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Abstract

This paper studies the long-term distribution of energy-efficiency outcomes in the German

residential sector. To uncover the underlying energy efficiency of buildings, we estimate the

causal response of building-level heat energy demand to variability in heating degree days.

We examine heterogeneity in temperature response using both panel fixed-effects and causal

forests. Our results suggest that the distribution of energy-efficiency is not equitable in the

West of Germany, with buildings located in the South attaining the best energy performance

standards. Although the housing stock in the East is significantly older and thus less subject

to building standards, they perform better than the West counterpart, likely as a result of large

investments in retrofitting post-reunification. Finally, we show that the regional distribution of

energy-efficiency reflects differences in heating needs – thus, the poorer energy performance

of buildings in the North-West should be weighed against the warmer climatic zone.
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1 Introduction

Residential heating continues to be primarily powered with fossil-fuels1 and accounts for one-

fifth of the final energy consumed in Germany (BMWi, 2019). Energy-efficiency has remained

a key policy objective to reduce the dependence on fossil fuels in the building sector2. Even

though energy efficiency measures play an increasing role in achieving GHG emission reductions

globally, empirical evaluations of policy instruments such as building standards, retrofit programs,

and mandatory energy performance certificates seldom take into account the long-term distribution

of energy-savings achieved.

Housing-related policies may have particularly strong distributional effects and thus may have the

additional objective of economic equity such that the costs and benefits of environmental policy

are allocated progressively across income groups or regions (Bento, 2013). Evidence suggests that

investments towards energy efficiency vary significantly by income groups and thus the improve-

ments in energy intensity are likely distributed unequally as well. Borenstein and Davis (2016)

and Jacobsen (2019) show that financial incentives such as income tax credits for home weather-

ization, hybrid or electric cars, solar systems, and energy-efficient appliances are predominantly

received by higher-income households in the United States. McCoy and Kotsch (2020) investigate

the returns to energy-efficiency investments by income group and find that the poorer households

experience lower energy savings both in the short- and long-run in the United Kingdom. Similarly,

Bruegge et al. (2019) find that building codes in California led to energy-savings for the lower in-

come groups, but this was due to decrease in square footage rather than improvements in building

energy-efficiency attributes.

We add to this literature on the distributional impacts of energy policies in the residential building

sector. Here we take a long-term perspective and assess the net outcomes of major policy efforts

(energy standards for new construction and renovations, financial subsidies for home retrofits) that

have already taken place in Germany and come to a nuanced conclusion. Overall, we find that zip

181% of final energy consumed for space heating was produced using natural gas, heating oil, district heating, and
coal (AG Energiebilanzen e.V. 2018).

2However, evaluations have shown that actual savings realized from energy-efficiency programs seldom achieve
the level of energy savings that are predicted using ex-ante engineering models (Fowlie et al. 2018, Giraudet et al.
2018, Christensen et al. 2020)
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codes that are associated with the best socio-economic outcomes are home to a disproportion-

ately higher share of energy-efficient buildings. However, the poorest states of Germany, in the

East, also benefit from both the use of less carbon-intensive heating fuel type and energy-efficient

buildings. A closer look reveals that the spatial distribution of energy-efficiency outcomes is well-

explained by regional differences in the intensity of the winter heating season across Germany.

The contribution of this paper is three-fold.

First, we propose a methodological improvement over ratings on energy performance certificates

to measure energy-efficiency of buildings. We combine heating bills for a large sample of the

existing building stock in Germany with daily temperature data from weather stations to underpin

the causal response heat energy demand to short-run fluctuations in the total annual sum of heating

degree days. Using this building-level response of heat energy consumption to temperature as an

overall measure of energy-efficiency, we are able to simultaneously investigate the regional and

socio-economic distribution of outcomes. We thus demonstrate how access to building-specific

billing data allowed us to accurately assess building-level performance, which can then be used to

identify buildings most in need for energy-efficiency measures.

Second, we document that temperature change is an increasingly dominant factor in explaining the

observed decline in heat energy use by the German housing sector in the last decade, and discuss

potential implications for energy efficiency investment incentives. Global surface temperatures

have been rising steadily relative to historical average temperatures (NASA). Germany, in partic-

ular, experienced an unwavering increase in average temperatures in the past decade from 2010

to 20193. Unsurprisingly, the heating sector is particularly affected by global warming because

the demand for energy to heat homes falls, cetris paribus4. We quantify the fall in energy demand

for space heating due to climate change (8 percent from 2014 to 2018), and thus the weakening

economic incentives for homeowners to invest in thermal-efficiency of the existing building stock.

Third, we provide new evidence on the distribution of realized energy efficiency outcomes. We in-

3The German Weather Service (DWD) reported 2018 to be the warmest year in its 138-year temperature records,
and 2019 tied with 2014 were the second-warmest years in German history.

4Heating degree days fell by between 11 to 7 percent (depending on the region) from 2013 to 2018 relative to the
previous decade, 2003 to 2012. See Appendix Figure C1.
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vestigate comprehensively the main drivers of the heterogeneous response to temperature shocks,

allowing us to gain insight into the mechanisms driving estimated differences in energy-efficiency.

To this end, we employ machine learning to explore all observable dimensions in a systematic

manner. We shed light on the heterogeneity in outcomes by socioeconomic disparities, in partic-

ular the East-West divide in Germany. By focusing on the existing building stock with average

year of construction in 1967, we also circumvent the problem of measuring energy-efficiency out-

comes in a short-time frame as highlighted by Kotchen (2017). We show that although the newer

and more energy-efficient buildings are located in the South of Germany, buildings in the poorest

East regions of Germany are surprisingly energy-efficient, owing to larger buildings, renovation

efforts, and efficient construction that took place post-reunification in the between 1990 and 2001.

For instance, we document that the older building stock (built before 1975) in the East of Ger-

many is significantly more energy-efficient than the comparable group in the West. At the same

time, East buildings are on average larger than those in the West of Germany and this is further

associated with less energy per square meter of living space for each heating degree day.

The next section discusses the unique data used in this paper. Section 3 reports on the underlying

trends in heat demand and heating degree days. Section 4 explains the identification strategy and

estimates the average response of energy demand to temperature. Section 5 considers the hetero-

geneous responses to temperature. Section 6 offers a forest-based machine learning method to

estimate building-level marginal effects to further understand the sources of heterogeneity. Sec-

tion 7 discusses what may explain the regional distribution of energy-efficiency and Section 8

concludes.

2 Data

The analysis in this paper is based on data combined from three sources: (1) data on building-

level heating bills and energy performance certificates from a leading energy-metering company,

(2) weather station data from the German Weather Service (Deutscher Wetterdienst), and (3) socio-

demographic data from RWI-GEO-GRID (Breidenbach and Eilers, 2018).
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2.1 Heating Bills

The primary data used come from a large panel of building-level heating bills for 420,573 residen-

tial buildings (3,215,800 bills) in Germany, with 12-month billing cycles that start during January

2008 to June 2018. 12-month billing means that all heating bills are for either 365 or 366 days,

but the billing start and end dates vary.

The billing dataset contains information on the actual (metered) units of energy consumed for

space heating and water heating, along with yearly costs incurred. The billing data also contains

important building characteristics that help determine the energy requirements of buildings: living

space (in square meters), building size (in number of apartments), location by zip code, and main

heating fuel type.

The main dependent variable is calculated as the annual quantity of heating energy consumed

per square meter of heated living space in a building. This took several steps: first, building-

specific consumption values are limited to the amounts of energy used for heating space (excluding

warm water). Second, the metered consumption value is multiplied by the net calorific value

corresponding to the building’s energy fuel type, giving us the absolute heat energy consumption

in kilowatt-hours (kWh) for a building during the billing period. Fourth, we divide total kilowatt-

hours consumed by the amount of heated living space in the building. The units are therefore,

kilowatt-hours per square meter of heated living space per year (kWh/sqm).

We calculate heating costs used for the heating energy consumed by first deducting costs of heating

water from the total energy costs reported in each bill. Then dividing total costs for space heating

by the amount of heated living space in the building gives us the cost per kWh of heat energy

billed.

