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A B S T R A C T

Smallholder farmers are increasingly exposed to weather extremes but lack access to affordable insurance
products for catastrophic crop damage. This paper analyzes the feasibility of Picture-Based Insurance (PBI) as a
low-cost tool to improve coverage. PBI verifies insurance claims using smartphone pictures of insured plots,
taken by farmers themselves, to minimize asymmetric information and costs of claims verification, while re-
ducing basis risk compared to index-based insurance. A pilot implementation in the rice-wheat belt of India
speaks to PBI being a feasible and valuable innovation to reduce downside basis risk in index insurance: nearly
two-thirds of trained farmers took at least four pictures (roughly one per growth stage), which was considered
sufficient for loss assessment; severe damage was visible from smartphone pictures in 71 percent of affected sites;
and this was a significant improvement over alternative index-based products, which identified severe damage in
at most 34 percent of affected sites.

1. Introduction

Climate change is increasingly exposing smallholder farmers to
natural hazards such as drought, heat, excess rainfall, hail, and pests
and diseases (Porter et al., 2014), while the supply of reliable indemnity
insurance coverage against weather extremes remains limited. In-
demnity insurance premiums are unaffordable because the amounts
that smallholder farmers seek to insure are small relative to the trans-
action costs associated with providing insurance and because asym-
metric information between farmers and insurance providers can lead
to adverse selection and moral hazard (Hazell et al., 1986). This leaves
smallholder farmers' livelihoods vulnerable to extreme weather shocks,
limiting risk averse farmers’ ability to invest in productivity-enhancing
technologies and hampering investments in the production of profitable
crops (Barrett and McPeak, 2006; Cai, 2013; Cai et al., 2009; Cole et al.,
2017; Dercon and Hoddinott, 2004; Karlan et al., 2014; Mobarak and
Rosenzweig, 2012).

In the past few decades, various index-based insurance products
have been piloted as a potential solution to the high transaction costs
and information asymmetry problems that challenge indemnity

insurance. Index-based insurance pays out according to a pre-
determined index, which proxies for losses resulting from weather and
other catastrophic events. By determining insurance payouts through
an objective index such as the amount of rainfall or the average tem-
perature, insurance providers eliminate asymmetric information and do
not need to send claim adjusters to assess damage on individual fields,
reducing the cost of claim verification and the time until claim settle-
ment. Yet, demand for such index-based insurance products has been
low, even when offered at subsidized premiums, due to limited trust in
insurance providers, a lack of understanding of these insurance pro-
ducts, and high levels of basis risk, meaning that indices and associated
insurance payouts often do not correlate well with plot-level damage
(Cole et al., 2013; Hill et al., 2016; Matul et al., 2013; Mobarak and
Rosenzweig, 2012).

This paper describes and analyzes the feasibility of a new approach
to overcome these challenges: Picture-Based Insurance (PBI). PBI pro-
vides insurance coverage for damage detected from a time-lapse of the
insured crop, built from both pre- and post-damage georeferenced
pictures that farmers take themselves using regular, low-cost smart-
phones. This approach allows farmers to reliably document losses from
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natural calamities, while providing evidence that the affected crop was
managed appropriately, helping reduce information asymmetries and
costs of plot-level loss verification that have challenged traditional in-
demnity insurance. By being participatory and tangible, and by deli-
vering plot-level assessments of damage, PBI has the potential to reduce
basis risk and improve trust and understanding, key challenges for
index-based insurance.1 As such, PBI is designed to combine key ad-
vantages of both index-based insurance―timely compensation without
expensive loss assessments―and indemnity insurance―minimum basis
risk and a tangible product.

PBI works as follows. A farmer installs an application into his
smartphone, takes an initial picture of the site he wishes to enroll, and
documents how the crop develops in this site by taking repeat pictures
throughout the growing season. The app facilitates this task through
geotags (warning the farmer if taking the repeat picture at a different
location than the initial picture) and visual aids that ensure an almost-
identical view frame throughout the season (displaying a mildly-
transparent version of the initial picture that allows the farmer to align
each repeat picture to permanent background features in the land-
scape). All pictures are automatically uploaded to a server, with the
farmer unable to manipulate them in the phone. At the end of the
season, experts evaluate the time-lapse of the plot and estimate a per-
centage of crop damage. The insurance company uses these loss as-
sessments to verify claims that trigger payouts to the farmer.

