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Abstract

We analyze oligopolistic third-degree price discrimination relative to uniform pricing when

markets are always covered. Pricing equilibria are critically determined by supply-side fea-

tures such as the number of firms and their marginal cost differences. It follows that each

firm’s Lerner index under uniform pricing is equal to the weighted harmonic mean of the

firm’s relative margins under discriminatory pricing. Uniform pricing then decreases average

prices and raises consumer surplus. We provide an intriguingly simple approach to calculate

the gain in consumer surplus and loss in firms’ profits from uniform pricing only based on

market data of the discriminatory equilibrium (prices and quantities).
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1 Introduction

1.1 Motivation and Contribution

Third-degree price discrimination is a key management practice, for instance, in the form of

geographic market segmentation, whereby different retail prices are charged in different countries

of the European Union (see, e.g., ECB 2011). Due to its explicit policy objective to create a

Single Market, the European Union, however, has recently passed a geo-blocking directive (EU

Regulation 2018/302) that prevents such discriminatory pricing practices at least in parts, that

is, for online stores that discriminated final consumers on the grounds of their geographic (i.e.,

country) location. This directive has spurred an ongoing policy debate whether geo-blocking

and corresponding discriminatory practices are to be banned or not.1 While much is known now

about the welfare effects and the profitability of third-degree price discrimination in a monopoly,

our knowledge about oligopolistic third-degree price discrimination is less clear-cut. Based on

the logic of the widely used Hotelling model of product differentiation (which allows to focus

exclusively on the price effects of third-degree price discrimination), we show that preventing

such discriminatory practices, for instance by banning geo-blocking, is undoubtedly benefiting

consumers.

In detail, our contribution is to analyze the welfare effects and the profitability of third-degree

price discrimination in an asymmetric oligopoly, where firms have different marginal production

costs. We first show that firms’ (bilateral) price differences in any market are always the same,

independently of the pricing regime. Price differences only depend on supply-side features and

are independent of the parameters of the demands. It then follows that firms’ output levels are

the same under discriminatory and uniform pricing in all markets. As a consequence of this, price

discrimination does not affect social welfare. Nevertheless, firms’ demands and market shares

across markets may differ depending on competitive intensities which in turn depend on demand

parameters. Our second finding is based on this result and it comes in two practically important

formulas: Firstly, we show that each firm’s aggregate price elasticity under uniform pricing is

the weighted arithmetic mean of the firm’s market-specific price elasticities under discriminatory

1See, e.g., https://www.europarl.europa.eu/thinktank/en/search.html?word=geo-blocking&page=1.
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pricing, where the weights are given by the firm’s output in market j relative to its total output.

Secondly, the relative margin (or, Lerner index) under uniform pricing is given by the weighted

harmonic mean of the firm’s relative margins (or, Lerner indices) under discriminatory pricing,

where the weights are given again by the firm’s output in market j relative to its total output.

The harmonic mean logic implies that the relative margin under uniform pricing is always

strictly lower than the weighted arithmetic mean of the relative margins under discriminatory

pricing; in other words, market power is reduced. This translates into the aggregate Lerner

index being smaller under uniform than under discriminatory pricing. There is, unambiguously,

a consumer surplus loss from price discrimination, which can be easily calculated only based on

observables under discriminatory pricing. Simply from market prices and firms’ outputs we can

recover consumer surplus under uniform pricing.

Due to best-response symmetry—whereby firms agree in which market segment to set the

higher and where the lower prices—firms have clear incentives to collectively achieve the price

discrimination outcome. For instance, firms may want to segment markets and prevent arbi-

trage to make price discrimination possible. From the firms’ perspective, the discriminatory

equilibrium represents a Pareto-improvement vis-à-vis the equilibrium under uniform pricing.

Our demand system is closely related to the one proposed by Somaini and Einav (2013), who

derived it from generalizing the Hotelling duopoly model to the case of m ≥ 2 firms. Demand is

always covered, all firms are directly linked and compete this way symmetrically with each other.

In analogy to the monopoly benchmark, which exclusively highlights the demand-side (“stay

home”) determinants of the welfare effects of price discrimination, we analyze the oligopoly

case with inelastic market demands to focus the analysis on the supply-side determinants of

price discrimination and its welfare effects (which are driven by the “switch suppliers”-aspect

of demand). We achieve this modeling approach with a “covered demand” model. While our

approach is theoretically justified, we also do not regard it as implausible: when for a particular

product the relevant market is considered, all products consumers can substitute to are already

included, so that the assumption that market demand is fully price inelastic is plausible under

this practice. And indeed, antitrust authorities typically define the market to be considered as

the relevant market—as delineated by the SSNIP (“Small but Significant and Non-transitory
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Increase in Price”) test—that comprises all substitutes to a particular product up to a certain

threshold. Importantly, even if with covered demand price discrimination has no effect on social

welfare, it affects consumer surplus, which represents the objective of most antitrust authorities

(see, e.g., Davies and Lions, 2007, or Whinston, 2007). Finally, our demand system allows for

much flexibility: demand characteristics affect the size of the different markets, the price levels,

and firm’s market shares that can vary across markets.