To create the estimation sample, we only consider heating bills from buildings that use either nat-

ural gas, heating oil, or district heating as the main fuel type, which is 98 percent of all buildings

observed. We trim the sample further by removing the top and bottom 1% tails from the distribu-

tion of heat energy consumption, used as the main dependent variable: such that consumption is

above 30 kWh/sqm and below 400 kWh/sqm of heated living space.
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Finally, we only consider those buildings observed at least two times in the (unbalanced) panel.

After these steps, the full sample consists of 384,223 buildings with a total of 3,030,063 observed

heating bills. On average we observe a building 9 times, minimum number of 2 times, and a

maximum number of 11 times.

2.2 Energy Performance Certificates

For about 40 percent of the buildings, we observe energy performance certificates issued from

2008 to 2019 that give us important measures for the thermal-efficiency attributes of the buildings,

including the energy performance score, construction year of the building, year (or renewal year)

of the heating system, roof, loft ceiling, exterior wall, windows, and basement ceiling. For energy

performance certificates issued from 2014 to 2019 (about 20% of the sample), I further observe

whether individual building components meet thermal insulation standards set out in the national

thermal insulation ordinance from 1995 ("Wärmeschutzverordnung 1995 or WSVO 1995).

2.3 Supplementary Data

We supplement the energy-related data with data from local weather stations collected by the

German meteorological service (Deutscher Wetterdienst). To construct variables that capture the

number heating degree days, we find the nearest available weather station to 8303 geocoded zip

codes of Germany, provided that there is not more than one consecutive daily observation record

missing for mean temperature for each weather station from 2003 to 2019. For the few missing

values, we impute using the average of mean temperatures recorded for the previous and next day.

This procedure amounts to using daily mean temperatures from 204 weather stations scattered

across Germany to calculate heating degree days corresponding to each billing month and cycle.

The socio-economic variables used in this paper are the unemployment rate, housing density, and

the purchasing power5 per household computed using high-resolution grid level (1x1 kilometer

cells) data (RWI and microm 2020, Breidenbach and Eilers 2018), averaged at the zip code level

5A measure of disposable income – "[t]he variable purchasing power reflects the household income. It comprises
information on labour supply, capital wealth, rental and leasing income minus taxes and social security contributions,
including social transfers such as unemployment benefits, child-allowances and pensions." (Breidenbach and Eilers,
2018)
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and matched to the billing sample. The data is available for 2005 and 2009 to 2017.

2.4 Descriptive Statistics

In this section, we describe aggregate trends in key variables observed from the data. Table 1

presents summary statistics for the full sample at the yearly level for important determinants of

heat energy demand. We report averages for the East of Germany in parentheses.

Based on this table, there is evidence that financial returns for heat energy-efficiency investments

have been falling. Along with warmer heating seasons, costs of heating fuel (cents per kWh)

have not risen significantly, resulting in declining annual heating expenditures per square meter

(energy use x price) since 2008. Meanwhile, information from the sample of energy performance

certificates suggests that thermal-efficiency and insulation standards have not increased noticeably

for the existing housing stock.

These trends are also true for the East of Germany. However, there is a noteworthy exception.

Although the buildings in the East of Germany are on average older, a higher share of buildings

(about half) observed with energy performance certificates from 2014 to 2019 met thermal insula-

tion standards set out in WSVO 1995.

To make this distinction clearer, we split up the sample to those buildings built prior to 1995

and those built starting 1995, and then look at the shares that meet the WSVO 1995 standard.

Figure 1 shows that a significantly higher share of the East building stock built before 1995 meet

thermal insulation standards under WSVO 1995. In order to meet the WSVO 1995 standards,

buildings built before 1995 likely underwent higher rates of retrofitting. At the same time, most

buildings built after 1995 are in compliance with the regulation. In Figure C2, we further graph

the differences in certification rates by each individual building component.

What may explain this stark difference between the East and the rest of Germany? Since reunifi-

cation of Germany in 1990, there had been a concerted political and financial effort (via subsidies

for renovation and new construction) to improve the quality of the housing stock in East, at least

until 2001 (Weiß and Michelsen, 2011). Using identical data on energy performance certificates,

Singhal and Stede (2019) document that the thermal retrofit rate was significantly higher for East
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German buildings during the 90s until 2001. Renovation investments made in the East housing

sector in the 1990s are likely driving the improved energy performance of the building stock we

observe today.

Figure 1: WSVO 1995 Standards
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standards of 1995 (WSVO 1995) by year of construction (built before or after 1995) for each of the sixteen
states in Germany (marked on the horizontal axis). The East of Germany consists of Berlin, Brandenburg,
Mecklenburg-Vorpommern, Sachsen, Sachsen-Anhalt, and Thueringen. A building is defined to meet the
1995 insulation standards, if it is certified that all five building components (the roof, top ceiling, outer wall,
windows, and basement) meet the 1995 minimum energy standards. The grey colored area indicates the
share of buildings by state that were built before 1995 and do not meet WSVO 1995 insulation standards.
Here we clearly show that buildings, built before 1995, in the East German states were much more likely to
be renovated to meet the WSVO 1995 standard. We also show that the almost all buildings built after 1995
passed the certification for the WSVO 1995 standard.

3 Trends in Heat Demand

Figure 2 plots yearly averages for the two main variables of interest in this paper: local heating

degree days and kWh per sqm of heat energy consumed by buildings. We demonstrate that the

correlation between average heat energy demand and annual sum total of heating degree days

increased from 2003 - 2012 to 2008 - 2018.

It is further noteworthy that the aggregated time series from 2008 to 2018 exhibit near identical

movements over time. Although the downward linear trends (see fitted values) are similar, heat
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Figure 2: Decline in Heat Demand (lhs) and Heating Degree Days (rhs)
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Notes: The graph plots simple averages of annual heat energy consumption for the full sample against
the starting year of each billing or heating period (rolling 12-months). The left y-axis measures the annual
kWh per square meter of heated living space per building, while the right y-axis measures the number of
heating degree days – heating degrees recorded on days with temperatures below 15 Celsius, recorded at
the nearest weather station to each building’s zip code. Source: authors’ calculations using data described
in Section 3.

10



energy demand appears to be decreasing at a slightly faster rate than heating degree days.

Figure 2 suggests that (1) temperature plays an increasingly dominant role in determining heat

energy demand, (2) during 2008 - 2018, renovations, demographic changes, and economic factors

such as prices played a smaller role (at least on net) in predicting heat energy demand. This is

strong suggestive evidence that policies targeting CO2 emission reductions via technical efficiency

of the building sector may not have had the desired effect for the sample population.

Moreover, thermal retrofitting of the existing housing stock is widely considered among German

policymakers to be cost-effective in reducing heat energy consumption (Galvin and Sunikka-Blank

2013). But given the declining trend in heating degree days and thus heat demand, the pay-back

period for thermal-efficiency investments continues to get longer, and we expect fewer (rather

than more) renovation projects to be economically feasible due to climate change. In short, the

potential for cost-efficient carbon savings from residential energy efficiency have been declining

in the last decade. It remains an empirical question, however, how the currently falling economic

incentives for a more energy-efficient housing stock will be altered in response to a carbon-pricing

scheme on the residential heating sector.

4 Temperature Response of Heat Demand

The primary aim of this paper is use precise estimates of the effect of temperature fluctuations

on heat energy consumption to understand the heat energy requirements of the existing building

stock. As discussed already, the estimation sample period covers 8 of the 10 warmest years ever

recorded in Germany’s history, lending us high statistical power in estimating the response of

energy demand to temperature.

4.1 Identification

We seek to isolate the underlying heat-energy requirements (a measure of energy efficiency) at

the building level by estimating the direct response of building-level heat demand to temperature

variability. The main advantage of the empirical approach is that we control for all time-invariant

characteristics of buildings and other time-varying factors that could affect the response of heat de-
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mand to temperature. The number of heating degree days are exogenous, conditional on building

and time fixed effects, allowing us to identity causal estimates.

