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1 Introduction

In structural vector autoregressive (VAR) analysis, shocks of interest are sometimes

identified by using an instrument variable or proxy (e.g., Stock and Watson (2012),

Mertens and Ravn (2013), Piffer and Podstawski (2018), Kilian and Lütkepohl (2017,

Chapter 15)). In these so-called proxy VARs it is commonly assumed that the impact

effects of the structural shocks are time-invariant even if the reduced-form VAR is

heteroskedastic. The assumption of time-invariant impact effects is often implicitly

made although heteroskedasticity is allowed for in inference by using heteroskedasti-

city-robust bootstrap methods for impulse responses, for example. Such an approach

is used, for instance, in Mertens and Ravn (2013), Piffer and Podstawski (2018), Dias

and Duarte (2019), Gertler and Karadi (2015) and Alessi and Kerssenfischer (2019).

Other authors using proxy VARs consider heteroskedastic variables in their models

without accounting for it and they assume that heteroskedasticity does not affect the

impulse responses (e.g., Caldara and Herbst (2019)).

The objective of this study is to clarify the assumption of time-invariant impact

effects of the structural shocks in heteroskedastic proxy VAR models and draw at-

tention to its implications. It is argued that time-invariance of the impulse responses

cannot be taken for granted when the errors are heteroskedastic. We develop an

asymptotically valid test which can be used to investigate the time-invariance of the

impact effects of the shocks. The usefulness of the test in small samples is demon-

strated by a Monte Carlo simulation experiment.

As an empirical example, we reconsider a study by Cesa-Bianchi, Thwaites and

Vicondoa (2020) which uses a proxy VAR model and assumes time-invariant impulse

responses in the presence of volatility changes of the data. The authors investi-

gate the transmission of monetary policy shocks in the United Kingdom (UK). The

VAR model errors are clearly heteroskedastic and our test rejects the assumption

of time-invariant impulse responses. Some impulse responses are clearly distinct in

the different volatility regimes. This outcome shows that in empirical studies, it is

advisable to test the assumption of time-invariant impulse responses and do not take
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it for granted.

The remainder of the paper is structured as follows. The precise model setup and

the implicit assumption of time-invariance in heteroskedastic proxy VAR models are

discussed in Section 2. The test for time-invariant impact effects of the structural

shocks is developed in Section 3 and its small sample properties are explored in Section

4. The test is applied to the example model in Section 5 and conclusions are presented

in the final section.

2 Proxy VAR Models

2.1 Model Setup

Consider a K-dimensional reduced-form VAR model

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut,

where ut is a zero mean white noise process with nonsingular covariance matrix Σu,

i.e., ut ∼ (0,Σu).

The vector of structural errors, wt = (w1t, . . . , wKt)
′, is assumed to have instanta-

neously uncorrelated components, i.e., its covariance matrix is diagonal. The struc-

tural errors are obtained from the reduced-form errors, ut, by a linear transformation,

ut = Bwt, where B is the matrix of impact effects of the structural shocks. Suppose

there is a set of N instrumental variables (proxies) zt = (z1t, . . . , zNt)
′ satisfying

E(w1tz
′
t) = c′ 6= 0 (relevance), (1)

E(wktz
′
t) = 0, k = 2, . . . , K, (exogeneity). (2)

Then the first column of a constant multiple of B can be estimated by using zt as an

instrument vector. More precisely, denoting the first column of B by b, E(utz
′
t) = bc′.

In other words, the covariance between the reduced-form errors ut and the proxy
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vector zt is the first column of B times the row vector c′. In practice, often only one

proxy variable is available to identify a specific shock of interest. In that case zt is a

scalar random variable and c is also a scalar.

Now suppose that there is heteroskedasticity such that

E(utu
′
t) = Σt = Σu(m) for t ∈ Tm, m = 1, . . . ,M, (3)

where Tm = {Tm−1 + 1, . . . , Tm} (m = 1, . . . ,M) are M given volatility regimes as-

sociated with consecutive time periods. The volatility changes occur at time periods

Tm for m = 1, . . . ,M − 1, with T0 = 0 and TM = T , the overall sample size. The

change points Tm are assumed to be known to the investigator or they may be pre-

determined by some statistical procedure. In any case, in our basic model setup, the

volatility changes are not driven by the variables of the model but are assumed to

occur exogenously.

To justify the relevance condition in (1) for a heteroskedastic model, the impact

effects of the first shock must be assumed to be invariant to the heteroskedasticity.

Such an assumption may be justified if there exists a decomposition of the regime

dependent covariance matrices such that

Σu(m) = BΛmB
′, m = 1, . . . ,M, (4)

where Λm = diag(λ1,m, . . . , λK,m) (m = 1, . . . ,M) are diagonal matrices with strictly

positive diagonal elements. Clearly, choosing wt = B−1ut provides a time-invariant

transformation which results in uncorrelated components of wt across the whole sam-

ple. Such covariance matrices are typically assumed in the literature on identification

through heteroskedasticity (see Kilian and Lütkepohl (2017, Chapter 14)).

For M = 2, the covariance matrices Σu(1) and Σu(2) can always be decomposed

as in (4) (e.g., Lütkepohl (1996, p. 86)). Although a time-invariant B matrix for the

decomposition (4) exists in this case, that B matrix may not reflect the impact effects

of the structural shocks of interest. Of course, there are many other decompositions
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of Σu(1) and Σu(2) which imply that the impact effects of the shocks depend on

the volatility regime. Consider, for example, Cholesky decompositions Σu(m) =

B(m)B(m)′, m = 1, 2, where B(m) is a lower-triangular matrix with positive diagonal

elements. If these transformation matrices are used to get the structural errors as

wt = B(m)−1ut, the wt have identity covariance matrix throughout the sample period

and the heteroskedasticity in the reduced-form errors, ut, is solely due to the time-

varying impact effects, B(m).

If there are three or more volatility regimes (M ≥ 3), then a decomposition of the

associated covariance matrices as in (4) imposes a restriction on the covariance matri-

ces which may not be compatible with the data or the specification of the structural

shocks (see Angelini, Bacchiocchi, Caggiano and Fanelli (2019) for an example). In

that case, the matrix of impact effects of the shocks, B(m), depends on the covariance

regime. If the impact effects of the shocks vary over time, the relevance condition

in (1) may have to be modified to allow for a time-varying covariance between the

instruments and the first structural shock,

E(w1tzt) = c′m 6= 0, t ∈ Tm, m = 1, . . . ,M (relevance). (5)

Hence, E(utz
′
t) = b(m)c′m and the first column, b(m), of B(m) may also depend on

the volatility state m.

For an impulse response analysis based on proxy VARs, the size of the shock

of interest is typically fixed such that its impact effect is the same across volatility

regimes. Estimating the impact effects of the first shock via the instrument in this

case remains valid if b(m) is time-invariant, i.e., b(m) = b for m = 1, . . . ,M . In other

words, if only the variance of the first shock changes with the volatility regime while

the impact effects remain time-invariant, the proxy VAR approach can be used in

the usual manner. In general, it is worth checking the assumption of time-invariant

impact effects if there is heteroskedasticity and we will propose a suitable test in the

next section.
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Although we have considered a model with exogenous volatility changes in the

foregoing discussion, a similar analysis is relevant for models with other types of het-

eroskedasticity or conditional heteroskedasticity. For example, the volatility changes

may be driven by a Markov switching process as in Lanne, Lütkepohl and Maciejowska

(2010) and Herwartz and Lütkepohl (2014). In these models it is also assumed that

there are M distinct volatility states which may or may not be associated with differ-

ent impact effects of the shocks. Note, however, that the VAR slope coefficients are

still assumed to be time-invariant. In other words, we are not proposing a Markov-

switching model as considered, e.g., by Sims and Zha (2006). Our test is designed for

the case where only the error covariance parameters are allowed to change.

