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Tracking economic activity in response to the COVID-19 crisis using 
nighttime lights – The case of Morocco 
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A B S T R A C T   

Over the past decade, nighttime lights have become a widely used proxy for measuring economic activity. This 
paper examines the potential for high frequency nighttime lights data to provide “near real-time” tracking of the 
economic impacts of the COVID-19 crisis in Morocco. At the national level, there exists a statistically significant 
correlation between quarterly movements in Morocco’s overall nighttime light intensity and movements in its 
real GDP. This finding supports the cautious use of lights data to track the economic impacts of the COVID-19 
crisis at higher temporal frequencies and at the subnational and city levels, for which GDP data are unavai
lable. Relative to its pre-COVID-19 trend growth path of lights, Morocco experienced a large drop in the overall 
intensity of its lights in March 2020 following the country’s first COVID-19 case and the introduction of strict 
lockdown measures, from which it has subsequently struggled to recover. At the subnational and city levels, 
while all regions and cities examined shared in March’s national decline in nighttime light intensity, some 
suffered much larger declines than others. Since then, the relative effects of the COVID-19 shock across regions 
and cities appear to have largely persisted. Notwithstanding these findings, however, further research is required 
to ascertain the exact causes of the observed changes in light intensity and to fully verify that the results are 
driven by anthropogenic causes.   

1. Introduction 

Since it was first identified in Wuhan, China, in December 2019, the 
COVID-19 virus has swept the globe, resulting in not only a devastating 
loss of life,1 but also widespread economic crisis. In its October 2020 
World Economic Outlook, the IMF projected that global real GDP in 
2020 would fall by 4.4 percent (IMF, 2020a). This compares to its pro
jection of a 3.4 percent increase made just prior to the global spread of 
COVID-19 (IMF, 2020b). The loss of incomes has resulted in a major 
setback in the global fight against extreme poverty, with forecasts 
indicating a rise of between 119 and 124 million in the number of people 
living on less than $1.90 per day in 2020 due to the pandemic (World 
Bank, 2021). 

Crucial to the formulation of effective policy responses to the crisis is 
not just up-to-date information on the disease itself, but also “near real- 
time” data on the associated economic impacts. Such data are important 
for both the design of economic relief packages and in assessing the 
possible economic trade-offs associated with lockdowns and other non- 
pharmaceutical interventions (NPIs) that aim to control the disease’s 

spread. Not only is the availability of near real-time data on economic 
activity important at the national level, but also at the more local – i.e., 
subnational regional and city levels – especially as many countries have 
moved away from national lockdowns to more geographically differ
entiated strategies of disease containment. 

Unfortunately, however, conventional measures of economic activity 
produced by national statistics offices are ill-suited to providing such 
(near) real-time monitoring of economic activity. Official data on such 
activity, even at the national level, are often only available after a long 
lag and at a relatively low temporal frequency. At best, GDP data tend to 
be reported at a quarterly frequency at the national level, and an annual 
frequency at the subnational level. For many developing countries, there 
are no subnational GDP data at all, and, where they are available, they 
only tend to be so for very broadly defined geographic regions (Roberts, 
forthcoming). In light of this, there has been growing research interest in 
the development of proxy measures of economic activity that can be 
produced at a high temporal frequency on a (near) real-time basis, 
including for subnational regions and cities.2 Among the alternative 
indicators that have been investigated are data derived from credit card 

E-mail address: mroberts1@worldbank.org.   
1 At the time of writing (June 2021), the worldwide death toll from COVID-19 is approaching four million.  
2 Some of this interest pre-dates the COVID-19 crisis. The crisis has, however, given an extra impetus to such research. 
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transactions and private sector payroll firms (Chetty et al., 2020), 
Google Trends search data (Woloszko, 2020), and data on outdoor air 
pollution (Liu et al., 2020; Masaki et al., 2020). In this paper, we 
investigate the potential of a further unconventional measure of eco
nomic activity – outdoor artificial lighting as detected by satellite sen
sors, commonly referred to as “nighttime lights” – to facilitate (near) 
real-time tracking of economic activity in response to the COVID-19 
crisis, focusing on the specific case of Morocco. 

To do this, we use monthly and quarterly measures of nighttime light 
intensity derived from data collected by the Visible Infrared Imaging 
Radiometer Suite (VIIRS) sensor onboard the Suomi National Polar- 
Orbiting Partnership (NPP) satellite. We first investigate whether, at 
the national level, movements in light intensity are correlated with 
movements in real GDP using quarterly data.3 Having established the 
existence of a statistically significant correlation subject to suitable 
cleaning of the lights data to remove background noise, we progress to 
examine the evolution of Morocco’s monthly lights following the 
announcement of the country’s first confirmed case of COVID-19 on 
March 2, 2020 at both the national and subnational (regional and city) 
levels. In doing so, we focus on measures of nighttime lights that have 
been adjusted to control for “normal” seasonal variation associated with, 
for example, possible atmospheric effects and changes in vegetation.4 

We also examine the evolution of lights following the onset of COVID-19 
relative to estimated pre-COVID-19 trends, where these trends define 
the potential counterfactual evolution of lights in the absence of COVID- 
19. 

Our paper builds on a well-established economics literature that uses 
nighttime lights to proxy economic activity.5 This literature dates back 
to Henderson et al. (2012), who found that the growth of a country’s 
nighttime light intensity provides a good proxy for its GDP growth over 
the long-term. They also found that fluctuations in light intensity at the 
national level can track annual fluctuations in economic growth. Since 
Henderson et al., the use of nighttime lights to proxy economic activity 
has become commonplace within the economics literature, especially in 
the urban and spatial economics literatures where analysis is con
strained by the lack of official GDP data (see, for example, Bleakley and 
Lin, 2012; Storeygard, 2016; Jedwab et al., 2021). More generally, a 
recent review uncovers more than 150 studies in economics that have 
used nighttime lights (Gibson et al., 2020). However, the use of lights to 
proxy for economic activity has not been without controversy. Chen and 
Nordhaus (2011) are more downbeat in their findings than Henderson 
et al. (2012) on the ability of lights data to reliably proxy economic 
activity, especially for more agricultural regions. Meanwhile, there is 
evidence that, while lights can predict longer-run variation in economic 
activity over space, they perform much more poorly in predicting 
changes in economic activity over time (Goldblatt et al., 2020). 

With only a few exceptions, however, the economics literature that 
uses nighttime lights measures to proxy levels and changes in economic 
activity relies on data from Operational Linescan System (OLS) satellite 
sensors that were part of the now largely defunct US government De
fense Meteorological Satellite Program (DMSP).6,7 While these data 
have the advantage of having a relatively long annual time series 

spanning 1992–2013, they suffer from several drawbacks that under
mine their ability to proxy economic activity (Gibson et al., 2021). Most 
notable among these drawbacks are those of top coding, “overglow”, 
and the absence of onboard satellite intertemporal calibration of the 
data. 

Top coding refers to the fact that the DMSP-OLS sensors are unable to 
detect levels of nighttime luminosity above a certain threshold due to 
sensor saturation. This leads to the cores of many cities, where much 
economic activity is concentrated, being top coded with the result that 
increases in their brightness cannot be detected.8 Meanwhile, overglow 
refers to the fact that the light emitted from a given point on the earth is 
recorded in the DMSP-OLS data as covering an area that extends, often 
very far, beyond that point. This means that the light, and the economic 
activity that it potentially measures, is spatially misattributed across 
locations, which is a particular problem for subnational and city-level 
analyses. According to Gibson (2020), both top-coding and overglow 
result in mean-reverting errors in the DMSP-OLS lights data, implying 
that it understates the true luminosity of brightly lit areas relative to less 
brightly lit areas. Finally, the absence of onboard intertemporal cali
bration of the DMSP-OLS data undermines their comparability over 
time, which may help explain the finding by Goldblatt et al. (2020) that 
they perform poorly in predicting changes in economic activity. 

