effect. Conversely,
two competitive players in the peripheral positions of the star are still suffi-
cient for preference compatibility (when the third periphery player is, e.g.,
inequity-averse), while two competitive players are insufficient in the d-
box. Altogether, our theory thus leads to the following testable predictions:

Hypothesis 1: In the networks of Figure 1, except the circle network, a group of
players with compatible social preferences is more likely to coordinate on a refined
ORE than a group without compatible preferences.

20It also holds that P(ω ∈ Ωstar1) ≥ P(ω ∈ Ωcore1) ≥ P(ω ∈ Ωdbox1) because it is
εstar = εcore > εdbox.
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Hypothesis 2: The asymmetric networks (star, core periphery, d-box, line), as
well as the dyad and complete networks, can be ranked according to how likely a
random group of players is going to coordinate on a refined ORE.

Finally, for the circle network, we would expect that even when all the
compatibility criteria of Lemma 2 are satisfied by a group of players, the
group does nevertheless not coordinate more likely on either a specialized
or a distributed ORE profile than a group without the proper preference
combination.

4.3 Experimental procedure

We administered the experiment in the facilities of the Experimental
Laboratory for Sociology and Economics (ELSE) at Utrecht University in
The Netherlands. The experiment was programmed in z-tree 3.0 (Fischbacher,
2007) and subjects were recruited via ORSEE (Greiner, 2015).

A total of 120 students participated in eight sessions, with 12–20 students
each. No subject could attend more than one session. The average subject’s
age was 22, 67% were female, and 72% were of Dutch nationality. All sub-
jects played our dynamic extension of the Bramoullé and Kranton (2007)
game on each of the seven networks in Figure 1. In each game, subjects
were assigned to a random group of players and a random network posi-
tion. Moreover, the order of the networks was randomly varied between
sessions.

Each subject played five games on each network, one trial game and four
payoff-relevant games. This means that every subject played 35 games, of
which 28 were payoff-relevant. It also means that the experiment comprises
a total of 960 payoff-relevant games: 120 games on each of the four-player
networks and 240 on the dyad. A typical session lasted 80 minutes, and
subjects earned 11.82 euros on average (including a 3 euro show-up fee).

4.4 Social preference elicitation

Key to our testing of Hypotheses 1 is that we have an estimate for the
social preference parameters (ρs, σs) of our subjects. We estimated these
parameters directly from their behavior in the network games.21 Concretely,
we assumed that a subject chose an investment ei at time t of a game so as
to maximize the following augmented utility function (4):

Us(ei, e−i, i) + θ(ei,ts,i). (11)

21There are some practical reasons for this. The experiment was already 80 minutes
long and additional preference elicitation (dictator) games would have meant burdening
students with more time-consuming tasks. In addition, prior research has shown that so-
cial preferences can be context-dependent (Tversky and Simonson, 1993; List, 2007; Stoop,
Noussair, and Van Soest, 2012), and we thus suspected that other-regarding behavior might
change from the “cold” environment of a dictator game to the “heated”, interactive envi-
ronment of our network games.
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Here, e−i denotes the momentary investments of the other players and θ(ei,ts,i)

a random utility component that captures the impact of other unobserved
factors on the choice of ei. The dependent variable in our econometric model
is thus a binary variable that takes the value of one for the investment level
that a subject has actually chosen at time t and a value of zero for all al-
ternative investments (limited to ei ∈ {0, 1, 2, ..., 15}). We then computed
the (ρ̂s, σ̂s)-pair that maximizes the full likelihood of the actual investments
chosen by a subject, where for our main specification we assumed that
subjects only include their direct neighbors in their reference group (i.e.,
Rs = Ni(g)).

In doing so, we confined the set of network games used for our estima-
tions in two ways. First, we ensured that we did not use the same games
for our estimations that we used to test our theory on. In particular, every
time we tested the conformity of a group’s play with our theoretical pre-
dictions, we estimated the social preferences of the group’s members from
their investments in some other network games (with different players). For
example, for our tests on the fourth repetition of a network game, we made
use of the available information in the first three games on the same network
and the games on the other six networks. Second, we additionally restricted
the set of games to ensure a balanced set of network positions for each sub-
ject. This is because the random assignment of players to network positions
implies that some positions, particularly the periphery positions of the star
network, are over-represented in a subject’s set of games compared to, for
example, the center position of the star. Based on theory and intuition, we
would expect, however, that subjects perceive each position as a different
decision situation, triggering a different social comparison concern.22 We
therefore categorized network positions into three classes:

• center positions (of the star, line, core periphery, and d-box)

• periphery positions (of the same networks), and

• symmetric positions (of the circle, core duo, complete network, and
dyad).

We then confined our estimations on an equal number of games from each
of these classes, whereby we retained the exact order of positions proposed
above to ensure that all estimates stem from the same set of positions. Oth-
erwise, we used as many payoff-relevant decision moments (t ∈ [30, tmax])
and as many games as possible.23

22This was confirmed in a pre-test where we estimated the subject-average (ρ̂i, σ̂i)-pair
for every network position and found that this average estimate greatly differs by network
position.

23Obviously, we made several choices. To check the robustness of our findings, we there-
fore also elicited our subjects’ preferences in several alternative ways. Experimental Ap-
pendix B.3 summarizes our results on this. Experimental Appendix B.4 then reproduces
our main findings based on these alternative estimates.
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Figure 3: Investments by network position over time
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5 Descriptive findings

We first give an overview about the behavior in our experimental games
before we test our hypotheses. If not stated otherwise, all results refer to the
final investments at the randomly determined game ends.

Position-level findings: Figure 3 plots for each network position the evo-
lution of the average investment and the evolution of the average invest-
ment plus/minus one standard deviation over time. Even a glance at the
figure suggests that the investments converge to some steady-state value,
which is reached roughly between 30 and 70 seconds and which is always
lower than the individual payoff-optimum of e∗ = 12 in all network posi-
tions. Thus, the evolution of behavior is reminiscent of some best-response
dynamic that converges to a static equilibrium.

In support of this, Figure 4 plots the distributions of the round-end in-
vestments per network position. Consistent with our (static) ORE predic-
tions for the dyad and complete networks, the unique distributional modes
in these networks are at 6 and 3, respectively, which is consistent with the
predicted egalitarian split of e∗ = 12. Moreover, in line with the predic-
tions for the center positions of the star, core-periphery, d-box, and—to a
lesser extent—the line network, the preferred choice is the zero contribu-
tion. Subjects in the peripheral positions, in contrast, oftentimes choose
ej = 12. Thus, the behavior in all our asymmetric networks is consistent
with a periphery-sponsorship equilibrium.
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Figure 4: Investments by network position

NOTES: Observations in star center, core center, core periphery, line middle, and line pe-
riphery: 120; core duo, d-box center, and d-box edge: 240; star periphery: 360; dyad, com-
plete, and circle: 480. One value in the dyad [29] dropped for better display.
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Table 1: Frequencies of other-regarding equilibria

Deviation from
money-maximizing best response

Network Equilibrium zero small mod. any
(ε = 0) (ε < 2) (ε < 3) (any ε)

Dyad egalitarian (rfd) 32.2% 32.2% 46.0% 49.3%
other 8.8% 25.9% 33.0% 50.7%

Complete egalitarian (rfd) 0.8% 0.8% 0.8% 0.8%
other 20.9% 43.4% 62.5% 99.2%

Star per-spon. (rfd) 15.8% 20.8% 33.3% 62.5%
cent-sp. with πc ≥ πj (rfd) — — — 36.6%
cent-spon. other 0% 0% 0% 0.8%

Circle specialized 7.5% 11.6% 16.6% 29.2%
distributed 3.3% 10.0% 27.5% 70.8%

Core per-spon. (rfd) 17.5% 34.2% 43.3% 68.3%
cent-sp. with πc ≥ πj (rfd) — — — 31.7%
cent-spon. other 0% 0% 0% 0%

D-box per-spon (rfd) 8.3% 11.7% 15.0% 25.8%
cent-sp. with πc ≥ πj (rfd) — — 0.8% 64.2%
cent-spon. other 0% 0% 3.3% 10.0%

Line end-spon. (rfd) 0.8% 6.7% 15.0% 28.3%
distr. with πm ≥ πe (rfd) 8.3% 12.5% 14.1% 30.8%
distr. other 1.7% 4.2% 8.4% 40.9%

NOTES: Percentages of investment profiles consistent with an other-regarding equilib-
rium (ORE) at the random ends of the 960 network games. 240 observations for dyad,
120 for all other networks. Refined ORE are indicated with "(rfd)". The exact cri-
teria for equilibrium consistency are shown in Table 6 in the Theoretical Appendix.

Finally, as expected for the circle network, where our other-regarding
theory predicts no selection among the two very different classes of spe-
cialized and distributed equilibrium profiles, the distribution of choices has
two modes at zero and 12 units (consistent with a specialized equilibrium)
and a third mode at four units (consistent with a distributed equilibrium).

Thus, the position-level findings are much in line with our theoretical
predictions.24 Nevertheless, because the investments of all group members
need to “fit” in equilibrium, all this is no more than indicative. In the fol-
lowing, we therefore also have a brief look at the group-level behavior.

Group-level findings: Table 1 presents the shares of investment profiles
per network that are consistent with a (refined) ORE. The table distinguishes
between ORE with four degrees of maximal deviation from a pure payoff-
maximizing equilibrium: zero (ε = 0), one (ε < 2), two (ε < 3), and any
(any ε).25

A first observation is that the number of groups converging on a payoff-

24Similar pictures emerge when we look at all payoff-relevant decisions on or after the
second-30 mark (see Figure 8 in the Experimental Appendix).

25The exact consistency requirements for an investment profile are summarized in Ta-
ble 6 in the Theoretical Appendix. The critical values ε < 2 and ε < 3 are chosen because
a deviation of one (two) units is the maximum deviation for which a periphery-sponsored
public good is the unique refined ORE in the d-box and in all the other asymmetric net-
works, respectively (see Table 6).
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maximizing equilibrium (with ε = 0) is remarkably high.26 Not surpris-
ingly, these numbers become even larger when investments in the neigh-
borhood around a payoff-maximizing equilibrium point are rationalized by
subjects’ social preferences. Interestingly, however, a small expansion of the
range of feasible profiles is already enough to capture a significant share of
the observed investments. In the periphery positions of star, core periphery,
and line network, for example, an inclusion of a deviation of±2 units from a
payoff-maximizing best response adds meaning to the frequently observed
downwards deviations in Figure 4. As a result, the share of profiles consis-
tent with an ORE (with ε < 3) more than doubles. Turning to the refined
ORE, we first look at Column 3 (with ε = 0):

(i) In the asymmetric networks (star, core periphery, d-box, and line), the
most frequent ORE profile is a pure periphery-sponsored public good.
And, even if some groups coordinate on a partially distributed profile,
as in the line, the center players typically earn more. Both are in line
with a refined ORE.

(ii) In the dyad network, a large majority of groups (32.2%) splits e∗ = 12
equally. In contrast, in the complete network, this is the case for only
0.8% of groups (i.e., exactly one group). Thus, our predictions are
supported in the dyad but not in the complete network.

(iii) In the circle network, 7.5% of groups coordinated on a specialized
equilibrium with alternating investments of zero and 12 units. An-
other 3.3% of groups coordinated on an equal-split equilibrium. Thus,
as expected, both types of payoff-maximizing equilibria gain experi-
mental support.

Thus, with the exception of the complete network, the numbers in Col-
umn 3 are much in line with our refined ORE predictions. Nevertheless,
as we will see below, the low share of refined ORE profiles in the com-
plete network makes sense when we take the much stronger preference-
compatibility requirements into account.

The same can be said about the wider sets of ORE in Columns 4–6. In
the asymmetric networks (star, core, d-box, and line), the vast majority of
groups converges to a periphery-sponsored public good. In the dyad, al-
most half the groups choose an equal-split equilibrium. Finally, in the cir-
cle, both the shares of “nearly” specialized profiles and “nearly” distributed
profiles increase significantly when we look at the wider sets of ORE. It is
only in the complete network where the share of equal-split profiles remains
at a low level of 0.8% even when we take all the investment profiles into ac-
count where the sum of investment is different from twelve.

26Compared to Rosenkranz and Weitzel (2012), for example, who experimentally study
the same games but with a non-continuous-time design, the number of groups converg-
ing on a payoff-maximizing equilibrium increases by a factor of 3.4 in the star network
(smallest increase) to 27 in the circle (largest increase).
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Figure 5: Social preference estimates
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NOTES: Estimated (σ̂s, ρ̂s) from subject- and game-specific conditional logit estimations of
model (11). See Section 4.4 for procedural details. Ten pairs (with σ̂s < −2) are dropped
for better display.

To put these findings into perspective, Experimental Appendix B.2 com-
pares the numbers in Table 1 with the predictions of several alternative equi-
librium refinement concepts, notably efficiency, Nash tâtonnement stability,
and quantal response theory. To sum up the findings, in contrast to effi-
ciency and stability, the power of our social preference theory is that it se-
lects the “natural” equilibria in the dyad and all the asymmetric networks
(star, core periphery, d-box, line), that is, an egalitarian equilibrium in the
former and a periphery-sponsored public good in the latter. The value-
added over quantal response theory is, in turn, that it does not rule out the
co-existence of multiple, empirically relevant equilibria.

6 Hypothesis 1: preference compatibility

We have seen above that the experimental data is much in line with our
theoretical predictions for most network structures. Nevertheless, the above
findings do not rule out the possibility that the data is generated by some
other data generating process. Here, we test a discriminatory prediction
of our theory that the reason why a subject group coordinates on one of
the frequently observed refined ORE is that all its members have a set of
compatible social preferences.

Social preference estimates: Towards this end, we first present our social
preference estimates for our subject pool and we classify these estimates
according to whether they “match” at the group level or not.

