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Toilet alarms: A novel application of latrine sensors and machine learning 
for optimizing sanitation services in informal settlements 
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A B S T R A C T   

The cost-effectiveness and reliability of waste collection services in informal settlements can be difficult to 
optimize given the geospatial and temporal variability of latrine use. Daily servicing to avoid overflow events is 
inefficient, but dynamic scheduling of latrine servicing could reduce costs by providing just-in-time servicing for 
latrines. This study used cellular-connected motion sensors and machine learning to dynamically predict when 
daily latrine servicing could be skipped with a low risk of overflow. Sensors monitored daily latrine activity, and 
enumerators collected solid and liquid waste weight data. Given the complex relationship between latrine use 
and the need for servicing, an ensemble machine learning algorithm (Super Learner) was used to estimate waste 
weights and predict overflow events to facilitate dynamic scheduling. Accuracy of waste weight predictions 
based on sensor and historical weight data was adequate for estimating latrine fill levels (mean error of 20% and 
22% for solid and liquid wastes), but there was greater accuracy in predicting overflow events (area under the 
receiver operating characteristic curve of 0.90). Although our simulations indicate that dynamic scheduling 
could substantially reduce costs for lower use latrines, we found that cost reduction was more modest for higher 
use latrines and that there was a significant gap between the simulated and implemented results.   

1. Introduction 

Globally, at least 2.3 billion people do not have access to improved 
sanitation facilities, and 4.5 billion people do not have access to safely 
managed sanitation services (UNICEF/WHO, 2017). While much 
attention has been focused on latrines for rural populations and cam
paigns to end open defecation (UNICEF/WHO, 2017; Robiarto et al., 
2014; Tr�emolet, 2011; Coffey et al., 2014), the need for improved and 
safely managed sanitation facilities is acute in dense informal settle
ments in rapidly urbanizing areas (Bohnert et al., 2016; Brown et al., 
2015). This need has three principal drivers: the high population density 
of informal settlements, the lack of institutional sanitation providers, 
and the challenge of safely transporting fecal waste out of the settlement 
(Paterson et al., 2007; Mara, 2012). 

Today, more than half of humanity lives in a city. In low income 
countries the trend toward urban migration is particularly strong, with 
31% of the population residing in urban areas and 4.2% of the 

population migrating to cities each year (United Nations Department of 
Economic and Social Affairs, 2015). However, urban growth and infra
structure development has often not been able to keep pace with the 
rapid influx of individuals and families, resulting in the formation of 
informal settlements and squatter’s communities that lack basic water, 
sanitation, or electrical services (United Nations, 2015). The lack of 
sanitation services in informal settlements is particularly problematic, as 
fecal deposition in high traffic environments combined with increased 
residential density can greatly increase the risk of enteric infections 
(Kimani-Murage et al., 2014; Bhagwan et al., 2008). For example, 
children in Nairobi’s informal settlements have a prevalence of diarrhea 
(20.2%) that is comparable to prevalences in rural Kenya (21.7%) but 
much greater than the rate reported for Nairobi at large (14.8%) (Afri
can Population and Health Research Center, 2014). 

Attempts to provide reliable and appropriate sanitation services in 
informal settlements are often limited by the lack of legal protections, 
property ownership, resistance from governing authorities, and minimal 
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water and sewage infrastructure (Bohnert et al., 2016). Given the lack of 
support from governments, sanitation solutions in informal settlements 
often depend on non-profits or social enterprises that rely on donations 
or revenue generating models to sustain services (Auerbach, 2016). 

One of the key factors influencing the cost-effectiveness and reli
ability of service provision in informal settlements is the ability to 
optimize waste collection from latrines with variable use patterns that 
are spatially dispersed within an informal settlement. Optimization of 
latrine servicing typically implies a trade-off between increased collec
tion efficiency and increased risk of latrine overflow events. Daily 
servicing effectively avoids the risk of latrine overflow, but inefficient 
servicing of latrines (i.e., servicing latrines before they are full) may not 
be cost-effective. On the other hand, less frequent servicing increases the 
likelihood of a latrine overflow event, which can be damaging to the 
operator’s reputation, result in decreased demand or willingness-to-pay 
for services, as well as increase the risk of exposure to fecal contami
nation. Ideally, latrines would be serviced with the highest efficiency 
possible, but to do so requires real- or near-time monitoring of latrine fill 
levels (i.e., the fullness of the solid and liquid waste receptacles). In 
previous studies motion detector sensors (passive latrine use monitors - 
PLUMs) have been used to monitor latrine activity and compared against 
self-reported latrine use or observed latrine use (Delea et al., 2017; 
Bohnert et al., 2016; Sinha et al., 2016; O’Reilly et al., 2015). However, 
there are no known studies that attempt to estimate the accumulated 
solid or liquid waste detected using a latrine sensor. 