By contrast, as stated earlier, we make use, in this paper, of lights 
data from the VIIRS satellite sensor. These are not subject to the top- 
coding problem, while the overglow problem is also much less severe 
(Small, 2019). Because the data undergo onboard calibration, they are 
also more comparable over time (Gibson et al., 2021). As such, the data 
appear, prima facie, better suited to detecting temporal changes in eco
nomic activity than the DMSP-OLS data. Unlike the DMSP-OLS data, 
which are only available at an annual frequency, the VIIRS data are also 
publicly available at a monthly frequency with a short time lag, which is 
crucial for providing potential near real-time monitoring of the eco
nomic impacts of the COVID-19 crisis. In seeking to examine the po
tential of VIIRS lights to track the economic impacts of the crisis, this 
paper is related to those of Elvidge et al. (2020) and Liu et al. (2020), 
both of whom demonstrate a dimming and subsequent recovery of VIIRS 
lights across China associated with the COVID-19 pandemic, and Beyer 
et al. (2021), who look at the evolution of VIIRS lights for India in 
response to the pandemic.9 

From a remote sensing perspective, Morocco is well-suited to the 
exploration of the potential of nighttime lights to provide high frequency 
tracking of the economic impacts of the COVID-19 crisis. This is because, 
by virtue of its latitude, Morocco has very low cloud-coverage, which, 
for any given month, results in more high-quality observations of lights. 
The potential study of the economic impacts of COVID-19 in Morocco is 
also interesting in and of itself given the lack of knowledge about these 
impacts. At the time of writing, there have been more than 523,000 
COVID-19 cases in Morocco and in excess of 9200 deaths. Little, how
ever, is known about the exact evolution of the economic impacts of the 
crisis on Morocco and how these have played-out across its regions and 
cities. 

The remainder of the paper is structured as follows. Section 2 de
scribes the VIIRS lights data and our procedures for cleaning and pro
cessing the data, in addition to the national real GDP data for Morocco. 
Section 3 describes our analysis of the correlation between changes in 
nighttime light intensity and real GDP at the national level using 

3 Quarterly is the highest frequency at which national GDP data are available 
for Morocco.  

4 This still, however, leaves the possibility of distortion of the detection of 
nighttime lights by atmospheric and other effects that may not follow a regular 
seasonal pattern. We discuss this possibility further below.  

5 This economics literature is pre-dated by several remote sensing studies 
which investigate the potential of lights to proxy economic activity (see, for 
example, Sutton et al., 2007).  

6 The exceptions include Roberts (2018), Beyer et al. (2021), and Gibson 
et al. (2021).  

7 DMSP still has satellites orbiting and collecting nighttime lights data, but 
the program will end once the current satellites reach their end of life (World 
Bank, 2020). 

8 In addition to the standard DMSP-OLS lights data, there is a radiance- 
calibrated version of the data that was derived based on experiments with 
adjusting the gain settings of the satellite sensors. This version of the data, 
which is available for seven years between 1996 and 2011, is not subject to top 
coding.  

9 Although not focused on the COVID-19 pandemic, a further related paper is 
Chodorow-Reich et al. (2020), who study the impacts of India’s demonetization 
on real economic activity across districts using, inter alia, VIIRS data. 
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quarterly data, which acts as a test of whether lights provide a possible 
proxy for tracking changes in economic activity, both at a higher tem
poral frequency and at the subnational (regional and city) levels, in the 
absence of GDP data. Section 4 presents our analysis of the evolution of 
nighttime lights at the monthly frequency in response to the COVID-19 
crisis at the national, subnational regional, and city levels. Section 5 
concludes by discussing caveats and possible future extensions to the 
analysis. 

2. Data 

2.1. Nighttime lights data 

As discussed above, the nighttime lights data that we use are derived 
from observations collected by the VIIRS sensor onboard the Soumi-NPP 
satellite, which is jointly operated by NASA and the US government’s 
National Oceanic and Atmospheric Administration (NOAA). In partic
ular, we use the monthly composites of VIIRS lights produced by the 
Earth Observation Group (EOG) at the Colorado School of Mines.10 

These composites cover virtually the entire globe at a resolution of 15 
arc seconds, which is equal to 460 m2 at the equator.11 This is much 
higher than the 30 arc second resolution (approximately 1 km2 at the 
equator) of the old DMSP-OLS lights data. For each pixel, the composites 
report luminosity in nanowatts/cm2/sr as an average calculated over all 
cloud-free nights in a month. We make use of the monthly composites for 
April 2012–September 2020, where the April 2012 composite is the first 
that was produced following the launch of the Suomi-NPP satellite in 
2011.12 As noted in Section 1, because of its latitude, Morocco has very 
low cloud coverage. As a result, virtually all pixels in the data for 
Morocco have – after dropping the data for June for each year for rea
sons that we explain below – at least two nights, and often many more, of 
cloud free coverage for all months between April 2012 and September 
2020.13 

In creating the monthly composites, EOG filter-out both lightning 
and lunar illumination prior to averaging. However, unlike the annual 
composites, which are only currently available for 2015 and 2016, 
which EOG also produce, they do not filter out lights from aurora, fires, 
boats, and other ephemeral lights. As such, the data are still subject to, 
potentially considerable, background noise. To screen out this noise, we 
undertake further cleaning of the monthly composites by applying 
various masks to the data.14 In particular, we experiment with four 
different background masks, which we refer to as: (i) the “EOG mask”; 

(ii) the “cluster mask”; (iii) the “population mask”; and (iv) the “built-up 
area” mask.15,16 The EOG mask zeroes out lights values for pixels that 
EOG mask out in the creation of their annual lights products for 2015 
and 2016, which, as noted above, have been subjected to further 
cleaning over and above their monthly composites.17 Meanwhile, the 
cluster mask excludes both outlier lights values and pixels that are 
identified as belonging to background noise clusters following the pro
cedure of Beyer et al. (2021). The population mask, by contrast, uses the 
European Commission’s GHS-POP gridded population data set to 
remove lights values that are associated with areas in which no popu
lation is estimated to have been present in 2015.18 Finally, the built-up 
area mask removes lights values that are associated with areas in which 
there was no detected built-up area in 2018. To derive this mask, we use 
the built-up area layer from the 2018 MODIS land use – land cover 
product with a 1 km buffer to account for potential under-detection of 
built-up area.19 It should be noted that none of these masks is perfect – 
all are imperfect substitutes for the full, computationally highly inten
sive, cleaning procedure that EOG has yet to apply to its series of 
monthly composites. 

As can be seen from Fig. 1, which provides an illustration of levels of 
light intensity in March 2020 in the vicinity of Morocco’s most populous 
city, Casablanca, and surrounding secondary cities, the cluster mask is 
the least spatially extensive, in terms of pixels zeroed-out, followed by 
the EOG mask, population mask and built-up area mask. Unlike the 
other masks, the built-up area mask zeroes-out all light along the roads 
that connect the cities in the map. Most notably, along the road corridor 
that connects the cities of Casablanca, Deroua, Berrechid and Settat. 
Given that it is a priori unclear which of the masks is best – in terms of 
allowing changes in lights to proxy changes in economic activity – we 
treat this as an empirical question. We settle this question by examining 
the strength of the estimated correlations between the four different 
cleaned lights data series that result from the application of the masks 
and GDP (see Section 3 below).20 

Even after the application of the above described masks, however, 
distortions in the lights data for Morocco remain for June in each year. 
This is due to the summer solstice, which results in “stray-light” 
contamination of the data. Such contamination arises from the Soumi- 
NPP satellite being illuminated by sunlight while observing areas of 
the Earth’s surface where the sun is under the horizon (Elvidge et al., 
2017). Given the severity of this contamination for Morocco, we drop 
the June data for each year in our analysis below.21 It is important to 

10 This group was formerly based at NOAA. The group is the same as that 
which produced the DMSP-OLS annual composite lights data sets on which 
most research that has used nighttime lights has relied.  
11 The composites cover the globe from 75 N latitude to 65 S.  
12 Monthly VIIRS composites are made freely available by EOG with a lag of 

three months on their website (https://payneinstitute.mines.edu/eog-2/viirs/). 
We obtained access to the composites through EOG’s paid subscription service 
which provides access with a maximum lag of around two weeks.  
13 As an illustration of this, in Section 4.3.2, we analyze the evolution of 

nighttime lights for the fourteen Moroccan cities that had a 2015 population 
more than 200,000. For each city, the average share of pixels that have at least 
two nights of cloud-free coverage, after dropping the data for June for each 
year, over all months between April 2012–September 2020 exceeds 98.7 
percent in all cases. The average share of pixels that have at least one night of 
cloud-free coverage exceeds 99.5 percent for all cities. This suggests that our 
results are unlikely to be driven by variations in cloud coverage.  
14 We only apply this additional cleaning for our national and subnational 

regional analysis of the lights data. For our city-level analysis, low level back
ground noise, which arises largely outside of urban areas, is already de facto 
masked-out through the definition of the cities. 