We use the following regression to estimate the average response of heat energy requirements to

temperature:

yis = α + βHDDis + γi + φs + λft + εis

where yis denotes annual energy units consumed (kWh) per sqm by building i with billing cycle

starting in year s.

• HDD captures the numbers of heating degree days in any given 12-month billing period, cal-

culated as the total sum of differences between the daily mean temperature and the heating

threshold of 15°C on days with recorded mean temperatures less than 15°C. Succinctly,

HDD =

365/366∑
d=1

(TH − td)× 1[td < TH ]

We considered different heating thresholds of TH from 10°C to 20°C and chose the heating

threshold of 15°C because it minimizes Root Mean Squared Error (RMSE).

• γi captures the building-level fixed characteristics such as vintage, building type, number

of apartments, number of floors, quality of building components associated with thermal

insulation, aggregate characteristics of residents, ownership status, and fixed-factors related

to geographic location.

• φs are fixed effects for the year (s) in which annual billing cycle starts. This controls for

any aggregate time trend in consumer behavior or preferences for heating, influenced by

gradually decreasing heating degree days, measured for each building’s billing period.

• λft are fixed effects for the fuel type (f ) by majority billing year (t), which capture year-

specific economic shocks that are common to all buildings by each fuel type. Note that s 6= t

for bills starting late in the second half of the year (August to December).
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• εis the error term, clustered at the zip code level.

The coefficient of interest is β on HDD. β reports the change in annual kWh of heat energy demand

per square meter in response to a unit increase in the annual sum total of heating degree days,

after controlling for fixed factors associated with buildings, fuel type, residents, and geographic

location.

4.2 Results

Table 2 presents results for the full estimation sample. We present four variations of the fixed

effects model. We consistently estimate that heat energy consumed by a building per annum fell

on average by approximately 3.1 kWh/m2 of heated living space in response to a decrease of 100

degree days in the annual sum total of local heating degree days (with mean outside temperature

below 15 degree Celsius).

In the first column, conditional on fixed characteristics of buildings and yearly shocks common

to all homes in their respective billing periods, we arrive at a coefficient that is insensitive to

specification. The second column presents the preferred specification, in which we add fixed

effects for the majority billing year interacted with fuel type, which capture yearly fuel price

shocks. In the third column, we add time-varying covariates at the building level (price per kWh

of energy, building size categories) and zip code level (unemployment rate, purchasing power

per household, and density of buildings). Finally, in the fourth column we control for any time-

varying factors at the zip-code level that may affect building-level energy efficiency. We also

considered other weather parameters and show that the average estimate is robust to the inclusion

of precipitation and relative humidity (see Appendix Table B4).

The average annual heat energy requirement of buildings increases by approximately 0.031 kWh

per sqm for each heating degree day. This corresponds to an average yearly energy requirement

of 79.7 kWh per sqm of heated space. This estimate assumed linearity in temperature response

and total heating degree days of 2414, which is the average 12-month sum of heating degree days

recorded at 204 weather stations in Germany from 2003 to 20186. Compared to the "typical"

6The values are calculated by the author using daily observations from 20030101 to 20181231 at 204 nearest
weather stations to 8303 zipcodes in Germany. In the mapping used, average distance between zip code and nearest
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climate, the decline in the annual sum of heating degree days measured in the last five years (2014

to 2018) translates this estimate to an average reduction of 8 percent in annual heat energy demand.

For a household living in a 100 square meter apartment, expenses in 2018 for space heating fell

by approximately 60 euros due to change in climate (HDD relative to "typical").

Table 2: Response of Heat Energy Demand to Temperature

Dependent variable: kWh/m2

(1) (2) (3) (4)

Local HDD 0.0312*** 0.0306*** 0.0306*** 0.0303***
(0.0002) (0.0002) (0.0003) (0.0002)

Energy Price (Euros/kWh) -17.20***
(2.737)

Unemployment (%) -0.078
(0.066)

Purchasing Power per HH 0.147***
(0.022)

Building Size -0.134***
(0.048)

Zip Code Density -0.018***
(0.003)

Building FE Yes Yes Yes Yes

Bill Start Year FE Yes Yes Yes Yes

Fuel Type FE Yes

Year FE Yes

Fuel Type x Year FE Yes Yes Yes

Zip Code x Year FE Yes

N 3,030,063 3,030,063 2,251,079 3,023,892
Adj R2 0.776 0.776 0.790 0.780

Notes: The full sample covers all buildings using natural gas (high or low calorific), district heating,
and oil. The dependent variable is kilowatt hours consumed per square meter of heated living space. Price
of heat energy is given in Euros per kWh and observations above 1 Euro per kWh were removed. Standards
errors in parentheses are clustered at the zip code level for all specifications. * p < 0.05, ** p < 0.01, ***
p < 0.001.

weather station is 18.3 km, with standard deviation of 10.4 km, minimum and maximum distance of 0.076 km and
59.86 km respectively. Source: German Weather Service (DWD)
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4.3 Heat Demand Adjusted for HDD

The main disadvantage of the method outlined above is that we only consider the linear response

of energy demand to changes in annual heating degree days. In the appendix, we considered an-

nual sum of heating degree days in distinct temperature bins below the heating threshold of 15°C

for each 12-month billing period. This allowed us to flexibly detect any non-linear response of

building-level heat demand to changes in small versus large changes in local weather conditions

(see Table B3). The results are largely consistent – for temperatures lower than the heating thresh-

old, every 1 °C decrease in temperature in colder temperature bins require relatively more heat

energy. The coefficient on "HDD if (°C < -5)" is significantly lower than what we expect. This

is driven by the fact that observations from buildings with high energy-efficiency standards are

over-represented in the coldest temperature bin.

Using this more precise specification, which controls for the non-linear and heterogeneous re-

sponse of heat energy consumption to temperature variation, we show how heat demand from the

building sample has evolved since 2008. Figure 3 shows that heat demand was declining until

2014, after which the trend is ambiguous, given the wide confidence intervals.

5 Effect Heterogeneity

Now we go beyond estimating the average marginal effects. We expect there to exist considerable

heterogeneity in temperature response, not least because newer buildings were subject to stricter

building energy codes. In this section, we explore which subgroups of buildings response less or

more to temperature, and thus seek to uncover the heterogeneity in heat energy requirements of

the existing building stock. We consider those variables that are most likely related to marginal

effect heterogeneity: year of construction, size of building, the unemployment rate, and federal

states with the West of Germany.

5.1 Building Vintage

To start, we consider energy-efficiency outcomes by building vintage grouped such that they corre-

spond to different energy efficiency codes. Our results suggest that older buildings are less efficient
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Figure 3: Decline in Heat Demand Relative to 2008
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Notes: The graph illustrates how annual heat demand has changed relative to the base year of 2008.
These are coefficient estimates drawn from a regression of heat demand on HDD, disaggregated by 5 tem-
perature bins in the interval (−∞, 15), with fixed effects for building, fuel type, (majority) year of billing
and fuel type by year of billing. 95% confidence intervals provided. Standards errors were clustered at the
zip-code level.
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than newer buildings in both East and West Germany, but the difference is more pronounced in

the West. Energy efficiency regulation in Germany has largely taken the form of building codes,

that define the building-aggregate maximum annual energy requirement per square meter of living

space for newly constructed homes. Table 3 summarizes the time development of building codes

in Germany. The Heat Insulation Ordinance was first introduced in 1978, amended and made pro-

gressively more stringent in 1984 and 1995. It was replaced by the Energy Saving Ordinance in

2002 and subsequently amended in 2009. Note that there were no minimum energy standards for

buildings built before 1978.