Figure 5 summarizes our estimates for (ρs, σs) from a conditional logit
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Table 2: Groups with compatible social preferences

Pref. strength dyad star core d-box line complete

any ε̂ 27.1% 76.7% 77.5% 62.5% 26.7% 6.7%
ε̂ < 3 13.3% 20.0% 23.3% 15.8% 8.3% 2.5%
ε̂ < 1 2.9% 4.2% 3.3% 3.3% 1.7% 0%
No. of groups 240 120 120 120 120 120

NOTES: Categorization of 840 subject groups (all but the 120 groups
playing the circle) according to whether their members meet the
preference-compatibility requirements of Section 4.2 or not. Groups are
additionally classified by the maximum social preference strength of
their members.

estimation of our random utility model (11). Our categorization of these
estimates into the different social preference types of utility model (4) and
the different social preference strength classes of Lemma 1 is summarized
in Table 8 in Experimental Appendix B.3.

Table 2 presents the results of the next step, the categorization of the sub-
ject groups with regard to whether their members have a set of compatible
preferences or not. The exact criteria for preference compatibility can be
found in Section 4.2. Clearly, for all networks, there is a sizable number of
groups that meets the requirements and another sizable number that does
not. We can thus turn to our main question: Do groups with compatible
social preferences play a refined ORE more often than groups without the
proper preference combination?

Hypothesis test: Figure 6 provides some descriptive evidence on this. It
shows for each network (except the complete network) the shares of refined
ORE in the total number of investment profiles played by groups with com-
patible and incompatible social preferences, respectively. In particular, we
limit our attention to the refined ORE equilibria where investments devi-
ate by no more than±2 units from a pure money-maximizing best response
simply because many groups coordinated on a refined ORE with any devia-
tion in most of our networks (see Table 1). Moreover, the complete network
is omitted from the figure simply because only a single group managed
to coordinate on a refined ORE in this network. Panel A looks at all end-
game investment profiles. Panel B focuses on the game ends on or after
the second-50 mark where investments have reached a steady state in most
networks (see Figure 3).

With a few exceptions, the findings are much in line with Hypothesis 1.
In the dyad, for example, groups with compatible social preferences clearly
coordinated on a refined ORE more often, irrespective of whether we look
at all games or only those that ended on or after the second-50 mark. In
the star and the core periphery network, we come to the same clear con-
clusion when we focus on those subject groups where all members have at
most a moderate social preference strength. Similarly, in the line network,
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Figure 6: Preference compatibility and refined other-regarding equilibria

(a) Panel A

(b) Panel B (tmax ≥ 50)

NOTES: Shares of refined ORE in the total number of investment profiles played by groups
with compatible and incompatible social preferences, respectively. The table further distin-
guishes between compatible groups of different maximal social preference strengths: any
social preference strength (any ε̂), moderate strength (ε̂ < 3), or marginal strength (ε̂ < 1).
Refined ORE are measured at two degrees of deviation from a pure money-maximizing
equilibrium: moderate deviation (ε < 3) and no deviation (ε = 0). Panel A: 120 observa-
tions per four-player network and 240 for the dyad, from all random game ends. Panel B:
55–88 observation per four-player network and 162 for the dyad, from the random game
ends on or after the second-50 mark.

preference compatibility is predictive when we look at groups with a small
preference strength or games that ended on or after the second-50 mark. In
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contrast, in the d-box, we find at most weak support for our theory. Only
when we look at the games that ended late, the expected relationship be-
tween preference compatibility and equilibrium selection becomes visible.

These observations can be corroborated in an econometric analysis. In
Table 3, we report the results of six multinomial logit models. The depen-
dent variable in all six models is the same outcome indicator as in Figure 6 that
classifies the observed round-end investment profiles into the ones that are
compatible with a refined ORE and the others that are not. Both classes are
further partitioned into a total of six sets of profiles that differ by the extent
to which the investments deviate from a pure money maximizing best re-
sponse. Together, these six classes capture all feasible investment profiles in
our experiment. The class of non-refined ORE with a large deviation from
a payoff-maximizing equilibrium is chosen as the base outcome. The inde-
pendent variables are the various versions of preference compatibility al-
ready used for Figure 6. Next to these, the models include outcome-specific
constants and arrays of group- and network-specific control variables to ac-
count for other (unobserved) factors that may explain why a certain invest-
ment profile is played more often than the base outcome. In other words,
our models account among others for the fact that a certain profile is played
more often because it is more efficient, strategically more stable, or the basin
of attraction of some other unobserved dynamic process.

The results in Table 3 largely confirm Hypothesis 1: groups with compat-
ible social preferences play the refined ORE profiles more often than groups
without the proper preference combination. The effect is particularly pro-
nounced for groups with a moderate or marginal preference strength (Mod-
els 2 and 3) and for games that ended on or after the second-50 mark (Mod-
els 5 and 6). Moreover, as demonstrated in Experimental Appendix B.4,
these results are robust with regard to alternative approaches to elicit the
social preferences of our subjects and with regard to separate analysis for
groups of subjects with at most moderate or marginal social preference
strengths.

7 Hypothesis 2: network size and nestedness

We have seen above that preference compatibility facilitates coordina-
tion on a refined set of equilibria in our experimental network games. How-
ever, how easily equilibrium selection succeeds also depends, according to
our theory, on the size and the nestedness of a network structure.

Hypothesis tests: We provide two pieces of evidence supporting the role
of network size and nestedness. The first piece comes from the circle net-
work. Remember that, according to our theory, social preferences should
not help to coordinate on either a distributed or a specialized equilibrium
profile because no neighborhood is nested in the circle network. To put this
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Table 3: Test of Hypothesis 1—Multinomial logit results

Compatible pref. refined other-regarding eq. non-refined other-regarding eq.
of strength... (ε = 0) (0 < ε < 3) (3 ≤ ε) (ε = 0) (0 < ε < 3) (3 ≤ ε)
Model 1:

any ε̂ 0.774** 0.795* 0.934*** -0.022 -0.130 base
(0.338) (0.429) (0.317) (0.245) (0.377) outcome

Model 2:
ε̂ < 3 1.003*** 1.540*** 1.094** 0.429 0.206 –

(0.315) (0.378) (0.448) (0.419) (0.872) –

Model 3:
ε̂ < 1 1.814* 1.530 0.615 -12.5*** -12.1*** –

(1.047) (1.353) (0.574) (1.073) (1.045) –

tmax ≥ 50 :
Model 4:

any ε̂ 0.932** 0.839* 0.701* 0.150 0.534 –
(0.472) (0.437) (0.381) (0.416) (0.697) –

Model 5:
ε̂ < 3 0.578*** 1.322*** 0.654*** 0.226 0.264 –

(0.206) (0.345) (0.187) (0.645) (0.864) –

Model 6:
ε̂ < 1 15.64*** 15.29*** 14.03*** 1.367*** 1.293*** –

(0.839) (0.752) (0.818) (0.448) (0.297) –

NOTES: Results of six multinomial logit estimations. Models 1–4: 840 observations from
final decision moments (t = tmax) in all network games, but the games on the circle. Mod-
els 5–8: 517 observations from final decision moments on or after the second-50 mark. All
models include two group-specific experience measures (one measuring the position of a
game in a session, the other measuring the x-th repetition of the same network game) and
measures of network size and clustering. Standard errors clustered at the session level in
parentheses: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

to a test, we constructed measures of preference compatibility for the subject
groups playing the circle that “worked” in other networks. Concretely, we
checked whether a group matches the compatibility requirements for the
complete network or the compatibility requirements for the star network.
We then checked whether groups with such a plausible preference combi-
nation play a distributed or a specialized profile in the circle network more
often than groups without such a combination. Our findings on this Placebo
test are illustrated in the cross-table for the circle network in Figure 6. The
results of a multinomial logit estimation similar to the models in the pre-
vious section are presented in Table 12 in Experimental Appendix B.5. In
line with our expectations, neither the cross-table nor the regression table
suggest a systematic relationship between preference compatibility and the
selection of either a distributed or a specialized profile.

The second piece of evidence stems from a comparison of behavior across
all networks in our experiment. As argued in the theory section, the net-
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Table 4: Frequency of refined other-regarding equilibria

dyad star core d-box line complete circle

any ε 49.3% 99.2% 100.0% 90.0% 59.1% 0.8% 0%
ε < 3 46.0% 33.3% 43.3% 15.8% 29.1% 0.8% 0%
ε = 0 32.2% 15.8% 17.5% 8.3% 9.1% 0.8% 0%

NOTES: This is an excerpt of the larger Table 1.

works differ markedly in terms of how easily the requirements for a group
with compatible social preferences can be met. Accordingly, we would also
expect the networks to differ in terms of many groups succeed to coordinate
on a refined ORE. Table 4 reproduces the shares of refined ORE per network
that we have already seen in Table 1. Consistent with our expectations, the
shares are much higher for the two-player dyad network than for the four-
player complete network, which supports the expected detrimental impact
of network size. Also consistent with our theory, the shares of refined ORE
are highest in the star and core periphery, intermediate in the d-box and line,
and lowest in the complete network. Thus, Table 1 supports the expected
conducive impact of nested neighborhoods that are concentrated around a
single player or a small number of players in a network who nest all other
players’ neighborhoods. All these observations gain further support from
the regression results shown in Table 5. There, the shares of refined ORE
are regressed on a number of network statistics that have been found to
facilitate coordination in prior experiments, notably network size and clus-
tering (Berninghaus, Ehrhart, and Keser, 2002; Cassar, 2007; Charness, Feri,
Meléndez-Jiménez, and Sutter, 2014). Next to these, the models include a
simple measure of network nestedness. The latter is a rank variable that
sorts the seven networks in our experiment according to the presence and
the structure of their nested neighborhoods: (1) circle, (2) dyad/complete,
(3) line, (4) d-box/core, (5) star. Strikingly, even our simple nestedness mea-
sure is highly significant across all specifications with the expected positive
effect (p < .002).27 Notably also, unlike in prior experiments, clustering has
if at all a negative impact on successful coordination.

Quantitative fit: So far, we produced several pieces of evidence in sup-
port of the key mechanisms behind our theory. Here, we briefly investigate
its predictive power. In particular, we answer the following question: Sup-
pose we would only have information about the overall preference type
distribution of our subject pool available before the start of the experiment.
Based on our theory, we could thus calculate for each network how many
groups are expected to have a set of compatible preferences, given that sub-

27A more informed measure, which takes into account the preference type distribution of
the underlying population of players (such as the measure developed for our quantitative
predictions below), performs even better. Moreover, the results in Table 5 are robust with
regard to the exclusion of the dyad or the circle network from the sample.
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Table 5: Test of Hypothesis 2—OLS results

Share of refined other-regarding equilibria per session
(any ε) (ε < 3) (ε = 0)

Model: (1) (2) (3) (4) (5) (6)

Nestedness 1.172*** 0.379*** 0.278***
(0.009) (0.045) (0.059)

Size -0.185* -0.722*** -0.714*** -0.888*** -0.455** -0.582***
(0.086) (0.086) (0.158) (0.151) (0.164) (0.159)

Clustering -0.353*** -0.243*** -0.196*** -0.160*** -0.096** -0.070*
(0.017) (0.017) (0.031) (0.032) (0.031) (0.032)

Constant 0.931*** 0.796*** 1.004*** 0.961*** 0.638*** 0.606***
(0.090) (0.091) (0.151) (0.154) (0.160) (0.163)

Observations 56 56 56 56 56 56
R-squared 0.104 0.853 0.216 0.482 0.141 0.377

NOTES: Results of six OLS estimations with 56 observations each: one observation
per network (7 networks) per session (8 sessions). Nestedness is a rank variable sort-
ing the networks according to their degree and structure of nested neighborhoods
(circle=0, dyad/complete=0.25, line=0.5, d-box/core=0.75, star=1), size measures
the number of players, clustering is the network clustering coefficient. Standard er-
rors clustered at the session level in parentheses: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

jects are randomly assigned to groups. Could we also make some quanti-
tatively sound prediction for each network about the shares of refined ORE
observed at the end of the experiment?

For this purpose, we first have a look at Table 4 on the shares of refined
ORE and Table 2 on the number of groups with compatible social pref-
erences. Remember that both tables measure completely different things.
The one categorizes the investment profile chosen by a subject group at the
end of a game. The other classifies the group members’ social preferences,
which we elicited from their behavior in other network games. Neverthe-
less, a careful comparison of the numbers suggests a striking relationship
between the number of groups with compatible preferences per network
and the shares of refined ORE played on these networks. This begs the
question of whether we might be able to predict the shares of refined ORE
based on the numbers in Table 2.

Figure 7 summarizes our predictions, which are solely based on Table 2
and three assumptions that immediately from our theory: (i) all groups
(compatible or not) choose with certainty an investment profile that cor-
responds to their social preference strength (that is, groups with marginal
preferences (ε̂ < 1) play a payoff-maximizing equilibrium (ε = 0), groups
with moderate preference strengths (1 ≤ ε̂ < 3) play a profile with 0 ≤ ε <

3, etc.); (ii) all groups with compatible preferences choose a refined ORE
with certainty; (iii) all groups randomize among the remaining investment
profiles with equal probability when multiple profiles remain in the subsets
generated by (i) and (ii).28

28The required (conditional) probabilities are summarized in Table 13 of the Experimen-
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Figure 7: Actual and predicted shares of other-regarding equilibria
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NOTES: Predicted versus actual shares of refined ORE per network for three degrees of
deviation from a pure money-maximizing equilibrium. For the circle network, the actual
and predicted shares of distributed and specialized ORE are reported. The black dashed
line is the 45-degree line.

Overall, the predictions work remarkably well. Even though our model
tends to under-predict the frequency of refined ORE (most points lie above

tal Appendix.
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the 45-degree line), all three panels indicate a robust positive relationship
between the predicted and the actual shares of refined ORE. In particular,
the predictions work best for the four-player networks, and the model is
capable of explaining the sizable gap between the high shares of refined
ORE in the asymmetric networks on one hand and the low share in the
complete network on the other.