15 In their work on China, Liu et al. (2020) instead mask-out pixels with a 
radiance of less than 5 nW/cm2/sr, which they associate with vegetation, water, 
snow, and rural areas.  
16 All four masks are constructed using global data sets, implying that they can 

also easily be constructed for countries other than Morocco.  
17 The EOG cleaning procedure is described in Elvidge et al. (2017). Both 

Beyer et al. (2021) and Gibson et al. (2021) apply similar masks to clean VIIRS 
monthly composites of background noise for India (Beyer et al.) and China, 
Indonesia, and South Africa (Gibson et al.).  
18 GHS-POP can be downloaded from https://ghsl.jrc.ec.europa.eu/download. 

php?ds=pop.  
19 The MODIS (Moderate Resolution Imaging Spectroradiometer) product is 

available from https://modis.gsfc.nasa.gov/data/dataprod/mod12.php. MODIS 
is an instrument aboard NASA’s Terra and Aqua satellites.  
20 Given that GHS-POP grids population based on distributing population 

counts for administrative units across the built-up area within those units, the 
population mask is also, in effect, a type of built-up area mask. However, the 
built-up area layer according to which GHS-POP grids population differs from 
the 2018 MODIS land use – land cover product. The differences in detection of 
built-up area explain the differences between the two masks.  
21 EOG do provide a “stray-light corrected” configuration of their monthly 

VIIRS composites in addition to the versions of the composites that we use. 
However, the correction procedure is imperfect and affects the more general 
quality of the data. The decision to use the non-corrected data and drop June 
for each year was based on advice from EOG. 
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note that there may also be other sources of distortion in the data 
associated with, for example, atmospheric effects. To the extent that 
these follow a predictable seasonal pattern, our analysis below accounts 
for them. However, this does not rule-out the possibility of distortions 
arising from atmospheric effects that do not follow such a pattern. If the 
timing and size of such distortions are, for example, correlated with the 
onset of the COVID-19 pandemic in Morocco then this will undermine 
the attribution of changes in lights to causes related to the pandemic. 

As our measure of aggregate light intensity, we use the “sum of 
lights” (SOL), which, for any given area, is derived by summing light 
intensity values for all pixels in the cleaned data that fall within that 
area. Hence, we calculate SOL values for all months (bar June for each 
year) between April 2012 and September 2020 for Morocco overall, its 
Admin-1 subnational regions, and for all cities which had a 2015 pop
ulation of at least 200,000. We also calculate quarterly SOL values for 
Morocco overall by averaging SOL values over the months in each 
quarter. The quarterly SOL values are used to examine the correlation 
between changes in lights and changes in real GDP. 

2.2. Real GDP data 

Quarterly real GDP data, which is the highest frequency that is 
available, covering the period 2012 Q3 – 2020 Q1, come from Morocco’s 
Directorate of Statistics. These are national level data that are measured 

in chained prices with a base year of 2007. The data are available only as 
a seasonally adjusted series, where seasonal adjustment has been per
formed by the Directorate of Statistics using the US Census Bureau’s X- 
12-ARIMA procedure (Findley et al., 1998). 

3. Ability of nighttime lights to track economic activity 

To test whether or not changes in nighttime light intensity can 
potentially be used to proxy changes in economic activity at a high 
temporal frequency and/or at spatial scales at which official data on 
such activity are unavailable, we run several time series regressions to 
examine the correlation between changes in light intensity and changes 
in real GDP at the national level for Morocco using quarterly data for the 
period 2012 Q3 – 2020 Q1.22,23 These regressions are as follows: 

ln(GDPt)=α+ βt + γQ+ δ ln(SOLt) + εt (1)  

Fig. 1. Nighttime light intensity in March 2020 in the vicinity of Casablanca and surrounding secondary cities based on the four different masks: (a) cluster mask; (b) 
EOG mask; (c) population mask; and (d) built-up area mask. 

22 We exclude the Q2 data for each year due to the straylight corruption of the 
June lights data (see Section 2.1).  
23 Regression models (1)–(3) are static models in the sense that they model a 

contemporaneous relationship between ln (SOL) and ln (GDP). As stated by 
Wooldridge (2016), in time series analysis, “… a static model is postulated 
when a change in z [the independent variable] at time t is believed to have an 
immediate effect on y [the dependent variable].” (emphasis added). This im
plies that, even though the regressions are specified in log levels, the rela
tionship between ln(SOL) and ln(GDP) is identified by the changes in the two 
variables over time. 

M. Roberts                                                                                                                                                                                                                                        
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ln(GDPt)= α+ βY + γQ+ δ ln(SOLt) + εt (2)  

ln(GDP)D,t =α+ β ln(SOL)D,t + εt (3) 

In equation (1), the natural log of Morocco’s real GDP in quarter t is 
regressed on its SOL for the same quarter while controlling for both a 
linear time trend and quarter effects as captured by the set of quarterly 
dummies, Q. We also estimate equation (1) without the quarterly 
dummies. In this case, the regression tests whether quarterly changes in 
SOL are correlated with quarterly deviations of GDP from its growth 
path. When the quarterly dummies are included, the regression tests 
whether changes in SOL can predict deviations in GDP around its growth 
path over and above regular quarterly fluctuations. Meanwhile, in 
equation (2), the linear time trend from equation (1) is replaced by a full 
set of year effects, Y.24 As with equation (1), we estimate (2) both 
excluding and including the quarter effects, Q. Finally, in equation (3), 
we regress de-trended (ln) GDP on de-trended (ln) SOL where de- 
trending is performed separately for both the ln (GDP) and ln (SOL) 
series. This is done by first separately regressing each of ln (GDP) and ln 
(SOL) on either a linear time trend or a full-set of year effects. The re
siduals from these separate regressions then act as the de-trended ln 
(GDP) and ln (SOL) time series.25 In total, therefore, we estimate six 
regression specifications – both equations (1) and (2) each with and 
without the quarter effects, and equation (3) based on de-trending using 
a linear time trend and year effects. These six specifications are esti
mated for SOL calculated both on the basis of the “raw” lights data 
provided by EOG and for each of the four SOL series that have been 
cleaned using the EOG, cluster, population and built-up area masks. In 
all cases, regression is by least squares with Newey-West standard errors, 
assuming a first-order serial correlation process for the error term 
(Newey and West, 1987).26 

Table 1 reports the regression results. As can be seen, there is no 
statistically significant relationship between lights and GDP for any of 
the six regression specifications when using the “raw” lights data to 
calculate SOL. The fit of the de-trended regressions in columns [3a] and 
[3b], as indicated by their R2 values, is furthermore very low. However, 
once we mask out background noise from the lights data, we do obtain 
statistically significant relationships for most of the specifications, along 
with better fits for the de-trended regressions. While this is the case for 
the results based on all four masks, it is the EOG mask followed by the 
cluster mask which generates the strongest relationships, judged based 
both on statistical significance and the fits of the de-trended regressions. 
If we focus on the column [3b] results then the estimated elasticity of 
GDP with respect to SOL is 0.295 when using the EOG mask, which is 
significant at the 1 percent level, with an R2 of 0.37. This implies that 
changes in the intensity of Morocco’s lights around their trend can 
“explain” just over one-third of the variation in GDP around its trend. 
The estimated elasticity of GDP with respect to SOL when using the 

cluster mask is slightly lower at 0.262.27 Nevertheless, it remains highly 
statistically significant. At 0.35, the R2 is likewise very slightly lower.28 

Nevertheless, an R2 of 0.35–0.37 still implies that fluctuations in 
nighttime light intensity are unable to “explain” almost two-thirds of the 
quarterly variation in real GDP, meaning that the relationship is rather 
noisy. This is evident from Fig. 2, which provides a visualization of the 
column [3b] results based on the EOG and cluster masks from Table 1. 
Hence, for both masks, the magnitude of the change in lights is much 
closer to the magnitude of the change in real GDP for some fluctuations 
than for others. Consistent with this, if we focus on the data for the 
period 2014 Q1 – 2020 Q1 rather than for 2012 Q3 – 2020 Q1 then the 
estimated elasticity of GDP with respect to SOL increases to 0.35–0.36, 
depending on the mask used. For the most recent fluctuations, visual 
inspection of Fig. 2 suggests that the elasticity may even be close to 
unity, especially for results based on the cluster mask. 