Partnering with Sanergy Inc., an established sanitation service pro
vider for informal settlements in Nairobi, Kenya, researchers from 
Portland State University and SweetSense investigated how latrine 
sensors could be used to estimate waste fill levels and improve servicing 
efficiency for forty latrines in Nairobi, Kenya. In particular, we evalu
ated (1) how accurately we could estimate solid and liquid waste 
weights based on motion sensor data, (2) how accurately we could 
predict a latrine overflow event to create a dynamic schedule for latrine 
servicing, and (3) how cost-effective sensor-enabled servicing would be 
compared to daily servicing or servicing based on data from on-site 
weighing. In order to answer these questions we developed four 
models to simulate the predictive performance and cost-effectiveness of 
dynamic scheduling in relation to Sanergy’s existing static schedule. We 
also present the results from a dynamic schedule that was implemented 
over three months and compare its performance to the existing and 
simulated scheduling scenarios. 

2. Materials and methods 

For this study a convenience sample of forty latrines was selected for 
installing the motion sensors. These forty latrines were chosen because 
they were clustered along a service route that was close to the central 
office and had reliable waste collector personnel. Forty-one latrines from 
a nearby route were selected as the comparison group to estimate 
outcome variables at baseline and after the intervention (see Table 1). 
General characteristics of each latrine were obtained from Sanergy’s 

existing records (i.e., type of latrine, responsible waste collectors and 
field officers, and collection schedule). 

In addition, three enumerators were employed to manually weigh 
and record daily on-site solid and liquid waste weights each time a 
latrine was serviced in the intervention and comparison groups. Weight 
measurements were recorded using the following procedure: (1) enu
merators accompanied waste collectors each morning to each of the 
latrines designated for servicing; (2) at each latrine waste collectors 
removed the solid and liquid waste cartridges and weighed each car
tridge using a hanging scale (see TOC image); (3) weights were manually 
recorded by the enumerators using a mobile application that did not rely 
on cellular network connectivity; (4) weight measurements were 
uploaded to the survey server each afternoon when enumerators 
returned to the main office; (5) an automated algorithm compiled 
weight records from the survey, subtracted the weight of the empty solid 
and liquid waste cartridges, and compared the list of latrines serviced 
against the list of latrines scheduled for servicing to account for missing 
data or discrepancies. Enumerators were also responsible for installing, 
trouble-shooting, and swapping out sensors when batteries were 
running low or sensors were not reporting. Sensors were installed in 
October, 2016, and three months of baseline weight and sensor data 
were collected before the intervention period from January through 
March, 2017. During the baseline period, all latrines were scheduled for 
servicing according to Sanergy’s static schedule, whereas during the 
intervention period latrines with sensors were serviced using a dynamic 
schedule (both schedules described in further detail below). The purpose 
of the experiment was to see whether collection efficiency improved in 
the latrines with sensors during the intervention period when weight 
and sensor data were used to generate a dynamic servicing schedule (see 
Fig. 1). 

The sensor unit was equipped with a passive infrared motion sensor 
that logged movement in the latrine throughout the day and transmitted 
the data each evening via a cellular GSM radio to SweetSense servers 
(see Fig. 1). After all the sensors had called in, an automated algorithm 
was executed to compile all the weight and motion sensor data and run 
the machine learning algorithm to determine which latrines could be 
skipped the next day. During the intervention period, waste collectors 
were notified via text message each morning which latrines to skip. The 
sensor unit was also equipped with an RFID reader that logged activity 
from the waste collectors. Waste collectors were instructed to swipe 
their “Collected” or “Not Able to Collect” tags depending on the action 
taken. The “Not Able to Collect” tag was reserved for instances when the 
facility had overflowed or required cleaning beyond the waste collec
tor’s responsibility, but there were no instances when the “Not Able to 
Collect” tag was used. The latrine operator was also given an RFID tag to 
request assistance, and RFID scans from latrine operators were imme
diately transmitted to SweetSense servers and triggered a Salesforce 
push notification for Sanergy staff to check-in with the latrine operator. 
Finally, sensor data were uploaded to the SweetSense dashboard to 
display the daily collection schedule, the log of Salesforce push notifi
cations and waste collector scans, and the approximate number of uses 
for each latrine. 