3 Testing for Time-varying Impact Effects

In this section, a test is developed for time-varying impact effects if there is het-

eroskedasticity of the type specified in (3) with known volatility change points Tm,

m = 1, . . . ,M . For notational simplicity, we develop the test in terms of the unob-

served reduced-form errors ut and then discuss the modifications implied by replacing

them with estimated residuals ût.

We continue to assume – without loss of generality – that the instruments identify

the first shock, as in the previous section and, for simplicity, we denote by C(m) the

(K×N) matrix of covariances E(utz
′
t) for t ∈ Tm. We use the notation cij(m), c•j(m)

and ci•(m) for the ijth element, the jth column and the ith row of C(m), respectively.

Moreover, the first row of C(m), c1•(m) = (c11(m), . . . , c1N(m)) is assumed to be a

nonzero vector, i.e., c1•(m) 6= 0, and the size of the shock is normalized such that

it has an instantaneous unit impact on the first variable. Thereby the effect of a

time-varying covariance between the proxy and the first shock cancels if the impact

effects remain time-invariant.
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We define the (K − 1)-dimensional vector

β(m) =


c2•(m)

...

cK•(m)

 c1•(m)′

/
c1•(m)c1•(m)′. (6)

Thus, the vector of impact effects of the first shock is (1, β(m)′)′, m = 1, . . . ,M . For

m, j ∈ {1, . . . ,M}, m 6= j, we wish to test the pair of hypotheses

H0 : β(m) = β(j) versus H1 : β(m) 6= β(j). (7)

In the following, a suitable test statistic is presented.

Let

Ĉ(m) =
1

τmT

∑
t∈Tm

utz
′
t, (8)

be an estimator of the covariance matrix E(utz
′
t) in volatility regime m ∈ {1, . . . ,M}.

We assume that τm = (Tm − Tm−1)/T is a fixed fraction of the sample size so that

Tm − Tm−1 → ∞ with T . Moreover, ut and zt are such that Ĉ(m) is consistent and

asymptotically normal, that is,

√
Tvec

(
Ĉ(m)− C(m)

)
d→ N (0, τ−1m ΣC(m)), (9)

where vec denotes the column stacking operator and
d→ signifies convergence in distri-

bution. Under general conditions, such a result follows from a central limit theorem,

i.e., if utz
′
t is independently, identically distributed (iid) for t ∈ Tm or a martingale

difference sequence. We also assume that utz
′
t is such that

Σ̂C(m) =
1

τmT

∑
t∈Tm

vec(utz
′
t − Ĉ(m))[vec(utz

′
t − Ĉ(m))]′

is a consistent estimator of ΣC(m). Note that we assume that the covariance between
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the proxy and the shock does not depend on the sample size. In other words, we

are not considering weak instrument asymptotics where the correlation between the

instrument and the instrumented variable goes to zero when the sample size goes to

infinity. An extension of our test to the weak instrument case may be an interesting

topic for future research.

Let β̂(m) be the estimator of β(m) obtained by replacing all unknown elements

of β(m) in expression (6) by the corresponding elements of Ĉ(m). Then Slutsky’s

theorem implies that

√
T
(
β̂(m)− β(m)

)
d→ N (0, V (m)) , (10)

where

V (m) =
1

τm

∂β(m)

∂vecC(m)′
ΣC(m)

∂β(m)′

∂vecC(m)

is the ((K − 1)× (K − 1)) asymptotic covariance matrix with ∂β(m)
∂vecC(m)′

denoting the

((K−1)×KN) matrix of partial derivatives of β(m) with respect to the elements of vec

C(m). A closed form expression of this matrix is provided in Section S.1 of the Online

Supplement. Having a closed form expression simplifies the computation of quantities

based on the estimated covariance matrix, as we will see shortly. Alternatively, the

covariance matrix V (m) can be estimated by suitable bootstrap procedures which

makes it computationally more involved.

It may be worth noting that the covariance matrix V (m) has rank K − 1 and,

hence, the asymptotic distribution in (10) is nonsingular (see Section S.1 of the Online

Supplement). Consequently, by asymptotic independence of β̂(m) and β̂(j) for m 6= j,

we get that, under the null hypothesis H0 : β(m) = β(j), the test statistic

η = T
(
β̂(m)− β̂(j)

)′ (
V̂ (m) + V̂ (j)

)−1 (
β̂(m)− β̂(j)

)
d→ χ2(K − 1). (11)

Thus, we can use this statistic for testing the pair of hypotheses (7). In the test
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statistic in expression (11), the estimators of the covariance matrices are obtained as

V̂ (m) =
1

τm

∂̂β(m)

∂vecC(m)′
Σ̂C(m)

∂̂β(m)′

∂vecC(m)
,

where all elements of C(m) in ∂β(m)
∂vecC(m)′

are replaced by their estimators from Ĉ(m).

As mentioned earlier, in practice estimated errors ût have to be used instead of

the true reduced-form errors ut. Let η̂ be the test statistic corresponding to η in (10)

when the ut are replaced by the ordinary least squares (OLS) residuals ût. The test

statistic η̂ has the same asymptotic distribution as η under mild conditions because

the estimator of C(m) can be viewed as a two-step GMM estimator as considered in

Newey and McFadden (1994). For this result to hold, the assumption of consecutive

observations in each subsample Tm is not essential. The important condition for the

asymptotic distribution in (11) to hold is that the number of observations in each

volatility regime goes to infinity such that the asymptotic result in (9) is valid.

The test can, of course, be adjusted easily to test for time-varying individual

elements of β. For example, to test the null hypothesis H0 : βi(m) = βi(j), where

βi(m) signifies the ith element of β(m), we denote the ith column of IK−1 by ιi and

consider the test statistic

η̂i = T
(
β̂(m)− β̂(j)

)′
ιi

(
ι′iV̂ (m)ιi + ι′iV̂ (j)ιi

)−1
ι′i

(
β̂(m)− β̂(j)

)
(12)

with an asymptotic χ2(1) distribution. Such a test is useful to investigate whether

the impact effect of the shock on a single variable or a subset of the variables is

time-varying.

In practice, the choice of the number of volatility regimes and the volatility change

points is an important issue. In some cases, the number of regimes may be known

from the subject matter and the change points may be known as dates where specific

events have occurred that changed the volatility. Clearly, in practice the regimes

have to be large enough so that a reliable estimation of the covariance between the

proxy and the reduced form errors is possible. In the simulations in Section 4 we will
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see that the test may even work if not all volatility regimes are taken into account,

although its power may suffer if a change in volatility is ignored. In other words,

even if short periods with higher or lower error variance are ignored, the test may

find time-varying impact effects in other parts of the sample.