Despite this, it is also apparent from Fig. 2 that, throughout the 
sample-period, the timing of changes in nighttime light intensity line-up 
reasonably with the timing of changes in real GDP, especially for the 
EOG mask. For the EOG mask, a switch from a below to an above trend 
level of real GDP or vice versa is matched by a corresponding switch in 
SOL from below to above trend or vice versa in 10 out of 23 cases (i.e. in 
43.5 percent of cases). For the remaining 13 cases, the switch in SOL 
occurs within plus or minus one quarter of the switch in GDP. Mean
while, for the cluster mask, a switch in SOL occurs in the same quarter as 
a switch in real GDP in seven out of 23 cases (30.4 percent) and within 
one quarter for the remaining 16 cases. This implies that the cleaned 
lights data are perhaps better used to indicate likely changes in the di
rection of real economic activity than to provide precise quantitative 
estimates, based on the overall estimated elasticity, of the change in real 
GDP for any given fluctuation. Although, even when it comes to 
detecting the timing of changes in real GDP, significant care still needs to 
be exercised given that the lights and GDP data do not line-up 
perfectly.29 

4. COVID-19 and the evolution of Morocco’s nighttime lights 

4.1. Methodology for estimating the “impact” of the COVID-19 crisis on 
lights 

Having established that the lights data can, with reasonable caution, 
be used to indicate changes in real economic activity, we now turn to 
examine the evolution of Morocco’s lights in response to the COVID-19 
crisis. In doing so, we first focus on the monthly evolution at the national 
level before turning to examine the monthly evolution at the subnational 
regional and city levels. In all three cases, our methodology involves 

24 The control for a time trend/year effects helps avoid spurious correlation 
between nighttime lights and GDP.  
25 It will be noted from Table 1 that estimation of equation (3) produces 

identical point estimates of the coefficient on ln(SOLt) as estimation of equation 
(1) when excluding the quarter effects. The difference lies in the associated 
standard errors (t-values), which are smaller (larger) when we estimate equa
tion (3).  
26 This is based on the rejection of the hypothesis that the error terms in the 

regressions are serially uncorrelated using both Durbin’s alternative test for 
serial correlation and the Breusch-Godfrey test for serial correlation. In general, 
results are very similar when we instead estimate using standard OLS or instead 
assume a second-order serial correlation process. Note that Newey-West stan
dard errors are also robust to heteroskedasticity. 

27 Our estimated elasticity of 0.262–0.295 is remarkably close to that obtained 
by Henderson et al. (2012), which they estimate using annual GDP and lights 
data for a global panel of countries. This is despite Henderson et al.‘s analysis 
being based on the old DMSP-OLS data as opposed to the newer VIIRS data.  
28 Table A1 in Annex 1 presents results based on the EOG and cluster masks, 

from the estimation of equations (1)–(3) for the industry, services, and agri
cultural sectors. These regressions suggest that fluctuations in light intensity are 
most highly correlated with fluctuations in industry GDP. This is notably the 
case in the estimation of equation (2) and of equation (3) when de-trending is 
based on year effects. Interestingly, fluctuations in light intensity also hold 
some predictive ability for fluctuations in agricultural GDP when estimating 
equation (1) and equation (3) when de-trending is based on a linear time trend.  
29 One might suspect the relationship between fluctuations in real GDP and 

SOL of being asymmetric between economic expansions and contractions. For 
example, Henderson et al. (2012) hypothesize “the possibility that because 
some lights growth reflects the installation of new capacity, lights are nonde
creasing, so that economic downturns will not be reflected in lights.” However, 
they find no evidence in support of such an asymmetric relationship in their 
own work, and, from Fig. 2, there likewise seems no evidence to support the 
existence of an asymmetric relationship in quarterly data for Morocco. 
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estimating a multivariate regression that models the evolution of SOL as 
following an exponential time trend while controlling for systematic 
differences in light intensity between months that are allowed to differ 
between the pre- and post-COVID-19 onset periods. From this model, 
SOL values adjusted for both seasonal effects – in particular, adjusted for 
systematic monthly variations in the lights data that may be due, for 
example, to seasonal atmospheric effects and changes in vegetation that 
are unrelated to economic activity – and the pre-crisis trend are derived, 
and changes in these values calculated. 

More formally, using monthly SOL data for the period April 
2012–September 2020 (excluding June data for each year), we estimate 
the following regression: 

ln
(
SOLi,m

)
=α+ βm+ γMonth+ δ(COVID.Month) + εi,m (4)  

where SOLi,m is a geographic area i’s SOL in month m, m is a time-trend 
variable, Month are a full set of monthly dummies that help control for 
seasonal effects, including those associated with possible seasonal 

atmospheric and other sensor related effects, and COVID is a dummy 
variable which equals one if a month falls in the post-COVID-19 onset 
period and zero otherwise.30 Given that Morocco’s first case of COVID- 
19 was announced on March 2, 2020, we define the post-COVID-19 
onset period as consisting of all months from March 2020 onwards. 
For pre-COVID-19 months, the estimated residuals from this regression, 
ε̂i,m, give the seasonally adjusted SOL values relative to the pre-COVID- 
19 SOL trend growth path, the estimated slope of which is itself given by 
β̂. Meanwhile, δ̂ provides estimates of seasonally adjusted SOL values 
relative to the pre-crisis trend for post-COVID-19 onset months. As with 
the regressions in Section 3, we estimate equation (4) using least squares 
with Newey-West standard errors to control for both first-order serial 
correlation and heteroskedasticity.31 

Table 1 
Relationship between nighttime lights and GDP, quarterly data.   

Time trend Time trend + quarter effects Year effects Year + quarter effects De-trended (time trend) De-trended (year effects) 

[1a] [1b] [2a] [2b] [3a] [3b] 
“Raw” nighttime lights data 
ln(SOL) 0.025 

(0.89) 
0.020 
(1.39) 

0.083 
(1.19) 

0.006 
(0.68) 

0.025 
(0.91) 

0.083 
(1.50) 

R2 0.95 0.99 0.93 0.99 0.03 0.11 
EOG mask 
ln(SOL) 0.129** 

(2.26) 
0.088*** 
(3.86) 

0.295*** 
(4.43) 

0.051** 
(2.25) 

0.129** 
(2.31) 

0.295*** 
(5.56) 

R2 0.96 0.99 0.95 0.99 0.13 0.37 
Cluster mask 
ln (SOL) 0.100** 

(2.11) 
0.06*** 
(3.11) 

0.262*** 
(4.23) 

0.035 
(1.54) 

0.100** 
(2.16) 

0.262*** 
(5.30) 

R2 0.96 0.99 0.95 0.99 0.11 0.35 
Population mask 
ln (SOL) 0.109* 

(1.91) 
0.089*** 
(3.96) 

0.250*** 
(3.26) 

0.051** 
(2.52) 

0.109* 
(1.96) 

0.250*** 
(4.09) 

R2 0.96 0.99 0.94 0.99 0.10 0.29 
Built-up area mask 
ln (SOL) 0.082 

(1.17) 
0.087*** 
(3.65) 

0.197 
(1.55) 

0.052*** 
(3.81) 

0.082 
(1.20) 

0.197* 
(1.94) 

R2 0.95 0.99 0.93 0.99 0.06 0.18 

Notes: ***, ** and * indicate significance at the 1, 5 and 10 percent levels respectively. t-values are reported in parentheses and are based on Newey-West standard 
errors, assuming a first-order serial correlation process. Estimated constant terms in the regressions not reported. 

Fig. 2. a. Relationship between nighttime lights and GDP, EOG mask. Fig. 2b. Relationship between nighttime lights and GDP, cluster mask.  