In order to measure changes in the efficiency of latrine servicing over 
the course of the intervention period, the average solid waste fill level 
and capacity savings were selected as the main outcome variables. 
Waste fill level as a percent was defined as follows: 

Fill Level ¼
Waste Weight
Waste Density

Cartridge Capacity
(1) 

Waste weights were determined by weighing solid and liquid waste 
cartridges on-site at the time of servicing, and the cartridge weight was 
subtracted from the waste weight using an automated algorithm. While 
the density of the solid waste varied based on the amount of sawdust and 
toilet paper used, a conservative density of 0.721 kg per liter was used to 
convert solid waste weight to solid waste volume based on the average 

Table 1 
Sample characteristics.   

sensor no sensor p-value 

number of latrines 40 41  
number of observations 4870 4797  
collections per latrine: median 

(IQR) 
141 (32) 133 (21) 0.331 

solid waste container sizes 31 with 45 L 9 with 
40 L 

41 with 40 
L  

high use latrines: number (%) 21 (52%) 11 (27%)  
low use latrines: number (%) 19 (47%) 30 (73%)  
solid waste fill level: median 

(IQR) 
0.52 (0.23) 0.43 (0.24) <0.001 

liquid waste fill level: median 
(IQR) 

0.41 (0.20) 0.34 (0.20) <0.001  
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weight recorded for full cartridges (average density for human feces 
without consumables can vary from 1.06 to 1.09 g/ml, Penn et al., 
2018). The solid waste volume was then divided by the cartridge ca
pacity, which varied between 40 L and 45 L, to determine the latrine fill 
level (see Equation (1)). Given that solid waste generally filled faster 
than liquid waste, the average solid waste fill level was selected as the 
primary outcome variable for measuring changes in servicing efficiency. 
Capacity savings were defined as the number of latrine servicing events 
that could be avoided due to dynamic scheduling. 

2.1. Predictive models 

We initially assumed that estimates of latrine fill levels based on 
motion sensor data would be sufficient for predicting when latrines 
could be skipped. However, while we were able to predict waste fill 
levels with sufficient accuracy, we found that the motion sensor data on 
their own were not sufficient to predict when a latrine could be skipped 
while minimizing the risk of an overflow event. Fig. 2 attempts to 
characterize the complex chain of factors that make latrine servicing 
predictions difficult. First, waste weights did not always accurately 
reflect waste volumes because of the variable amount of consumables 
that were used each day (i.e., the amount of sawdust and toilet paper 
present in the solid waste cartridge) and the different cartridge volumes 
in each latrine. Second, the need to be serviced depended not only on the 
estimated fill level from the first day’s latrine activity, but also on the 
anticipated waste that would be added the next day if the latrine were 
skipped. Also, conversations with latrine operators revealed that full 
cartridge capacity was not always desirable due to increased odor and 
complaints from customers. Finally, even when it was determined that a 
latrine needed to be serviced, there was no guarantee that the waste 
collector would service the latrine. Sometimes waste collectors were not 
able to access latrines, and sometimes waste collectors used their own 
judgment based on a visual inspection of the fill level and their experi
ence with the route to determine whether the latrine needed servicing. 
Waste collectors also indicated that they were more likely to service 
some latrines based on the preferences of the operator, often creating a 
tension between Sanergy’s desire for more efficient servicing and the 
operators’ desires for more frequent servicing. Within the Sanergy 
business model, waste collectors were directly contracted by Sanergy 
while latrine operators were franchisees, creating a tiered management 
structure that often complicated incentives and intervention 
implementation. 

Given the complex relationship between latrine use and servicing 
demand, we established that a simple linear correlation between motion 
sensor data and estimated fill levels would be insufficient for accurately 
predicting the need for servicing. Instead we used a machine learning 
algorithm (Super Learner, Polley et al., 2016) to predict when latrines 
would need to be serviced based on a variety of features that were 
identified using the available data (see Fig. 3). We developed four 
models to compare the accuracy and cost-effectiveness of different 
scheduling scenarios. The first model represented Sanergy’s 
business-as-usual static schedule, and the three simulated models rep
resented the performance of dynamic scheduling using different data 
sources. In addition, we present in Table 2 the results from the actual 
dynamic schedule that was used during the intervention period and an 
additional simulated scenario that applies dynamic scheduling to 

Fig. 1. Motion sensor installed in one of the latrines.  