In an extension, we show that our insights also hold if price discrimination is constrained

by arbitrage. Practically, unconstrained price discrimination can only become effective if ar-

bitrageurs cannot resell goods sourced in the low-price region to the high-price region (see

Armstrong, 2008). Thus, when policy makers wish to discourage price discrimination, they will

often take the indirect route of ensuring that consumer arbitrage is as easy as possible, for in-

stance by integrating markets (see Armstrong, 2008). In the EU, the creation of a Single Market

is an explicit policy objective. Accordingly, the European Union has passed the geo-blocking

directive (EU Regulation 2018/302), which bans price discrimination of online stores vis-à-vis

final consumers on the grounds of their geographic (i.e., country) location since 2018. This

recent geo-blocking directive is fitting this strategy as it tries to enhance cross-border arbitrage

by consumers. If markets are perfectly integrated in the sense that consumers can buy a certain

good in any other country at the terms posted in that country, then any international price

discrimination is doomed to fail, so that the products of any firm i must be traded at the same

price in the integrated market area. By our analysis, such market integration—which makes ar-

bitrage as easy as possible and effectively yields uniform pricing—is desirable from a consumer

point of view.

1.2 Related Literature

The related literature can be divided into the literature on monopolistic and oligopolistic third-

degree price discrimination. The literature on monopolistic third-degree price discrimination has

focused on the demand conditions which determine the welfare effects of price discrimination.

This welfare effect results from a trade-off between the misallocation effect and the output effect

relative to the uniform pricing rule. While Pigou considered the linear (downward sloping)
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demand case, Robinson (1933) and Schmalensee (1981), and more recently Aguirre, Cowan and

Vickers (2010) derived complementary results for convex and concave demands. Varian (1985)

extends Schmalensee (1981) by allowing for imperfect arbitrage when marginal costs are constant

or increasing, and Schwartz (1990) extends Varian (1985) for the case where marginal costs are

decreasing. Cowan (2012, 2016) focuses on the social welfare and consumer surplus effects of

monopolistic third-degree price discrimination depending on market demands. He identifies,

beside other things, “reasonable” demand conditions such that price discrimination increases

consumer surplus. The main insight from this literature is that market demand curvatures are

critical for re-solving the trade-off of the misallocation effect and the output effect associated

with price discrimination.2 It remains an open question, however, in how far these insights apply

to oligopolistic markets.

The literature on oligopolistic third-degree price discrimination is relatively sparse. It has

to be divided into approaches that build on best-response symmetry—where firms agree on

where to set higher prices—and those that build on best-response asymmetry—where firms

disagree on where to set higher prices (see Corts 1998). This distinction builds on Robinson’s

(1933) insight that third-degree price discrimination leads to a higher price in one market (the

“strong” market) and to a lower price in the other market (the “weak” market) when compared

with a uniform price a monopolist would charge based on the aggregated demand. Under best-

response asymmetry, firms disagree where to set higher and where to set lower prices; in this case,

firms find themselves in a prisoners dilemma as price discrimination intensifies competition (see,

e.g., Armstrong 2008). Firms then have a collective incentive to prevent price discrimination

(see, e.g., Stole 2007). The literature on best-response symmetry started out with Holmes

(1989), who mainly showed that the output effect of third degree price discrimination is the

sum of Schmalensee’s (1981) adjusted concavity condition (which mirrors the market demand

effect) and the elasticity-ratio condition (which picks up the oligopolistic competition effect).3

2Notably, there is also much research on other forms of monopolistic price discrimination, such as second-degree

price discrimination (e.g., Anderson et al., 2011).

3In a spatial model of monopolistic competition that is not analytically tractable, Borenstein (1985) compares

different sorting criteria for firms, and finds, using computer simulations, that price discrimination based on

consumers’ reservation prices tends to better for consumers than discrimination based on consumers’ strength of
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Subsequent work on oligopolistic third-degree price discrimination with symmetric firms has

been further studied in Armstrong and Vickers (2001), Weyl and Fabinger (2013), Adachi and

Fabinger (2020) and Miklos-Thal and Shaffer (forthcoming). Armstrong and Vickers (2001), in

particular, show that for sufficiently competitive markets, price discrimination increases profits

and reduces welfare. Tan and Zhou (2019) analyze oligopolistic price competition with multi-

sided markets and a general discrete choice demand, and as a side finding (see their Proposition

7 in Section C of the Appendix), they show for the case where firms have identical costs that

engaging in third-degree price discrimination is more profitable than uniform pricing. Building

on earlier work for the monopolistic case (Chen and Schwartz, 2015), Chen et al. (2019) analyze

differential pricing in oligopolies where market-delivery costs differ across markets. With such

market-specific delivery costs, uniform pricing necessarily induces an allocative inefficiency as

cost differences cannot be reflected in prices; our main insights extend to the case of market-

delivery costs. Adachi and Fabinger (2020) extend Aguirre, Cowan, and Vickers (2010) to the

oligopoly case for symmetric firms case.4 Altogether, the existing literature does not determine

the welfare effects of third-degree price discrimination in asymmetric oligopolies.