In practice, one may also consider standard statistical procedures to investigate

heteroskedasticity, as discussed for the empirical example in Section 5. Of course,

pretesting bias can result if statistical procedures are used to determine the change

points. To assess the implications of misspecifying the change points, we will look

at that situation in the simulations in Section 4.2.2. More generally, one may won-

der about the applicability of the test if the actual generating mechanism of the

heteroskedasticity is different from the model presented in equation (3). In the simu-

lations in Section 4.2.2, we will also investigate the issue of applying the test under the

assumption of the setup in equation (3) when, in fact, the true volatility generating

mechanism is a different one.

Alternatively, one may consider a different volatility model. For example, one may

consider a model where the volatility changes are generated by a Markov switching

process as in Lanne et al. (2010) and Herwartz and Lütkepohl (2014). Such models

have the advantage that the volatility change points are obtained from the data

because they are endogenously generated by the model. If the volatility regimes are

such that the result in (10) and hence the result in (11) holds, a test statistic such as η̂

can be used as explained before. We emphasize, however, that our test is designed for

models with a finite set of volatility regimes and, hence, our test cannot be used for

stochastic volatility or GARCH models as considered by Primiceri (2005), Normandin

and Phaneuf (2004) or Lütkepohl and Milunovich (2016).

We have presented our test for the case where just one structural shock is iden-

tified by the proxies. In the proxy VAR literature the case where several shocks are

identified by proxies has also been considered (see, e.g., Mertens and Montiel-Olea

(2018), Känzig (2019), Arias, Rubio-Ramı́rez and Waggoner (2020)). In that case,

further assumptions are typically needed to separately identify the individual shocks.
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If such assumptions are available, the impact effects can be estimated and tested

separately for each identified shock with our test. Of course, one could also consider

the impact effects of several shocks jointly and combine them in one test based on the

same considerations used for constructing our test. Although such a generalization

is straightforward in principle, we have refrained from presenting it because it would

complicate the notation and it depends on the specific identifying assumptions used

in addition to the proxies.

4 Monte Carlo Simulation

We have performed a simulation study to investigate the small sample properties of

the test. In particular, we are interested in the rejection frequencies under the null

and alternative hypotheses in finite samples and their dependence on the sample size,

the size of the variance change, the strength of the instrument, the scale of the model

in terms of the number of variables and the VAR lag order. We also investigate the

behaviour of our test under different types of misspecifications that practitioners may

be confronted with.

4.1 Setup of Monte Carlo Study

4.1.1 DGP 1

Our first data generating process (DGP) is a three-dimensional VAR(1) with reduced

form

yt = A1yt−1 + ut (13)

and a matrix of autoregressive slope coefficients

A1 =

0.79 0.00 0.25
0.19 0.95 −0.46
0.12 0.00 0.62

 .
10



This matrix is based on an economic model discussed by An and Schorfheide (2007).

It has eigenvalues 0.95, 0.90, and 0.51 and, hence, the process is stable with some

persistence due to two roots close to the unit circle. Such features are occasionally

met in practice.

Furthermore, we consider three volatility regimes (M = 3) with impact effects

matrix B(m) = I3 for m = 1, 2, 3 under the null hypothesis (H0) and

B(1) = I3, B(2) =

1 0 1
2 1 4
4 6 6

 , B(3) =

 4 2 1
−2 2 8

2 1 10


for the three volatility states under the alternative hypothesis (H1). This choice

implies that

β(1) =

(
0
0

)
, β(2) =

(
2
4

)
and β(3) =

(
−0.5

0.5

)
,

such that the three vectors to be tested are clearly distinct. The corresponding

impulse responses are depicted in Figure S.1 of the Online Supplement. To study the

properties of the test, we also have to consider the asymptotic variances V (1), V (2)

and V (3) of their estimators. They also depend on characteristics of the DGP and

the proxy variable which will be specified subsequently.

Following standard conventions, we normalize the variances of the structural in-

novations in the first state to unity (Λ1 = I3). In line with comparable studies

(Lütkepohl and Schlaak, 2018), we set the structural innovations’ relative variances

for the states m = 2, 3 such that a noticeable volatility pattern is generated. To

achieve this, we choose

Λ2 = diag(4, 9, 12) and Λ3 = diag(1, 4, 9).
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In our simulations, we draw the heteroskedastic structural innovation wt from

wt ∼ N (0,Λm), for m = 1, 2, 3,

and we compute the heteroskedastic reduced-form residuals as ut = B(m)wt. Note

that, under H1, the time-varying instantaneous impact effects matrix and the volatil-

ity change of wt contribute to the heteroskedasticity of ut while, under H0, the het-

eroskedasticity of ut is driven exclusively by the variance changes of wt. Using (13)

and the previous specifications, we generate the data recursively with starting values

y0 = 0.

In most of our simulations, we consider a scalar proxy zt because this is the most

common case in practice. As in Caldara and Herbst (2019), the proxy is generated

by assuming a linear relation with the instrumented structural innovation w1t,

zt = φw1t + vt, (14)

where φ and the error vt determine the strength of the correlation between zt and w1t

and, hence, the strength of the instrument. In principle, φ may vary for the different

volatility regimes. We keep it constant at φ = 1, however, and instead vary the

strength of the proxy by changing the variance of the error vt which is a noise term

that mimics measurement errors of the instrument. It is generated independently of

w1t as

vt ∼ N (0, σ2
v(m)),

where the variance may change with the volatility regime. This setup implies a time-

varying volatility of the instrument which can be observed in many time series of

instruments that are used in the literature (see, for example, Romer and Romer,

2010; Miranda-Agrippino and Ricco, 2017).

Note that the strength of the relation between the instrument and the shock
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w1t determines how well the impact effects of the shock can be estimated and these

estimates are the basis of our test statistic. Therefore it is important to note that

the correlation between the instrument and the structural error w1t can change with

the variance of w1t. The variance of zt is Var(zt) = φ2Var(w1t) + σ2
v(m). Hence, the

correlation between w1t and zt is

Corr(w1t, zt) = φ
√

Var(w1t)
/√

φ2Var(w1t) + σ2
v(m) .

We consider the three different cases presented in Table 1. In Cases 1 and 2, the

correlation between w1t and zt remains time-invariant across the sample, whereas in

Case 3 the correlation and, hence, the strength of the instrument changes with the

volatility regime, while the parameters of the relation (14) remain time-invariant.

Instead of varying the measurement error variance σ2
v(m), we could have kept this

variance constant throughout the sample period and instead vary the parameter φ in

the relation (14). That would not affect the empirical rejection frequencies of our test

as long as the correlation between the proxy and the error term remains unchanged.

The correlations in Cases 2 and 3 in Table 1 are roughly in line with the correlations

between the proxies and shocks used in a range of studies from the related literature

(see Table S.1 in the Online Supplement for this article). The larger correlation of

0.9 in Case 1 in Table 1 was chosen to explore the potential power gains for our tests

due to having a proxy which is strongly correlated with the shock.