Fig. 2. Chain of factors contributing to a latrine’s need to be serviced.  
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lower-use latrines. 
For the first model (Static Schedule) we used Sanergy’s existing 

servicing schedule where thirty-six latrines were serviced daily and four 
latrines had reduced servicing schedules (i.e., four latrines were only 
serviced on Sundays, Mondays, Wednesdays, and Fridays based on waste 
collector recommendations). A dichotomous outcome variable was 
created to model whether a latrine would have overflowed had it been 
skipped based on weight data from consecutive days (i.e., if the esti
mated volumes from two consecutive days exceeded the cartridge ca
pacity, then the outcome variable was classified as one; otherwise it was 
classified as zero). This variable then served as the target variable for 
predictions. 

In the second model (Sensor Only), we used sensor data and the 
Super Learner algorithm to predict when latrine servicing could be 
skipped. The predictor variables for this model included the latrine ID, 
the day of the week, and the normalized number of clicks from the 
motion sensor in the latrine. In addition, we used the number of clicks to 
create features that approximated the number of latrine uses and the 
number of edges associated with latrine use based on the methodology 
described in Clasen et al. (2012). This scenario was used to simulate the 
performance and cost-effectiveness of dynamic scheduling without the 
daily enumeration of weight data and servicing events. 

For the third model (Weight Only), we used the record of daily solid 
and liquid waste measurements to predict when latrine servicing could 

Fig. 3. Relative importance of features used in the learner for predicting the probability of an overflow event for solid waste. The relative importance represented 
above is based on the mean decrease in Gini impurity from the randomForest learner. Gini impurity refers to the improvements in data classification that are 
contributed by each feature (Archer and Kimes, 2008). 

Table 2 
Performance metrics for the four prediction models, the actual implementation results, and a prediction model using low-use latrines. Two comparisons are made in the 
following table. In the first band of results each model is evaluated based on its performance on the hold-out data. In the second band of results each model uses all 
available data to simulate its performance during the three-month implementation period to give more concrete examples of how each model would have performed if 
used to inform latrine servicing.  

Model Performance Static Schedule Sensor Only Weight Only Sensor þ Weight Actual Schedulea Low-Use Latrinesb 

Performance on Test Data From Baseline and Intervention Periods 

sensitivity 100% 96.4% 97.3% 97.9% 99.2% 95.4% 
specificity 4.50% 53.7% 61.2% 61.9% 6.23% 63.1% 
positive predictive value 49.2% 65.9% 69.9% 70.5% 55.5% 50.3% 
negative predictive value 100% 94.2% 96.0% 97.0% 86.7% 97.2% 
accuracy (AUROC) 52.2% 86.6% 89.2% 89.5% 52.7% 90.5% 

Performance on All Data During Three-Month Intervention Period 

predicted skips 46c 279c 274c 298c 75d 1142e 

possible overflow events 0 47 17 18 10f 69 
capacity savingsg 2.0% 12% 13% 13% 3.3% 52% 
waste collector laborh $1100 $1000 $1000 $990 $1100 $530 
total consumablesi $150 $140 $140 $140 $150 $73 
total cost per quarter $1300 $1100 $1100 $1100 $1300 $600 
savings per monthj NA $44 $43 $48 $5 $200  

a Performance for Actual Schedule is based on the dynamic schedule from the implementation period. 
b Performance of the weight only model on lower use latrines in the comparison group. 
c Out of 566 possible skips. 
d Represents the actual number of skips during the intervention period. 
e Out of 1383 possible skips. 
f Instances when a latrine was scheduled for a skip but waste collectors serviced the latrine based on visual inspection of fill-level; there were no reported overflow 

events during the baseline or intervention periods. 
g Number skips divided by the total number of servicing days. 
h USD per quarter based on Sanergy records, with the average waste collector servicing 15 latrines per day and receiving a monthly salary of USD $225. 
i USD per quarter based on USD $0.08 for disposable bags, sanitary bags, water, cleaning, and incineration per service event. 
j Saving compared to the static schedule. 
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be skipped. We first used Super Learner to predict the solid and liquid 
waste weights based on historical weight data (i.e., the latrine ID, the 
day of the week, and previous weight data collected from that latrine). 
Given the variability of latrine fill levels throughout the week, we 
created several features that improved the model’s performance in 
predicting latrine waste weights, including: the average weight for each 
day of the week, the average weight for the previous seven days, the 
average weight for the previous three days, the weight from the previous 
day, and the first quartile, third quartile, median, and average overall 
weights for each latrine. The weight predictions from the first layer of 
the algorithm were then incorporated as a feature in the second layer of 
the algorithm that was used to predict the probability of an overflow 
event if skipped. This scenario was used to simulate the performance of 
dynamic scheduling with on-site weighing but without the capital and 
operating expenses associated with the sensors. 