8 Conclusion

We set out to study how social preferences shape behavior in a network
of interdependent social interactions. Do they help to overcome the inequal-
ity imposed by a network structure? Do they help to coordinate behaviour
when selfish incentives give rise to multiple equilibria? To answer these
questions, we developed a model of a local interaction game between so-
cially concerned players. The unique feature of our model is that it incor-
porates a flexible utilitity function that captures several realistic social pref-
erence types.

One of our main results is that social preferences can indeed facilitate
equilibrium selection. The key condition for this is that players have the
“right”, or what we call compatible, preference combination in the sense
that players’ social preferences fit the network positions they are in. In par-
ticular, our theory predicts that coordination is facilitated when the more
central network positions are occupied by competitive players and the more
peripheral positions by altruists or players with maximin preferences. When
this condition is met, then our second important result follows that social
preferences do not necessarily produce more equitable or efficient invest-
ment profiles in a network. Rather, they reinforce the (in-)equality that is
already inherent in a network structure, most notably the symmetry of a
fully connected network and the asymmetry of a star-like structure.

Nevertheless, social preferences do not always reinforce the (in-)equality
pre-imposed by a network structure. This becomes most obvious from
our results on the circle network. Here, our theory predicts that both dis-
tributed and specialized equilibria can co-existed. More generally, our third
result highlights the importance of nested neighborhoods and the size of
the group of peripheral players in these neighborhoods as two crucial prop-
erties to facilitate coordination in a network.

Finally, we confirm the predictions of our model in an experiment. Our
most interesting finding here is that subject groups with the right preference
combination, indeed, played the predicted equilibrium profiles more often
than groups without the proper preference combination. Subjects’ prefer-
ences for a particular network game were thereby estimated from their de-
cisions in all other network games. Another interesting finding is that the
variation in nestedness between the networks in our experiment alone is ca-
pable of explaining much of the sizable quantitative variation in the shares
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of groups that managed to coordinate on the predicted equilibria.
Nevertheless, our sharpest predictions and all our experimental find-

ings concern smaller networks of size four. An open question from this
study, therefore, is a more comprehensive investigation of the role of so-
cial preferences in larger network games. We were able to show how our
equilibria with socially concerned players refine the the money-maximizing
equilibria characterized in Bramoullé and Kranton (2007). Yet, a compre-
hensive comparison of our equilibria with the socially efficient solution to
the game or the effect of additional links to a network are beyond what we
have achieved. We, therefore, need to leave it for future studies to advance
and test our predictions for larger networks.
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Appendices

A Theoretical Appendix

A.1 Missing proofs of general statements
Lemma 1 repeated. Suppose that players’ utilities are defined by payoff func-
tion (1) and the social preference model (4) with parameters ts = (ρs, σs, Rs). A
player’s social preference strength, εs, is given by

for an altruist or a social-welfare type (ρs ≥ σs ≥ 0) : ε
p
s

for an inequity-averse type (ρs > 0 > σs > −1) : max{εp
s ; εn

s }
for a competitive or spiteful type (0 ≥ ρs ≥ σs > −1) : εn

s

where

ε
p
s = (b′)−1( c

1 + ρs

)
− e∗ (12)

εn
s = e∗ −max

{
(b′)−1( c

1 + σs

)
; 0
}

.

Proof of Lemma 1. For given ‘expected’ investments in the other nodes,

e−i =
(
eτ11, ..., eτt1, ..., eτ1i−1, ..., eτti−1, eτ1i+1, ..., eτti+1, ..., eτ1n, ..., eτtn

)
∈ R

|Ω−i |
+ ,

the first-order condition for an optimal investment of a type ts in node i is given
by29

∂U
∂etsi

(ts, i, etsi, e−i) = ∑
ω∈Ω

p(ω)

[
b′
(
etsi + ∑

j∈Ni(g)
eτ j
)
− c (13)

+
σs

|Rs| ∑
j∈R−s (ω)

b′
(
etsi + ∑

k∈Nj(g)\{i}
eτk
)
+

ρs

|Rs| ∑
j∈R+

s (ω)

b′
(
etsi + ∑

k∈Nj(g)\{i}
eτk
)]
≤ 0 ,

where R+
s (ω) (R−s (ω)) denotes the ω-dependent set of players j ∈ Rs with π(ω, i) >

(<)π(ω, j).

29When ∂U/∂etsi is undefined at a point etsi, the first-order condition can be redefined as
U′i (etsi − x) > 0 and U′i (etsi + x) < 0 for some x → 0+. The desired point etsi then satisfies
this alternative condition.
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We aim to determine an upper bound for | f or(ts, i, e−i)− f non((0, 0), i, e−i)| and
define the scalar εs for this purpose:

εs ≡ max
{∣∣ f or(ts, i, e−i)− f non((0, 0), i, e−i)

∣∣ ∀ e−i ∈ R
|Ω−i |
+ , ∀i ∈ N , ∀g ∈ G

}
.

By inspection of (13), the absolute deviation from f non((0, 0), i, e−i) is maximal
when player i is the player who earns the least or most in her entire reference group.
That is, either set R+

s (ω) = Rs or R−s (ω) = Rs for all ω. Moreover, because b(·) is
concave, set eτ j = 0 for all j 6= i. The first-order condition then becomes

0 ≥ ∂U
∂etsi

(ts, ets , e−i = 0) =

{
b′
(
ets

)
[1 + ρs]− c if R+

s (ω) = Rs

b′
(
ets

)
[1 + σs]− c if R−s (ω) = Rs

.

The corresponding first-order condition of a payoff maximizer is b′
(
ei) − c = 0.

This gives f non((0, 0), e−i = 0) = e∗ and

f or(ts, i, e−i) =

{
(b′)−1( c

1+ρs

)
if R+

s (ω) = Rs

max
{
(b′)−1( c

1+σs

)
; 0
}

if R−s (ω) = Rs
.

Hence, we get

εs = max
{
(b′)−1( c

1 + ρs

)
− e∗ ; e∗ −max

{
(b′)−1( c

1 + σs

)
; 0
}}

,

which corresponds to the boundaries summarized in Lemma 1. �

Proposition 2 repeated. Consider a network g with a fully interconnected, but
otherwise isolated, component C(g′), with g′ ⊆ g such that ∀i, j ∈ C(g′) and k ∈
N\C(g′), gij = 1 and gik = 0. Suppose that all players i ∈ C(g′) only compare with
their direct neighbors (i.e., Ri = C(g′)\{i}) and that ε → 0. In a refined ORE, it
must be

ei = ej =
e∗

|C(g′)| for all i, j ∈ C(g′).

Proof of Proposition 2. Consider either the perfect-information game of the
experiment or the incomplete-information game of Section 3.3. Consider moreover
the general case of arbitrary social preference strengths, that is, any ε > 0.

We prove that in all these cases eτsi = eτt j ≥ 0 holds for all ω ∈ Ωc, assuming
however that all preferences are compatible in Ωc. That is, we assume that Ωc ≡
T c

i × ...× T c
n contains (i) no player of the type {altruist, spite}, (ii) no two or more

T c
i contain a money maximizer, and (iii) no two or more T c

i contain a distinct type
from the set {money maximizer, social welfare, competitive}.

Suppose, to the contrary, that etsi > ett j for some ts ∈ T c
i and tt ∈ T c

j . Let
etsi be the highest of all investments and ett j be the lowest of all investments. It
then follows that π(ts, i) ≤ π(τ, k) for all τ ∈ T c

k , k 6= i. Likewise, it holds that
π(tt, j) ≥ π(τ, k) for all τ∈T c

k , k 6= j.
Moreover, because etsi and ett j are best-response investments, they must neces-

sarily satisfy

∂U
∂etsi

(ts, i, etsi) = ∑
ω∈Ωc

p(ω)b′
(
etsi + ∑

k 6=i
eτk
)(

1 +
|R−s (ω)|

n− 1
σs
)
− c = 0 , (14)

∂U
∂ett j

(tt, j, ett j) = ∑
ω∈Ωc

p(ω)b′
(
ett j + ∑

k 6=j
eτk
)(

1 +
|R+

t (ω)|
n− 1

ρt
)
− c ≤ 0 , (15)

where p(ω) denotes the (conditional) probability of the preference combination

42



ω, which becomes a degenerate probability in case of a perfect information game.
Moreover, |R+

t (ω)| denotes the number of types in player j’s reference group that
have a lower payoff than j in state ω, and |R−s (ω)| the number of types in i’s refer-
ence group that have a higher payoff than i.

Because etsi is the largest investment, it follows that etsi ≥ eτi for all τ ∈ T c
i .

Similarly, because ett j is the smallest investment, it follows that ett j ≤ eτ j for all
τ ∈ T c

j . Therefore, b′(·) in (14) is strictly smaller than b′(·) in (15). Furthermore,
because at least one of the inequalities σs < 0 or ρt > 0 hold true, it follows that for
the eτsi that solves ∂U

∂eτs i
(ts, i, eτsi) = 0 it holds that ∂U

∂eτt j
(tt, j, eτsi) > 0. This, however,

suggests that eτt j > eτsi, a contradiction. In a refined ORE, it must therefore hold
that eτsi = eτt j for all players and all their (compatible) types.

Concerning the level of eτsi = eτt j = e, the best-response condition (5) implies
that every single investment should not be ‘too far away’ from e∗/n. Suppose, for
example, that T c

i = {social welfare, inequity-averse} for all i. Then, an optimal e
must satisfy

lim
x→0+

∂U
∂etsi

(ts, i, e + x) = b′
(
e + x + (n− 1)e

)(
1 + σs

)
− c < 0 ,

lim
x→0+

∂U
∂etsi

(ts, i, e− x) = b′
(
e− x + (n− 1)e

)(
1 + ρs

)
− c > 0 ,

for some x → 0+ (because ∂Ui/∂ei(·) is undefined at point e). Because it is σs = 0
for a social-welfare type, this means that only some e ≥ e∗/n can be supported
in a refined ORE. Moreover, by condition (5), the upper bound for e is given by
e ≤ e∗+ε

n . �

A.2 Measuring social preference strength in the experiment
Our experimental games differ from the more general games of Section 3 in two

respects: first, we implement a linear-quadratic payoff function with a ‘kink’ after
which the benefit function b(·) becomes linear. Second, our experimental games re-
semble a game of perfect information about the investments of every other player.
These modifications lead to the following refinement of Lemma 1.

Lemma 1 refined. Consider one of the seven networks in Figure 1. Suppose the
utility of player i is defined by payoff function (2) with α = 29, c = 5, and x = 1,
and by the social preference model (4) with parameters ts = (ρs, σs, Rs). Suppose
furthermore that player i observes the investments e−i of the other players. It then
follows that the player‘s strength of social preference, εs, is given by

for an altruist or a social-welfare type (ρs ≥ σs ≥ 0) : ε
p
s

for an inequity-averse type (ρs > 0 > σs > −3) : max{εp
s ; εn

s }
for a competitive or spiteful type (0 ≥ ρs ≥ σs > −3) : εn

s

where

ε
p
s = max

{
ρs

63
6 + 2ρs

;
63
2
− 6

ρs

}
εn

s =
∣∣σs

94.5− 31.5σs

9 + σ2
s

∣∣
Proof. For given ‘observed’ investments in the other nodes,

e−i =
(
e1, ..., ei−1, ei+1, ..., en

)
∈ Rn−1

+
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the first-order condition of an optimal investment of a type ts in node i is given
by30

0 ≥ ∂Ui

∂etsi
=

{
24− 2e∗i if e∗i ≤ 14
−4 otherwise

(16)

+
1
|Rs|

(
∑

j∈R+
s

ρs + ∑
j∈R−s

σs
) {29− 2 ∑k∈Nj(g)∪{j} ek if ∑k∈Nj(g)∪{j} ek ≤ 14

1 otherwise
,

where e∗i is defined as e∗i ≡ etsi + ∑j∈Ni(g) ej and where R+
s (R−s ) denotes the set

of players j ∈ Rs with πi > (<)πj. We aim to determine an upper bound for
| f or(ts, i, e−i)− f non((0, 0), i, e−i)|:

εs ≡ max
{∣∣ f or(ts, i, e−i)− f non((0, 0), i, e−i)

∣∣ ∀ e−i ∈ Rn−1
+ , ∀i ∈ N , ∀g ∈ G

}
.

Clearly, this upper bound can be equivalently determined by

εs = max
{
|e∗i − e∗| : ∀ e−i ∈ Rn−1

+ , ∀i ∈ N , ∀g ∈ G
}

,

where for the experimental payoff function: e∗ = 12. Clearly also, from the second
line in (16), εs can be found in the sub-domain of Rn−1

+ ×N ×G where ∑k∈Nj(g)∪{j} ek ≤
14 for all j ∈ Ni(g). This is because any value for εs outside this sub-domain can
also be reached by setting ∑k∈Nj(g)∪{j} ek = 14. Therefore, εs is given by the largest
absolute value of

e∗i − 12 =


(

∑j∈R+s
ρs+∑j∈R−s

σs

)(
29−2 ∑k∈Nj(g)∪{j} ek

)
2|Rs| if e∗i ≤ 14

e∗i − 14 +

(
∑j∈R+s

ρs+∑j∈R−s
σs

)(
29−2 ∑k∈Nj(g)∪{j} ek

)
2|Rs| otherwise

. (17)

Next, we go through the different possible parameter constellations for (ρs, σs):
Suppose first that ρs ≥ σs ≥ 0 (social-welfare or altruistic type). Then, the largest
absolute deviation from e∗ = 12 consists of a positive deviation so that |e∗i − 12| is
maximal for R+

s = Rs and ek = 0 for all k /∈ Ni(g) ∪ {i}. That is,

εs =

ρs
29|Rs|−2e∗i

2|Rs| − ρs
|Ni(g)|−1
|Rs| ei if e∗i ≤ 14

e∗i − 14 + ρs
29|Rs|−2e∗i

2|Rs| − ρs
|Ni(g)|−1
|Rs| ei otherwise

=

{
ρs

29|Rs|−24−2(|Ni(g)|−1)ei
2(|Rs|+ρs)

if e∗i ≤ 14
29|Rs|−24−2(|Ni(g)|−1)ei

2 − 2|Rs|
ρs

otherwise
.