Table 1: Specifications Used for DGP 1

Case σ2v(m) Corr(w1t, zt) V (1) V (2) V (3)

1
σ2v(1) = 0.2346
σ2v(2) = 0.9383
σ2v(3) = 0.2346

0.9 ∀t
[

3.73 −0.10
−0.10 3.71

] [
48.86 87.69
87.69 334.90

] [
150.71 159.37
159.37 178.28

]

2
σ2v(1) = 3
σ2v(2) = 12
σ2v(3) = 3

0.5 ∀t
[

12.09 −0.33
−0.33 11.81

] [
161.94 291.98
291.98 1098.91

] [
490.49 517.39
517.39 577.28

]

3 σ2v(m) = σ2v = 1
0.7071, t ∈ T1
0.8944, t ∈ T2
0.7071, t ∈ T3

[
6.05 −0.17
−0.17 5.96

] [
49.48 88.81
88.81 339.15

] [
244.26 257.86
257.86 287.96

]
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Having specified the characteristics of our DGP, we can also work out the asymp-

totic covariance matrices, V (m), of the estimated β(m) and we present them also in

Table 1.2 It is important to note that asymptotic covariances differ considerably for

the different volatility regimes. The estimator β̂(1) has clearly the smallest asymp-

totic variances, while β(2) and β(3) are estimated less precisely in all three cases.

This feature is expected to have an impact on the small sample power of the test as

well. Note also that the V (m) depend on the strength of the instrument. Generally, a

stronger instrument implies more precise estimators of the β(m), as one would expect.

We also consider the situation where two instruments are available for DGP 1.

Specifically we consider instruments

zt = φw1t + vt, (15)

where zt is a bivariate vector, φ = (φ1, φ2)
′ = (1, 1)′ and vt ∼ N (0,Σv(m)) is bivariate

normal with

Σv(m) =

 1 0.5

0.5 1

 .
Thus, the two proxies are generated with properties as in Case 3 of Table 1, but they

are correlated via the measurement error term vt.

Data are simulated for sample sizes T = 150, 300, 600, 1200. The two breakpoints

of the volatility states are set at T1 = 1
3
T and T2 = 2

3
T . We use 5000 replications of

each simulation design.

4.1.2 DGP 2

To investigate the performance of our test for VAR models with more variables, as

they are often encountered in practice, we consider a specification based on a data set

for the crude oil market used in a proxy VAR study by Känzig (2019). Changes in

2The underlying matrices Σb(m) were computed by simulation.
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volatility of oil market data have been diagnosed and studied in a number of previous

papers (e.g., Lütkepohl and Netšunajev (2014), Lütkepohl, Meitz, Netšunajev and

Saikkonen (2020)). Exact details of the model setup and its parameters are given in

Section S.4 of the Online Supplement.

In our simulations we are fitting 6-dimensional VAR(13) models to the generated

series. Thus, the model involves a large number of parameters. We consider two

(M = 2) or three (M = 3) variance regimes. The B matrix under H0 and the

B(1), B(2), B(3) matrices used under H1 are also given in Section S.4 of the Online

Supplement. The corresponding population impulse responses of the first structural

shock are depicted in Figure S.2 of the Online Supplement.

The variances of the structural shocks are specified as follows:

Λ1 = I6, Λ2 = diag(0.5, 1, 2, 4, 8, 12), Λ3 = diag(2, 4, 8, 12, 16, 24),

if three volatility regimes are used. When two volatility regimes are considered, only

Λ1 and Λ2 are used. The structural errors have Gaussian distributions such that

wt ∼ N (0,Λm) and the reduced-form errors are computed as ut = B(m)wt. These

errors are used to generate yt samples for T = 300, 600, and 1200. Volatility change

points are at T1 = 1
2
T for M = 2 and at T1 = 1

3
T and T2 = 2

3
T for M = 3. In the

simulations, we assume knowledge of the correct change points but also investigate

the properties of the test when a change point is misspecified or one of the change

points is ignored.

The instrument, zt, is generated as in equation (14) with time-invariant φ = 0.5

and σ2
v(m) = σ2

v = 0.5 which implies the following correlations between shock and

proxy:

Corr(w1t, zt) =


0.5774 for t ∈ T1,
0.4472 for t ∈ T2,
0.7071 for t ∈ T3.
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Thus, for this DGP, the correlation is moderate at best.3

In Section S.4 of the Online Supplement we also show the β(m) vectors and the

corresponding asymptotic covariance matrices of their estimators. Clearly, β(1) is

estimated more precisely than β(2) and β(3). In fact, the estimator of β(2) has the

largest asymptotic variances. Again, this is expected to affect the power of our test

for time-varying impact effects.

To investigate how important it is to specify the volatility model correctly, we

not only consider the implications of misspecifying the volatility change points, but

we also perform the test by assuming a heteroskedasticity model as in (3) when the

change in variance is in fact generated by some other mechanism. More precisely, we

have also generated a change in volatility by a smooth transition (ST) mechanism

such that

E(wtw
′
t) = (1−G(γ, ψ, t))Λ1 +G(γ, ψ, t)Λ2, (16)

where a standard logistic transition function, G(γ, ψ, t) = (1+exp[− exp(γ)(t−ψ)])−1,

is used. It depends on parameters γ and ψ and time t is chosen as transition variable.

Using this model to generate the volatility changes implies that the volatility change

from Λ1 to Λ2 occurs smoothly over a number of periods, depending on the parameters

γ and ψ. The latter parameter determines the location of the variance change while

γ determines the speed of the transition from variance regime Λ1 to Λ2. Large values

of γ imply a fast transition.

A transition from one volatility regime to another one over a number of sample

periods may be more plausible in some situations in empirical studies than an in-

stantaneous volatility adjustment in one period. Therefore it is of interest to explore

the properties of our test if a one time volatility change is assumed although the

actual volatility change is spread out over a longer period. We have used ψ = 0.5T

and γ = −
√
T/10 in our simulations which ensures a variance change roughly in the

3The correlation in Känzig’s (2019) study is even slightly lower. For our simulations we have
chosen correlations similar to Cesa-Bianchi et al. (2020) which is considered as an example in Section
5 (see Table S.2 of the Online Supplement for details).
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Table 2: Relative Frequencies of F -Statistic for Weak Instrument Below 10 in Simu-
lations of VAR(1) for DGP 1 and one Proxy

Case 1 Case 2 Case 3

Sample size m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

T = 150 0.000 0.394 0.092 0.112 0.888 0.797 0.001 0.404 0.417
T = 300 0.000 0.053 0.002 0.011 0.731 0.478 0.000 0.057 0.061
T = 600 0.000 0.000 0.000 0.000 0.325 0.078 0.000 0.000 0.000
T = 1200 0.000 0.000 0.000 0.000 0.023 0.001 0.000 0.000 0.000

middle of the sample. The choice of γ implies that the variance change is largely

completed over about 20% of the respective sample size. For example, for T = 600,

the transition from variance regime Λ1 to Λ2 is basically completed between obser-

vations 240 and 360 of the sample. Under H1, we also let the impact effects of the

shocks change smoothly with the transition function G(γ, ψ, t) from B(1) to B(2)

such that the covariance structure of the reduced-form residuals smoothly changes

from Σu(1) = B(1)B(1)′ to Σu(2) = B(2)Λ2B(2)′. The number of replications of

each simulation experiment is again 5000.

4.2 Simulation Results

4.2.1 DGP 1

Before looking at the results for our test for time-varying impact effects, it may be

worth taking a look at the results in Tables 2 and 3, where we record the relative fre-

quencies of standard F -tests for weak instruments (e.g., Kilian and Lütkepohl (2017,

Section 15.2.1)) to produce values below 10 for the H1 processes in our simulations

when a single proxy is used. In applied work, a threshold of 10 for the F -statistic is

usually used to classify an instrument as sufficiently strong (see also Stock, Wright

and Yogo (2002)). In other words, the numbers in Tables 2 and 3 indicate how often

a proxy would have been classified as a weak instrument in our simulations with a

scalar proxy. We also want to investigate the effect of the scale of the VAR model.