Table 3: Standards for New Construction

Year Regulation Max. per annum

Pre-1978 No regulation

1978 Heat insulation (WSchV) 250 kWh/m2

1984 Amendment of WSchV 220 kWh/m2

1995 Amendment of WSchV 150 kWh/m2

2002 Energy saving (EnEV) 100 kWh/m2

2009 Amendment of EnEV 60 kWh/m2

2016 Amendment of EnEV 45 kWh/m2

Notes: The first column indicates the year in which the regulation became effective.
Sources: Galvin and Sunikka-Blank (2013), El-Shagi et al. (2017)

In Table 4, we estimate the response of energy requirements to temperature separately for buildings

in the West and East of Germany7. For the West, the average heating requirement per heating de-

gree day is monotonically decreasing with each successive revision (tightening) of building codes,

until 2009. For instance, the difference in the average temperature response between buildings

built in 1984–1994 and those built in 1995-2001 is 32%. Compared to buildings built from 2009

onwards, buildings built before 1978 are on average less energy-efficient by a factor of 2.

This decreasing pattern is less clear, however, when we consider only the buildings located in

the East of Germany. These results are a strong indication that other factors such as renovations

targeting energy-efficiency of older buildings, other building attributes, or state-level policy efforts

7East is located in the following federal states: Berlin, Brandenburg, Mecklenburg-Vorpommern, Freistaat Sach-
sen, Sachsen-Anhalt, and Freistaat Thüringen.
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could be important in explaining the differences in energy requirements of buildings in the East.

Comparing across the regions, the coefficients in the first column shows that buildings built before

1984 in the East perform comparatively well, while the energy-requirements are lower for build-

ings built from 1995 in the West. Interestingly, pre-1978 (before building regulation) buildings in

the East are significantly older, but on average demand less heat energy per heating degree Celsius.

Table 4: Temperature Response By Year of Construction

West Germany

Response of kWh/m2

(1) (2) (3) (4) (5) (6)

Pre-1978 1978-1983 1984-1994 1995-2001 2002-2008 2009+

Local HDD 0.0367*** 0.0309*** 0.0248*** 0.0169*** 0.0109*** 0.0176**
(0.0004) (0.0006) (0.0004) (0.0004) (0.0005) (0.0018)

N = 1, 045, 616

Adj R2 = 0.7706

Share 0.50 0.10 0.22 0.14 0.04 0.001

Avg. Vintage 1952 1981 1990 1997 2004 2010

East Germany

Response of kWh/m2

(1) (2) (3) (4) (5) (6)

Pre-1978 1978-1983 1984-1994 1995-2001 2002-2008 2009+

Local HDD 0.0300*** 0.0237*** 0.0238*** 0.0207*** 0.0171*** 0.0303***
(0.0001) (0.0013) (0.0011) (0.0001) (0.0016) (0.0077)

N = 317, 401

Adj R2 = 0.8301

Share 0.66 0.04 0.10 0.18 0.01 0.001

Avg. Vintage 1929 1980 1990 1997 2004 2010

Notes: Table presents coefficients on the interactions between Local HDD and building codes. The
specification includes fixed effects for building, fuel type, (majority) year of billing, the starting year of
each billing period, and fuel type by year. The sample covers all buildings using natural gas (high or low
calorific), district heating, and oil. The dependent variable is kilowatt hours consumed per square meter of
heated living space. Standards errors in parentheses are clustered at the zip code level for all specifications.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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5.2 Building Size

Now we explore how the energy requirements of buildings differ by the size of buildings, again

analyzing buildings in the West and East of Germany separately. The results in Table 5 demon-

strate that for both regions, the response of annual kWh/sqm heat demand to an additional heating

degree day is falling with building size. Specifically, the largest subgroup of buildings in the West

(with more than 20 apartments or households) demand on average 26 percent less annual kWh per

sqm in response to each heating degree day compared to two-family homes. Interestingly, relative

to the West, buildings located in the East have on average better energy efficiency standards within

each building size category. Taken all together, these results strongly suggest that larger buildings

are significantly more energy-efficient.

5.3 By Unemployment Rates

Is the distribution of energy-efficiency outcomes inequitable? An important limitation of our data

is that we do not observe the socio-economic characteristics of households or the ownership status

of the buildings. For instance, the income and wealth of the owner of the building or its residents

may play an economically significant role in the incentives to improve the energy-efficiency of

houses.

Instead we use data available at the zip code level and make the plausible assumption that the

location of buildings is strongly correlated with the socio-economic background of residents, i.e.

poorer zip codes tend to accommodate poorer households. Here we consider effect heterogeneity

by unemployment rates, which is an important dimension of socio-economic disparities across

regions.

We pay particular attention to the spatial distribution of unemployment rates in this paper. because

(1) we study primarily multi-apartment buildings and (2) according to official statistics, the large

majority (over 80 percent) of the unemployed population resides in multi-apartments buildings

(Destatis 2018). Specifically, we seek to answer whether less energy-efficient houses are located

in localities or communities marked with higher unemployment rates. In other words, do the least

economically-secure households live in buildings that do not perform as well in terms of energy-
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Table 5: Temperature Response By Size of Building (# of Apartments)

West Germany

Response of kWh/m2

(1) (2) (3) (4) (5)

2 HH 3 - 6 HH 7 - 12 HH 13 - 20 HH 21+ HH

Local HDD 0.0354*** 0.0314*** 0.0285*** 0.0271*** 0.0261***
(0.0003) (0.0003) (0.0003) (0.0004) (0.0004)

N = 2, 460, 694

Adj R2 = 0.9667

Share 0.15 0.51 0.21 0.07 0.07

Avg. Building Size 2 Units 4.22 8.99 15.98 42.97

East Germany

Response of kWh/m2

(1) (2) (3) (4) (5)

2 HH 3 - 6 HH 7 - 12 HH 13 - 20 HH 21+ HH

Local HDD 0.0325*** 0.0287*** 0.0267*** 0.0256*** 0.0243***
(0.0011) (0.0007) (0.0007) (0.0007) (0.0007)

N = 569, 369

Adj R2 = 0.8184

Share 0.04 0.31 0.27 0.13 0.25

Avg. Building Size 2 Units 4.64 9.23 16.23 45.57

Notes: Table presents coefficients on the interactions between Local HDD and building size categories.
The specification includes fixed effects for building, fuel type, (majority) year of billing, the starting year
of each billing period, and fuel type by year. The sample covers all buildings using natural gas (high or low
calorific), district heating, and oil. The dependent variable is kilowatt hours consumed per square meter of
heated living space. Standards errors in parentheses are clustered at the zip code level for all specifications.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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efficiency?

Results in Table 6 paint an interesting picture. The majority of the buildings in the East of Germany

fall into the top tercile of the unemployment rate distribution, with average unemployment rate

of 9.67%. However, we estimate the lowest average heat demand response per heating degree

day for this subgroup of buildings. In contrast, households in the West of Germany living in

buildings that are more energy-efficient are located in the zip codes that fall in the lowest tercile

of the unemployment rate distribution. The conditional average marginal effects estimated for the

West of Germany also highlight potentially large economic inequity in the distribution of energy-

efficiency outcomes, compared to the localities in the East.