Because ∂εs/∂ei < 0, set ei to its smallest feasible value of ei = 0 to get that

εs =

{
ρs

29|Rs|−24
2(|Rs|+ρs)

if ρi ≤ 4|Rs|
29|Rs|−28

29|Rs|−24
2 − 2|Rs|

ρs
otherwise

.

Furthermore, because ∂εs/∂|Rs| > 0, set |Rs| = 3 to get that

εs =

{
ρs

63
6+2ρs

if ρs ≤ 12
59

63
2 −

6
ρs

otherwise
, (18)

which is what we have claimed.
Suppose now that ρs > 0 > σs > −3 (inequity aversion). Then, |e∗i − 12| is

30When ∂U/∂etsi is undefined at a point etsi, the first-order condition can be redefined as
U′i (etsi − x) > 0 and U′i (etsi + x) < 0 for some x → 0+. The desired point etsi then satisfies
this alternative condition.
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maximal for either expression (18) or for expression (17) with R−s = Rs and e∗i ≤ 14.
In the latter case, εs is given by the largest absolute value of

e∗i − 12 = σs
29|Rs| − 2 ∑j∈Rs ∑k∈Nj(g)∪{j} ek

2|Rs|

= σs
(29

2
−

∑k/∈Ni(g)∪{i} ek

|Rs|
− 1
|Rs|

e∗i −
|Ni(g)| − 1
|Rs|

ei
)

= σs

(
29|Rs| − 24
2(|Rs|+ σs)

−
∑k/∈Ni(g)∪{i} ek

|Rs|+ σs
− |Ni(g)| − 1
|Rs|+ σs

ei

)
,

with the additional constraint that ei and ek are such that πi < πj for all j ∈ Rs. It
therefore must be ei > 0. In fact, êi is, by (16), given by

êi =
24− 2e∗i

2(|Ni(g)| − 1)
+ σs

29|Rs| − 2e∗i
2|Rs|(|Ni(g)| − 1)

.

Combined, this gives

e∗i − 12 = σs

(
29|Rs| − 24
2(|Rs|+ σs)

−
∑k/∈Ni(g)∪{i} ek

|Rs|+ σs
−

12− e∗i
|Rs|+ σs

− σs
29|Rs| − 2e∗i

2|Rs|(|Rs|+ σs)

)
.

Thus, in order to minimize e∗i − 12, set ek = 0 to get that

e∗i − 12 = σs

(
14.5|Rs| − 12

)(
|Rs| − σs

)
|Rs|2 + σ2

s
.

Further, because it is ∂(e∗i − 12)/∂|Rs| < 0, set |Rs| = 3 to find that

e∗i − 12 = σs
94.5− 31.5σs

9 + σ2
s

, (19)

which is what we have claimed.
Suppose finally that 0 ≥ ρs > σs > −3 (competitive or spiteful type). Then,

|e∗i − 12| is maximal for (19). �

A.3 Experimental predictions
The following predictions characterize the refined ORE of both the more gen-

eral game of Section 3 with incomplete information as well as the game of per-
fect information implemented in the experiment. For both characterizations, we
essentially make use of condition (5) on the maximal deviation from a payoff-
maximizing best response and Lemma 2 on the ordering of payoffs in a refined
ORE. The sole difference is that the set of ORE is somewhat smaller in the perfect
information game because players can respond to the actual investments of their
neighbors and, therefore, do not need to rely on their expectations about other play-
ers’ investments, for which we can only specify some upper and lower constraints.
For example, while a periphery player in the star network is predicted to invest a
value ets j from the interval e∗ − 3εs ≤ ets j ≤ e∗ + 3εs in the incomplete-information
version of our game, this interval is no larger than e∗ − εs ≤ ets j ≤ e∗ + εs in the
case of perfect information.

Other-regarding equilibria in the star, core periphery, and d-box: We first
show that an ORE entails either a (near) center- or a (near) periphery-sponsored
public good in the incomplete information case.

Suppose first that eτc = 0 for all types playing the center position(s) (periph-
ery sponsorship). An (unconstrained) payoff maximizer in the periphery position
would respond with f non((0, 0), p

)
= e∗. By condition (5), a social type would
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therefore respond with

e∗ − ε ≤ f or(τ, p, e−j
)
≤ e∗ + ε .

For the responses of social types in the duo positions of the core periphery network,
we additionally need to understand how they respond to each other. Note, how-
ever, that for the linear-quadratic payoff function (2) and for a payoff maximizer in
duo position j it holds that f non((0, 0), j

)
= e∗ −E[eτd−j ]. At the same time, it holds

that
E[eτdj ] ≤ max{ f or(τ, j, e−j

)
} = e∗ −E[eτd−j ] + ε

because the expression on the right-hand side defines the maximum investment
of any social type in duo position j. Adding E[eτd−j ] to both sides, we get that
E[∑j∈D eτdj ] ≤ e∗+ ε. By a similar argument, we also get that E[∑j∈D eτdj ] ≥ e∗− ε.
Together, this implies that the joint investments of two money maximizers in the
duo positions of the core periphery network satisfy

2e∗ − (e∗ + ε) ≤ ∑
j∈D

f non((0, 0), j, e−j
)
≤ 2e∗ − (e∗ − ε) ,

and the joint investments of two social types in these positions:

2e∗ − (e∗ + ε)− 2ε ≤ ∑
j∈D

f or(τ, j, e−j
)
≤ 2e∗ − (e∗ − ε) + 2ε .

Next, suppose that ec > 0 for at least one social type in the center position(s) of the
star, core periphery, and d-box (center sponsorship). An (unconstrained) payoff
maximizer would invest

f non((0, 0), c
)
= e∗ −E[∑

j 6=c
eτ j] .

Payoff maximizers in the periphery positions of all these networks and payoff max-
imizers in the duo positions of the core periphery would in turn invest

f non((0, 0), p
)

= e∗ −E[∑
i∈C

eτi] and

f non((0, 0), dj
)

= e∗ −E[eτc]−E[eτd−j ] .

Combined with condition (5) regarding the best response of a social type, this
means that the expected investments are constrained by

e∗ −E[∑
j 6=c

eτ j]− ε ≤ E[eτc] ≤ e∗ −E[∑
j 6=c

eτ j] + ε ,

e∗ −E[∑
i∈C

eτi]− ε ≤ E[eτp] ≤ e∗ −E[∑
i∈C

eτi] + ε ,

e∗ −E[eτc]−E[eτd−j ]− ε ≤ E[eτdj ] ≤ e∗ −E[eτc]−E[eτd−j ] + ε .

For the star network, this gives

e∗ − 2ε ≤ Es[eτc] ≤ e∗ + 2ε and 0 ≤ Es[eτpj ] ≤ 3ε.

For the d-box, this gives

e∗ − 5ε ≤ Ed[∑
i∈C

eτi] ≤ e∗ + ε and 0 ≤ Ed[∑
j∈P

eτ j] ≤ 4ε.

And for the core periphery, this gives

e∗ − 3ε ≤ Ec[eτc] ≤ e∗ + ε and 0 ≤ Ec[eτp] ≤ 4ε and 0 ≤ Ec[∑
j∈D

eτ j] ≤ 4ε.

Continuing from here, we determine the upper and lower boundaries for the in-

46



vestments of a payoff maximizer and, based on condition (5), for a social type in
these positions. For the star, this gives

e∗ − 10ε ≤ f or
s
(
τ, c, e−i

)
≤ e∗ + ε and 0 ≤ f or

s
(
τ, pj, e−j

)
≤ 3ε . (20)

For the d-box, this gives

e∗ − 11ε ≤ ∑
i∈C

f or
d
(
τ, i, e−i

)
≤ e∗ + 7ε and 0 ≤ f or

d
(
τ, pj, e−j

)
≤ 6ε . (21)

And for the core periphery network, this gives

e∗ − 9ε ≤ f or
c
(
τ, c, e−i

)
≤ e∗ + ε and 0 ≤ f or

c
(
τ, p, e−j

)
≤ 4ε (22)

and 0 ≤ f or
c
(
τ, dj, e−j

)
≤ 4ε .

We next derive the boundaries for an ORE in the perfect information game
implemented in the experiment.

Players’ beliefs about the expected investment of a player in any node i are
given by E[eτi] = ei in this game. This means that for an ORE with ec = 0 in
the center position(s) of the star, core periphery, and d-box it must still hold that
e∗ − ε ≤ f or(τ, p, e−j

)
≤ e∗ + ε in the periphery positions. In the duo position of

the core periphery, we get, in contrast, the modified boundaries

e∗ − ε ≤ ∑
j∈D

f or(τ, j, e−j
)
≤ e∗ + ε .

For an ORE with ec > 0 for at least one player in the center position(s), we get that

e∗ −∑
j 6=c

ej − ε ≤ ec ≤ e∗ −∑
j 6=c

ej + ε , (23)

e∗ −∑
i∈C

ei − ε ≤ ep ≤ e∗ −∑i∈Cei + ε , (24)

e∗ − ec − ed−j − ε ≤ edj ≤ e∗ − ec − ed−j + ε . (25)

It follows from (23) that ∑i∈N ei ≤ e∗ + ε and from (24) and (25) that ∑i∈C ec + ep ≥
e∗− ε and ec +∑j∈D edj ≥ e∗− ε. In combination, we find that the periphery players
in the star and the d-box, except for periphery player p, jointly contribute at most

∑
j∈P\{p}

ej = ∑
j∈P

ej + ∑
i∈C

ei −
[
∑
i∈C

ec + ep
]
< e∗ + ε−

[
e∗ − ε

]
= 2ε.

Drawing the same comparison for any other periphery player p2, we again find
that ∑j∈P\{p2} ej ≤ 2ε. Hence, the total contribution received by the center(s) is at
most

∑
j∈P

ej ≤ ∑
j∈P\{p}

ej + ∑
j∈P\{p2}

ej ≤ 4ε .

Similarly, in the core periphery, we find for the periphery player and the duo play-
ers, respectively, that

ep = ∑
i 6=c

ei + ec −
[
ec + ep

]
≤ e∗ + ε−

[
e∗ − ε

]
= 2ε ,

∑
j∈D

ej = ∑
i 6=c

ei + ec −
[
ec + ∑

j∈D
ej
]
≤ e∗ + ε−

[
e∗ − ε

]
= 2ε.

The the total contribution received by the center player in the core periphery net-
work is thus, again, at most ∑j∈D ej + ep < 4ε. For the peripheral player with the
lowest contribution in the star, the core periphery, and the d-box, (24) requires that
minp{ep}+ ∑i∈C ei ≥ e∗ − ε. Thus, the centers players’ contributions are necessar-
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ily larger than

∑
i∈C

ei ≥ e∗ − ε−min
p
{ep} ≥ e∗ − ε− 4ε

n− |C| ,

whereby the lower bound is determined by a situation where all peripheral (and
duo) players equally share 4ε. Moreover, (23) implies that the center players’ con-
tributions are necessarily smaller than

∑
i∈C

ei ≤ e∗ + ε .

Together, this defines the boundaries on the investments in a center-sponsored pub-
lic good in Table 6.

We finally show that when players’ preferences are compatible and small, no
center-sponsored public good can be maintained in a refined ORE.

Note that independent of the information that players have, the investments of
the center player(s) i ∈ C converge to

lim
ε→0

f or(τ, i, e−i
)
= e∗ .

At the same time, the investments of all other players j /∈ C converge to

lim
ε→0

f or(τ, j, e−j
)
= 0 .

Thus, there exists an εh in the star, core periphery, and d-box such that for ε < εh it
holds that π(i, ω) < π(j, ω) for all possible type combinations ω ∈ Ωh. A contra-
diction to Lemma 2 because the required payoff ordering can only be maintained
when π(i, ω) ≥ π(j, ω) for all i ∈ C and j ∈ N\C and at least one ω ∈ Ωh.31

The critical value ε̄h depends on the network structure in the following way: In
the incomplete information game, it follows from (20) for the star network that

πs(i, ω) ≤ b
(
e∗
)
− c(e∗ − 9ε)

and that

πs(j, ω) ≥ min
{

b
(
e∗ − 10ε

)
; b
(
e∗ + 4ε

)
− 3cε

}
.

Hence, εstar is defined by

max{ε} : c ≥
b(e∗)−min

{
b
(
e∗ − 10ε

)
; b
(
e∗ + 4ε

)
− 3cε

}
e∗ − 9ε

.

From (21), it follows that εcore is defined by

max{ε} : c ≥
b(e∗ + 3ε)−min

{
b
(
e∗ − 9ε

)
; b
(
e∗ + 5ε

)
− 4cε

}
e∗ − 9ε

,

and from (22), it follows that εdbox is defined by

max{ε} : c ≥ 2
b(e∗ + ε)−min

{
b
(
e∗ − 11ε

)
; b
(
e∗ + 13ε

)
− 6cε

}
e∗ − 11ε

.

A comparison of the critical values gives εstar > εcore > εdbox.
In the perfect information case, similar considerations lead to εstar = εcore,

which are in turn defined by

max{ε} : c ≥
b(e∗)−min

{
b
(
e∗ − 7

3 ε
)

; b
(
e∗ + 5

3 ε
)
− 4cε

}
e∗ − 4ε

.

31This condition is necessary regardless of whether players compare with everyone else,
as in Ωh1 , or only with their network neighbors, as in Ωh2 .
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Furthermore, εdbox is defined by

max{ε} : c ≥
b(e∗)−min

{
b
(
e∗ − 3ε

)
; b
(
e∗ + ε

)
− 4cε

}
e∗ − 4ε

.

This gives the ranking εstar = εcore > εdbox. �

Other-regarding equilibria in the dyad and complete networks: See proof
of Proposition 2.

Other-regarding equilibria in the line: We first characterize the set of ORE
in the incomplete information case.