Therefore, we have fitted VAR(1) and VAR(12) models to the data that are actually

generated by a VAR(1).
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Table 3: Relative Frequencies of F -Statistic for Weak Instrument Below 10 in Simu-
lations of VAR(12) for DGP 1 and one Proxy

Case 1 Case 2 Case 3

Sample size m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

T = 150 0.021 0.801 0.542 0.663 0.977 0.957 0.245 0.806 0.822
T = 300 0.000 0.170 0.012 0.107 0.859 0.673 0.000 0.176 0.176
T = 600 0.000 0.001 0.000 0.000 0.427 0.131 0.000 0.001 0.001
T = 1200 0.000 0.000 0.000 0.000 0.033 0.001 0.000 0.000 0.000

The strength of the instrument is clearly linked to the correlation between the

shock and the proxy and it is seen in the tables that for Case 2 and small and moderate

sample sizes, the instrument would be classified as weak in a large number of cases.

For example, for T = 150, for the second volatility regime the proxy would have been

classified as weak instrument in 88.8% of the replications when a VAR(1) is fitted and

in 97.7%, if a VAR(12) process is fitted. For larger sample sizes and a more strongly

correlated proxy and shock, the weak instrument classifications decline. However,

it is, of course, of interest whether our test for time-varying impact effects also has

power for weaker instruments for which the impact effects cannot be estimated very

precisely. This is the reason for including Case 2 in our simulations.

The simulation results of the tests for time-varying impact effects for the first

DGP are summarized in Table 4 for the case when a VAR(1) is fitted and in Table

5 for the VAR(12) case. In both cases there are three variance regimes and we have

generated data both under H0 and H1 to explore the finite sample test size and power.

The nominal significance level in both tables is 5%. Looking at the relative rejection

frequencies of our test for the three cases of scalar proxies specified in Table 1 and

the bivariate proxy in Tables 4 and 5, the following observations can be made.

1. The empirical test size and power tend to improve with larger sample sizes as

they should be. In other words, the relative rejection frequencies tend to move

closer to the nominal significance level of 5% under H0 and they increase with

increasing sample size under H1.

2. The empirical size in all cases is reasonably close to the nominal size of 5%. This
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Table 4: Relative Rejection Frequencies for 3-dimensional VAR(1) Model of Pairwise
Tests of H0 : β(m) = β(k) for m, k = 1, 2, 3 and m 6= k (Nominal Significance Level
5%, Volatility Change Points T1 = 1

3
T and T2 = 2

3
T , 5000 MC Repetitions)

Case Sample Data generated under H0 (size) Data generated under H1 (power)

size β(1) = β(2) β(1) = β(3) β(2) = β(3) β(1) = β(2) β(1) = β(3) β(2) = β(3)

1 T = 150 0.071 0.085 0.072 0.674 0.630 0.418
T = 300 0.068 0.065 0.065 0.866 0.972 0.756
T = 600 0.057 0.056 0.056 0.979 1.000 0.962
T = 1200 0.046 0.056 0.049 1.000 1.000 1.000

2 T = 150 0.033 0.038 0.036 0.397 0.124 0.091
T = 300 0.042 0.048 0.046 0.580 0.395 0.209
T = 600 0.054 0.050 0.046 0.747 0.819 0.499
T = 1200 0.047 0.048 0.051 0.915 0.995 0.840

3 T = 150 0.064 0.067 0.067 0.644 0.352 0.256
T = 300 0.064 0.062 0.063 0.857 0.802 0.575
T = 600 0.059 0.057 0.054 0.977 0.996 0.905
T = 1200 0.050 0.054 0.051 1.000 1.000 0.998

2 proxies T = 150 0.066 0.064 0.064 0.679 0.446 0.309
T = 300 0.056 0.061 0.059 0.872 0.862 0.619
T = 600 0.061 0.054 0.052 0.981 0.998 0.931
T = 1200 0.051 0.054 0.052 1.000 1.000 0.998

Table 5: Relative Rejection Frequencies for 3-dimensional VAR(12) Model of Pairwise
Tests of H0 : β(m) = β(k) for m, k = 1, 2, 3 and m 6= k (Nominal Significance Level
5%, Volatility Change Points T1 = 1

3
T and T2 = 2

3
T , 5000 MC Repetitions)

Case Sample Data generated under H0 (size) Data generated under H1 (power)

size β(1) = β(2) β(1) = β(3) β(2) = β(3) β(1) = β(2) β(1) = β(3) β(2) = β(3)

1 T = 150 0.077 0.070 0.063 0.450 0.244 0.241
T = 300 0.073 0.066 0.066 0.805 0.882 0.651
T = 600 0.059 0.059 0.057 0.967 1.000 0.941
T = 1200 0.050 0.059 0.053 1.000 1.000 1.000

2 T = 150 0.028 0.023 0.020 0.131 0.033 0.039
T = 300 0.045 0.036 0.034 0.455 0.233 0.152
T = 600 0.052 0.047 0.044 0.703 0.731 0.447
T = 1200 0.046 0.048 0.051 0.906 0.991 0.821

3 T = 150 0.063 0.053 0.045 0.368 0.116 0.143
T = 300 0.070 0.055 0.059 0.786 0.616 0.458
T = 600 0.057 0.056 0.053 0.964 0.982 0.867
T = 1200 0.052 0.054 0.053 1.000 1.000 0.998

2 proxies T = 150 0.066 0.052 0.048 0.415 0.146 0.160
T = 300 0.058 0.058 0.053 0.801 0.701 0.509
T = 600 0.060 0.054 0.051 0.970 0.994 0.905
T = 1200 0.053 0.052 0.051 1.000 1.000 0.997
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result holds even for the smaller sample sizes and if a large VAR(12) model is

fitted. It holds for all four types of proxy variables. For Case 1, where the

correlation between the proxy and the first structural shock is 0.9 and, hence,

it is rather large across the sample, the rejection frequencies are slightly larger

than 5% when the sample size is small (T = 150). Even then the largest relative

rejection frequency is only 0.085 and most relative rejection frequencies under

H0 are well below 0.075 in all situations reported in the tables.

3. Despite the similarity of the rejection frequencies under H0, the empirical power

is lower for the large VAR(12) model than for the smaller VAR(1) (compare the

corresponding entries of Tables 4 and 5). Thus, the dimension of the parameter

space of the model affects the power but not the test size in small samples.

4. A comparison of Cases 1 and 2 shows that the smaller correlation in Case 2

undermines the power of the test in small samples but does not have much of

an effect on the rejection frequencies under H0, for the sample sizes considered in

our simulations. The power can be rather low for small samples. For example,

the power for Case 2 for T = 150 for testing β(2) = β(3) is only 0.091 and

0.039 for the VAR(1) and VAR(12), respectively. Clearly, if the proxy is not

strong enough to estimate the impact effects with reasonable precision, the test

is not able to discriminate well between the estimated impact effects of different

volatility regimes.

5. In Case 3, the correlation between the proxy and the first shock varies over

time. For all three volatility regimes it is between the correlation of Cases 1

and 2. This feature is reflected in the power results in Tables 4 and 5 which are

typically in between the corresponding results for Cases 1 and 2.