30 The monthly dummies also help to control for any seasonal variation in 
cloud coverage, although, as discussed in Section 2.1, cloud-free coverage is 
high in Morocco, suggesting that this is not a major concern when analyzing 
lights data for the country.  
31 As with the regressions in Section 3, the use of Newey-West standard errors 

is justified by the rejection of the hypothesis that the error terms are serially 
uncorrelated using both Durbin’s alternative test for serial correlation and the 
Breusch-Godfrey test for serial correlation. 
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A corollary of our approach to examining the evolution of lights 
following the onset of COVID-19 is that we effectively use the pre- 
COVID-19 trend growth path of an area’s lights – be the area Morocco 
overall or one of its subnational regions or cities – as defining the 
counterfactual relative to which changes in seasonally-adjusted light 
intensity are measured. A conceptual illustration of this is provided by 
Fig. 3. In this figure, ε̂Feb. is the (hypothetical) residual from estimating 
equation (4) for February 2020 – the last pre-COVID-19 onset month – 
and corresponds to the (ln) percentage points by which area i’s 
seasonally adjusted SOL deviated from its pre-COVID-19 growth trend in 
that month. Meanwhile, δ̂March corresponds to the estimated coefficient 
on the interaction dummy variable (COVID.Month) for March 2020. This 
is an estimate of the (ln) percentage points by which area i’s seasonally 
adjusted SOL deviated from the pre-COVID-19 growth trend in the 
month in which Morocco’s first COVID-19 case was announced. Given 
this, δ̂March − ε̂Feb. then provides a measure of the “impact” of COVID-19 
on area i’s (seasonally adjusted) light intensity, which is equal to the (ln) 
percentage point change in SOL between the two months relative to the 
estimated pre-COVID-19 trend growth path of nighttime light intensity. 

In addition to presenting estimates of changes in seasonally adjusted 
SOL relative to the pre-COVID-19 estimated trend growth path, we also 
present estimates of year-on-year (y-o-y) changes in seasonally adjusted 
SOL relative to this same growth path. For March 2020, such an estimate 
corresponds to δ̂March − ε̂March,2019 where ε̂March,2019 is the residual for 
March 2019 from estimating equation (4). 

The application of the above methodology to derive estimates of 
“impact” for any given geographic area is subject to at least one 
important caveat. This is that, ideally, we would like to be able to 
compare the evolution of lights before and after the onset of COVID-19 
with the evolution in a set of comparison locations that did not experi
ence COVID-19. This would then facilitate the application of a 
difference-in-differences estimator with the evolution of lights in the 
comparison locations defining the counterfactual against which the 
impact of COVID-19 is estimated. Given a suitable set of comparison 
locations, the application of such an estimator would help to control for 
omitted variables that are common to both the COVID-19 affected and 
comparison locations, but which may be correlated with both the in
tensity of nighttime lights and COVID-19. This could potentially include 

non-seasonal and unaccounted for atmospheric effects that may lead to 
distorted nighttime lights measurements. In the absence of such a 
research design, and, in particular, given our simpler time series design, 
we cannot completely rule-out the possibility of a large atmospheric 
“shock” that could have coincided with the onset of the COVID-19 crisis 
to cause a decline in measured nighttime light intensity in the absence of 

any “true” on-the-ground change in luminosity. Unfortunately, howev
er, the global nature of the COVID-19 pandemic makes such a research 
design unfeasible. This means that caution must be exercised in inter
preting the estimates of “impact” that we present as causal. 

4.2. National-level results 

The monthly national level results based on the EOG mask which 
generates the strongest relationship between lights and real GDP in 
quarterly data (see Section 3) are presented in Table 2 and Fig. 4.32 We 
highlight three key findings. The first is that, following the detection of 
the first COVID-19 case and the imposition of strict non-pharmaceutical 
interventions (NPIs) to control the disease’s spread, Morocco witnessed 
a sharp fall in the intensity of its nighttime lights. Fig. 5 shows the sharp 
increase in the numbers of confirmed COVID-19 cases and deaths that 
occurred in Morocco in March 2020 following the detection of the first 
case, while Fig. 6 shows the sharp increase in the stringency of Moroc
co’s NPIs, as captured by the NPI stringency index constructed by Hale 
et al. (2020), that was implemented in reaction to this. Accompanying 
this, Morocco witnessed a steep month-on-month decline of 10.9 per
centage points in its overall light intensity (i.e. seasonally adjusted SOL) 
relative to the pre-crisis trend (Table 2; Fig. 4).33 As a result, whereas in 
February 2020, prior to the first case, the intensity of Morocco’s lights 
had been 3.0 percentage points above its pre-COVID-19 trend, by March, 
the intensity was 7.9 percentage points below its pre-COVID-19 trend 
(Table 2; Fig. 4(a)). This month-on-month decline in lights was the 
largest that Morocco had experienced since December 2013.34 An even 
larger decline in light intensity, relative to the pre-crisis trend, is evident 
on a year-on-year basis – between March 2019 and March 2020, 
seasonally adjusted SOL fell by 13.4 percentage points relative to this 
trend. This is the fifth largest year-on-year decline in seasonally adjusted 
SOL during the entire time-series of monthly lights. 

The second key finding is that Morocco’s lights showed some signs of 
recovery in May 2020 as COVID-19 cases and deaths both leveled-off. 
Hence, following March’s large drop, Morocco experienced a further, 
much smaller, drop in its overall (seasonally adjusted) light intensity in 
April 2020 of 3 percentage points, relative to the pre-COVID-19 trend 
(Table 2). This left Morocco’s lights 13.9 percentage points dimmer in 
April 2020 than they were in February 2020, the final pre-crisis month 
(Fig. 4). May, however, then saw a partial recovery in the intensity of 
Morocco’s seasonally adjusted lights as the numbers of confirmed 
COVID-19 cases and deaths stabilized (Fig. 5). Relative to the pre-crisis 
trend, seasonally adjusted light intensity increased by 6.3 percentage 
points between April and May 2020 (Table 2). On a year-on-year basis, 
however, May’s change in nighttime light intensity remained negative. 

In our final key finding, however, the partial May recovery was short- 
lived, and, by September 2020, Morocco’s lights were as dim as they 
were in March following the initial impact of the COVID-19 shock. 
Hence, although we lack useable June lights data due to the stray-light 
problem, Fig. 4 shows that, by July, the May uptick in seasonally 
adjusted light intensity had been more than wiped-out. Relative to the 
pre-crisis trend, light intensity had thus reverted to just below its April 

Fig. 3. Conceptual illustration of estimation of effects of COVID-19 on night
time light intensity. 

32 Results based on the application of the cluster, population, and built-up area 
masks, which are similar to the results based on the EOG mask, are available on 
request. The full results from the estimation of equation (4) based on the EOG 
mask can be found in Table A2, Annex 2.  
33 Assuming an elasticity of 0.30, this corresponds to a fall in real GDP of 3.3 

percentage points, although, as discussed in Section 3, any precise estimate of 
the change in real GDP derived from the lights data needs to be treated with 
caution.  
34 The fall was also the fourth largest since data records began. The three 

largest month-on-month declines in seasonally adjusted light intensity relative 
to the pre-COVID-19 trend were in December 2013 (− 14.70 percentage points), 
March 2013 (− 14.28 percentage points), and November 2012 (− 14.07 per
centage points). These declines all took place during the Arab Spring period. 
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level. This coincided with an upturn in the growth in the number of 
confirmed COVID-19 cases (Fig. 5). In August, seasonally adjusted light 
intensity increased, but, by September, Morocco’s seasonally adjusted 
light intensity remained, relative to the pre-crisis trend, 10.3 percentage 
points below its level in the final pre-COVID-19 month of February 
2020. This is where it stood in March 2020 following the initial onset of 
the shock, implying the absence of any overall recovery with light in
tensity standing a statistically significant 7.3 percentage points below 

the pre-crisis trend (Table 2). 
One concern with the above findings, that we have already alluded 

to, is that they may be the spurious result of atmospheric effects that just 
happened to bias the measurement of lights downwards in March 2020 
at the same time as the onset of COVID-19 in Morocco and the imple
mentation of NPIs or, equivalently, the disappearance of a temporary 
upwards bias in the measurement of lights in February 2020 due to 

Table 2 
Nighttime lights statistics.  

Difference from trend (%) 

Feb. 2020 Mar. 2020 Apr. 
2020 

May 2020 Jul. 
2020 

Aug. 
2020 

Sep. 
2020 

3.00 − 7.88** − 10.92*** − 4.58** − 11.55*** − 7.03** − 7.34*** 

Change relative to trend (percentage points)  

Feb. → Mar. Mar. → Apr. Apr. → May May → Jul. Jul. → Aug. Aug. → Sep. 
− 10.88 − 3.03 6.34 − 6.97 4.52 − 0.32 

Year-on-year change relative to trend (percentage points) 

Feb. 2020 Mar. 2020 Apr. 
2020 

May 2020 Jul. 
2020 

Aug. 2020 Sep. 2020 

1.47 − 13.44 − 12.00 − 7.05 − 6.49 2.94 − 6.25 

Notes: ***, ** and * indicate significance at the 1, 5 and 10 percent levels respectively. Results based on EOG mask, which omits areas excluded in 2015 and 2016 
annual composites. Trend refers to the pre-COVID-19 trend of seasonally adjusted SOL, as estimated using monthly data for Apr. 2012–Feb. 2020. No results reported 
for June 2020 due to stray-light contamination of lights data. 