We explore these regional disparities in more detail in Figure 4. The labels indicate the corre-

sponding federal state in Germany. Overall, it shows that planning regions with the lowest shares

of zip codes with high unemployment rates have some of the most energy-efficient buildings. On

the flip side, buildings in planning regions with a large majority of zip codes experiencing high un-

employment rates are reasonably energy-efficient. A cursory looks at the labels reveal that regions

in the South states perform the best, followed by regions in the East, and in the middle of the graph

lie regions that fall in the North-West. We explore differences in energy-efficiency outcomes at

the state-level in the next section.
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Table 6: Temperature Response By Terciles of the Unemployment Rate

West Germany

Response of kWh/m2

(1) (2) (3)

T1 T2 T3

Local HDD 0.0279*** 0.0306*** 0.0332***
(0.0004) (0.0003) (0.0003)

N = 2, 107, 369

Adj R2 = 0.7737

Share 0.25 0.39 0.36

Avg. Unemployment % 2.26 4.22 8.65

East Germany

Response of kWh/m2

T1 T2 T3

Local HDD 0.0309*** 0.0275*** 0.0270***
(0.0020) (0.0001) (0.0006)

N = 569, 369

Adj R2 = 0.8184

Share 0.01 0.09 0.90

Avg. Unemployment % 2.14 4.46 9.67

Notes: Table presents coefficients on the interactions between Local HDD and indicators for terciles
of the unemployment rate distribution. The specification includes fixed effects for building, fuel type,
(majority) year of billing, the starting year of each billing period, and fuel type by year. The sample was
limited to years 2009 to 2017, for which the unemployment rates were available. The last row reports the
average unemployment rate for each tercile. The sample covers all buildings using natural gas (high or low
calorific), district heating, and oil. The dependent variable is kilowatt hours consumed per square meter of
heated living space. Standards errors in parentheses are clustered at the zip code level for all specifications.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 4: Regional Distribution of Energy Efficiency

1

1

11

1

2

3

3

3

3

3
3

3

3

3

3

3

3
3

4

5

5

5
5

5

5

5
5

5

5

5 55

6

6

6

6
6

7

7

7
7 7

8

8

8

8

8

8

8

8
8

8
8

8

9

9

9

9

9

9

99

9

9
99

9 9
9

9

9

9

10 11
12

12 12

12

12
13

13

13

13

14

14

14
14

151515
15

16
16

16

16

.015

.02

.025

.03

.035

.04

Av
er

ag
e 

M
ar

gi
na

l E
ffe

ct
 (E

E 
m

ea
su

re
)

0 .2 .4 .6 .8 1
Share of T3 zipcodes in ROR

Notes: The graph shows how energy efficiency varies with socio-economic status of the regions (mea-

sured by the unemployment rate). The vertical axis plots the average marginal effect for each of the 96

spatial planning region (ROR or Raumordnungsregion) in Germany. The labels indicate the corresponding

federal state. These are coefficients on the interaction term between spatial planning regions and heating

degree days. The regression included fixed effects for building, fuel type, (majority) year of billing, the

starting year of each billing period, and fuel type by year. The sample covers all buildings using natural gas

(high or low calorific), district heating, and oil. Standards errors were clustered at the zip code level and all

coefficients were statistically significant at the 1% level. The horizontal axis measures the share of postal

codes in each region that fall in the top tercile (T3) of the national unemployment distribution.

5.4 Regional Energy Efficiency

In addition to the East-West divide in Germany, we further expect that differences between states

in the West could arise for a number of reasons. These may include differences in the availability

and take-up of financing initiatives for retrofits, state level mandates such as the 2015 Renewable

Heat Act (EWärmeG) in Baden Württermberg that was intended to increase the share of renewable

energy in heat supply, or even greener preferences at the household level.

In this section, we show that states in the East are indeed endowed with more energy-efficient

buildings compared to almost all buildings located in the West of Germany. However, there are
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two large and thus important exceptions: the states of Bavaria and Baden Württermberg.

Figure 5 plots the average marginal effects for buildings located in each of the states in West

Germany and East defined as one bloc. The differences are ordered in magnitude and associated

95% confidence intervals are shown. We highlight that buildings observed in Baden Württermberg

and Bavaria are more energy-efficient compared to the East – demanding less heat energy per

square meter on average for each heating degree day.

This is in contrast to the conclusion one would draw from energy performance scores from con-

sumption based EPCs. Scores on energy-performance certificates are unable to purge the effect of

factors such as consumer behaviour, energy prices, and socio-economic factor on the estimated en-

ergy performance of buildings. Indeed, households residing in East of Germany are significantly

poorer than those in the South (Bavaria and Baden Württermberg). Low energy scores on per-

formance certificates, thus, indicate both that buildings in the East are relatively energy-efficient

buildings and the fact that energy consumption is dampened due to low incomes. Indeed, energy

performance scores would lead us to conclude that buildings in the East are more energy-efficient

than those in the rich states of the South. Using our methodological improvement over the use

of energy performance certificates, we are closer to estimating the true potential of buildings –

buildings in the South are in fact performing better than those in the East once we account for

fixed differences.
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Figure 5: Energy Efficiency by States
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Notes: The graph presents the differences in the average marginal effect for each state in West Germany

and states in the East pooled in one group. Corresponding 95 % confidence intervals are shown. The

estimates are coefficients on the interaction between HDD and regions in a regression with fixed effects for

building, fuel type, (majority) year of billing, the starting year of each billing period, and fuel type by year.

The sample covers all buildings using natural gas (high or low calorific), district heating, and oil. Standards

errors were clustered at the zip code level.

6 Machine Learning - Causal Forests

The causal forests approach proposed by Wager and Athey (2018) makes it possible to estimate

building-specific marginal effects, providing a much more detailed picture of the full extent of

heterogeneity in energy-efficiency outcomes.

Causal forests are an extension of the widely used random forest machine learning algorithm

described by Breiman (2001) that provide consistent treatment effect estimates conditional on

covariates at the individual level. In simplified terms, the method works by splitting the dataset

into parts, one of which is used to determine a set of subgroups for estimating heterogeneous

effects and the other of which is used to estimate the effects.

Causal forests can fit very flexible nonlinear functions and uncover nonlinear interactions between
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variables, generating individual marginal effect estimates for each observation. As discussed

above, in this case, the marginal effect measures the impact of heating degree days on energy

consumed per square meter.

We apply causal forests to examine heterogeneous effects over the following variables: building

size, beating fuel type, building age, heating system age, zip-code level unemployment rates and

household purchasing power, state, and regional planning regions (ROR).

In addition, before applying the causal forest, we apply building and year fixed effects by demean-

ing all continuous variables (including the dependent variable) at the building and year level.

Intuitively, our approach allows the treatment effect to vary in nonlinear ways over each of the

included variables, as well as over interactions of the variables. We therefore obtain building-

specific estimates of the relationship between heating degree days and heat energy consumption

per square meter as a function of building attributes. The results we share in this section explore

how those estimates vary over a single variable holding others constant at the sample mean.

Figure 6 is a histogram showing the full distribution of estimated marginal effects. The average

marginal effect is about 0.03, which is similar to the results from the fixed-effects regressions

reported above. The distribution is slightly negatively skewed; there are more outliers on the

efficient (non-responsive to temperature) end of the spectrum than at the other extreme, perhaps

because building standards and retrofits have been effective in ensuring a minimum level of energy

efficiency. Figure C3 shows the geographical distribution of estimated marginal effects.

We contrast our findings with those coming from the "traditional" approach – energy ratings on

energy performance certificates. We show how building-specific marginal effects correspond to

the reported energy scores in the data on energy performance certificates in Figure C4 – which

suggests that buildings with lower energy scores (higher energy-efficiency standards as measures

on the EPC) are more likely to underperform on energy performance predictions8. This is con-

8Although there is a positive correlation in the data, there are many cases with high marginal effects and low energy
scores. This suggests that our methodology may be catching large departures for the best case energy performance
settings/buildings. A definite interpretation of this graph is however difficult because we are unable to distinguish the
type of EPC reported in the data, i.e. whether the energy score is based on engineering estimates (Demand Certificate)
or past energy consumption on inhabitants (Usage/Consumption Certificate).
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sistent with rigorous studies from the field that use actual metered consumption data to show that

realized energy efficiency of homes are not as high as those predicted ex-ante by engineering

models. Based on the results in this paper we argue that despite the best of intentions to pro-

vide transparent and reliable information on the energy quality of residential buildings, scores on

energy performance certificates are not without their shortcomings.

Figure 6: Distribution of Marginal Effects

.

Notes: The graph is a histogram showing the full distribution of building-specific marginal effects,

generated using causal forests. In this case, the marginal effect measures the impact of heating degree days

on energy consumed per square meter.