6. The power increases if more identifying information in the form of two proxies

is available. In that case, in particular for small samples, the power is larger

than for the corresponding tests for Case 3, where only one proxy of the same

type is available.
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Overall our results based on DGP 1 suggest that the empirical size of the test and

its power improve with increasing sample size. The empirical test size is not much

affected by the scale of the model and the strength of the instrument. In contrast, the

power declines with increasing scale of the model and it increases with the strength

of the instrument.

Of course, one may argue that the DGPs encountered in applied work have rather

different properties than our DGP 1. Therefore we have based our second DGP on

an empirical model. The results are discussed next.

4.2.2 DGP 2

As explained in Section 4.1.2, our second DGP is similar to a model from Känzig

(2019) based on actual data. The VAR model used is 6-dimensional and has lag

order p = 13. Thus, the fitted model is large. Results for the case with one variance

change are reported in Table 6. Given the results for DGP 1, it may be good to

remember that the correlation between the proxy and the first shock is 0.5774 and

0.4472 in the first and second volatility regimes, respectively. Thus, the correlation

is rather low.

For such a large model the relative rejection frequency of our test under H0 is

slightly below the nominal 5%, if the sample size is small (T = 300). Even for a

moderate sample size of T = 600, the relative rejection frequency under H0 is only

0.037 if the true volatility change point is used for the test. Thus, for large models

the test tends to be conservative in small and even moderate samples.

Interestingly, if the volatility change point is misspecified, as it may easily happen

in practice, the relative rejection frequencies under H0 on the right-hand side of

Table 6 are slightly larger. However, the power declines if the volatility change point

is misspecified. Given the simulation results for DGP 1, the low power for small

samples is likely to be partly due to the low correlation between the proxy and the

structural shock.

The performance of the test for a misspecified volatility change point is further
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Table 6: Relative Rejection Frequencies of 6-dimensional VAR(13) Model of Tests of
H0 : β(1) = β(2) (Nominal Significance Level 5%, True Volatility Change Point at
T1 = 1

2
T , 5000 MC Repetitions)

Assumed change point T1 = 1
2
T Assumed change point T1 = 2

5
T

Sample size Under H0 Under H1 Under H0 Under H1

T = 300 0.018 0.194 0.026 0.132
T = 600 0.037 0.605 0.040 0.416
T = 1200 0.040 0.934 0.043 0.819

Table 7: Relative Rejection Frequencies of 6-dimensional VAR(13) Model of Tests of
H0 : β(1) = β(2) (Nominal Significance Level 5%, Volatility Change Generated by
Smooth Transition, 5000 MC Repetitions)

Assumed change point T1 = 1
2
T Assumed change point T1 = 2

5
T

Sample size Under H0 Under H1 Under H0 Under H1

T = 300 0.022 0.184 0.026 0.161
T = 600 0.037 0.564 0.046 0.469
T = 1200 0.048 0.903 0.051 0.859

investigated in Table 7. In that table the relative rejection frequencies of our test are

given for two different volatility change points although the true underlying generat-

ing mechanism of the volatility change is a smooth transition as explained in Section

4.1.2. Again the rejection frequencies under H0 are not much affected compared to

those reported in Table 6 for a correctly specified change point (T1 = 1
2
T ). Even the

reduction in power is quite moderate if the incorrect volatility model with one change

point at a fixed fraction of the sample is assumed. Thus, our test is quite robust to

slight misspecifications of the volatility change point and the type of heteroskedastic-

ity.

Table 8: Relative Rejection Frequencies for 6-dimensional VAR(13) Model of Pairwise
Tests of H0 : β(m) = β(k) for m, k = 1, 2, 3 and m 6= k (Nominal Significance Level
5%, Volatility Change Points T1 = 1

3
T and T2 = 2

3
T , 5000 MC Repetitions)

Data generated under H0 (size) Data generated under H1 (power)

Sample size β(1) = β(2) β(1) = β(3) β(2) = β(3) β(1) = β(2) β(1) = β(3) β(2) = β(3)

T = 300 0.013 0.058 0.016 0.096 0.503 0.037
T = 600 0.027 0.060 0.028 0.307 0.912 0.124
T = 1200 0.039 0.052 0.039 0.685 1.000 0.286

22



Table 9: Relative Rejection Frequencies of 6-dimensional VAR(13) Model with two
Volatility Change Points When the Second Change Point is Ignored, H0 : β(1) = β(2)
with Volatility Change Point Assumed at T1 = 1

3
T (Nominal Significance Level 5%,

5000 MC Repetitions)

Sample Size Under H0 Under H1

T = 300 0.047 0.462
T = 600 0.054 0.900
T = 1200 0.053 1.000

We have also performed simulations with three volatility regimes (M = 3) and

show the results in Tables 8 and 9. In Table 8 the three volatility regimes and

the change points are assumed to be known. In that case, for the null hypotheses

H0 : β(1) = β(2) and H0 : β(2) = β(3), the relative rejection frequencies under H0 are

slightly smaller than 5%. Although they move towards 0.05 for increasing sample size,

they remain below 5% even for T = 1200. Note that both null hypotheses involve the

impact effects vector for the second volatility regime where the correlation between

the proxy and the structural shock is as low as 0.4472. Hence, it is also not surprising

that the corresponding empirical power is small. In fact, for testing the null hypothesis

β(2) = β(3) and T = 1200, we get a relative rejection frequency of 0.286 if H1 is true.

Such a low power is likely to be due to the low rejection frequency under H0 and the

quite low correlation between the proxy and the shock. In any case, it may be worth

remembering the potentially low power of the test when the example in Section 5 is

considered.

In Table 9 we investigate the case where one of the volatility changes is ignored.

Such a situation may arise in practice when there is uncertainty about the number

of volatility regimes. The results in Table 9 are obtained by considering the first

volatility change point at T1 = 1
3
T only and ignoring the second volatility change at

T2 = 2
3
T . In other words, the second volatility regime is incorrectly assumed to be

T2 = {1
3
T+1, . . . , T} and the corresponding estimator β̂(2) mixes the second and third

volatility regimes in the data. As can be seen in Table 9, this model misspecification

does not undermine the empirical test size which is still close to 5% for all three
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sample sizes. Also the empirical power of the test does not suffer much from the

model misspecification. It is almost as large as for testing H0 : β(1) = β(3) under H1

in Table 8.

4.2.3 Summary

The simulation results can be summarized briefly as follows. Larger samples improve

the empirical size and power of the test. The dimension and lag order of the VAR

process and precise knowledge of the type of heteroskedasticity and the timing of the

variance change do not affect the small sample rejection frequencies substantially if

the null hypothesis is true. However, these features affect the power of the test in

small samples. More precisely, the power declines for a model of larger dimension,

i.e., with more variables and/or larger lag order. The power can be improved by a

more precise specification of the model for the second moments and the timing of

the volatility change. Moreover, the power improves when the proxy has a stronger

correlation with the structural shock.

5 Empirical Analysis

In the following, an empirical example from Cesa-Bianchi et al. (2020) is considered,

where the authors use an instrumental variable to identify a monetary policy shock

for the United Kingdom (UK). Their model has heteroskedastic errors. The study

does not allow the heteroskedasticity to affect the impulse responses of the structural

shock. Therefore we apply our test to investigate whether the implicit assumption of

time-invariant impulse responses is in line with the data.