Fig. 4. Changes in seasonally adjusted NTL intensity.  

Fig. 5. Confirmed COVID-19 cases and deaths.  
Fig. 6. NPI stringency index.  
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atmospheric effects. Some support for the latter possibility seems to be 
provided by Fig. 4(a), which shows that there was a large upward 
movement in the intensity of Morocco’s lights between January and 
February 2020. Indeed, the magnitude of this upwards movement (+9.8 
percentage points relative to the pre-COVID-19 trend) was almost as 
large as the subsequent downwards movement (- 10.9 percentage 
points) that occurred in March and coincided with the onset of COVID- 
19. However, this would not explain the large year-on-year decline in 
the intensity of lights between March 2019 and March 2020. Also, the 
disappearance of a temporary February 2020 distortion cannot explain 
why light intensity would have remained significantly below its pre- 
COVID-19 growth path for the remainder of the sample-period, which 
runs up until September 2020. Still, the noisiness of the seasonally 
adjusted SOL time series relative to the pre-COVID-19 growth path 
which is evident in Fig. 4(a) means that we cannot unequivocally rule- 
out the possibility that the results may be driven by unaccounted for 
(non-seasonal) atmospheric effects. 

4.3. Subnational results 

4.3.1. Admin-1 regions35 

Table 3 and Fig. 7 present our subnational results which cover nine of 
Morocco’s Admin-1 level regions, as defined by their current bound
aries, which date back to 2015.36 The first finding to emphasize is that 
while all regions shared in March 2020’s national lights decline, some 
suffered more than others. Thus, out of the nine regions analyzed, Fès – 
Meknès experienced the largest month-on-month decline – 16.5 per
centage points – in the intensity of its seasonally adjusted lights in March 
relative to its pre-COVID-19 trend growth path. Tanger – Tetouan - Al 
Hoceima and Oriental - RIF also experienced declines greater than 15 
percentage points, while a further three (Rabat – Salé – Kénitra, Drâa- 
Tafilalet, and Marrakech – Safi) experienced declines more than 10 
percentage points. The only region to escape a large fall in the intensity 
of its lights in March was Souss – Massa (- 0.5 percentage points).37 

Given an assumed elasticity of 0.30, a 15 (10) percentage point decline 
in light intensity is equivalent to a 4.5 (3.0) percentage point drop in real 
GDP, although, as noted above, any attempt to derive precise quanti
tative estimates of changes in real GDP needs to be treated with caution. 

In addition to the heterogeneous movements of nighttime lights 
following the onset of Morocco’s COVID-19 crisis in March 2020, 
Table 3 and Fig. 7 also reveal that the effects of the shock appear to have 
been highly persistent across regions. Thus, while light intensity levels 
relative to pre-crisis trends have fluctuated at the regional level since 
March, there is a strong correlation between the initial “impact” of the 
shock in March and the overall “impact” as observed in September 2020. 
This is reflected in an estimated correlation coefficient of 0.69 and an 
estimated Spearman’s rank correlation coefficient of 0.75 between the 

change in a region’s seasonally adjusted light intensity between 
February and September and the change in its seasonally adjusted light 
intensity between February and March. Consistent with this, the two 
regions, Rabat – Salé – Kénitra and Tanger – Tetouan – Al Hoceima, that 
appear to have been initially hardest hit by the crisis remained the 
hardest hit in September. Conversely, Souss – Massa and Casablanca – 
Settat, which were the two regions that appear to have been initially 
least hard hit, were also the only two to have recovered to levels of light 
intensity, relative to the pre-COVID-19 trend, that were above their pre- 
crisis levels in February (Fig. 7). 

More generally, assuming that they are not driven by unaccounted 
for atmospheric distortions, our results allow us to distinguish between 
three groups of regions in Morocco – the hardest hit, the hard-hit and the 
recovered. In addition to Rabat – Salé – Kénitra and Tanger – Tetouan – 
Al Hoceima, the hardest hit group also includes Fès – Meknès. Compared 
to their pre-crisis trends, these areas had September 2020 levels of light 
intensity between 19.2 and 26.0 percentage points lower than they were 
in February 2020. This corresponds to a 5.8–7.8 percentage points drop 
in real GDP given an elasticity of 0.30 with the caveat, again, that 
estimated real GDP changes need to be treated with caution. The hard- 
hit group meanwhile comprises Drâa – Tafilalet, Marrakech – Safi, 
Oriental – RIF and Béni Mellal – Khénifra. This group suffered light in
tensity (estimated real GDP) declines between February and September 
2020 in the range of 5.0–12.0 (1.5–3.6) percentage points. Finally, Souss 
– Massa and Casablanca – Settat are the recovered group, with 
September 2020 light intensity (estimated real GDP) levels that were 1.2 
(0.4) and 5.7 (1.7) percentage points respectively above their February 
2020 levels, relative to pre-crisis trends (Table 3, Fig. 7). However, 
whether Souss – Massa and Casablanca – Settat have retained their 
recovered status as Morocco’s COVID-19 crisis has further evolved is an 
open question. 

4.3.2. Cities 
Table 4 reports results for the 14 Moroccan cities whose population 

exceeded 200,000 in 2015, where we define cities as “urban centers” 
following the European Commission’s degree of urbanization method
ology (Dijkstra and Poelman, 2014; Dijkstra et al., 2021). According to 
this definition, a city is composed of a contiguous set of 1 km2 pixels, 
each of which has a population density of at least 1500 people per km2 

and whose collective population is at least 50,000.38 As might be ex
pected, the results largely mirror those for Morocco’s Admin-1 level 
regions. Thus, the cities that suffered the largest (smallest) declines in 
their seasonally adjusted nighttime lights in March 2020 relative to their 
pre-COVID-19 trends tended to be those which fall under the Admin-1 
level regions whose seasonally adjusted lights also declined by the 
most (least) in March 2020. And, as at the Admin-1 level region, the 
“impacts” of the COVID-19 shock have been highly persistent across 
cities. This is again indicated by the high estimated correlation and 
Spearman’s rank correlation coefficients (0.80 and 0.82 respectively) 
when comparing the change in seasonally adjusted lights between 
February and September 2020 with the corresponding change between 
February and March 2020 across cities. Indeed, these estimated corre
lation coefficients are even higher than the corresponding coefficients 
that we reported for the Admin-1 region level, indicating even stronger 
persistence at the city than at the regional level. 

Notwithstanding the overall similarity of the results, however, we 
also observe some important differences in results across cities which 
belong to the same Admin-1 level region. This is the case, for example, 

35 Again, we focus on results based on the EOG mask. Results are, however, 
similar regardless of the choice of mask.  
36 Our analysis excludes three sparsely populated regions that were not fully 

covered by the lights data provided by EOG under their subscription service. 
However, an analysis of December 2019 lights data, where we have complete 
coverage of all regions including these, shows that they accounted for only 4.6 
percent of total SOL for that month (calculated using pixel values equal to or 
greater than one), which is consistent with their low overall density of eco
nomic activity. Furthermore, results from Gibson et al. (2021), based on data 
for Indonesia, China, and South Africa, suggest that VIIRS lights data are less of 
a reliable proxy for economic activity for low-density regions.  
37 Similar to national level results, most Admin-1 regions experienced a 

month-on-month increase in light intensity in February 2020, just prior to the 
onset of COVID-19. Again, this raises some concern that the declines estimated 
for March 2020 may be the result of the disappearance of a temporary February 
2020 distortion of lights that resulted in an upwards measurement bias. 
Although this seems unlikely to fully account for the results presented, we can, 
again, not unequivocally rule it out. 

38 Population is measured using the European Commission’s GHS-POP popu
lation grid, which is the same grid as that on which the population mask is 
based. The shapes of the 14 Moroccan cities were extracted from Urban Center 
Database UCDB R2019A (Florczyk et al., 2015). Results for cities were derived 
without applying a background noise mask given that background noise tends 
to be associated with non-urban areas. 
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for the cities of Tangier and Tetouan, both of which are in the region of 
Tanger – Tetouan – Al Hoceima. Hence, the decline in seasonally 
adjusted light intensity, relative to the pre-COVID-19 trend, that Tangier 
suffered between February and March 2020 was 23.8 percentage points, 
which was nearly double the 12 percentage points decline that Tetouan 
suffered. Furthermore, by September 2020, Tangier’s decline in light 
intensity from February 2020 had further increased to 37.3 percentage 
points, while Tetouan’s decline remained roughly the same as in March 
2020 at 13.7 percentage points. 