We proceed as follows. In Section 2 we analyze the covered market model. Section 3 discusses

our extension on arbitrage costs. Finally, Section 4 concludes.

2 Model

2.1 The LCD-Model

We build on the (linear-) covered demand model (in short: LCD-model), which is closely related

to the generalized Hotelling model proposed by Somaini and Einav (2013). Assume m firms sell

their products in n markets, where m,n > 1. Each firm produces a single product and firm i’s

marginal production cost is ci ≥ 0.

Market demands are independent and completely inelastic. The demand of firm i in market

brand preferences.

4In the last part of their paper, Adachi and Fabinger (2020) also discuss heterogeneous firms (see their Propo-

sition 7), but do not derive results based on exogenous model inputs.
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j is a linear function of its own price and all other firms’ prices in that market. We assume

symmetry in all substitutability relations. In addition, all products are directly linked, so that

consumers as a whole can substitute away to all other products. Taken together, we obtain a

(linear-) covered demand model LCD := {Dj
i }
j=1,...,m
i=1,...,n , where the demand of firm i in market j

is given by

Dj
i (p

j
1, ..., p

j
m) = aj + bj

∑
i′ 6=i

(pji′ − p
j
i ), with aj > 0 and bj > 0. (1)

The LCD-model nests the Hotelling duopoly model and the Salop-circle model for two and

three firms.5 It does not nest the Salop model for four and more firms. To understand the

difference, take m = 4. In the Salop model each firm only competes directly with its two

neighbors and not with the remaining competitor. This kind of asymmetry of the Salop model

is eliminated in our model, where all firms compete directly. In the LCD-model the four firm

case can be thought of represented by six equally long lines such that all firms are bilaterally

connected with each other, that is, by a tetrahedron. We formally derive this model in the next

subsection.

2.2 Derivation of the LCD-Model

The LCD-model can be derived from a horizontal product differentiation model in the spirit of

the Hotelling duopoly model as suggested by Somaini and Einav (2013). There are i = 1, ...,m

firms each producing a horizontally differentiated product. The firms sell their goods in j =

1, ..., n independent markets. In each market j, there are lm := m(m−1)
2 Hotelling lines, such that

all firms are directly linked with each other. The length of each line in market j is Lj . As in the

Hotelling duopoly model, two firms i and i′, with i 6= i′ are always located at the end points of

a line. Let there be a total mass of consumers of M j in market j, which is uniformly distributed

over all lines. Thus, consumers are distributed with constant density f j := M j/(lmL
j) over

each line of length Lj . Every consumer is distributed to one of the lm lines and is identified by

its address x ∈ [0, Lj ] on this line. All consumer have unit demands. A consumer x, located on

5In fact, the demand function (1) captures the Hoteling model if we have, as we have assumed, an inner solution,

that is, if the price the marginal consumer pays plus her transportation costs do not exceed her valuation for the

product.
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a line connecting firms i and i′, obtains utility of U ji (x) = vj − pji − tj |xi − x| from consuming

product i at price pi and incurring “transportation” costs tj > 0 per unit of distance, where

xi stands for firm i’s location on the line. The parameter vj stands for the gross utility of

consuming one unit of the good a consumer obtains in market j. Take the line between the

firms i and i′, with i 6= i′. Firm i’s demand on the respective line is determined by the location

of the indifferent consumer x′ which follows from

U ji (x′) = vj − pji − t
jx′ = vj − pji′ − t

j
(
Lj − x′

)
= U ji′(x

′),

where we assumed that firm i is located at x = 0 and firm i′ is located at x = Lj . Solving for x′

we get the indifferent consumer and thus firm i’s demand on the line connecting firms i and i′:

Dj
ii′(p

j
i , p

j
i′) := x′f j =

1

2

[
Lj +

1

tj

(
pji′ − p

j
i

)] 2M j

m(m− 1)Lj
.

The total demand of firm i in market j is then given by summing the “line-demands,”Dj
ii′(p

j
i , p

j
i′),

over all i′ 6= i, which gives

Dj
i (p

j
1, ..., p

j
n) =

M j

m
+

M j

m(m− 1)Ljtj

∑
i′ 6=i

(
pji′ − p

j
i

)
.