There are two refinements on the set of ORE, beyond the general requirements
of condition (5). First, suppose that every player has small social preferences and
suppose that this is common knowledge. Concretely, suppose ε < e∗/5. It follows
that all ORE fall into either the class of periphery-sponsored profiles or the class of
partially distributed profiles:

(per.spon) :
(
[e∗ − 3ε, e∗ + ε] , [0, 4ε] , [0, 4ε] , [e∗ − 3ε, e∗ + ε]

)
,

(distr) :
(
[e∗ ± ε] , 0 , em2 + ee2 ∈ [e∗ ± 3ε]

)
.

To show this, we fix the sequence of players in the order e1− m1− m2− e2 and
exclude out-of-equilibrium profiles:

a) Obviously, no investment profile can be supported in an ORE in which all
types of three or more players invest nothing.

b) There are three possible ORE constellations where all types of two players
invest nothing:

(i) :
(
[e∗ ± ε] , 0 , 0 , [e∗ ± ε]

)
,

(ii) :
(
[e∗ ± ε] , 0 , [e∗ ± ε] , 0

)
,

(iii) :
(
0 , [e∗ − ε, ∞) , [e∗ − ε, ∞) , 0

)
.

Profiles (i) and (ii) are contained in the classes of ORE described above. Con-
cerning (iii), the sum of player m1’s and m2’s investments must, by condition
(5) and by the fact that the payoff function is linear-quadratic, be weakly less
than e∗ + 3ε. Hence, this is not an ORE when 2(e∗ − ε) > e∗ + 3ε and thus
when ε < e∗/5.

c) There are two potential ORE configurations where all types of one player
invest nothing:

(iv) :
(
[e∗ ± ε] , 0 , eτm2 + eτe2 ∈ [e∗ ± 3ε]

)
,

(v) :
(
0 , [e∗ − ε, ∞) , eτm2 , eτe2

)
.

The first one is contained in the classes of ORE described above. The second
one is not an equilibrium when for player m2 it holds that

min
ω∈Ω

{
∑

i∈N
eτi
}
= e∗ − ε + e∗ − 3ε > max

ω∈Ω

{
eτm2

}
= e∗ + ε

and, thus, when ε < e∗/5.

d) When all types of all players make a positive contribution, it follows from the
best-response conditions of the end players that

e∗ − ε ≤ E[eτei ] + E[eτmi ] ≤ e∗ + ε .
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At the same time, the best-response conditions of the middle players imply
that

e∗ − ε ≤ E[eτei ] + E[eτmi ] + E[eτmj ] ≤ e∗ + ε .

Together, this gives 0 ≤ E[eτmi ] ≤ 2ε and e∗ − 3ε ≤ E[eτei ] ≤ e∗ + ε. From
here, we get that

e∗ − 2ε ≤ f non((0, 0), ei) ≤ e∗ and 0 ≤ f non((0, 0), mi) ≤ e∗ − (e∗ − 3ε) ,

and in turn we get that

e∗ − 3ε ≤ f or(τ, ei, e−i) ≤ e∗ + ε and 0 ≤ f or(τ, mi, e−i) ≤ 4ε .

Hence, we arrive at a profile that is contained in the classes of ORE described
above.

Next, we characterize the set of ORE in the perfect information case. Suppose
that ε < e∗/3. Then, all ORE fall into one of the following two classes

(per.spon) :
(
[e∗ − 3ε, e∗ + ε] , [0, 2ε] , [0, 2ε] , [e∗ − 3ε, e∗ + ε]

)
,

(distr) :
(
[e∗ ± ε] , 0 , em2 + ee2 ∈ [e∗ ± ε]

)
.

To show this, we again exclude out-of-equilibrium profiles:

a) Obviously, no investment profile can be supported in which all types of three
or more players invest nothing.

b) Straightforward extensions of the arguments above show that of the three
possible ORE constellations where all types of two players invest nothing,
only the following two remain as possible ORE when ε < e∗/3:

(i) :
(
[e∗ ± ε] , 0 , 0 , [e∗ ± ε]

)
,

(ii) :
(
[e∗ ± ε] , 0 , [e∗ ± ε] , 0

)
.

c) There are two potential ORE configurations where all types of one player
invest nothing:

(iv) :
(
[e∗ ± ε] , 0 , eτm2 + eτe2 ∈ [e∗ ± ε]

)
,

(v) :
(
0 , [e∗ − ε, ∞) , eτm2 , eτe2

)
.

The first one is contained in the classes of ORE described above. The second
one is not an equilibrium when for player m2 it holds that

min
{

∑
i∈N

ei
}
= e∗ − ε + e∗ − ε > max

{
em2

}
= e∗ + ε

and, thus, when ε < e∗/3.

d) When all types of all players make a positive contribution, it follows from the
best-response conditions of the end players that

e∗ − ε ≤ eei + emi ≤ e∗ + ε .

At the same time, the best-response conditions of the middle players imply
that

e∗ − ε ≤ eei + emi + emj ≤ e∗ + ε .

Together, this gives 0 ≤ emi ≤ 2ε and e∗− 3ε ≤ eei ≤ e∗+ ε. Hence, we arrive
at a profile that is contained in the classes of ORE described above.
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Finally, we characterize the set of refined ORE under the conditions that (i) play-
ers only include their direct neighbors in their reference group, i.e., Rs = Ni(g);
(ii) their preferences are compatible; (iii) their social preferences are small. That
is, suppose that Ti = {competitive, spiteful}, i ∈ M, and Tj = {payoff max., so-
cial welfare, altruist}, j ∈ E . Moreover, suppose that ε < e∗/7 in the incomplete
information game and ε < e∗/5 in the perfect information game.

Start with the incomplete information case: It immediately follows from ε <
e∗/7 that every middle player earns necessarily more than every end player in a
periphery-sponsored ORE. From the compatibility of preferences and Rs = Ni(g),
it also follows that π(m1, ω) ≥ π(e1, ω) and π(m2, ω) ≥ π(e2, ω) for all ω ∈ Ωline

in a distributed ORE. This is because suppose, to the contrary, that eτsm2 > eτte2 for
some ω ∈ Ωline. Take the most investing type ts in the middle of the line network
and the least investing type tt at the end of the line. It follows that ts earns less than
tt (and less than every type of the other middle player). However, it must also hold
that

∂U
∂etsm2

(ts, m2, etsm2) = ∑
ω∈Ωline

p(ω)b′
(
etsm2 + eτe2

)(
1 +
|R−s (ω)|

n− 1
σs
)
− c = 0 , (26)

∂U
∂ette2

(tt, e2, ette2) = ∑
ω∈Ωline

p(ω)b′
(
ette2 + eτm2

)(
1 +
|R+

t (ω)|
n− 1

ρt
)
− c ≤ 0 . (27)

Because etsm2 ≥ eτm2 and ette2 ≤ eτe2 for all ω, it follows that b′(·) in (26) is smaller
than b′(·) in (27). Moreover, because either the middle player is behindness averse
or the end player is aheadness averse, or both, it also holds σs < 0 and ρt ≥ 0.
Together, this means that for the etsm2 that solves ∂U

∂etsm2
(ts, m2, etsm2) = 0 it holds

that ∂U
∂ett e2

(tt, e2, etsm2) > 0. This, however, implies that etsm2 < ette2 , a contradiction.
Next, we look at the perfect information case: Every middle player earns neces-

sarily more than every end player in a periphery-sponsored ORE when ε < e∗/5.
Expanding on the arguments made above, it also follows that π(m1, ω) ≥ π(e1, ω)
and π(m2, ω) ≥ π(e2, ω) in a distributed ORE when preferences are compatible
and Rs = Ni(g). This is because all that changes is that p(ω) becomes a degenerate
probability in (26) and (27).

Thus, in a refined ORE, it must be π(m1, ω) ≥ π(e1, ω) and π(m2, ω) ≥ π(e2, ω)
for all ω ∈ Ωline. �

Other-regarding equilibria in the circle: Consider either a game with per-
fect information or with incomplete information. Suppose that all players’ social
preferences are small (ε < e∗/5 for both games) and suppose that this is common
knowledge (in the incomplete information game). We show that the only classes of
ORE resemble a specialized or a fully distributed investment profile.

Let us fix the sequence of players in the order i − j − k − l for this purpose.
First, suppose that eτm > 0 for at least some τ ∈ Tm but for all m ∈ N (a fully
distributed profile). Based on the best-response condition (5), eτm > 0 must lie
inside the boundaries e ≤ eτm ≤ ē, where e and ē are defined by

e + 2 ē = e∗ − ε ,
ē + 2 e = e∗ + ε .

Solving this set of identities and simplifying, we arrive at e∗
3 − ε ≤ eτm ≤ e∗

3 + ε.
Next, suppose that eτi = 0 for all types of player i. It follows that (at least some

types of) player i’s neighbors, j and l, must make some positive investment. In
particular, it must be eτ j > 0 and eτl > 0 for at least some types because suppose,
to the contrary, that eτ j = 0 (or eτl = 0, or both are equal to zero) for all types.
Then, eτk > 0 for at least some type since otherwise eτi + eτ j + eτk = 0 for all
ω ∈ Ω. In fact, we would require that simultaneously it holds E[eτk] ≥ e∗ − ε
and E[eτl ] ≥ e∗ − ε. This, however, leads to a contradiction because it implies
for player k: f non((0, 0), k) ≤ e∗ − (e∗ − ε) and thus f or(τ, k, e−k) ≤ 2ε. However,

51



since we need to have E[eτk] ≤ f or(τ, k, e−k), this constellation is at odds with the
assumption ε < e∗/3.

Thus, if eτi = 0 for all types of player i, it must hold that eτ j > 0 and eτl > 0 for
at least some of the types of players j and l. But this also implies that eτk = 0 for all
τ ∈ Tk because suppose, to the contrary, that eτk > 0 for some τ. Because

e∗ − ε ≤ E[eτ j] + E[eτk] + E[eτl ] ≤ e∗ + ε

and

e∗ − ε ≤ E[eτk] + E[eτl ] ≤ e∗ + ε ,

it follows that E[eτl ] ≤ 2ε and similarly that E[eτ j] ≤ 2ε. This implies, however, that
the expected total contribution received by player i is no larger than 4ε. Hence, for
ε < e∗/5 it is E[eτ j] + E[eτl ] ≤ 4ε < e∗ − ε. A contradiction to eτi = 0. Thus, it must
be eτk = 0 for all τ ∈ Tk (a specialized equilibrium). In particular, together with the
equilibrium investments of j and l, we get that (0 , [e∗ ± ε] , 0 , [e∗ ± ε]). �
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Table 6: Experimental predictions

Payoff-maximizing equilibria Other-regarding equilibria

Dyad or ∑i∈N ei = 12 (S,E) ∑i∈N ei ∈ [12± ε]
complete (Q: ei = ej =

12
n ) Compatible social preferences:

ei = ej ∈ [ 12
n ±

ε
n ]

Star (i) ec = 0, ep = 12 (i) ec = 0, ep ∈ [12± ε]
(ii) ec = 12, ep = 0 (ii) ec ∈ [12− 7ε

3 , 12 + ε],
(S,Q: (i) selected) ∑j∈P ej ≤ 4ε

(E: (ii) selected) Compatible social preferences:
πc ≥ minj 6=c{πj}

Small pref. (ε < 3) in addition:
(i) selected

Core (i) ec = 0, ep = 12, (i) ec = 0, ep ∈ [12± ε],
periphery ∑j∈D ej = 12 ∑j∈D ej ∈ [12± ε]

(ii) ec = 12, e−c = 0 (ii) ec ∈ [12− 7ε
3 , 12 + ε],

(S: (i) selected) ∑j 6=c ej ≤ 4ε

(Q: (i) selected with ed = 6) Compatible social preferences:
(E: (ii) selected) πc ≥ minj 6=c{πj}

Small pref. (ε < 3) in addition:
(i) selected

D-box (i) ec = 0, ep = 12 (E) (i) ec = 0, ep ∈ [12± ε]
(ii) ep = 0, ∑i∈C ei = 12 (E) (ii) ∑i∈C ei ∈ [12− 3ε, 12 + ε],

(S,Q: (i) selected) ∑j∈P ej ≤ 4ε

Compatible social preference :
πc ≥ minj 6=c{πj}

Small pref. (ε < 2) in addition:
(i) selected

Line (i) eei = 12, emi = 0, ∀i : ei + ∑j∈Ni(g) ej ≥ e∗ − ε

emj + eej = 12 (S) Compatible social preferences:
(ii) emj = 0, eej = 12 (Q) πm ≥ minj∈Rm{πj}
(iii) emj = 12, eej = 0 (E) Small pref. (ε < 3) in addition:

(i) eei ∈ [12± ε], emi = 0,
emj + eej ∈ [12± ε],
and πmj ≥ πej

(ii) ee ∈ [12− 3ε, 12 + ε], em ≤ 2ε

Circle (i) ei = 0, ei+1 = 12 ∀i : ei + ei−1 + ei+1 > e∗ − ε
(ii) ei = 4 Small preferences (ε < 3):

(S,E: (i) selected) (i) ei = 0, ei+1 ∈ [12± ε]
(Q: (ii) selected) (ii) ei ∈ [4± ε]

NOTES: (Other-regarding) equilibrium predictions for the experimental games
where players have perfect information about other players’ investments and end-
game decisions are rewarded according to payoff function (2) with e∗ = 12. For
comparison, the equilibria selected by other equilibrium refinement methods are
indicated as well: (S) asymptotic stability, (Q) quantal response equilibria with
marginal decision errors, and (E) efficient equilibra.
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B Experimental Appendix

B.1 Additional descriptive evidence

Figure 8: Investments by network position from second 30 to end
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Table 7: Frequency of other-regarding equilibria and refined equilibria

Deviation from payoff-max. best response
Network Equilibrium zero moderate any

(ε = 0) (ε < 3) (any ε)

Dyad equal 32.2% (S,E,Q,rfd) 46.0% (rfd) 49.3% (rfd)
other 8.8% (S,E) 33.0% 50.7%

Complete equal 0.8% (S,E,Q,rfd) 0.8% (rfd) 0.8% (rfd)
other 20.9% (S,E) 62.5% 99.2%

Star per-spon 15.8% (S,Q,rfd) 33.3% (rfd) 62.5% (rfd)
cent-sp: πc ≥ πj — — 36.6% (rfd)
cent-sp: other 0% (E) 0% 0.8%

Circle spec 7.5% (S,E) 16.6% 29.2%
distr 3.3% (Q) 27.5% 70.8%

Core per-spon 17.5% (S,Q: 4.2%,rfd) 43.3% (rfd) 68.3% (rfd)
cent-sp: πc ≥ πj — — 31.7% (rfd)
cent-sp: other 0% (E) 0% 0%

D-box per-spon 8.3% (S,E,Q,rfd) 15.0% (rfd) 25.8% (rfd)
cent-sp: πc ≥ πj — 0.8% (rfd) 64.2% (rfd)
cent-sp: other 0% (E) 3.3% 10.0%

Line end-spon 8.3% (S,Q: 0.8%,rfd) 15.0% (rfd) 28.3% (rfd)
distr: πm ≥ πe 8.3% (S,rfd) 14.1% (rfd) 30.8% (rfd)
distr: other 1.7% (S,E: 0.8%) 8.4% 40.9%

NOTES: Percentages of equilibrium profiles at the random ends of the 960 network
games. Observations for dyad: 239 (1 outlier with value 29 dropped). Observa-
tions for all other networks: 120. Refined equilibria are: (Q) quantal response, (S)
stable, (E) efficient, (rfd) refined other-regarding equilibria. In a few cases, quantal
response theory (Q) and efficiency (E) selects a subset of the displayed equilibrium
types. The frequencies are reported in parentheses in these cases.