Comparing Table 4 with Tables 2 and 3, we can further see that the 
declines in seasonally adjusted lights, relative to pre-COVID-19 trends, 
are frequently larger at the city level than either at the Admin-1 region 
or national levels. This suggests that the negative economic “impacts” of 
the COVID-19 crisis in Morocco have been most heavily felt in cities 
subject again to the same, previously expressed caveat, that we cannot 
entirely rule-out the possibility that our results are driven by unac
counted for (non-seasonal) atmospheric effects that distort the mea
surement of lights. It also suggests that our results at the national and 
Admin-1 region levels are not driven by the dimming of lights along, 
for example, the transport routes that connect cities. This conclusion is 
corroborated by the fact that the results that we obtain at both the na
tional and Admin-1 region levels are qualitatively similar when, instead 
of the EOG mask, we use the built-up area mask, which, as Fig. 1(d) 

shows, masks out roads between cities. In the case of China, Liu et al. 
(2020) report that the dimming of lights associated with the pandemic 
mainly occurred in the commercial centers of cities. Although further 
work matching nighttime lights data with land use maps would be 
required to establish this, it seems plausible that a similar story may hold 
for Morocco. 

5. Conclusion 

This paper has explored the potential for high frequency nighttime 
lights data to provide “near real-time” tracking of the economic impacts 
of the COVID-19 crisis for the specific case of Morocco. At the national 
level, there exists a strong correlation between quarterly movements in 
Morocco’s overall light intensity and movements in its real GDP, which 
supports the use of lights to track the economic impacts of the COVID-19 
crisis at both higher temporal frequencies and at the subnational level, 
for which GDP data are unavailable. Consistent with large economic 
impacts of the crisis, Morocco experienced a large drop, relative to the 
pre-COVID-19 crisis trend, in the overall intensity of its lights in March 
2020, from which it has subsequently struggled to recover. At the sub
national level, while all regions shared in March’s national decline in 
nighttime light intensity, Rabat – Salé – Kénitra, Tanger – Tetouan – Al 
Hoceima, and Fès – Meknès experienced much larger declines than 

Table 3 
Changes in light intensity relative to pre-COVID-19 trend (percentage points), Admin-1 regions.  

Admin-1 unit Change from previous month, percentage points (Change from February 2020, percentage points) 

March 
2020 

April 
2020 

May 
2020 

July 
2020 

August 
2020 

Sept. 
2020 

Rabat – Salé – Kénitra − 11.95 
(-11.95) 

− 3.11 
(-15.06) 

3.58 
(-11.48) 

− 15.60 
(-27.08) 

11.23 
(-15.85) 

− 10.14 
(-25.99) 

Tanger – Tetouan - Al Hoceima − 15.33 
(-15.33) 

− 3.76 
(-19.10) 

7.13 
(-11.96) 

− 6.98 
(-18.95) 

3.40 
(-15.55) 

− 6.52 
(-22.07) 

Fès – Meknès − 16.49 
(-16.49) 

− 11.79 
(-28.28) 

13.47 
(-14.82) 

− 4.47 
(-19.28) 

1.36 
(-17.93) 

− 1.27 
(-19.20) 

Béni Mellal – Khénifra − 7.42 
(-7.42) 

− 9.97 
(-17.39) 

8.37 
(-9.02) 

− 2.28 
(-11.29) 

0.90 
(-10.39) 

− 1.57 
(-11.96) 

Oriental – RIF − 15.28 
(-15.28) 

− 2.65 
(-17.94) 

12.41 
(-5.53) 

− 7.82 
(-13.35) 

3.78 
(-9.57) 

3.18 
(-6.39) 

Marrakech – Safi − 11.62 
(-11.62) 

− 6.92 
(-18.54) 

11.76 
(-6.78) 

− 4.08 
(-10.86) 

3.16 
(-7.70) 

1.69 
(-6.01) 

Drâa – Tafilalet − 11.65 
(-11.65) 

7.26 
(-4.40) 

1.20 
(-3.19) 

− 6.10 
(-9.29) 

− 0.87 
(-10.16) 

5.21 
(-4.95) 

Casablanca – Settat − 6.49 
(-6.49) 

4.90 
(-1.58) 

− 3.72 
(-5.30) 

− 4.78 
(-10.08) 

8.59 
(-1.49) 

2.67 
(1.18) 

Souss – Massa − 0.53 
(-0.53) 

− 7.88 
(-8.31) 

13.66 
(5.35) 

− 8.18 
(-2.83) 

− 4.23 
(-7.06) 

12.75 
(5.70) 

Mean ¡10.75 
(-10.75) 

¡3.77 
(-14.51) 

7.54 
(-6.97) 

¡6.70 
(-13.67) 

3.04 
(-10.63) 

0.67 
(-9.97) 

Median ¡11.65 
(-11.65) 

¡3.76 
(-17.39) 

8.37 
(-6.78) 

¡6.10 
(-11.29) 

3.16 
(-10.16) 

1.69 
(-6.39) 

Notes: Admin-1 area boundaries conform to current regional boundaries based on the shapefile downloaded from: https://www.arcgis.com/home/item.html?id=21b 
cbcaa915c433ba7c7850bafeede7b. No results reported for June 2020 due to stray-light contamination of the lights data. 

Fig. 7. Changes in light intensity relative to pre-COVID-19 trend (percentage points), Admin-1 areas.  
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others. Since then, the relative effects of the COVID-19 shock across 
regions appear to have largely persisted. Similar, and, indeed, stronger, 
persistence is also evident for our sample of Moroccan cities. Moreover, 
the effects of the COVID-19 crisis on lights appear to have been, in many 
cases, stronger at the city than either at the subnational regional or 
national levels, which is consistent with cities bearing much of the brunt 
of the crisis. 

Our analysis can potentially be extended in several directions. Thus, 
while we have analyzed the evolution of nighttime lights, as a proxy 
measure of economic activity, at both the national and sub-national 
(regional and city) levels for Morocco, the methods showcased in this 
paper can equally be applied to other Middle East and North African 
(MENA) countries, taking advantage of the region’s low cloud-cover 
which facilitates frequent high-quality observation of lights. A second 
natural extension would be to investigate the underlying determinants 
of the heterogenous nighttime lights reactions of Morocco’s different 
regions and cities to the COVID-19 crisis, which might include, for 
example, differences in their economic and demographic structures, as 
well as differences in the spread of the disease itself and the associated 
policy reactions. A final potential extension would be to analyze the 
evolution of lights in response to the crisis within Morocco’s cities in the 
spirit of Liu et al.‘s work for China to see if the negative impacts of the 
COVID-19 crisis are associated with particular geographic areas – e.g., 
commercial centers – within cities. 

Finally, there are several crucial caveats that should be kept in mind 
when considering the results in this paper. First, while we have 
demonstrated that quarterly changes in nighttime light intensity are 
significantly correlated with quarterly movements in real GDP for 
Morocco, we have also found that this relationship contains significant 
noise and that the timing of changes in direction in light intensity are 

only imperfectly aligned with the timing of changes in the direction of 
real GDP. Second, at both the national and sub-national levels, we have 
shown that the large decline in nighttime light intensity that occurred in 
March 2020 at the onset of the COVID-19 crisis in Morocco was preceded 
by an almost equally large increase in light intensity in February 2020. 
This raises the concern that our results may be driven by temporary 
measurement error driven by unaccounted for atmospheric distortions 
that might have biased upwards the measurement of light intensity in 
February. While the fact that there were also year-on-year declines in 
light intensity between March 2019 and March 2020 provides some 
reassurance, further research is required to definitively establish that the 
estimated changes in light intensity reported are driven by anthropo
genic causes. Third, and finally, we have seen that Morocco is particu
larly affected by the distortion of its June lights data due to the stray- 
light phenomenon, which led to us dropping data for this month. 
Taken together, these caveats imply that the results presented in this 
paper should be taken as suggestive of the evolution of economic activity 
following the onset of the COVID-19 crisis rather than as providing the 
final word on the magnitude of this evolution, where much more caution 
is needed. Ideally, one would like to triangulate the results presented in 
this paper with those obtained from other high frequency, potentially 
near real-time, proxy measures of economic activity for which the 
possible measurement errors are orthogonal to those in the lights data. 
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Table 4 
Changes in light intensity relative to pre-COVID-19 trend (percentage points), cities with 2015 population > 200,000.   