Thus, overall demand of firm i in market j follows from (1), with aj = Mj

m and bj = Mj

m(m−1)Ljtj
.6

We finally note that the LCD-model can take care of loyal consumers, who always buy from

one of the firms, if the price does not exceed their reservation prices. Suppose the mass of

loyal consumers is Kj in market j, so that the total mass of consumers in market j becomes

M j + Kj . The mass of loyal consumers is equally distributed among the firms, so that every

firm serves a mass of Kj/m of loyal consumers. Assume that a firm never wants to serve only

its loyal consumers and that the loyals’ reservation price is large enough, so that they are willing

to buy at the price the indifferent consumers pay (for instance, it is vj). In this scenario, firm

i’s demand is given by

Dj
i (p

j
1, ..., p

j
n) =

M j +Kj

m
+

M j

m(m− 1)Ljtj

∑
i′ 6=i

(
pji′ − p

j
i

)
,

so that the demand of firm i in market j follows from (1), with aj = Mj+Kj

m and bj = Mj

m(m−1)Ljtj
.

6We assumed that the prices are such that consumers’ are willing to buy at the posted prices; i.e., their gross

utilities vj are sufficiently large. In addition, we suppose that the utilities from buying are larger than their

reservation utilities.
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3 Analysis

This LCD-model has several convenient properties that we list in the following.

(A1)
∂Dj

i

∂pji
= −(m− 1)bj for all i and j.

(A2)
∑

iD
j
i (p1, ..., pm) = maj .

(A3) Dj
i −D

j
i′ = bjm(pji′ − p

j
i ).

As a consequence of these properties, firm i’s demand is linear in its price (A1), aggregate

demand is inelastic (A2), and the demand differences between two firms are pinned down by

the difference in prices these two firms set and therefore independent from other prices charged

(A3).

Throughout the paper we maintain the assumption that the discriminatory pricing equilib-

rium, {pji}
j=1,...,n
i=1,...,m, and the uniform pricing equilibrium, {p̂i}i=1,...,m, are unique and interior.

Obviously, there exists a unique interior equilibrium both under discriminatory and under uni-

form pricing if costs are not too heterogenous (see also Somaini and Einav, 2013).

In the following proposition, we compare the Nash equilibrium when firms simultaneously

charge uniform prices across markets and when firms engage in third-degree price discrimination,

thereby charging different prices in the markets.

Proposition 1. Assume an LCD-model and constant marginal production costs ci ≥ 0 for all

i = 1, ...,m. Then, the following properties are fulfilled:

i) All bilateral price differences are the same under discriminatory and uniform pricing, such

that pji′ − p
j
i = p̂i′ − p̂i = m−1

2m−1(ci′ − ci) holds for all i, i′ and j.

ii) All firms’ output levels in all markets are the same in the discriminatory and the uniform

pricing equilibrium; i.e., Dj
i (p

j
1, ..., p

j
m) = Dj

i (p̂1, ..., p̂m) = aj + bj
(
m−1
2m−1

)∑
i′ 6=i(ci′ − ci) for all

i and j.

Proof. Under discriminatory pricing each firm i maximizes

max
p1i ,...,p

n
i ≥0

πi =

n∑
j=1

Dj
i (p

j
1, ..., p

j
m)(pji − ci).
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The unique and interior Nash equilibrium prices {pji}
j=1,...,n
i=1,...,m fulfill

∂Dj
i

∂pji
(pji − ci) +Dj

i = 0 for all i and all j. (2)

Fix some j and take two firms i 6= i′. The equilibrium price difference pji′ − p
j
i follows from

subtracting the first-order conditions
∂πi′

∂pj
i′

= 0 and ∂πi
∂pji

= 0, which gives

∂Dj
i′

∂pji′
(pji′ − ci′)−

∂Dj
i

∂pji
(pji − ci) +Dj

i′ −D
j
i = 0.

Using (A1) and (A3) we get

−(m− 1)bj(pji′ − p
j
i )− b

jm(pji′ − p
j
i ) = −(m− 1)bj(ci′ − ci) or

pji′ − p
j
i =

m− 1

2m− 1
(ci′ − ci). (3)

Under uniform pricing each firm i maximizes

max
pi≥0

πi =
n∑
j=1

Dj
i (p1, ..., pm)(pi − ci).

The unique and interior Nash equilibrium prices {p̂i}i=1,...,m fulfill

n∑
j=1

[
∂Dj

i

∂pi
(p̂i − ci) +Dj

i

]
= 0 for all i. (4)

Take two firms i 6= i′. The equilibrium price difference p̂i′ − p̂i follows from subtracting the

first-order conditions
∂πi′
∂pi′

= 0 and ∂πi
∂pi

= 0, which gives

n∑
j=1

∂Dj
i

∂pi
(p̂i′ − ci′)−

n∑
j=1

∂Dj
i

∂pi
(p̂i − ci) +

n∑
j=1

Dj
i′ −

n∑
j=1

Dj
i = 0.