Examining East and West Germany separately yields an even more interesting picture, as shown in

Figure 7. The negative skewness is particularly pronounced in the East and much less noticeable

in the West, perhaps because of intensive retrofit programs in Eastern states. By further breaking

down the distributions by vintage in Figure 8, we can see that an important driver of the greater

average efficiency in East Germany is greater efficiency of the old buildings that were built before

1978 – retrofit programs likely explain the significant mass on the left side of the distribution. This

East-West divide is likely magnified because a much higher (lower) share of the the building stock

in the East is heated via district heating (heating oil)9.
9Figure C5 shows the distribution of marginal effects by fuel type, in particular we show that buildings using
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Figure 7: Distribution by East and West Germany

Notes: The graph shows the full distribution of building-specific marginal effects for East and West

Germany generated using causal forests.

Figure 8: New Versus Old Buildings: East & West

.

Notes: The graph shows how the distribution of building-specific marginal effects varies for East and

West, separately for buildings before and after 1978, when energy standards became effective.

We can also examine how building efficiency varies based on the exact year when they were built,

and the results provide further support for the hypothesis that retrofit programs in East Germany

heating oil are relatively less energy-efficient.
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led to a more egalitarian distribution of energy efficiency. Given that the retrofit rate of existing

buildings has been abysmally low over the last two decades (Galvin and Sunikka-Blank, 2013),

the main candidate to have improved the energy-performance of buildings are building codes, that

have been rising in stringency since 1978, when they were first introduced. We do not quantify

the causal link in this paper, but using precise measures we provide evidence on the strong neg-

ative association between realized heat energy-requirements of buildings and the stringency of

federally-enforced building codes in Germany.

As shown in Figure 9, newer buildings are more energy efficient. In particular, efficiency seems

to start increasing around 1975 in the West and then increases dramatically again in the 1990s.

But more interestingly, significant efficiency improvements are also evident for buildings built

between 1950 to 1975 in the East, before national building codes came into effect. This can help

us further understand the East/West distributions we studied in Figure 7. We also show the age

distribution of the building stock by region.
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Figure 9: Marginal Effects by Construction Year

.

Notes: The first graph shows how the marginal effects generated using causal forests vary over construc-

tion year, holding all other variables constant at the sample mean, separately for East and West Germany.

Grey bands indicate the 95% confidence intervals. The second graph in the panel plots the frequency of

buildings observed by construction year.

Finally, we can take a more direct look at how estimated effects vary with regional economic

conditions by plotting estimates against unemployment rates in each building’s postal code. The

first panel in Figure 10 shows that zip codes with higher unemployment rates appear to have less

efficient buildings on average. As shown in the second panel, this effect is much more pronounced
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in West Germany than in East Germany, again likely due to East German retrofit efforts in the

1990s. This reinforces the point made above: East German retrofit efforts appear to have yielded

substantial improvements in energy efficiency for those living in less prosperous zip codes.

Figure 10: Marginal Effects By Unemployment Rates

Notes: The graphs shows how ML-based building-specific marginal effects vary with the corresponding

zipcode’s average unemployment rate. The second panel shows the correlations separately for East and

West Germany. Regression lines in blue shows that areas with higher unemployment have somewhat lower

estimated efficiency on average and this relationship is stronger in the West than in the East.
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7 Explaining the Distribution of Energy Efficiency

What may explain the seemingly higher number of thermal retrofit measures in the East while the

regions in the North-West lagging behind? We explore further the distribution of heating degree

days across these regions and find that the spatial distribution of energy-efficiency is driven by

heating needs. Figure 11 shows a strong negative relationship between the energy performance of

the average building in each region and recorded heating degree days from 2008 to 2018. These

results suggest that energy efficiency of buildings is likely not a low-hanging fruit and that lower

expected returns to investments explain why low-income zip codes in the West do not catch up. In

other words, the regional inequality in energy-efficiency of buildings are likely optimal outcomes.

Thus the promotion of energy-efficiency in regions lagging behind may be a cost-inefficient policy,

especially given warmer heating seasons.

Figure 11: Heating Needs and Energy Efficiency Outcomes
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Notes: The graph shows how energy efficiency varies with regional heating needs, measured using

recorded heating degree days from 2008 to 2018. The vertical axis plots the average marginal effect for

each of the 96 spatial planning region (ROR or Raumordnungsregion) in Germany. The labels indicate the

spatial planning region number. These are coefficients on the interaction term between spatial planning

regions and heating degree days. The regression included fixed effects for building, fuel type, (majority)

year of billing, the starting year of each billing period, and fuel type by year. The sample covers all buildings

using natural gas (high or low calorific), district heating, and oil. Standards errors were clustered at the zip

code level and all coefficients were statistically significant at the 1% level.
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8 Conclusion

By combining over 3 million yearly heating bills with daily temperature data at local weather sta-

tions, we examine the long-term realization of energy-efficiency outcomes in the housing sector.

By examining the distribution of outcomes we find large regional differences. In particular, results

suggest that early investments in retrofitting has had a lasting impact in the East of Germany –

which is largely missing for the poorer zip codes in the West of Germany. A closer look reveals

that although the distribution of energy-efficiency outcomes is not equitable, it is not necessarily

cost inefficient. The prevailing distribution of energy efficiency conforms to the distribution of

heating degree days. A targeted EE policy may aim to close the inequality in energy performance

of buildings between the regions. However, this may come at a real cost in terms of efficiency.

A gradual fall in heating degree days due to global warming may be undermining economic in-

centives for energy-efficiency in the housing sector. We find strong evidence that heat demand

declined up until 2014, after which gains in energy-efficiency were not statistically significant.

We also considered the non-linear response to temperature shocks in the last decade, in addition to

controlling for changes in precipitation and wind conditions. Thus far, we have not examined how

effect heterogeneity (by construction year or size of building, for example) varies with heating

degree days in different temperature bins. It remains a very interesting extension to the paper,

given that the warming climate brings milder winters, leading to the shift of heating degree days

from colder to relatively warmer temperature intervals.

The main shortcoming of the paper stems from data limitations. We did not have access to high-

frequency data on energy consumption and crucial information on the socio-economic character-

istics of households that reside in the buildings observed. Barring these caveats, we hope to show

in this paper that annual billing data is nevertheless useful to get an accurate picture of the under-

lying energy-efficiency performance of buildings. The main strength of the empirical approach in

this paper vis-a-vis ratings on energy performance certificates is that by accounting for fixed dif-

ferences (heating preferences and incomes of households, for example) between buildings we are

closer to approximating the true energy performance potential of homes. These approximations

may in turn be more reliable than energy performance scores on energy performance certificates,
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allowing engineers to identify and target buildings that would benefit the most from renovations.
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A Appendix

Institutional Setting

Here we provide some context for the analysis – we describe the residential building sector in

Germany and how energy ratings on energy performance certificates are calculated.

A.1 National Context

Space heating accounted for approximately 70% of the final energy consumed by the private hous-

ing sector in 2017, and residential heating is almost one-fifth of Germany’s total final energy

consumption (AGEB 2018 and BMWi 2019).

The German Federal Statistical office conducts a special microcensus10 survey every four years

to report on the current housing situation in Germany. Based on the 2014 microcensus results

(Destatis 2016), 50% of the rented German housing units were using natural gas for home heat-

ing, 22% were using district heating, another 19% using heating oil, and only about 2% using

electricity. These figures were approximately the same in the 2010 and 2018 microcensus reports

(Destatis 2012 and Destatis 2019). In this paper, we study buildings that were using natural gas

(high calorific or low calorific), district heating, and mineral oil to heat their homes from 2008

to 2018. This amounts to excluding those buildings using LPG, pellets, electricity, wood, coal,

brown coal, steam, and coke as main heat fuel energy.

Table A1 shows the distribution of buildings represented in the sample by fuel type and number

of housing units. Compared to the 2014 microcensus survey results, district heating as the main

fuel type is under-represented in the sample, while natural gas and heating oil are both over-

represented. In the billing data sample, we observe all residential building types except those

with only one housing unit, i.e. single-family homes. The sample of buildings is indeed not

representative of the full population of the building stock in Germany – large housing blocks

(with 13 or more apartments) are significantly overrepresented. The sample has a higher share of

buildings with 3 to 6 and 7 to 12 apartment units. Nevertheless, analysis based on the building

10The microcensus surveys a representative one percent sample of the population.
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sample in this paper is informative because more than two-thirds of German households live in

buildings with 2 or more homes or apartments (Destatis 2019).