Change from previous month, percentage points (Change from February 2020, percentage points) 

City Admin-1 unit March 
2020 

April 
2020 

May 
2020 

July 
2020 

August 
2020 

Sept. 
2020 

Tangier Tanger – Tetouan - Al Hoceima − 23.76 
(-23.76) 

− 6.53 
(-30.29) 

10.33 
(-19.96) 

− 2.86 
(-22.82) 

− 3.32 
(-26.14) 

− 11.18 
(-37.32) 

Rabat Rabat – Salé – Kénitra − 12.27 
(-12.27) 

− 2.93 
(-15.20) 

2.04 
(-13.16) 

− 21.30 
(-34.46) 

16.88 
(-17.58) 

− 14.07 
(-31.65) 

Fez Fès – Meknès − 23.23 
(-23.23) 

− 14.94 
(-38.16) 

10.31 
(-27.85) 

− 4.14 
(-31.99) 

4.68 
(-27.31) 

− 0.52 
(-27.83) 

Meknes Fès – Meknès − 17.67 
(-17.67) 

− 13.27 
(-30.93) 

9.54 
(-21.39) 

2.20 
(-19.18) 

− 0.45 
(-19.63) 

− 6.84 
(-26.48) 

Kénitra Rabat – Salé – Kénitra − 17.64 
(-17.64) 

1.87 
(-15.77) 

4.82 
(-10.95) 

− 15.27 
(-26.22) 

16.27 
(-9.95) 

− 11.70 
(-21.64) 

Khouribga Béni Mellal – Khénifra − 14.87 
(-14.87) 

− 4.21 
(-19.08) 

7.92 
(-11.16) 

2.61 
(-8.56) 

3.01 
(-5.55) 

− 11.03 
(-16.58) 

Marrakesh Marrakech – Safi − 12.45 
(-12.45) 

− 17.05 
(-29.50) 

12.92 
(-16.58) 

− 6.76 
(-23.33) 

3.81 
(-19.52) 

2.95 
(-16.57) 

Tetouan Tanger – Tetouan - Al Hoceima − 12.03 
(-12.03) 

− 5.91 
(-17.94) 

− 2.33 
(-20.27) 

− 10.36 
(-30.63) 

28.39 
(-2.24) 

− 11.46 
(-13.70) 

Oujda Oriental – RIF − 15.82 
(-15.82) 

− 22.43 
(-38.24) 

31.14 
(-7.10) 

1.85 
(-5.25) 

− 7.12 
(-12.38) 

6.72 
(-5.65) 

El Jadida Casablanca – Settat − 13.51 
(-13.51) 

3.15 
(-10.36) 

− 4.31 
(-14.67) 

3.36 
(-11.30) 

3.59 
(-7.71) 

7.14 
(-0.57) 

Nador Oriental – RIF − 10.47 
(-10.47) 

− 4.50 
(-14.97) 

0.59 
(-14.39) 

4.44 
(-9.94) 

6.57 
(-3.38) 

4.81 
(1.43) 

Casablanca Casablanca – Settat − 9.70 
(-9.70) 

11.08 
(1.38) 

− 4.62 
(-3.24) 

− 9.39 
(-12.63) 

10.65 
(-1.98) 

3.62 
(1.64) 

Safi Marrakech – Safi − 7.72 
(-7.72) 

− 7.15 
(-14.86) 

4.21 
(-10.66) 

12.75 
(2.10) 

2.81 
(4.91) 

− 2.45 
(2.46) 

Agadir Souss – Massa − 1.27 
(-1.27) 

− 3.59 
(-4.86) 

10.21 
(5.35) 

− 8.50 
(-3.15) 

− 5.02 
(-8.17) 

17.31 
(9.14) 

Mean ¡13.74 
(-13.74) 

¡6.17 
(-19.91) 

6.63 
(-13.29) 

¡3.67 
(-16.96) 

5.77 
(-11.19) 

¡1.91 
(-13.10) 

Median ¡12.98 
(-12.98) 

¡5.20 
(-16.86) 

6.37 
(-13.77) 

¡3.50 
(-15.91) 

3.70 
(-9.06) 

¡1.49 
(-15.13) 

Notes: Each city is defined as an “urban center” following the European Commission’s degree of urbanization methodology (Dijkstra and Poelman, 2014; Dijkstra 
et al., 2021). Table is restricted to urban centers with a population of more than 200,000 in 2015. 
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Annex 1. Relationship between nighttime light intensity and sectoral GDP  

Table A1 
Relationship between nighttime lights and GDP generated by different sectors, quarterly data (2012 Q3 – 2020 Q1).   

Time trend Time trend + quarter effects Year effects Year + quarter effects De-trended (time trend) De-trended (year effects) 

[1a] [1b] [2a] [2b] [3a] [3b] 

EOG mask 

Industry 

ln (SOL) 0.143 
(1.49) 

0.051 
(0.90) 

0.453*** 
(3.91) 

0.173** 
(2.58) 

0.143 
(1.52) 

0.453*** 
(4.28) 

R2 0.86 0.95 0.90 0.98 0.07 0.49 

Services 

ln (SOL) − 0.057 
(-1.07) 

− 0.078* 
(-2.05) 

0.141*** 
(3.02) 

− 0.015 
(-0.52) 

− 0.057 
(-1.11) 

0.141*** 
(3.78) 

R2 0.97 0.98 0.97 0.99 0.05 0.23 

Agriculture 

ln (SOL) 0.460** 
(2.11) 

0.533** 
(2.81) 

0.026 
(0.21) 

0.159 
(0.96) 

0.460*** 
(2.15) 

0.026 
(0.26) 

R2 0.43 0.48 0.92 0.93 0.12 0.00 

Cluster mask 

Industry 

ln (SOL) 0.143* 
(1.77) 

0.063 
(1.11) 

0.413*** 
(3.58) 

0.149* 
(2.00) 

0.143* 
(1.82) 

0.413*** 
(4.48) 

R2 0.86 0.95 0.90 0.97 0.10 0.48 

Services 

ln (SOL) − 0.013 
(-0.39) 

− 0.03 
(-1.04) 

0.137*** 
(3.63) 

− 0.002 
(-0.06) 

− 0.013 
(-0.40) 

0.137*** 
(4.55) 

R2 0.97 0.98 0.97 0.99 0.00 0.252 

Agriculture 

ln (SOL) 0.335* 
(1.72) 

0.398** 
(2.18) 

− 0.052 
(-0.40) 

0.032 
(0.19) 

0.335* 
(1.77) 

− 0.05 
(-0.50) 

R2 0.40 0.46 0.92 0.93 0.09 0.01 

Notes: ***, ** and * indicate significance at the 1, 5 and 10 percent levels respectively. t-values are reported in parentheses and are based on Newey-West standard 
errors, assuming a first-order serial correlation process. Estimated constant terms in the regressions not reported. 

Annex 2. Full results from estimation of equation (4) – EOG mask  

Table A2 
Full results from estimation of equation (4).  

Dependent variable: ln(SOLi,m)

EOG mask 

Time trend 0.005*** 
(16.02) 

COVID £
March − 0.079** 

(-2.52) 
April − 0.109*** 

(-4.75) 
May − 0.046** 

(-2.48) 
July − 0.115*** 

(-4.10) 
August − 0.070** 

(-2.49) 
Sept. − 0.073*** 

(-3.06) 

(continued on next page) 
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Table A2 (continued ) 

Dependent variable: ln(SOLi,m)

EOG mask 

Constant 13.411*** 
(578.63) 

R2  0.868 
F 7.73*** 
n 93 

Notes: ***, ** and * indicate significance at 
the 1, 5 and 10 percent levels respectively. t- 
values are reported in parentheses and are 
based on Newey-West standard errors, 
assuming a first-order serial correlation pro
cess. F(12, 75) refers to an F-test of the joint 
significance of all explanatory variables with 
12 and 75 degrees of freedom. Regressions 
also include month dummies (estimated co- 
efficients not reported) but exclude June data 
due to stray-light contamination of the data. 
EOG mask excludes areas excluded in 2015 
and 2016 annual VIIRS composites. 
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