Using (A1) and (A3) we get

−(m− 1)
n∑
j=1

bj(p̂i′ − p̂i)−m(p̂i′ − p̂i)
n∑
j=1

bj = −(m− 1)

n∑
j=1

bj(ci′ − ci) or

p̂i′ − p̂i =
m− 1

2m− 1
(ci′ − ci). (5)

From (3) it follows that the price difference between two firms i and i′ is the same in all markets j

under discrimination. Comparison with (5) shows that the price difference under uniform pricing
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yields exactly the same difference. Finally, part ii) of the proposition follows from substituting

(3) for all i′ 6= i into (1). Q.E.D.

Price competition yields the same price differences under discriminatory and uniform pricing

(part i) of Proposition1). Consequently, firms’ output levels in any market j are independent of

the pricing regime (part ii) of Proposition 1).7 In addition, when the number of firms increases,

price differences approach marginal cost differences from below.8 The underlying demand system

ensures that price differences are fully driven by supply side features; namely, marginal cost

asymmetries and the number of firms m.

Interestingly, even though price differences between the firms are always the same under

discriminatory pricing in every market j, any firm i’s market shares may differ across different

markets. The market share of firm i in market j is given by

sji :=
Dj
i∑m

i=1D
j
i

=
1

m

1 +
bj

aj

(
m− 1

2m− 1

)∑
i′ 6=i

(ci′ − ci)

 ,

where the last equality follows from (A2) and from part iii) of Proposition 1. Note also that∑
i′ 6=i(ci′ − ci) = m(ce − ci), with ce :=

∑m
i=1 ci/m. Suppose bj/aj > bj

′
/aj

′
holds. Then,

sji > sj
′

i (sji < sj
′

i ) follows if and only if ci < ce (ci > ce). A firm with below-average marginal

cost, therefore, gets a larger market share in market j than in j′, when the competitive intensity

(as measured by bj/aj) increases.9 This result also mirrors (A3), which states that the demand

difference between two firms gets larger when the parameter bj increases.

Proposition 1 implies that the difference of consumer surplus under uniform and discrim-

7In the following, we drop the arguments of Dj
i , which from now on stands for the equilibrium values

Dj
i (pj1, ..., p

j
m) or Dj

i (p̂1, ..., p̂m).

8Under both pricing regimes, the price difference is equal to the marginal cost difference times the term m−1
2m−1

,

which increases monotonically in m over the interval [1/3, 1). In the limiting case of m → ∞ it approaches one.

Thus, when the number of firms, m, increases, then bilateral price differences increase and approach marginal

cost differences in the limit.

9In Section 2.2, we have shown how aj and bj can be derived from a generalized Hotelling model. In particular,

bj/aj increases when the transportation costs parameter decreases (tj) or the length of the Hotelling line (Lj)

shortens. In Section 2.2 we have also considered a scenario with additional loyal consumers, in which case bj/aj

decreases when the share of loyal consumers increases.
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inatory pricing, ĈS − CS, which must be equal to the reversed difference of total profits,∑
i πi −

∑
i π̂i, can be derived directly from comparing the uniform and the discriminatory

prices.

Corollary 1. The difference of consumer surplus and the difference of total profits under

uniform and discriminatory pricing are given by

ĈS − CS =
m∑
i=1

πi −
m∑
i=1

π̂i =
m∑
i=1

n∑
j=1

(pji − p̂i)D
j
i .

Based on Proposition 1, we can easily calculate the Nash equilibrium prices under both pricing

regimes. In the discriminatory regime, firm i’s first-order condition in market j is given by (2).

Solving for pji we get

pji = ci −
Dj
i

∂Dj
i

∂pji

= ci +
aj

(m− 1)bj
+

(
1

2m− 1

)∑
i′ 6=i

(ci′ − ci). (6)

Similarly, for the uniform pricing regime, the Nash equilibrium price of firm i can be obtained

from firm i’s first-order condition (4). Solving for p̂i we get

p̂i = ci −
∑n

j=1D
j
i∑n

j=1
∂Dj

i
∂pi

= ci +

∑n
j=1

[
aj + bj

(
m−1
2m−1

)∑
i′ 6=i(ci′ − ci)

]
(m− 1)

∑n
j=1 b

j
. (7)

We next examine how the discriminatory and uniform pricing equilibrium are related. Define

firm i’s equilibrium price elasticity in market j under discriminatory pricing by

E
j
i := Eji (p

j
1, ..., p

j
m) := −

∂Dj
i

∂pji

pji
Dj
i

(8)

and firm i’s aggregate equilibrium price elasticity under uniform pricing by

Êi := Ei(p̂1, ..., p̂m) := −
∑n

j=1
∂Dj

i
∂pi

p̂i∑n
j=1D

j
i

. (9)