B.2 Comparison with alternative refinement concepts
To put our findings into perspective, this appendix compares our refined ORE

predictions with those of several alternative equilibrium refinement concepts ap-
plied to the Bramoullé and Kranton (2007) game. Table 7 summarizes the predic-
tions of the most relevant concepts:32

• Asymptotic stability (Bramoullé and Kranton, 2007) based on the idea that sta-
ble equilibria might occur more frequently in our continuous-time experi-
ment because a best-response dynamic leads back to them after a single mis-
take.

• Efficiency (Charness, Feri, Meléndez-Jiménez, and Sutter, 2014) based on the
idea that subjects might have used the time we gave them to coordinate on a
group welfare-maximizing equilibrium.

• Quantal response (logit) equilibria (McKelvey and Palfrey, 1995; Rosenkranz
and Weitzel, 2012) based on the idea that subjects play a best response to the
fluctuating, probabilistic choices of their neighbors.

As can be seen from Table 7, the alternative concepts do not explain our ex-
perimental findings better than our social preference theory. On the contrary, they
perform worse in some networks:

32We omit risk dominance as a selection concept (Harsanyi and Selten, 1988; Charness,
Feri, Meléndez-Jiménez, and Sutter, 2014) because we deemed it less relevant for our exper-
iment. Subjects were continuously informed about the investments of their group members
so that strategic uncertainty is only a minor issue.
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• The predictive power of efficiency is particularly low in the star and the core
periphery network, where it is efficient when the center player provides the
public good all by himself. Such a center-sponsored profile is, however,
never observed in the data.33

• Asymptotic stability predicts somewhat better than efficiency, in particular in
the star, the core periphery, and the d-box. But it fails to select the empiri-
cally relevant equal-split equilibria in the dyad and the end-sponsored public
good in the line network simply because all equilibrium profiles are equally
stable in these networks.34

• Only quantal response theory comes close to our social preference theory. As
shown in Rosenkranz and Weitzel (2012), the theory selects a unique payoff-
maximizing equilibrium given that players make small decision errors. The
resulting refined payoff-maximizing equilibria are identical to our refined
ORE in all the networks mentioned above. Yet, quantal response theory
tends to generate a too fine-grained selection on the equilibrium set. This
leads to the situation that in the circle network, for example, quantal response
theory predicts an egalitarian split of e∗ = 12 as the unique equilibrium pro-
file, even though a specialized equilibrium is at least equally relevant in the
data.

Thus, in contrast to efficiency and asymptotic stability, the power of our social
preference theory is that it selects the “natural” equilibria in the dyad and all the
asymmetric networks (star, core periphery, d-box, line), that is, an egalitarian equi-
librium in the former and a periphery-sponsored public good in the latter. The
value-added over quantal response theory is, in turn, that it does not rule out the
co-existence of multiple, empirically relevant equilibria.

B.3 Comparison with other social preference estimates
Table 8 categorizes our preferred social parameter estimates—based on the type

classification implied by utility model (4) and Lemma 1—into seven distinct pref-
erence types and three distinct strength classes.

The preference strength estimates are much in line with our observed devia-
tions from a pure payoff-maximizing best response in Figure 4. In particular, 68.9%
of the estimates imply a moderate (ε̂s < 3) and 42.4% no more than a marginal
(ε̂s < 1) social preference strength. This is in line with the observed deviations
in Figure 4, confirming the validity of our estimations. Yet, Table 8 reveals some
marked differences between our estimated preference types and those reported in
earlier studies, in particular the estimates of Charness and Rabin (2002) and Bruhin,
Fehr, and Schunk (2019).35 According to our estimations, the large majority of sub-
jects is of the inequity-averse, competitive, or spiteful type. Meanwhile, only 2.1% and
4.8% of subjects show a concern for social welfare or altruism, respectively, which are
the most frequent preference types in the above studies.

Table 9 thus summarizes our social preference estimates from three alternative
utility models and two estimates from a different subset of our experimental data.
Column 1 replicates our estimates in Table 8, which are based on our preferred
model (4) presented in Section 3.2. Columns 2–4 are based on a modification of
this model. In particular, for Columns 2 and 3, we assume that subjects compare

33The poor performance of efficiency is not entirely surprising in the light of the ex-
perimental findings in Charness, Feri, Meléndez-Jiménez, and Sutter (2014). Efficiency
concerns are particularly powerful in games where equilibrium outcomes can be Pareto
ranked. This is not the case in our games with strategic substitutes.

34To see the intuition, start from a payoff-maximizing equilibrium profile in the dyad
with ei + ej = 12. Suppose player i would mistakenly reduce her investment ei by x. A best
response by player j would then lead to the different equilibrium (ei − x) + (ej + x) = 12.

35The estimated distributions in Bellemare, Kröger, and Van Soest (2008) and Ker-
schbamer and Müller (2020) are in contrast closer to our preferred distribution.
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Table 8: Preferred preference type distribution

Preference strength
any moderate marginal

Preference type (any ε̂s) (ε̂s < 3) (ε̂s < 1)
altruism (ρ̂s ≥ σ̂s > 0) 4.8% 2.1% 0%
social welfare (ρ̂s > σ̂s = 0) 2.1% 1.5% 1.0%
inequity-aversion (ρ̂s > 0 > σ̂s) 12.5% 3.3% 0.8%
competitive (0 = ρ̂s > σ̂s) 32.2% 25.1% 14.0%
spiteful (0 > ρ̂s ≥ σ̂s) 23.6% 13.6% 3.1%
payoff maximizer (ρ̂s = σ̂s = 0) 23.4% 23.4% 23.4%
asocial (σ̂s > 0 > ρ̂s) 1.5% 1.5% 1.5%
Sum 100.0% 68.9% 42.4%

NOTES: Categorization of estimated (σ̂s, ρ̂s)-pairs according to re-
vealed preference type and revealed preference strength. A value
of −0.0465 < x < 0.048 for x ∈ {σ̂s, ρ̂s} is set to zero because
a player with such a small preference parameter would take a de-
cision indistinguishable from a payoff-maximizer. The mapping of
all other (σ̂s, ρ̂s) into types and strengths is based on utility model
(4) and Lemma 1 applied to the specific parameters of our experi-
mental games (see Theoretical Appendix A.2 for this specification of
Lemma 1).

their payoffs with all other players in the game. This is a plausible assumption to
make because subjects can see everyone’s payoffs on their screens.36 For our esti-
mations in Columns 2 and 4, we used, in turn, the investment decisions in the ear-
lier rounds of our network games. These estimates thus alleviate the concern that
the late-game decisions are “spoiled” by the earlier decisions of the other players.
Finally, Columns 5 and 6 summarize our results when we estimate the original dis-
tributive preference model by Charness and Rabin (2002). According to this model,
players’ social preferences consist of the difference between their own payoffs and
the payoffs of other players, rather than the absolute level of other players’ payoffs
as in model (4).37 Again, just as in Columns 1 and 3, we estimated two variants
of this model that differ in terms of how many players are included in a subject’s
reference group.

Overall, the preference estimates based on the final decision moments ([30, tmax])
are to be preferred over those from the early decision moments ([20, 30)). The latter
seem to be heavily influenced by the initial conditions, that is, the fact that subjects
click up from an initial zero investment. This at least is what the large shares of
spiteful types in Columns 2 and 4 suggest. Moreover, the estimates in Column 1
are are preferable over those in Column 3 because the share of asocial types, with
the counter-intuitive parameter constellation σ̂s > 0 > ρ̂s is unreasonably large in
Column 3.

For the same reason, we also prefer the estimates in Column 1 over those in
Columns 5 and 6, which are based on the original Charness and Rabin (2002)

36Against this assumption speaks the fact that subjects only influence their neighbors’
payoffs directly.

37In particular, we estimated the following model:

Us(ei, e−i, i) = πi +
1
|Rs| ∑

j∈Rs

(
ρs rij + σs sij

)
(πj − πi) + θ(ei ,ts ,i),

where θei ,ts ,i is a random utility component and

rij = 1 if πi > πj and rij = 0 otherwise,
sij = 1 if πi < πj and sij = 0 otherwise.
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Table 9: Alternative preference type distributions

Utility model: Model (4) C&R Model
Reference group: neighbors all neighbors all
Estimation period: [30, tmax] [20, 30) [30, tmax] [20, 30) [30, tmax] [30, tmax]
Type distribution: (1) (2) (3) (4) (5) (6)

altruist 4.8 2.3 3.3 0.2 18.0 30.7
social welfare 2.1 1.2 2.0 1.3 4.4 5.4
inequity-averse 12.5 18.4 3.3 2.3 23.8 25.9
competitive 32.5 25.3 15.8 20.6 6.3 4.6
spiteful 23.6 38.4 15.6 38.1 14.4 5.6
money max 23.4 10.4 41.9 22.5 3.3 2.1
asocial 1.5 4.0 17.9 15.0 29.9 25.7

total 100 100 100 100 100 100

NOTES: Classification of estimated (σ̂s, ρ̂s) into social preference types. Estimates are
based on subject-and game-specific conditional logit estimations of six alternative utility
models and/or investment choices from the beginning of the network games. See Sec-
tion 4.4 for additional procedural details.

model. This model also shows an unreasonably high share of asocial types. An
issue with this model in the context of the Bramoullé and Kranton (2007) game is
that—depending on the curvature of the social benefit function b(·)—the model
can rationalize a downwards (or upwards) deviation from a payoff-maximizing
best response as either an attempt to increase or to reduce payoff inequality. In
particular, given the curvature of the benefit function implemented in our experi-
ment, the model interprets the frequently observed downward deviations from the
privately optimal level of e∗ = 12 as attempts to increase payoff inequality when the
focal player is behind. As a result, the model classifies many decisions as being mo-
tivated by a love of behindness, that is, a parameter estimate σ̂s > 0. Accordingly, it
finds many asocial types, which are instead classified as spiteful or competitive types
by our preferred model (4).

Nevertheless, it is interesting to note that the shares of altruists in Columns 5
and 6 are much in line with earlier estimates of the social preference type distribu-
tion that are based on decisions in dictator games (in particular Bruhin, Fehr, and
Schunk, 2019). This suggests that our preferred estimates in Column 1 are not so
much affected by the fact that we elicited them from the “heated” decision situa-
tions in our network games, where subjects take interactive decisions under time
pressure. Rather, the original Charness and Rabin (2002) model and model (4) just
seem to attach a different interpretation to the same choice.
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B.4 Hypothesis 1: additional evidence
Our results should not be affected by the way we estimate the social preference

types of our subjects. Intuitively, if the measurement affects all social preference
estimates alike, then it should not change our conclusion regarding the compati-
bility of preferences in a subject group. In support of this view, Table 10 replicates
our results on Hypothesis 1 based on the three most meaningful alternatives to our
preferred social preference estimates. The results of all three models lend support
to the key mechanism behind our theory: Groups with compatible preferences co-
ordinate more likely on a refined ORE and less likely on a non-refined ORE than
groups with incompatible preferences.