Cesa-Bianchi et al. (2020) construct a time series of intra-day price variation of

the 3-month Sterling future contracts around policy decisions of the Monetary Policy

Committee of the Bank of England. This series is used as proxy for monetary policy

shocks in order to investigate their impact on macroeconomic and financial variables

in the United Kingdom. In their baseline specification, Cesa-Bianchi et al. (2020)
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consider a 7-dimensional VAR(2) model with a constant term for the variables

yt = (rt, cpit, urt, et, cs
uk
t ,mst, cs

us
t )′,

where rt is the nominal yield on the 1-year gilt, cpit is the consumer price index, urt

describes the unemployment rate, et represents the nominal effective exchange rate,

csukt and mst are UK corporate and mortgage bond spreads, respectively, whereas

csust is a US corporate bond spread. All variables enter the model in levels, the only

exception to this rule is cpit which is in natural logarithms.

The data for yt are monthly for the sample period 1992m1-2015m1 which implies

a sample size of 277 observations, including presample values for the estimation,

hence, T = 275. For the proxy, data is only available for 1997m6-2015m1. We set

the missing values for 1992m1-1997m5 to zero, as suggested by Mertens and Ravn

(2019). This amounts to ignoring the sample period 1992m1-1997m5 in estimating

the impact effects of the monetary policy shock (see equations (6) and (8)). We use

the data from Cesa-Bianchi et al. (2020) and refer to that paper for further details

on the precise variable specifications and data sources.4

In Figure 1, the OLS residuals of the reduced-form VAR(2) model are shown

for the period 1997m6-2015m1, where the proxy is available and, hence, the impact

effects of the monetary policy shock can be estimated. Obviously, the volatility of at

least some of them has changed during the period 1997m6-2015m1. Especially as of

the onset of the Great Recession the residual series of all financial variables display

a markedly distinct volatility pattern. To identify the exact timing of the volatility

break point, we assume that the bankruptcy filing of Lehman Brothers bank in the US

and the turmoil on financial markets thereafter turned mild recessionary tendencies

in the UK into a severe long-lasting economic crisis. Therefore, we choose August

2008 as preliminary volatility break and argue that September 2008 constitutes the

beginning of a new volatility regime.5

4The data set is available as supplementary material to the paper on the web page of the European
Economic Review.

5An LM test for heteroskedasticity as described in Lütkepohl (2005, pp. 600-601) yields a test
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Figure 1: OLS residuals for 1997m6-2015m1 of the UK monetary policy VAR(2)
model. The solid red line indicates the variance break in August 2008 suggested by
the likelihood based statistical criterion in (17).

To back up our economic arguments, for the precise timing of the volatility change,

we consider the Gaussian likelihood based criterion function

T1 log det Σ̂1 + (T − T1) log det Σ̂2, (17)

where Σ̂1 = T−11

∑T1
t=1 ûtû

′
t and Σ̂2 = (T −T1)−1

∑T
t=T1+1 ûtû

′
t are computed from OLS

residuals ût. We minimize this objective function over T1 ∈ {112, . . . , T − 48} as we,

first, exclude 63 observations at the beginning due to the missing values of the proxy

and, second, we eliminate another 48 observations at both the beginning and the end

statistic of 138.33 which clearly rejects the null hypothesis at the 1% significance level and, hence,
provides strong evidence for a change in variance.
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of the sample to have a sufficient amount of observations for a reasonably reliable

estimation of the regime-specific covariance matrices and the underlying structural

parameters. The procedure confirms the volatility change point in August 2008 (i.e.,

T1 = 198, see solid red line in Figure 1).

Table 10: p-values of Tests for Time-Varying Impact Effects of UK Model for Different
Variance Change Periods

Tests for individual impact effects

Change period Joint test cpit urt et csukt mst csust

June 2008 0.009 0.461 0.044 0.393 0.242 0.010 0.675
July 2008 0.008 0.461 0.033 0.408 0.244 0.010 0.694
August 2008 0.010 0.886 0.028 0.653 0.363 0.012 0.867
September 2008 0.001 0.975 0.026 0.715 0.219 0.011 0.684
October 2008 0.001 0.975 0.026 0.715 0.219 0.011 0.684
November 2008 0.123 0.305 0.556 0.253 0.200 0.488 0.499
December 2008 0.148 0.534 0.934 0.487 0.196 0.274 0.611

Note: The p-values for September and October are identical because the proxy value
for October is zero.

We have applied our test for time-varying impact effects of the monetary policy

shocks for a number of covariance change periods around August 2008 and, in Table

10, we show the resulting p-values of our joint tests and tests of the last six variables

individually as specified in equation (12). The results for August 2008 are highlighted

in boldface in Table 10. Because we found in the simulations in Section 4 that the test

may have low power for large models and relatively small samples sizes, the p-value

0.010 of the joint test for August 2008 indicates that the assumption of time-invariant

impact effects is strongly rejected by the data.6 It is also apparent, however, that this

is primarily due to time-varying impact effects of the unemployment rate, urt, and the

mortgage spread, mst. Testing the impact effects of these two variables individually

results in p-values well below 5% while all the other individual tests associated with

a volatility change in August 2008 have rather large p-values.

In Table 10 we also show p-values for joint and individual tests for time-varying

impact effects obtained by placing the volatility change in other months around the

6We have also computed correlations between the proxy and the estimated monetary policy shock
and show them in Table S.2 of the Online Supplement. They are in the lower range of what was
used in the simulations. Thus, the proxy is not a particularly strong instrument.
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Lehman collapse. As our simulation results indicate that missing the actual volatility

change period slightly does not invalidate the tests but reduces their power, one would

expect the small p-values for a change in August 2008 to increase if the volatility

change point is moved away from August 2008. It can indeed be seen in Table 10

that all p-values obtained for an assumed volatility change in November or December

2008 are greater than 10% and, hence, do not support a change in the impact effects

of the variables.

We note in passing that the heteroskedasticity robust F -statistics for the strength

of the proxy are well above 10 for all the subperiods corresponding to the volatility

change points June to October 2008. They are presented in Table S.3 of the On-

line Supplement and indicate that the instrument is informative for the underlying

structural innovations in both subperiods for each of the assumed volatility change

periods. In contrast, the robust F -statistics for the subperiods 2008m12-2015m1 and

2009m1-2015m1, corresponding to volatility change periods November and December

2008, are smaller than 10 in Table S.3. Thus, the large p-values for November and

December 2008 may just be a weak instrument problem. They may also be due to

shifting part of the more volatile period following the Lehman collapse to the pre-crisis

period and thereby reducing the power of the tests.

On the other hand, the p-values of the joint tests and the individual tests for

urt and and mst are still all clearly smaller than 5% if volatility changes in June,

July, September or October are assumed. Overall, these p-values are well in line with

our simulation results for the case of only slightly misspecified change periods and

support the conclusion drawn for a volatility change in August 2008. In other words,

the data support a change in the impact effects of the unemployment rate and the

mortgage spread in that period.