Firm i’s Lerner index under discriminatory pricing is equal to the weighted arithmetic mean of

it’s market-specific Lerner indices, L
j
i :=

pji−ci
pji

, where the weights are given by firm i’s output

in market j, Dj
i , relative to its total output,

∑n
j=1D

j
i ; i.e.,

Li :=

n∑
j=1

[
Dj
i∑n

j=1D
j
i

L
j
i

]
.
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Define the aggregate Lerner index under discriminatory pricing by L :=
∑

i siLi, where si :=∑
j D

j
i∑

j

∑
iD

j
i

stands for firm i’s overall market share. In case of uniform pricing, L̂i := p̂i−ci
p̂i

and

L̂ :=
∑

i siL̂i stand for firm i’s Lerner index and for the aggregate Lerner index, respectively.

The following proposition then follows.

Proposition 2. Assume an LCD-model. The comparison of the discriminatory and the uniform

pricing equilibrium gives the following relations:

i) Firm i’s aggregate equilibrium price elasticity under uniform pricing is given by the weighted

Arithmetic Mean Formula:

Êi =
n∑
j=1

[
Dj
i∑n

j=1D
j
i

E
j
i

]
holds for all i.

ii) Firm i’s Lerner index under uniform pricing is given by the weighted Harmonic Mean

Formula:

L̂i =
1∑n

j=1

[
Dj

i∑n
j=1D

j
i

1

L
j
i

] holds for all i.

iii) If firms are asymmetric (i.e., ci 6= c′i with i 6= i′ for all i) and if all firms’ marginal costs

are strictly positive, then all firm-level Lerner indices and the aggregate Lerner index are strictly

smaller under uniform pricing than under discriminatory pricing; i.e.,

L̂i < Li holds for all i and L̂ < L.

iv) If firms are asymmetric (i.e., ci 6= c′i with i 6= i′ for all i) and if all firms’ marginal costs

are strictly positive, then firm i’s uniform price is strictly smaller than the weighted arithmetic

mean of its discriminatory prices; i.e.

p̂i <

n∑
j=1

Dj
i∑n

j=1D
j
i

pji holds for all i.

Proof. Assume discriminatory pricing. Summing up firm i’s first-order conditions over all

markets j gives
n∑
j=1

[
∂Dj

i

∂pji
(pji − ci)

]
+

n∑
j=1

Dj
i = 0.

12



Under uniform pricing, firm i’s first-order condition is given (4). From Proposition 1 it follows

that firm i’s equilibrium demand is the same in every market under both pricing regimes, which

implies
n∑
j=1

Dj
i (p

j
1, ..., p

j
m) =

n∑
j=1

Dj
i (p̂1, ..., p̂m).

It thus follows that
n∑
j=1

∂Dj
i

∂pi
(p̂i − ci) =

n∑
j=1

[
∂Dj

i

∂pji
(pji − ci)

]
. (10)

Simplifying and expanding both sides we get∑n
j=1

∂Dj
i

∂pi
p̂i∑n

j=1D
j
i

 n∑
j=1

Dj
i

 =

n∑
j=1

[
∂Dj

i

∂pji

pji
Dj
i

Dj
i

]
.

Using (8) and (9) we get

Êi

n∑
j=1

Dj
i =

n∑
j=1

[
E
j
iD

j
i

]
or

Êi =
n∑
j=1

[
Dj
i∑n

j=1D
j
i

E
j
i

]
. (11)

The equilibrium aggregate demand elasticity under uniform pricing of firm i is equal to the

weighted arithmetic mean of firm i’s demand elasticities under discriminatory pricing. The

weight of firm i’s demand elasticity in market j is given by the share of firm i’s total output

sold in market j. This gives part i).

Next, we can re-write firm i’s first-order condition under uniform pricing (see (4)) as

p̂i − ci
p̂i

=
1

Êi
.

Likewise, under discriminatory pricing we can re-write each of firm i’s first-order conditions (see

(2)) as

pji − ci
pji

=
1

E
j
i

.

Taken together and using (11) we get

p̂i − ci
p̂i

=
1∑n

j=1

[
Dj

i∑n
j=1D

j
i

E
j
i

] =
1∑n

j=1

[
Dj

i∑n
j=1D

j
i

(
pji−ci
pji

)−1] . (12)
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Using the definitions of L̂i and L
j
i , we get the formula stated in part ii) of the proposition. By

Jensen’s inequality,10 it must be that

n∑
j=1

[
Dj
i∑n

j=1D
j
i

1

L
j
i

]
>

1∑n
j=1

[
Dj

i∑n
j=1D

j
i

L
j
i

] ,

which implies L̂i < Li and also L̂ < L, because si is independent of the pricing regime. This

proves part iii) of the proposition. Thus, part iii) follows from part ii).