Table A2 shows the regional distribution of the full sample. The sample’s regional coverage mir-

rors the distribution of the population of buildings (Destatis 2016). In total, we observe buildings

from 7769 zip codes, in all sixteen federal states in Germany.

Figure A1 shows the distribution of main fuel types used by buildings in the sample by terciles of

the unemployment rate distribution. Tables B1 and B2 compare the building sample with statis-

tics at the planning regional level (Raumordnungsregion or ROR) from the 2010 Microcensus for

owner-occupied and rented buildings with 2 or more housing units. We show some evidence that

distribution by fuel type is likely representative for the population of multi-apartment buildings 11.

Table A1: Buildings by Fuel Type and Number of Apartments

Building Size by Number of Apts

Fuel Type All 2 3 - 6 7 - 12 13 - 20 21 +

Natural Gas H 60% 6.4 28.6 15.1 5.0 4.6

Natural Gas L 1% 0.1 0.4 0.4 0.2 0.2

District Heating 10% 0.2 1.8 2.4 1.6 4.1

Oil 29% 6.4 16.3 4.1 1.1 1.1

Total 100% 13% 47% 22% 8% 10%

Notes: This table show the distribution of the 3,030,063 sample of heating bills by fuel type and
building size. The sample covers buildings that were billed starting from January 2008 to June 2018.

A.2 Limitations of Energy Performance Certificates

In this section, we explain why energy performance scores that use past consumption to measure

the energy-efficiency rating of buildings are imperfect measures of energy-efficiency. We start

with a brief description of how energy performance scores based on consumption (as opposed to

11Since the microcensus is conducted at the household level, the data describes the distribution of apartments and
not the building stock. Thus, we can only compare the data sample (at the building level) to the Microcensus statistics
(at the apartment level) in a very general and rough manner.
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Table A2: Regional Shares

State Observations Percent # of Zip Codes Buildings

Schleswig-Holstein 56,792 1.9 361 7,245

Hamburg 56,900 1.9 97 8,101

Niedersachsen 291,197 9.6 782 36,623

Bremen 27,147 0.9 34 3,314

Nordrhein-Westfalen 769,198 25.4 864 100,811

Hessen 303,301 10.0 535 38,287

Rheinland-Pfalz 127,026 4.2 627 15,580

Baden-Württemberg 379,418 12.5 1146 46,072

Bayern 427,125 14.1 1864 52,366

Saarland 22,590 0.8 68 2,799

Berlin 117,986 3.9 189 15,538

Brandenburg 63,946 2.1 210 7,913

Mecklenburg-Vorpommern 61,771 2.0 186 7,932

Sachsen 194,499 6.4 388 24,230

Sachsen-Anhalt 80,564 2.7 207 10,712

Thüringen 50,603 1.7 211 6,404

Total 3,030,063 100 7,769 384,223

Notes: This table shows the number of heating bills observed in the full sample for each of the 16 states.

theoretical energy-requirements using engineering calculations) are calculated:

In accordance with the official guidelines12, energy performance ratings on consumption-based

("Verbrauchsausweis") energy performance certificates (EPC) are calculated using building-level

consumption in the past three years (in kWh per square meter of usable living space) and a climate

factor to adjust for weather and climate differences. The climate factor anchors "typical climate" to

the reference location of Potsdam, taking the average of annual heating degree days recorded from

1995 to 2012. Thus, in any given year if the local weather is warmer (colder) than "typical climate"

in Potsdam, then consumption is adjusted upwards (downwards) accordingly by multiplying the

annual consumption in kWh per square meter by the ratio of the annual sum total of heating degree

12Bekanntmachung der Regeln für Energieverbrauchswerte im Wohngebäudebestand Vom 7. April 2015
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Figure A1: Fuel Type by Terciles of the Unemployment Rate
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Notes: This figure shows the distribution of main fuel types used by buildings in the sample by terciles
of the unemployment rate distribution, defined using data from RWI-GEO-GRID.

days recorded in Potsdam and at the local weather station. This allows buildings nation-wide to

be compared to each other in terms of energy performance.

Using this method, however, does not give a transparent rating of the heat energy requirements

of a building because the performance scores are not independent of the behaviour of tenants vs.

residents, energy prices by fuel type, and other demographic and socio-economic factors. More

importantly, correcting consumption for temperature and climate change to determine the "true"

trend in heat demand may require much more than multiplicative climate factors. It requires us to

consider heterogeneous response to changes in temperature that vary by regions, income, tastes,

building attributes, and other energy-efficiency parameters. In comparison, the energy demand

certificate ("Bedarfsausweis") is a more objective measure because it is the theoretical energy-

requirement of a building.

In absence of sufficient data on energy-demand certificates for buildings, it is useful to consider

how consumption responds to temperature as an improvement over consumption-based energy

performance scores on EPCs. As we will show in the results sections, the strong co-movement

between heat energy demand and heating degree days allows us to precisely estimate the energy

performance of the existing building stock in a fixed-effects framework and detect even very small

differences in energy efficiency between buildings and regions using machine learning.
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B Appendix

Additional Tables

Table B1: Shares of Fuel Type by Planning Regions (ROR) - Tercile 1

T1 of the Unemployment Rate

Microcensus 2010 Building Sample

State ROR No. District Heat Oil Natural Gas District Heat Oil Natural Gas

Ingolstadt 907 0.10 0.34 0.55 0.05 0.54 0.41

Landshut 908 0.00 0.54 0.46 0.02 0.49 0.48

Allgäu 901 0.06 0.57 0.38 0.03 0.53 0.44

Donau-Iller (BY) 904 0.00 0.57 0.43 0.04 0.52 0.44

Donau-Iller (BW) 802 0.18 0.37 0.45 0.09 0.41 0.51

Südostoberbayern 916 0.08 0.61 0.31 0.07 0.60 0.34

Augsburg 902 0.08 0.32 0.61 0.08 0.35 0.58

Westmittelfranken 917 0.00 0.55 0.45 0.01 0.59 0.40

Regensburg 915 0.00 0.57 0.43 0.02 0.52 0.46

München 910 0.25 0.30 0.45 0.12 0.37 0.52

Würzburg 918 0.00 0.35 0.65 0.06 0.35 0.59

Average 0.07 0.46 0.47 0.05 0.48 0.47

Notes: The table compares the shares of main fuel types by planning regions from the 2010 Mi-
crocensus statistics on housing and the billing panel used in the paper. A planning region falls into
the tercile (T1) with the lowest unemployment rates, if more than 75 % of the zipcodes fall into T1.
The data for the unemployment rate come from RWI and microm (2020) and Microcensus data from
Destatis (2012). The Microcensus reports the number of apartment units heated with different fuel types,
while the data used in the paper is at the building level. Thus, these comparison are an approximation at best.
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Table B2: Shares of Fuel Type by Planning Regions (ROR) - Tercile 3