Table 10: Multinomial logit results based on alternative type distributions

refined other-regarding eq. non-refined other-regarding eq.
(ε = 0) (0 < ε < 3) (3 ≤ ε) (ε = 0) (0 < ε < 3) (3 ≤ ε)

Model 1 (Type dis. 3):
Pref. comp. (any ε̂) 0.373 0.285 base -0.841 -0.768 -0.518

(0.296) (0.277) outcome (1.076) (0.581) (0.674)
Model 2 (Dis. 3, tmax ≥ 50):
Pref. comp. (any ε̂) 0.921** 0.574 – -0.460 -0.688 -0.773

(0.390) (0.374) (1.157) (0.846) (1.126)
Model 3 (Type dis. 5):
Pref. comp. (any ε̂) 0.234 0.496* – 0.145 -0.160 -0.664

(0.286) (0.269) (0.617) (0.427) (0.591)
Model 4 (Dis. 5, tmax ≥ 50):
Pref. comp. (any ε̂) 0.318 0.611* – 0.427 0.398 -0.504

(0.378) (0.360) (0.737) (0.532) (0.824)
Model 5 (Type dis. 6):
Pref. comp. (any ε̂) 0.263 0.443 – -0.217 -0.110 -0.965

(0.301) (0.284) (0.691) (0.447) (0.670)
Model 6 (Dis. 6, tmax ≥ 50):
Pref. comp. (any ε̂) 0.151 0.359 – -0.423 0.193 -1.615

(0.395) (0.374) (0.847) (0.536) (1.093)

NOTES: Models 1, 3, 5: 840 observations from final decision moments of all networks games except
the games on the circle network. Models 2, 4, 6: 517 observations from final decision moments on or
after the second-50 mark. All models include two group-specific experience measures (one measur-
ing the position of a game in a session, the other measuring the x-th repetition of the same network
game) and measures of network size and clustering. Standard errors clustered at the session level in
parentheses: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

In the multinomial logit models of Table 3, the relationship between preference
compatibility and equilibrium selection is strongest for those groups that feature at
most a moderate or marginal social preference strength (ε̂ < 3). These groups put
most weight on the refined ORE with ε < 3. This might raise the question whether
it is truly the proper preference combination or rather just the absence of some
pronounced social preferences in these groups that drives our findings. Obviously,
a group of money maximizers would put most weight on a money-maximizing
equilibrium profile, and so our preference compatibility measure might mistakenly
pick up that effect. To exclude this possibility, we performed several additional
tests where we directly tested the effect of preference compatibility in the subset of
subject groups with small (0 < ε̂ < 3) and strong social preferences (3 ≤ ε̂). The
results presented in Table 11 are by and large in line with what we saw in Table 3.
Among the groups with a small social preference strength, the groups that put most
weight on the refined ORE are the ones that have compatible preference.
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Table 11: Multinomial logit results conditional on social preference strength

refined other-regarding eq. non-refined other-regarding eq.
(ε = 0) (0 < ε < 3) (3 ≤ ε) (ε = 0) (0 < ε < 3) (3 ≤ ε)

Model 1 (3 ≤ ε̂):
Pref. comp. 0.749*** 0.498* 1.029*** -0.261 0.011 base

(0.207) (0.294) (0.287) (0.402) (0.373) outcome
Model 2 (0 < ε̂ < 3):
Pref. comp. 0.936 1.173** 0.809 0.345 0.296 –

(0.641) (0.544) (0.586) (0.535) (1.236) –

NOTES: Observations from final decision moments of all network games, but the games on
the circle: 532 (Model 1), 308 (Model 2). All models include two group-specific experience mea-
sures (one measuring the position of a game in a session, the other measuring the x-th repeti-
tion of the same network game) and measures of network size and clustering. Standard errors
clustered at the session level in parentheses: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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B.5 Hypothesis 2: Additional evidence
Here, we present the regression results of our Placebo test on the circle net-

work (Table 12) and the conditional probability table required for our quantitative
predictions (Table 13).

Table 12: Placebo test for the circle network—Multinomial logit results

Compatible pref. distributed/specialized eq. profiles other eq. profiles
of strength... (ε = 0) (0 < ε < 3) (3 ≤ ε) (ε = 0) (0 < ε < 3) (3 ≤ ε)

Model 1: any ε̂ -0.578 -0.885** -0.885 2.196* -0.346 base
(0.593) (0.374) (0.679) (1.276) (0.397) outcome

Model 2: ε̂ < 3 -13.971*** -14.304*** -0.001 1.161** -0.396 —
(0.989) (0.881) (0.711) (0.507) (0.301) —

Compatible pref. distributed eq. profiles other eq. profiles
of strength... (ε = 0) (0 < ε < 3) (3 ≤ ε) (ε = 0) (0 < ε < 3) (3 ≤ ε)

Model 3: any ε̂ -0.125 13.607*** 14.372*** — -0.216 —
(0.930) (1.168) (0.870) — (0.255) —

Model 4: ε̂ < 3 -0.949 -0.322 13.790*** — -0.353 —
(0.901) (0.443) (0.977) — (0.549) —

Compatible pref. specialized eq. profiles 1 other eq. profiles
of strength... (ε = 0) (0 < ε < 3) (3 ≤ ε) (ε = 0) (0 < ε < 3) (3 ≤ ε)

Model 5: any ε̂ -1.562 1.107 1.669 15.39*** -0.095 —
(1.299) (1.212) (1.312) (0.945) (0.540) —

Model 6: ε̂ < 3 -13.989*** -14.041*** 1.046 1.392** -0.043 —
(0.987) (1.441) (1.785) (0.630) (0.414) —

Compatible pref. specialized eq. profiles 2 other eq. profiles
of strength... (ε = 0) (0 < ε < 3) (3 ≤ ε) (ε = 0) (0 < ε < 3) (3 ≤ ε)

Model 7: any ε̂ 15.735*** 1.437 -1.090 0.729 -0.679* —
(0.747) (1.134) (0.792) (1.502) (0.360) —

Model 8: ε̂ < 3 -13.344*** -14.244*** 0.753 0.591 -0.620 —
(0.722) (1.009) (0.748) (0.575) (0.439) —

NOTES: Results of eight multinomial logit estimations for the final decision moments in the
circle network. Models 1–2: 360 observations, Models 4–8: 120 observations. The indepen-
dent variable is an indicator variable that measures whether a subject group has a preference
combination that matches the compatibility requirements for the complete (Models 3–4) or the
star (Models 5–8) or either of the two networks (Models 1–2). Concretely, for Models 5–8, we
searched for groups where every second subject matches the compatibility requirements for
the star center and every other subject matches the requirements for the star periphery. The
dependent variable in Models 3–4 (Models 5–8) is a multinomial variable that tests whether
a subject group plays a distributed (one of the two specialized) profile in the circle. Mod-
els 1–2 test both together. All models include two group-specific experience measures (one
measuring the position of a game in a session, the other measuring the x-th repetition of the
game on the circle network). Standard errors clustered at the session level in parentheses:
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 13: Frequencies of predicted ORE profiles conditional on group social preference strength

Deviation from payoff-maximizing equilibrium
ε = 0 ε < 3 any ε

Group with preference strength
Network Equilibrium ε̂ < 1 1≤ ε̂ < 3 3≤ ε̂ ε̂ < 1 1≤ ε̂ < 3 3≤ ε̂ ε̂ < 1 1≤ ε̂ < 3 3≤ ε̂

Dyad egalitarian 7.7% 1.5% 0.3% 7.7% 4.6% 1.0% 7.7% 4.6% 5.9%
other 92.3% 18.5% 4.2% 92.3% 95.4% 21.5% 92.3% 95.4% 94.1%

Complete egalitarian 0.2% 0.04% 0% 0.2% 0.1% 0% 0.2% 0.1% 0.02%
other 99.8% 19.4% 0.5% 99.8% 99.9% 2.8% 99.8% 99.9% 100%

Star per-sp, cent-sp: πc ≥ πj 50.0% 0.0% 0% 50.0% 0.8% 0.0% 50.0% 0.8% 85.7%
cent-sp: rest 50.0% 0.1% 0% 50.0% 99.2% 3.9% 50.0% 99.2% 14.3%

Circle specialized 66.7% 0.3% 0% 66.7% 2.8% 0.02% 66.7% 2.8% 0.3%
distributed 33.3% 1.6% 0% 33.3% 97.2% 0.7% 33.3% 97.2% 99.7%

Core per-sp, cent-sp: πc ≥ πj 92.9% 0.4% 0.02% 92.9% 5.6% 0.2% 92.9% 5.6% 83.3%
cent-sp: rest 7.1% 0.0% 0% 7.1% 94.4% 3.9% 7.1% 94.4% 16.7%

D-box per-sp, cent-sp: πc ≥ πj 7.1% 0.0% 0% 7.1% 2.0% 0.1% 7.1% 2.0% 59.4%
cent-sp: rest 92.9% 0.1% 0.02% 92.9% 98.0% 5.1% 92.9% 98.0% 40.6%

Line end-sp, distr: πc ≥ πj 46.2% 0.1% 0.01% 46.2% 92.9% 5.2% 46.2% 92.9% 42.6%
distr: rest 53.8% 0% 0.01% 53.8% 7.1% 0.4% 53.8% 7.1% 57.4%

NOTES: Numbers are calculated as % of the total number of possible investment profiles for a group of players with a social
preference strength of ε̂ < 1, 1 ≤ ε̂ < 3, and 3 ≤ ε̂, respectively.
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C Replication instructions

C.1 Experimental design
The computerized experiment was designed using the software program z-tree

3.0 (Fischbacher, 2007) and conducted in the Experimental Laboratory for Sociol-
ogy and Economics (ELSE) at Utrecht University between 09.06. and 18.06.2008.

In the experiment, subjects had to invest in the production of a local public
good in each of the seven network structures shown in Figure 1. In total, eight ex-
perimental sessions of approximately one-and-a-half hours length were scheduled
and completed. Using the ORSEE recruitment system (Greiner, 2004), over 1,000
potential subjects were approached by e-mail to participate in the experiment. On
average, 15 students participated per session, which gives 120 subjects in eight ses-
sions.

A session consisted of seven treatments with varying order of treatments be-
tween the sessions. Each network structure represents a different treatment. Table
9 gives an overview.

Ordering of treatments in sessions 

Session Ordering Treatment 
1 2 3 4 5 6 7 

1 1 Dyads Line Star Square Core Dbox Complete 
2 2 Complete Dbox Core Square Star Line Dyads 
3 3 Dyads Star Line Core Square Dbox Complete 
4 4 Complete Dbox Square Core Line Star Dyads 
5 3 Dyads Star Line Core Square Dbox Complete 
6 2 Complete Dbox Core Square Star Line Dyads 
7 1 Dyads Line Star Square Core Dbox Complete 
8 4 Complete Dbox Square Core Line Star Dyads 
 

Links between players (see power point): 

Dyads:   1-2, 3-4 

Line:   1-2-3-4 

Star :   1 is the center 

Square:   1-2-3-4-1 

Core:   4 is the center; 2 and 3 connected;  

Dbox:   1 and 3 are not connected 

Complete:  all connected 

Figure 9: Order of treatments by session

General instructions were given before the start of a session (see the instruc-
tions below). In each treatment, subjects played a local public goods game on a
given network structure fives times, for 60 seconds on average under the same
conditions. In particular, being positioned in a specific network, subjects could in-
vest for a limited amount of time in order to improve their experimental points that
were calculated based on formula (2).

The five repetitions of a treatment are called rounds, and each treatment con-
sisted of one trial round and four payment rounds. At the beginning of a round,
subjects were randomly allocated to a group together with either one or three other
participants. Subjects were indicated as circles on the screen and could identify
themselves by color: Each subject saw him- or herself as a blue circle while all
neighbors were represented as black circles (see below for a screenshot).

Each round had the same structure and lasted between 30 and 90 seconds. The
round ends were unknown and randomly determined. Starting from a situation
of zero investments, subjects indicated simultaneously on their computer termi-
nals (by clicking on one of two buttons at the bottom of the screen) whether they
wished to in- or decrease their investment. Full information about the momen-
tary investments of all other subjects was continuously provided and updated five
times per second by the computer. Also, the resulting payoffs of all participants
could continuously be observed on the screen. At the end of a round, subjects were
informed about the number of points they earned with the investments they saw
on their screen. In other words, final earnings only depended on the situation at
the end of a round.

Subjects were not identifiable between different rounds or at the end of the ex-
periment. In this fashion, we minimized the dependence across observations (Falk
and Kosfeld, 2003). Taking the seven treatments together, every subject played 35
network games in 35 different groups, of which 28 were payoff relevant. Alto-
gether, this gives 960 networks games and 3,360 investment decisions (8 sessions
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times 15 subjects on average per session times 7 treatments (6 networks of 4 sub-
jects and 1 network of 2 subjects) times 4 cycles). At the end of the experiment,
the experimental points were converted into euros at a rate of 400 points = 1 euro.
In addition, subjects received a 3 euro participation fee. The average earning was
thus 11.82 euros.

C.2 Experimental instructions
C.2.1 English version

 1 

Experimental Laboratory for Sociology and Economics 

 

- Instructions - 
 

Please read the following instructions carefully. These instructions state everything you 

need to know in order to participate in the experiment. If you have any questions, please 

raise your hand. One of the experimenters will approach you in order to answer your 

question. The rules are equal for all the participants. 

 

You can earn money by means of earning points during the experiment. The number of 

points that you earn depends on your own choices, and the choices of other participants. 

At the end of the experiment, the total number of points that you earn during the 

experiment will be exchanged at an exchange rate of: 

 

400 points = 1 Euro 

 

The money you earn will be paid out in cash at the end of the experiment without other 

participants being able to see how much you earned. Further instructions on this will 

follow in due time. During the experiment you are not allowed to communicate with 

other participants. Turn off your mobile phone and put it in your bag. Also, you may 

only use the functions on the screen that are necessary for the functioning of the 

experiment. Thank you very much. 

 

 

- Overview of the experiment - 

 

The experiment consists of seven scenarios. Each scenario consists again of one trial 

round and four paid rounds (altogether 35 rounds of which 28 are relevant for your 

earnings).  

 

In all scenarios you will be grouped with either one or with three other randomly 

selected participants. At the beginning of each of the 35 rounds, the groups and the 

positions within the groups will be randomly changed. The participants that you are 

grouped with in one round are very likely different participants from those you will be 

grouped with in the next round. It will not be revealed with whom you were grouped at 

any moment during or after the experiment. 

 

The participants in your group (of two or four players, depending on the scenario) will 

be shown as circles on the screen (see Figure 1). You are displayed as a blue circle, 

while the other participants are displayed as black circles. You are always connected to 

one or more other participants in your group. These other participants will be called 

your neighbors. These connections differ per scenario and are displayed as lines 

between the circles on the screen (see also Figure 1). 

 

Each round lasts between 30 and 90 seconds. The end will be at an unknown and 

random moment in this time interval. During this time interval you can earn points by 

producing know-how, but producing know-how also costs points. The points you 

receive in the end depend on your own investment in know-how and the investments of 

your neighbors. 
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Figure 1 

 
 

By clicking on one of the two buttons at the bottom of the screen you increase or 

decrease your investment in know-how. At the end of the round, you receive the amount 

of points that is shown on the screen at that moment in time. In other words, your final 

earnings only depend on the situation at the end of every round. Note that this end can 

be at any between 30 and 90 seconds after the round is started and that this moment is 

unknown to everybody. Also different rounds will not last equally long. 