Next we show that part iv) follows from part iii) (namely, L̂i < Li) and is, therefore, also a

consequence of the harmonic mean formula. Note first that we can re-write Li as

Li = 1− ci
n∑
j=1

Dj
i∑n

j=1D
j
i

1

pji
.

Thus, L̂i < Li is equivalent to

p̂i − ci
p̂i

< 1− ci
n∑
j=1

Dj
i∑n

j=1D
j
i

1

pji
or

1

p̂i
>

n∑
j=1

Dj
i∑n

j=1D
j
i

1

pji
. (13)

By Jensen’s Inequality, the right-hand side of (13) is strictly larger than the inverse of the

weighted arithmetic mean of the discriminatory prices, so that

1

p̂i
>

1∑n
j=1

Dj
i∑n

j=1D
j
i

pji

follows, from which we directly get the inequality stated in part iv) of the proposition. Q.E.D.

Proposition 2 generalizes Holmes’ (1989) conjecture that average prices increase under dis-

criminatory prices when compared with uniform pricing to an asymmetric oligopoly. Holmes

assumed symmetric firms and a constant elasticity demand at the firm level with inelastic mar-

ket demand to show his conjecture. Relatedly, Armstrong (2007) has shown that this conjecture

holds true for symmetric firms in a model closely related to ours, namely in a multi-market

10Jensen’s inequality implies that for any positive random variable X with strictly positive expected value E(X)

the inequality E
[

1
X

]
> 1

E(X)
holds.
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Hotelling model. Proposition 2 shows that his conjecture is also valid when firms are asymmet-

ric and the underlying demand system ensures that market demands are inelastic.

According to part i) of Proposition 2, each firm’s aggregate equilibrium elasticity under

uniform pricing is the weighted arithmetic mean of a firm’s equilibrium elasticities under dis-

criminatory pricing, which follows from the fact that equilibrium quantities do not change with

the pricing regime (Proposition 1). Part ii) shows that the Lerner index of any firm i under

uniform pricing is the weighted harmonic mean of its market-specific Lerner indices under dis-

criminatory pricing, where the weights are given by firm i’s output in market j, relative to its

total output. Part iii) states that all firms’ Lerner indices and the aggregate Lerner index are

lower under uniform pricing than under discriminatory pricing. This follows directly from part

ii), because the (weighted) harmonic mean is always lower than the (weighted) arithmetic mean

(unless all relative margins are equal). This relation gives a clear-cut assessment of the overall

effect of uniform pricing on market power. Uniform pricing unambiguously constraints firms’

market power, so that firms’ ability to raise prices above marginal costs is smaller than under

discriminatory pricing.

The harmonic mean formula implies that all firms’ uniform prices are strictly smaller than

the weighted arithmetic mean of their discriminatory prices (part iv) of Proposition 4). Using

Corollary 1, we then know for sure that consumer surplus must be strictly larger under uniform

pricing than under discriminatory pricing. This follows from noticing that

ĈS − CS =
m∑
i=1

n∑
j=1

(pji − p̂i)D
j
i =

m∑
i=1

 n∑
j=1

Dj
i

 n∑
j=1

(
Dj
i∑n

j=1D
j
i

pji

)
− p̂i

 > 0,

where the inequality follows from part iv) of Proposition 2. As all firms realize lower relative

margins under uniform pricing according to the harmonic mean formula, it must be true that

prices decrease on average which must increase consumer surplus and reduce total producer

surplus accordingly. This is intuitive, as all output levels do not change under both pricing

regimes.

We, finally, state our central result that the consumer surplus gain from non-discriminatory

prices can be calculated only based on market data under discriminatory pricing (i.e., prices and

quantities).
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Corollary 2. Each firm’s price under uniform pricing as well as the consumer surplus gain

from uniform pricing can be calculated only based on market data under discriminatory pricing:

p̂i =

n∑
j=1

[
bj∑n
j=1 b

j
pji

]
.

Consumer surplus gain is given by

ĈS − CS =
1

m− 1

m∑
i=1

 n∑
j=1

(
Dj
i

)2
bj

−

(∑n
j=1D

j
i

)2∑
j b
j

 ,

where bj can be determined from observables by (A2).

Proof. From (10) and (A1) we get

n∑
j=1

∂Dj
i

∂pi
p̂i =

n∑
j=1

[
∂Dj

i

∂pji
pji

]
or

p̂i =

n∑
j=1

[
bj∑n
j=1 b

j
pji

]
, (14)

from which the formula for p̂i follows. Using (A3), which gives bj =
Dj

i−D
j

i′

m(pj
i′−p

j
i )

, we get p̂i directly

from observed prices pji . Substituting (14) into the formula stated in Corollary 1, we get the

consumer surplus gain from uniform pricing as stated above. Q.E.D.