Finally, the fourth model (Sensor þ Weight) combined sensor and 
weight data to predict waste weights and then used the full set of fea
tures to predict the need for servicing. To be explicit, in the first layer of 
the model all the features previously described (the latrine ID; the day of 
the week; the number of clicks; the estimated number of uses; the esti
mated number of edges; the average weight for each day of the week; the 
average weight for the previous seven days; the average weight for the 
previous three days; the weight from the previous day; the first quartile, 
third quartile, median, and average overall weights for each latrine; the 
number of RFID swipes; and the container size for solid and liquid 
wastes), were used to estimate the volume of solid and liquid waste in 
each latrine at the end of the day. This estimated waste volume was then 
combined with all the sensor- and weight-derived features to predict the 
probability of an overflow event if the latrine were skipped. 

Predictions from the fourth model were used for dynamic scheduling 
during the implementation period, and we describe below the additional 
safeguards that were incorporated to prevent overflows. Finally, the 
relative importance of each of the features used in the three prediction 
models is shown in Fig. 3. 

2.2. Evaluation of prediction models 

All models were evaluated using R (R Development Core Team, 
2011), including the ROCR (Sing et al., 2009) and SuperLearner (Polley 
et al., 2016) packages. Super Learner is an ensemble learner that em
ploys a variety of screening and prediction algorithms to improve the 
accuracy of prediction (Polley and van der Laan, 2010). It has been used 
in recent studies to predict the failure of rural handpumps (Wilson et al., 
2017) as well as to predict virological failure for HIV-positive patients 
on antiretroviral therapy (Petersen et al., 2015). 

Several learners used to predict continuous and binomial outcomes 
were incorporated, including (ordered by weighting): Lasso regression 
(Tibshirani, 1996), multivariate adaptive regression splines (Hastie and 
Tibshirani, 1987; Milborrow, 2018), and random forests (Friedman, 
2001). In order to evaluate the performance of each prediction model, 
the data were randomly split into training and testing sets based on each 
latrine site (70:30) and features were engineered based on the 
segmented datasets. To determine the relative weights associated with 
each learner’s prediction in the ensemble, the algorithm performed 
ten-fold cross validation using the training data. The algorithm’s pre
dictive performance was then evaluated using the test data, where the 
mean absolute percent error (MAPE) was used to evaluate continuous 
outcomes and the area under the receiver operating characteristic 
(AUROC) curve, accuracy, sensitivity, and specificity were used to 
evaluate classification performance. The AUROC was selected as the 
primary metric for model comparison because it captures the overall 
accuracy of the model in predicting outcomes, regardless of the 
threshold chosen (see below), where an AUROC equal to one indicates 
perfect classification. Once the best model was selected based on its 
performance using the test data, the learner was trained on all the data 
for implementation in the field. 

In order to make the performance of each model more tangible, we 
also present the predicted number of skips, the possible overflow events, 
the capacity savings, and the estimated costs and savings associated with 
each model in Table 2. The first band of results highlights the predictive 
performance of each model in classifying overflow events in the test data 
using only the training data (70% of randomly selected observations 
grouped by latrine). The second band of results presents the perfor
mance of the Actual Schedule during the implementation period and the 
simulated performances of each model for the same period. It is 
important to note that, while the simulated models were limited to the 
training data to evaluate classification performance (the first band of 
results), each model was trained on all available data when comparing 
performance during the implementation period (the second band of 
results). As a result, the simulated models had access to more data when 
generating the schedule for the implementation period compared to the 
Actual Schedule, which was retrained each evening using newly 
collected data. 

For the purpose of this investigation the number of true negatives (i. 
e., instances when the algorithm accurately predicted that a latrine 
would not overflow if service were skipped) represented the potential 
for cost-savings due to higher efficiency latrine servicing. Given that the 
algorithm output a probability of overflow ranging from zero to one, a 
threshold was selected that would provide a reasonably low number of 
false negatives (i.e., instances when the algorithm incorrectly predicted 
that a latrine could be skipped) while minimizing the number of false 
positives (i.e., instances when the algorithm incorrectly predicted that a 
latrine had to be serviced). We were unable to quantify the overall cost 
of a false negative or latrine overflow event, as it involved tangible costs 
(e.g., latrine servicing crew, cleaning supplies, lost revenue due to 
latrine being closed, etc.) as well as intangible costs (e.g., damage to 
reputation of Sanergy brand or latrine operator, exposure to fecal 
contamination, etc.). As a result, we chose a final servicing threshold of 
0.22 for solid wastes and 0.10 for liquid wastes (i.e., when the proba
bility for overflow was greater than 0.22 for solid waste or 0.10 for 
liquid wastes then the latrine was designated for servicing). This con
servative threshold allowed for the fewest number of potential overflow 
events, where potential overflow events were defined as latrine fill levels 
that were between 1.00 and 1.10 capacity. 