In order to further investigate the implications of changes in the impact effects in

some of the variables in August 2008, we have estimated impulse responses under the

assumption of time-varying impact effects and show them in Figure 2. The confidence

bands are obtained by a moving-block bootstrap as proposed by Brüggemann, Jentsch
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Figure 2: Responses to a monetary policy shock with pointwise 68% Efron percentile
confidence bands centered at the point estimator, based on the moving-block boot-
strap methodology described in Jentsch and Lunsford (2019) using a block length of
l = 4 and 5000 bootstrap replications. Grey areas indicate confidence intervals for
the sample prior to the Great Recession from 1992m3-2008m8 and red areas repre-
sent confidence intervals for the period during and after the Great Recession from
2008m9-2015m1.
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and Trenkler (2016) and Jentsch and Lunsford (2019) who show the asymptotic va-

lidity of the bootstrap. Such a bootstrap can account for the possibility that there

is more heteroskedasticity than what is captured by our model and was also used

by Cesa-Bianchi et al. (2020). Unfortunately, the confidence bands in Figure 2 may

be of limited value as the bootstrap is known to be unreliable in small samples (see

Brüggemann et al. (2016) and Lütkepohl and Schlaak (2019)). Hence, the bootstrap

confidence intervals in Figure 2 should be regards with caution.7

Taking that into account, what can be seen in Figure 2 is that the bootstrap confi-

dence intervals line up well with the test results for the individual impact effects. For

the unemployment rate and the mortgage spread some impulse responses have non-

overlapping 68% confidence intervals for short propagation horizons for the periods

before and after the volatility change. For example, the responses of the mortgage

spread are markedly larger in the second volatility state for a propagation period

of one year although the statistical significance of such differences may not be clear

from the figure. However, the test results in Table 10 provide evidence for significant

effects for the unemployment rate. Hence, our test results indicate that monetary

policy shocks in the UK have had different implications for the real economy in the

two subsamples. Prior to the Great Recession an increase of interest rates led to a

sizeable rise in unemployment. However, in the period during and after the Great

Recession, contractionary monetary policy shocks were coupled with an initial decline

in unemployment that lasted for several months. For all other variables, apart from

the mortgage spread and the unemployment rate, the confidence intervals overlap for

all propagation horizons which reflects the large p-values of our tests for these vari-

ables. Note that, although our test compares the impact effects only, these are the

only parameters that are allowed to change in our setup. Thus, the differences in the

7We have also computed confidence intervals for the impulse responses using a wild bootstrap
and present them in Figure S.4 of the Online Supplement. Although they provide somewhat smaller
intervals for some of the impulse responses they are also problematic as Jentsch and Lunsford (2019)
show that they are invalid asymptotically. Apart from that they convey a similar picture as Figure
2. The same is true for Hall confidence intervals that could be used instead of the Efron intervals in
Figure 2. We show them in Figure S.3 of the Online Supplement. We also emphasize that we show
68% confidence intervals in Figure 2 and the other figures. Using a larger confidence level, such as
90%, the intervals would, of course, be even wider than those in the figures.
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impulse responses at larger propagation horizons are determined by the differences in

the impact effects suggested by our tests.

The impact effects of a monetary policy shock in Figure 2 are also different from

the corresponding quantities presented in Figure 2 of Cesa-Bianchi et al. (2020) for

their baseline model, where, for example, the initial response of unemployment and

the mortgage spread are not significantly different from zero. We have plotted the

impulse responses of Cesa-Bianchi et al. (2020) obtained by assuming time-invariant

structrual impulse responses in Figure S.5 in the Online Appendix. It can be seen that

the respective impact effects in the original paper lie in between the impact effects

in our Figure 2. It is obvious that the estimated impact effects are quite different

from ours. Of course, given that, based on the test results in Table 10, some of our

estimated impact effects are significantly different, at least some of them must also

be different from those of Cesa-Bianchi et al. (2020) even if that may not be apparent

from Figure S.5.

Despite the similarity of some of the impulse responses, this example shows that

it is important to allow for the possibility of time-varying impact effects if shocks are

identified by an instrument and the model errors are heteroskedastic. Not accounting

for this possibility can lead to biased impulse responses.

There are, of course, other events that may have caused changes in the volatility

of the series. We determined a second volatility change point by keeping the break

in August 2008 fixed and performing a search over the remaining observations using

a similar procedure as above, based on the criterion given in expression (17). Specif-

ically, we ensure a minimum of at least 48 observations within one volatility regime.

The criterion is minimized in August 2001, coinciding with the start of a long lasting

economic upswing following the Dotcom bubble slowdown of the early 2000s. Assum-

ing three volatility regimes, the first regime runs from March 1992 to August 2001 and

may be interpreted as a medium volatility regime, whereas the second regime from

September 2001 to August 2008 is a period of markedly low volatility in particular

in the UK corporate bond spread series. The third regime coincides with the period
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Table 11: Tests for Time-Varying Impact Effects of UK Model

H0 β(1) = β(2) β(1) = β(3) β(2) = β(3)

p-value 0.938 0.071 0.002

during and after the Great Recession from September 2008 to January 2015 and is

coupled with high volatility notably in the two corporate bond spreads (see Figure

1).

We have applied our test for time-varying impact effects and present the p-values

in Table 11. While the first null hypothesis, H0 : β(1) = β(2), gives a p-value of 0.938

and, hence, cannot be rejected, the p-values are much smaller for the other two null

hypotheses in Table 11. The null hypothesis H0 : β(2) = β(3) results in a p-value

of 0.002 and is clearly rejected at common significance levels. For H0 : β(1) = β(3),

with a p-value of 0.071, the situation is not quite so clear. Of course, not rejecting

the null hypothesis at a 5% level of significance may just be a problem of low power

of our test, as diagnosed in the small sample simulations reported in Section 4. Note

also that the heteroskedasticity robust F -statistics for instrument strength for the

periods 1997m1-2001m8 and 2001m9-2008m8 are 11.675 and 6.810, respectively (see

Table S.3 in the Online Suplement). Thus, the proxy may be too weak to generate

good power for the test for time-varying impact effects at least during the second

volatility regime. In addition, the rather small sample periods associated with the

first and second volatility regimes may cause low power of our tests. In any case,

the test results in Table 11 do not provide much support for a change in the impact

effects due to a possible variance change in August 2001.

Whatever the reason for our test results in this specific case may be, it appears

to be a good idea to check for time-varying impact effects in heteroskedastic proxy

VARs. As can be seen from our analysis of the volatility change in August 2008,

ignoring the possibility may lead to distorted impulse responses.
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6 Conclusions

In structural analyses with proxy VARs in the presence of heteroskedasticity of the

data, it is typically assumed that the impact effects of the shocks of interest and,

hence, the impulse responses at all propagation horizons are time-invariant and are

not affected by the change in variance. We show that this assumption cannot be

taken for granted in empirical studies in general. If the assumption is violated it can

lead to biased impulse response estimates.

In this study, we have developed a test for time-varying impact effects of the

shocks which is very easy to conduct. It can be applied even if the timing of the

change in variance is not known precisely. Misspecifying the volatility change point

does not invalidate the test but may lead to reduced power. Even if the mechanism

that drives the heteroskedasticity of the data is not in line with the model assumed

for our test, the test may have some power.

We have applied the test to an empirical example model from the structural VAR

literature and reject time-invariance of the impact effects. The empirical example

illustrates that the issue is relevant for applied work. Therefore we propose to test

routinely for time-varying impact effects of a structural shock identified by a proxy

variable when the data underlying a proxy VAR analysis are heteroskedastic. Our

test is easy to perform and, hence, it opens up an easy way to improve the credibility

of empirical results based on heteroskedastic proxy VARs.
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