 

The points you will receive can be seen as the top number in your blue circle. The 

points others will receive are indicated as the top number in the black circles of others. 

Next to this, the size of the circles changes with the points that you and the other 

participants will receive: a larger circle means that the particular participant receives 

more points. The bottom number in the circles indicates the amount invested in know-

how by the participants in your group. 

 

Remarks: 

 It can occur that there is a time-lag between your click and the changes of the 

numbers on the screen. One click is enough to change your investment by one. A 

subsequent click will not be effective until the first click is effectuated. 

 Therefore wait until your investment in know-how is adapted before making 

further changes! 

 
- Your earnings - 

 
Now we explain how the number of points that you earn depends on the investments. 

Read this carefully. Do not worry if you find it difficult to grasp immediately. We also 

present an example with calculations below. Next to this, there is a trial round for each 

scenario to gain experience with how your investment affects your points.  

 

In all scenarios, the points you receive at the end of each round depend in the same way 

on two factors: 

 

1. Every unit that you invest in know-how yourself will cost you 5 points. 

2. You earn points for each unit that you invest yourself and for each unit that 

your neighbors invest. 

65



 3 

If you sum up all units of investment of yourself and your neighbors, the following table 

gives you the points that you earn from these investments: 

 

Your investment plus 

your neighbors’ 

investments 

0 1 2 3 4 5 6 7 8 9 10 

Points 0 28 54 78 100 120 138 154 168 180 190 

 

Your investment plus 

your neighbors’ 

investments 

11 12 13 14 15 16 17 18 19 20 21 

Points 198 204 208 210 211 212 213 214 215  216 217 

 

The higher the total investments, the lower are the points earned from an additional unit 

of investment. Beyond an investment of 21, you earn one extra point for every 

additional unit invested by you or one of your neighbors. 

 

Note: if your and your neighbors’ investments add up to 12 or more, earnings 

increase by less than 5 points for each additional unit of investment. 

 

- Example - 

Suppose 

1. you invest 2 units; 

2. one of your neighbors invests 3 units and another neighbor invests 4 units. 

 

Then you have to pay 2 times 5 = 10 points for your own investment.  

 

The investments that you profit from are your own plus your neighbors’ investments: 2 

+ 3 + 4 = 9. In the table you can see that your earnings from this are 180 points. 

 

In total, this implies that you receive 180 − 10 = 170 points if this would be the situation 

at the end of the round. Figure 1 shows this example as it would appear on the screen. 

The investment of the fourth participant in your group does not affect your earnings. In 

the trial round before each of the seven scenarios, you will have time to get used to how 

the points you will receive change with investments. 

 

- Scenarios - 

 

All rounds are basically the same. The only thing that changes between scenarios is 

whether you are in a group of two or four participants and how participants are 

connected to each other. Also your own position randomly changes within scenarios and 

between rounds. We will notify you each time on the screen when a new scenario and 

trial round starts. At the top of the screen you can also see when you are in a trial round 

(see top left in Figure 1). Paying rounds are just indicated by “ROUND” while trial 

rounds are indicated by “TRIAL ROUND”. 

 
- Questionnaire - 

 

After the 35 rounds you will be asked to fill in a questionnaire. Please take your time to 

fill in this questionnaire accurately. In the mean time your earnings will be counted. 

Please remain seated until the payment has taken place.  
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C.2.2 Dutch version

 1 

Experimental Laboratory for Sociology and Economics 

 

- Instructions - 
 

Neemt u alstublieft de volgende instructies aandachtig door. Hierin staat alles wat u 

moet weten om deel te nemen aan het experiment. Indien u vragen hebt, steek uw hand 

op. Er zal iemand bij u komen om uw vraag te beantwoorden. Deze regels zijn hetzelfde 

voor alle deelnemers. 

 

U kunt geld verdienen tijdens dit experiment door het vergaren van punten. Het aantal 

punten dat u verdient, hangt af van uw eigen keuzes en van de keuzes van andere 

deelnemers. Het totaal aantal punten dat u verdient in het experiment zal aan het einde 

van het experiment omgewisseld worden tegen de wisselkoers van: 

 

400 punten = 1 Euro 

 

Aan het einde van het experiment krijgt u het geld dat u verdiend hebt tijdens het 

experiment contant uitbetaald. Later volgen hierover verdere instructies. Tijdens het 

experiment is het niet toegestaan te communiceren met andere deelnemers. Zet u 

mobiele telefoon uit en berg hem op in uw tas. U mag ook alleen de functies op het 

scherm activeren die nodig zijn voor het functioneren van het experiment. Hartelijk 

dank. 

 

- Overzicht van het experiment - 

 

Het experiment bestaat uit zeven scenario’s. Elk scenario bestaat weer uit één 

proefronde en vier betaalde rondes (samen 35 rondes waarvan er 28 relevant zijn voor 

uw verdiensten).  

 

In alle scenario’s wordt in een groep geplaatst met één of drie andere deelnemers. Aan 

het begin van elk van de 35 rondes worden de groepen en de posities binnen de groepen 

willekeurig veranderd. De deelnemers waarmee u in de ene ronde in een groep zit, zijn 

zeer waarschijnlijk andere deelnemers dan diegene waarmee u in de volgende ronde in 

een groep zit. Tijdens of na het experiment zal het niet bekend worden gemaakt met wie 

u in een groep gezeten hebt. 

 

De deelnemers in uw groep (dat zijn er twee of vier afhankelijk van het scenario) 

worden als cirkels weergegeven op het scherm (zie Figuur 1). U wordt zelf 

weergegeven met een blauwe cirkel, terwijl de andere deelnemers worden weergegeven 

als zwarte cirkels. U bent altijd verbonden met één of meer andere deelnemers in uw 

groep. Deze andere deelnemers noemen we uw buren. Deze verbindingen verschillen 

per scenario and worden weergegeven met lijnen tussen de cirkels op het scherm (zie 

ook Figuur 1). 

 

Elke ronde duurt tussen de 30 en 90 seconden. Het einde zal op een onbekend en 

willekeurig moment in dit tijdsinterval plaatsvinden. Tijdens dit tijdsinterval kunt u 

punten verdienen door kennis te produceren, maar de productie van kennis kost ook 

punten. De punten die u aan het einde ontvangt, hangen af van uw eigen investering in 

kennis en van de investeringen van uw buren.  
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Figuur 1 

 
 

Door te klikken op de twee knoppen onder aan het scherm, kunt u uw investering in 

kennis verhogen of verlagen. Aan het einde van elke ronde, ontvangt u het aantal punten 

dat op dat moment op het scherm wordt weergegeven. Uw uitbetaling hangt dus alleen 

af van de situatie aan het einde van elke ronde. Merk op dat dit einde komt op een voor 

iedereen onbekend moment tussen de 30 en 90 seconden na het begin van de ronde. 

Verschillende rondes zullen ook niet even lang duren. 

 

Het aantal punten dat u zult ontvangen zijn weergegeven als het bovenste getal in uw 

blauwe cirkel. De punten die anderen zullen ontvangen zijn weergegeven als het 

bovenste getal in hun zwarte cirkels. Daarnaast verandert de grootte van de cirkels met 

het aantal punten dat u of de andere deelnemers zullen krijgen: een groter cirkel 

betekent dat die deelnemer meer punten zal verdienen. Het onderste getal in de cirkels 

geeft het aantal punten weer dat de deelnemers in uw groep investeren in kennis. 

 

Opmerkingen: 

• Het kan gebeuren dat er een vertraging is tussen uw klik en de veranderingen van de 

getallen op het scherm. Eén klik is voldoende om uw investering met één punt te 

veranderen. Een volgende klik zal pas effect hebben als de eerste klik is verwerkt. 

• Wacht daarom met een volgende klik totdat uw eerdere verandering verwerkt 

is op het scherm! 

 
- Uw verdiensten - 

 
Nu leggen we uit hoe uw verdiensten afhangen van de investeringen. Lees dit 

zorgvuldig! Wees niet bezorgd als het niet meteen helemaal duidelijk is. We zullen 

zodadelijk ook een rekenvoorbeeld laten zijn. Daarnaast is er bij elk scenario een 

proefronde om ervaring te krijgen met hoe uw investering uw aantal punten bepaalt.  

 

In alle scenario’s hangt het aantal punten dat u ontvangt aan het einde van een ronde af 

van twee factoren: 

 

1. Elke eenheid die u investeert in kennis kost uzelf 5 punten. 

2. U verdient punten met elke eenheid die uzelf investeert en met elke eenheid 

die uw buren investeren. 
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Als u de hoeveelheid die uzelf investeert en de investeringen van uw buren optelt, geeft 

de volgende tabel weer hoeveel punten u verdient met deze investeringen: 

 

Uw investeringen plus 

investeringen van uw 

buren 

0 1 2 3 4 5 6 7 8 9 10 

Punten 0 28 54 78 100 120 138 154 168 180 190 

 

Uw investeringen plus 

investeringen van uw 

buren 

11 12 13 14 15 16 17 18 19 20 21 

Punten 198 204 208 210 211 212 213 214 215  216 217 

 

Hoe hoger de investeringen worden, hoe minder punten erbij komen voor nieuwe 

investeringen. Als het totaal van investeringen boven de 21 komt, ontvangt u nog één 

punt voor elke volgende eenheid die u of een van uw buren investeren.  

 

Let op: als uw investering plus die van uw buren samen 12 of meer zijn, stijgen uw 

verdiensten met minder dan 5 punten per extra eenheid investering. 

 

- Voorbeeld - 

Stel 

1. u investeert 2 eenheden; 

2. één van uw buren investeert 3 eenheden, een andere buur 4 eenheden. 

 

Dan moet u 2 keer 5 = 10 punten betalen voor uw eigen investering. 

 

De investeringen waarvan u profiteert zijn uw eigen investering plus die van uw buren: 

2 + 3 + 4 = 9. In the tabel kunt u zien dat dit u 180 punten oplevert.  

 

In totaal betekent dit dat u 180 − 10 = 170 punten verdient als dit de situatie zou zijn aan 

het einde van de ronde. Figuur 1 laat dit voorbeeld zien zoals het op uw scherm 

verschijnt. De investering van de vierde deelnemer in uw groep heeft geen effect op uw 

aantal punten. In de proefronde aan het begin van elk scenario krijgt u de kans om te 

wennen aan hoe de punten die u ontvangt veranderen met de investeringen.  

 

- Scenario’s - 

 

Alle rondes zijn in principe hetzelfde. Het enige wat verandert tussen de scenario’s is de 

manier waarop u met andere deelnemers verbonden bent. Ook zal uw eigen positie in 

een groep kunnen veranderen tussen rondes. U krijgt elke keer een mededeling op het 

scherm als een nieuw scenario en een proefronde begint. Bovenaan het scherm kunt u 

ook zien of u in een proefronde zit (zie Figuur 1). Betaalde rondes worden aangegeven 

met alleen “RONDE”, terwijl proefrondes worden aangegeven met “PROEFRONDE”. 

 
- Vragenlijst - 

 

Aan het einde van de 35 rondes vragen we u nog om een vragenlijst in te vullen. Neem 

alstublieft rustig te tijd om deze vragenlijst precies in te vullen. Ondertussen tellen wij 

uw verdiensten. Blijft u op uw plek totdat de betaling is afgerond. 

C.3 Selection and eligibility of participants
Subjects subscribe to a database via a website (www.elseutrecht.nl), which ex-

plains the type of experiments that they subscribe for. The Welcome-text is shown
in Appendix C.4.

All subjects are recruited from this database. By subscribing a subject indicates
her willingness to participate in the type of experiments described. This means that
by subscribing, a subject in principle agrees to participate in the described type of
task. All experiments exclusively involve computerized tasks.

At the beginning of an experiment, subjects are informed that if for any reason
they might not be willing to continue, they can notify the experiment leader and
stop the experiment (for details on the rules, see elseutrecht.nl/public/rules.php).
No further explicit consent form is used for individual experiments.
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C.4 Recruitment text

Recruitment text participants  

Welcome! This is the web site of the "Experimental Laboratory for Sociology and Economics"(ELSE)              
at Utrecht University. 

ELSE is a computer room. It is used for studying social science and economics research questions in an                  
experimental manner. For this purpose, we are looking for people who are interested to participate in                
our experiments. During an experiment, up to 30 participants at a time can get a place at one of the                    
computers in ELSE. The participants anonymously interact with other participants via the computer and              
answer a short questionnaire about themselves. On average, participants earn between 8 and 10 EURO               
per hour, but this amount can vary between studies. The exact amount of money received typically                
depends on the decisions made by oneself and other participants. The experiments do not involve other                
tasks than making decisions during anonymous interactions, and answering questions via the computer,             
unless this is explicitly mentioned in an invitation.  

Are you interested in earning money for your decisions and answering our questions, support science 
and gain some insight into this research field? Then be welcome to participate in our experiments!  

In order to participate, you first need to subscribe to the participants database via this web site (click on                   
register in the menu on the left side). Every now and then you will receive a message inviting you for a                     
specific experiment. At that moment you can decide whether you want to participate in a specific                
experiment (see Rules)  

Before you subscribe to the participants database, you need to indicate that you agree with the rules we 
follow. Please read the information provided on our web site concerning:  

- Participation and Rules of Proper Laboratory Behavior - 
Researchers' Commitments and Privacy Policy - 
Frequently Asked Questions (FAQs)  

If you have further questions, please feel free to contact us using the e-mail address below.  

ELSE is located at the Uithof in the Sjoerd Groenmangebouw, Padualaan 14 at the 3rd floor in room 
A3.03.  
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C.5 Approval of the Institutional Review Board
This experiment is one of a series of experiments conducted for a project enti-

tled “Cooperation in Social and Economical relationship”. The Ethics committee
of Social and Behavioral Sciences of Utrecht University granted joint approval to
all the experiments of this project including the current experiment. The approval
was filed on October 22, 2017, under number FETC17-028.
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