2.3. Cost assumptions 

Servicing costs for each scenario were estimated based on cost and 
logistics data provided by Sanergy. Given that the primary expense for 
latrine servicing is labor, and given the small sample size for this 
experiment, costs were simplified to a per servicing event estimate. Cost- 
savings are represented as the amount of time and labor that could be 
avoided if dynamic scheduling were adopted at scale for latrines with 
similar use patterns. Capacity savings were defined as the number of 
skips divided by the total number of servicing days. Expenses related to 
waste collector labor were based on the assumption of each collector 
receiving a monthly salary of USD $225 and servicing approximately 
fifteen latrines per day. The expense of consumables was based on an 
average cost of USD $0.08 for disposable bags, sanitary bags, water, 
cleaning, and incineration per service event. All cost assumptions were 
estimated in consultation with Sanergy and based on expenses at the 
time of writing. 

3. Results 

Over the course of six months 4870 service events were recorded for 
the forty latrines with sensors. When merged with the sensor data, a 
total of 4371 wt and sensor observations were available for training and 
testing the learner. As seen in Fig. 4 and Table 2, overall classification 
performance of the Static Schedule was low (AUROC of 0.52), whereas 
classification performance increased dramatically with the additional 
information provided by sensors (0.87), historical weight data (0.89), 

N. Turman-Bryant et al.                                                                                                                                                                                                                       



Development Engineering 5 (2020) 100052

6

and combined sensor and weight data (0.90). Fig. 5 displays the sensi
tivity, specificity, negative predictive value (NPV), and positive pre
dictive value (PPV) that were evaluated on the testing data that was not 
used in model fitting. In addition, Table 2 displays the simulated per
formance of each model during the intervention period from January 
through March, 2017, including the predicted number of skips, the 
number of possible overflows, the capacity savings due to decreased 
latrine servicing, and the estimated savings per month based on reduced 
costs for labor and consumables. In total, there were 2272 servicing 
events recorded during the three-month intervention period for the la
trines with sensors. There were 566 opportunities for skipping servicing, 
and the performance of each of these models in predicting these po
tential skips varied considerably. Sanergy’s static schedule reflected 

approximately 8% of the possible skips (i.e., of all the possible latrine 
servicing skips that could have been made, Sanergy’s static schedule for 
low-use latrines took advantage of 8% of the total number of opportu
nities), whereas the dynamic schedules using sensor and weight data 
were able to predict between and 48% and 49% of the possible skips. 
However, when the algorithm was implemented during the three-month 
intervention period only 13% of the total number of possible skips were 
realized due to implementation challenges discussed below. 

3.1. Comparison group 

Over six months 4797 service events were recorded for the forty-one 
latrines without sensors that served as a comparison group. As shown in 

Fig. 4. Area under the receiver operating characteristic (AUROC) curve for solid (left) and liquid (right) waste overflow predictions.  

Fig. 5. Sensitivity (Sens), specificity (Spec), negative predictive value (NPV), and positive predictive value (PPV) for solid waste overflow predictions over a range of 
probability thresholds. 