T3 of the Unemployment Rate

Microcensus 2010 Building Sample

State ROR No. District Heat Oil Natural Gas District Heat Oil Natural Gas

Mecklenburgische Seenplatte 1301 0.65 0.12 0.24 0.15 0.32 0.53

Vorpommern 1303 0.62 0.10 0.28 0.34 0.08 0.58

Altmark 1501 0.43 0.14 0.43 0.30 0.04 0.65

Halle/S. 1503 0.45 0.15 0.40 0.27 0.13 0.60

Anhalt-Bitterfeld-Wittenberg 1502 0.42 0.16 0.41 0.23 0.11 0.67

Westsachsen 1404 0.42 0.08 0.50 0.20 0.07 0.73

Uckermark-Barnim 1205 0.58 0.08 0.34 0.33 0.16 0.51

Südsachsen 1403 0.33 0.11 0.56 0.16 0.09 0.76

Oderland-Spree 1203 0.47 0.08 0.45 0.42 0.03 0.55

Oberlausitz-Niederschlesien 1402 0.38 0.15 0.47 0.25 0.10 0.65

Oberes Elbtal/Osterzgebirge 1401 0.47 0.06 0.47 0.40 0.05 0.55

Mittleres Mecklenburg/Rostock 1302 0.62 0.07 0.31 0.43 0.03 0.54

Magdeburg 1504 0.38 0.09 0.53 0.17 0.07 0.76

Berlin 1101 0.44 0.21 0.35 0.28 0.24 0.48

Lausitz-Spreewald 1202 0.54 0.10 0.35 0.23 0.12 0.66

Nordthüringen 1602 0.38 0.14 0.48 0.13 0.06 0.81

Emscher-Lippe 509 0.23 0.13 0.64 0.21 0.13 0.65

Prignitz-Oberhavel 1204 0.43 0.13 0.44 0.35 0.10 0.56

Ostthüringen 1603 0.43 0.12 0.45 0.18 0.09 0.73

Mittelthüringen 1601 0.41 0.08 0.51 0.20 0.05 0.75

Westmecklenburg 1304 0.49 0.07 0.44 0.31 0.06 0.63

Ost-Friesland 312 0.04 0.07 0.89 0.04 0.05 0.91

Bremen 401 0.27 0.18 0.55 0.04 0.27 0.68

Dortmund 506 0.10 0.14 0.76 0.10 0.18 0.72

Average 0.42 0.11 0.47 0.24 0.11 0.65

Notes: The table compares the shares of main fuel types by planning regions from the 2010
Microcensus statistics on housing and the billing panel used in the paper. A planning region falls
into the tercile (T3) with the highest unemployment rates, if more than 75 % of the zipcodes fall into
T3. The data for the unemployment rate come from RWI and microm (2020) and Census data from
Destatis (2012). The Microcensus reports the number of apartment units heated with different fuel types,
while the data used in the paper is at the building level. Thus, these comparison are an approximation at best.
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Table B3: Non-Linearities in Temperature Response

Dependent variable: kWh/m2

(1) (2) (3)

Full "Altbau" Not WSVO1995

HDD if (°C < -5) 0.0255*** 0.0280*** 0.0279***
(0.0003) (0.0005) (0.0006)

HDD if (-5 ≤ °C < 0) 0.0307*** 0.0330*** 0.0322***
(0.0003) (0.0004) (0.0005)

HDD if (0 ≤ °C < 5) 0.0266*** 0.0284*** 0.0282***
(0.0004) (0.0005) (0.0008)

HDD if (5 ≤ °C < 10) 0.0232*** 0.0253*** 0.0255***
(0.0005) (0.0007) (0.0011)

HDD if (10 ≤ °C < 15) 0.0210*** 0.0259*** 0.0275***
(0.0010) (0.0014) (0.0021)

Interaction Terms

X "Neubau" X WSVO1995

HDD if (°C < -5) -0.0125*** -0.00681***
(0.0005) (0.0009)

HDD if (-5 ≤ °C < 0) -0.0149*** -0.0105***
(0.0004) (0.0005)

HDD if (0 ≤ °C < 5) -0.0123*** -0.00887***
(0.0005) (0.0008)

HDD if (5 ≤ °C < 10) -0.0139*** -0.0102***
0.0007) (0.0010)

HDD if (10 ≤ °C < 15) -0.0182*** -0.0123***
(0.0014) (0.0024)

N 3,030,063 1,363,017 439,126
Adj R2 0.777 0.785 0.800
Zip Codes 7,769 6,860 5,340

Notes: The full sample covers all buildings using natural gas (high or low calorific), district heating, and
oil. The dependent variable is kilowatt hours consumed per square meter of heated living space. "Altbau"
equals 1 if the building was constructed before 1995. "Neubau" are buildings built starting 1995. WSVO
1995 is a composite measure indicating whether the roof, loft ceiling, windows, outer wall, and basement
ceiling met thermal insulation standards under the 1995 building codes. This information was only avail-
able from energy performance certificates issued from 2014 to 2019. Standards errors in parentheses are
clustered at the zip code level for all specifications. All regressions include fixed effects for building, fuel
type, (majority) year of billing, the starting year of each billing period, and fuel type by year. * p < 0.05,
** p < 0.01, *** p < 0.001.
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Table B4: Accounting for Other Weather Variation

Dependent variable: kWh/m2

(1) (2) (3) (4)

HDD 0.0306*** 0.0306***
(0.0002) (0.0002)

HDD if (°C < -5) 0.0255*** 0.0253***
(0.0003) (0.0003)

HDD if (-5 ≤ °C < 0) 0.0307*** 0.0305***
(0.0003) (0.0003)

HDD if (0 ≤ °C < 5) 0.0266*** 0.0262***
(0.0004) (0.0004)

HDD if (5 ≤ °C < 10) 0.0232*** 0.0227***
(0.0005) (0.0005)

HDD if (10 ≤ °C < 15) 0.0210*** 0.0197***
(0.0010) (0.0010)

Precipitation (mm) -0.0565** -0.0547**
(0.0212) (0.0200)

Humidity (%) 0.691*** 0.907***
(0.112) (0.105)

N 3,030,063 3,030,063 3,030,063 3,030,063
Adj R2 0.776 0.777 0.776 0.777

Notes: The full sample covers all buildings using natural gas (high or low calorific), district heating,
and oil. The coefficient on the HDD should be interpreted as the increase in kWh per square meter living
space for each 1°C increase in the annual sum of heating degree days, with mean temperatures below
15°C. Similarly in the sixth row, the coefficient should be interpreted as the increase in kWh per square
meter for each 1°C increase in the annual sum of heating degree days, with mean temperatures inside the
interval (10 ≥ °C < 15). Precipitation is the average of total precipitation height (mm) on days with mean
temperatures below 15°C. Relative humidity is the average of the mean relative humidity (%) on days with
mean temperatures below 15°C. Standards errors in parentheses are clustered at the zip code level for all
specifications. All regressions include fixed effects for building, fuel type, (majority) year of billing, the
starting year of each billing period, and fuel type by year. * p < 0.05, ** p < 0.01, *** p < 0.001.

44



C Appendix

Additional Figures

Figure C1: Fall in Heating Degree Days
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Notes: The horizontal axis shows the percent change in heating degree days (HDD), recorded from

2013 to 2018 relative to that from 2003 to 2012). The labels indicate the spatial planning region number.

The vertical axis measures the average building-level marginal effect of HDD on heat demand for each of

the 96 spatial planning region (ROR or Raumordnungsregion) in Germany. These are coefficients on the

interaction term between spatial planning regions and heating degree days. The regression included fixed

effects for building,fuel type, (majority) year of billing, the starting year of each billing period, and fuel

type by year. The sample covers all buildings using natural gas (high or low calorific), district heating, and

oil. Standards errors were clustered at the zip code level and all coefficients were statistically significant at

the 1% level.
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Figure C2: WSVO 1995 By Component
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(a) Roof (b) Loft Ceiling
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(c) Outer Wall (d) Windows
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(e) Basement (f) Heating System

Notes: The graphs summarize the share of buildings that are certified to meet the minimum thermal in-

sulation standards of 1995 for all six building components (the roof, loft or top ceiling, outer wall, windows,

basement ceiling, and the heating system). 46



Figure C3:
Geographical Distribution of Buildings and

Marginal Effects from Causal Forests

Notes: The map shows those buildings which were used in the main analysis. Each dot represents a

building in the sample and depicts building-specific marginal effects generated using causal forests.
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Figure C4:
Energy Performance Scores Versus Marginal Effects from Causal Forests

Notes: The graphs plot the energy performance scores reported on Energy Performance Certificates

(issued from 2008 to 2019) against the building-specific marginal effects generated using causal forests.

The energy scores are measured in kWh/square meter of living space required for heat energy annually.

The type of EPC (demand or consumption-based) was not distinguished in the data sample.
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Figure C5:
Distribution by Fuel Type for East and West Germany

Notes: The graph shows the distribution of ML-based building-specific marginal effects by main fuel

type in East and West Germany.
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