Consumers as a whole are always better off when firms must charge a uniform price across

markets. Correspondingly, every firm realizes a higher profit when all firms engage in price

discrimination. From the firms’ perspective, the discriminatory equilibrium Pareto-dominates

the uniform pricing equilibrium. It follows that firms jointly have an incentive to coordinate

market segmentation (e.g., by geo-blocking or, more generally, by restricting buyer arbitrage

between markets). Thus, our results appear to be relevant for price discrimination along national

markets (as in the EU).

Market-delivery Costs. We can easily include market delivery costs cj ≥ 0 per unit of good

for all j which affect all firms equally. In this case firm i’s marginal cost of selling products in

market j is given by ci + cj . Clearly, this does not affect the price differences in any market,

16



so that all results of Proposition 1 remain valid. All equilibrium prices (6) and (7) as well as

the arithmetic mean and the harmonic mean formulas of Proposition 2 also apply, but then at

different marginal cost levels ci + cj instead of ci.

4 Extension: Arbitrage Costs

We here show that the harmonic mean formula can be extended to take care of arbitrage costs.

Assume that buyers can arbitrage among markets with arbitrage costs of r ≥ 0 per unit. We

focus on the case with n,m = 2. Thus discriminatory prices, {pji (r)}
j=1,2
i=1,2 , must fulfill the

requirement p1i − p2i ≤ r for i = 1, 2. Suppose that the constraints bind. The following propo-

sition states the main features of the arbitrage-constrained third-degree price discrimination

equilibrium.

Proposition 3. Assume an LSC-model with n,m = 2. Assume p1i > p̂i > p2i . Suppose the

arbitrage constraint is binding for both firms; i.e., p1i − p2i ≤ r for i = 1, 2. Then, the arbitrage-

constrained Nash equilibrium prices {pji (r)}
j=1,2
i=1,2 are given by

p1i (r) = p̂i + rα and p2i (r) = p̂i − r(1− α),

where α := b2

b1+b2
, with α ∈ (0, 1). All price differences pji′ − p

j
i and each firm’s output in any

market remains the same as under unconstrained discrimination or uniform pricing.

Proof. Each firm i = 1, 2 maximizes its profit πi =
∑2

j=1

[
Dj
i (p

j
i (r)− ci)

]
subject to p1i (r) −

p2i (r) ≤ r for i = 1, 2. We obtain two first-order conditions of the constrained maximization

problems:

2∑
j=1

[
∂Dj

i

∂pji
(pji (r)− ci) +Dj

i

]
= 0 with p1i (r)− p2i (r) ≤ r for i = 1, 2. (15)

Substitute p1i (r) = p̂i + αr and p2i (r) = p̂i − (1− α)r, with α ∈ [0, 1], so that p1i − p2i = r holds

for i = 1, 2. This gives

∂D1
i

∂p1i
(p̂i + αr − ci) +D1

i +
∂D2

i

∂p2i
(p̂i − (1− α)r − ci) +D2

i = 0 for i = 1, 2. (16)
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or [(
∂D1

i

∂p1i
+
∂D2

i

∂p2i

)
(p̂i − ci) +D1

i +D2
i

]
︸ ︷︷ ︸

first term

+ r

(
∂D1

i

∂p1i
α− ∂D2

i

∂p2i
(1− α)

)
︸ ︷︷ ︸

second term

= 0 for i = 1, 2. (17)

Note that each firm’s equilibrium output levels do not change under the proposed solution,

because pji′(r) − p
j
i (r) = p̂i′ − p̂i for all i, i′ and j. Note that, for each firm i, the first term of

(17) is equal to its first-order condition under uniform pricing (4). Thus, the first term in the

first-order conditions of firms 1 and 2 is zero at {pji (r)}
j=1,2
i=1,2 . The second term is zero at

α =

∂D2
i

∂p2i
∂D1

i

∂p1i
+

∂D2
i

∂p2i

=
b2

b1 + b2
.

Thus, p̂1i (r) = p̂i + αr and p̂2i (r) = p̂i − (1− α)r solves the system of first-order conditions (15).

Q.E.D.

From Proposition 3 it follows that

α =
p1i − p̂i
p1i − p2i

and 1− α =
p̂i − p2i
p1i − p2i

,

so that a lower value of the arbitrage parameter r must decrease the average price
D1

i

D1
i+D

2
i
p1i (r)+

D2
i

D1
i+D

2
i
p2i (r) and thus increases consumer surplus. In other words, any policy that makes cross-

market arbitrage more effective is to the benefit of consumers as a whole.

5 Conclusion

In this paper, we analyze the effects of oligopolistic third-degree price discrimination on consumer

surplus. Under the assumption of full market coverage, consumer surplus is always lower, but

firms’ profit are always higher if price discrimination is feasible. We present a simple formula

that allows to calculate the consumer surplus loss and firm profit gain of third-degree price

discrimination solely based on observable market data under discriminatory pricing (prices and

quantities).
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