N. Turman-Bryant et al.                                                                                                                                                                                                                       



Development Engineering 5 (2020) 100052

7

Table 1, the latrines with sensors had a higher median fill level 
compared to the latrines without sensors (52% vs. 43%). Given that the 
majority of the latrines with sensors were high-use latrines, where high- 
use was defined as having a maximum fill level and a third-quartile fill 
level greater than 60% of the cartridge capacity, there was less room for 
improving efficiency in the latrines with sensors compared to the com
parison group. That is, the fact that latrines with sensors had a median 
fill level of 52% meant that there were fewer opportunities for skipping 
the latrines with sensors compared to the latrines without sensors. 
Despite there only being a 9% difference in median fill levels between 
the two groups there was significantly more opportunity for skipping in 
the comparison group. Using only weight data from the comparison 
group, the Super Learner algorithm was able to predict 1142 or 83% of 
possible skip events with a high degree of accuracy (AUROC of 0.91) and 
an estimated capacity savings of 52%. Given that we were not able to 
test dynamic scheduling in the comparison group, these simulated re
sults represent the upper bound of potential capacity savings. As seen in 
Fig. 6, average fill levels for latrines in both groups increased over the 
intervention period, which may reflect seasonal trends or general uplift 
due to Sanergy’s efforts to improve servicing efficiency over the same 
period. Average solid waste fill levels increased from 49.8% to 55.0% for 
sensored latrines and from 43.0% to 44.6% for non-sensored latrines 
between the baseline and intervention periods. Similarly, average liquid 
waste fill levels increased from 40.7% to 43.9% for sensored latrines and 
from 36.1% to 38.6% for non-sensored latrines over the same periods. 

4. Discussion 

Using weight and sensor data from forty latrines in an informal set
tlement in Nairobi, we were able to demonstrate that a machine learning 
algorithm can predict with a high degree of accuracy when latrine 
servicing could be skipped (AUROC from 0.87 to 0.90 and capacity 
savings from 12% to 13%). These predictions were then used to create a 
dynamic latrine schedule that modestly increased solid waste collection 
efficiency between the baseline and intervention periods (see Fig. 6). 
Although the machine learning algorithm was more effective in identi
fying skip events compared to the Static Schedule (AUROC 0.52 and 
capacity savings of 2%), there was a significant gap between the simu
lated performance of the algorithm and the implemented results 
(AUROC 0.53 and capacity savings of 3%). It is important to note that 
the Sensor, Weight, and Sensor þ Weight models were trained on more 

data than the Actual Schedule because the Actual Schedule was gener
ated by retraining the model every day with the new data that was 
collected during the implementation period. In contrast, the Sensor, 
Weight, and Sensor þ Weight models were trained on a random selec
tion of 70% of the data (i.e., the training data) segmented by Toilet ID to 
evaluate their predictive performance on the test data (the 30% hold-out 
data). To simulate their scheduling performance during the imple
mentation period, those three models were trained on all the data. 
However, we attribute most of the gap between simulated and actual 
performance to implementation challenges. 

Implementation challenges were numerous. First, dynamic sched
uling represented a significant deviation from the static schedules that 
waste collectors and field staff were accustomed to. Second, collecting 
accurate weight data was difficult given the relative inaccessibility of 
the latrines within the informal settlement and the challenge of weigh
ing and recording waste weights while servicing latrines. In addition, 
waste collectors were accustomed to weighing waste cartridges at a 
central weighing station, a practice that was prone to error and mis
labelled data. In order to facilitate more accurate weight measurements, 
a set of two on-site weighing machines were fabricated to enable waste 
collectors and enumerators to measure and record waste weights at the 
time of servicing. Even with this new system data entry was still subject 
to human error (e.g., inaccurate designations of latrines, entry error, or 
delayed uploading of records to the server). In addition, there were 
initially no records that were logged for latrines that were skipped, so it 
was impossible to distinguish between latrines that were skipped and 
data that were missing. This was corrected by creating a new mobile 
survey for waste records and an automated algorithm to check that 
events were logged for each latrine. However, even with these redun
dancy measures about 5% of expected entries were not accounted for 
each day. The majority of the missing data were from lower-use latrines 
in the comparison group, typically when a latrine was scheduled for 
servicing but no weight entry was recorded. This dynamic occurred 
more frequently with the low-use latrines in the intervention group 
because latrines with missing entries were automatically scheduled for 
servicing the next day as a fail-safe measure to prevent overflow. 
However, since these latrines were reliably used less frequently, waste 
collectors were more likely to skip low-use latrines in the intervention 
group for multiple days regardless of the dynamic schedule’s prescribed 
action for the day. The ability to generate dynamic schedules with 
multiple consecutive skip days was not explored in this investigation. 

Fig. 6. Average fill levels for the latrines with sensors (dashed line) and the latrines without sensors (solid line) for the baseline (pink) and intervention (blue) 
periods. The shaded regions represent the 90% confidence interval. 
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Because the dynamic schedule was new and required the approval 
and cooperation of latrine operators, the algorithm was initially tuned 
conservatively in order to minimize the risk of an overflow event. For 
example, even though solid wastes were the primary driver of service 
events, a probability of overflow for either solid or liquid wastes auto
matically designated a latrine for collection. In addition, if a latrine was 
skipped or there was a missed entry from the previous day, the latrine 
was automatically scheduled for collection. However, we eventually 
realized that waste collectors often skipped low-use latrines regardless 
of scheduling. Since missing data entries automatically designated a 
latrine for collection, lower-use latrines were often scheduled for 
collection even when waste collectors knew that they could be skipped. 
This combination of missing data and conservative scheduling resulted 
in a general distrust in the algorithm’s predictions, prompting many 
waste collectors to service latrines according to their own intuition 
rather than the dynamic schedule. 

However, it is important to note that the waste collector’s intuition 
was correct more often than not. On at least ten occasions, the algorithm 
scheduled a latrine for skipping that clearly would have overflowed had 
the waste collector not serviced the latrine based on visual inspection. In 
this regard, the route selected for installing sensors was a safe choice 
because the waste collectors were reliable and the route was well-known 
and accessible by Sanergy staff. However, these very attributes also 
made the route less useful for the experiment, as the information being 
provided by the sensors and daily weights was unnecessary given the 
familiarity of the waste collectors and the daily servicing needed by most 
latrines. As a result, it was determined that collecting data from sensors 
or daily weights would be most useful on new routes where latrine 
patterns were still being established, on existing routes where latrine use 
was more variable, or on routes where latrines were used less frequently. 

Although the accuracy of the algorithm may not be much better than 
that of a seasoned waste collector, there is an additional advantage that 
motion sensor data, weight data, or RFID scans can provide: the ability 
to track latrine servicing. Sanergy’s capacity for reallocating waste 
collector labor depends on its ability to predict when latrines will need 
to be serviced while reliably tracking when latrines have been serviced. 
In this way service records provide a form of accountability for waste 
collectors, a quality assurance mechanism for honoring contracts with 
latrine operators, and a dataset for predicting future servicing. However, 
the high cost of hardware relative to the low cost of labor in Nairobi 
implies that cost savings would need to significantly increase for 
Sanergy to implement any changes at scale. Our simulations suggest that 
sensor and weight measurements could save between $43 and $200 per 
month for a route with approximately forty latrines depending on the 
frequency of use of the latrines. This cost savings represents the upper 
bound on all expenses related to latrine sensors (e.g., hardware, data 
transmission, operation and maintenance personnel, predictive ana
lytics), weight records (e.g., enumerators, mobile devices, and predic
tive analytics), or RFID scanners. However, given the gap between 
simulation and implementation, these estimates may be optimistic. 

There are additional considerations that may temper the cost savings 
associated with dynamic scheduling. First, 92% of the latrines with 
sensors and 54% of the latrines without sensors were co-located, 
meaning that latrines were being managed by the same operator in 
clusters of two or three. Co-located latrines were more likely to be 
skipped compared to standalone latrines, but the benefit of skipping a 
latrine is greatly diminished if waste collectors are already servicing a 
latrine in the same location. Second, this analysis was not able to 
quantify the potential cost associated with an overflow event. This cost 
would include additional labor and supplies for servicing an unsanitary 
latrine, but it would also include damage to the operator or Sanergy’s 
reputation and reduced patronage. In addition, the current algorithm 
uses the latrine ID as a predictor variable to capture site-level variability 
and latrine-use trends. However, using the latrine ID as a predictor also 
makes the algorithm less portable given the need to collect baseline data 
from new latrines before making predictions on a new route. However, 

this baseline burn-in may be inevitable given that average weight trends 
were also significant predictors in the algorithm (see Fig. 3). Finally, this 
analysis was not able to take into consideration the additional admin
istrative cost associated with reallocating waste collectors in a dynamic 
scheduling scenario. Given the geospatial distribution of latrines, the 
inability to remotely chart pathways through informal settlements, and 
challenges finding and accessing latrines for waste collection, it would 
be exceedingly difficult to dynamically redraw servicing routes for waste 
collectors on a regular basis. 

In this study, sensors were able to monitor latrine activity, track 
latrine servicing, and facilitate communication between Sanergy staff 
and latrine operators. While RFID tags provided an important account
ability mechanism for tracking servicing and motion sensor data pro
vided rough estimates of latrine use, we found that motion sensor data 
did not significantly improve the algorithm’s ability to generate a dy
namic service schedule compared to weight data alone. With or without 
sensors, the high accuracy of predictions observed in this study could 
provide a promising application of machine learning for estimating 
waste weights and dynamically scheduling latrine servicing. Although 
we found that implementation lagged simulation significantly, we 
anticipate a much greater potential for servicing efficiency and cost 
savings when applied to lower use latrines. 
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