PBI is a novel concept that has not been tested before in a systematic
way. In this paper, we therefore address key knowledge gaps around the
technical feasibility of PBI, both in terms of farmers complying with the
PBI protocol and of pictures serving as a medium to identify crop da-
mage. Given that the product was provided for free during this initial
season, we are unable to inform questions about the demand for PBI
were it to be offered commercially. Our formative evaluation of PBI,
targeting 750 smallholder wheat farmers in Haryana and Punjab—two
states in northwest India—, aims to answer three research questions: (i)
to what extent do farmers comply with a PBI protocol that requires
them to regularly upload pictures of their plots, and how is this linked
to traditional determinants of technology acceptance such as age,
education, and caste; (ii) to what extent is damage visible in smart-
phone camera data, that is, can experts identify a reduction in pro-
ductivity from smallholders’ pictures of insured crops; and (iii) does PBI
reduce downside basis risk compared with conventional index-based
insurance products?

Overall, the results speak to PBI being a feasible and valuable option
to complement existing index-based insurance. Compliance was rela-
tively good: close to two-thirds (63 percent) of trained farmers up-
loaded at least four repeat pictures throughout the season (roughly one
picture per growth stage and considered sufficient to assess losses).
Using objective site-level yield measurements, we compare basis risk
across different insurance products—a crucial yet unusual undertaking
in the index insurance literature, with Jensen et al. (2016) and Jensen
et al. (2018) being two notable exceptions (albeit focused on livestock).
PBI was unable to identify sites with moderate degrees of damage, but
did reduce severe cases of downside basis risk: picture-based loss as-
sessments identified 71.4 percent of sites with severe crop losses, out-
performing both weather index-based insurance (which could not cover
the perils that were causing severe losses) and a simulated area-yield
index (which identified on average only 34.4 percent of sites with se-
vere crop losses). We conclude that PBI offers a promising option to
reduce downside basis risk in insurance products for smallholder

farmers.
This innovation comes in a timely manner, as it takes advantage of

increased smartphone ownership and penetration of low-cost mobile
internet services among smallholder farmers. PBI further builds upon
recent advances in image processing; particularly on applications that
use digital repeat photography for near-surface remote sensing (the
PhenoCam project, Richardson, et al., 2017). The approach thereby
relates to the use of high temporal- and spatial-resolution satellite
imagery to identify losses at finer scales for smallholder farmers
(Stanimirova et al., 2013; Chantarat et al., 2013; Carter et al., 2008).
Satellite-based damage estimation is subject to shortcomings, and PBI
can stand as a valuable tool to complement existing products.2 More-
over, PBI can help adding an extra layer of protection on top of a tra-
ditional index product, in the form of fail-safe indices or gap insurance,
which allow for audit-based payouts if an index does not trigger in an
area where a sufficient proportion of farmers claim to have suffered
losses (Berhane et al., 2015; Flatnes and Carter, 2015). By documenting
pre-damage and pre-audit crop conditions, PBI can help operationalize
gap insurance and reduce basis risk.

2. Context and procedures

In this section, we describe the study context and procedures, fo-
cusing first on the study region and sampling procedures, followed by a
description of the insurance products that were tested as part of the
study, including the PBI product and a weather index-based product
that was used for comparison purposes. The final part of this section
describes the study procedures.

2.1. Study context and sampling

The study was conducted for wheat grown during the Rabi (winter)
season in the states of Haryana and Punjab. These states are the second
and third largest wheat-producing states in India and play a critical role
in India's food grain supply.3 Although yields in these two states have
traditionally been among the highest in the country, and although most
farmers have access to irrigation, wheat yields have stagnated, and are
increasingly exposed to extreme weather events including excess rains
and heatwaves due to climate change. The formative evaluation tar-
geted this region in part due to this increasing exposure to weather
risks, and in part due to near-universal ownership of smartphones
among farmers, with smartphone penetration still gaining momentum
in other parts of India.

We targeted six districts (three from Punjab, two from the west of
Haryana and one from the northeast of Haryana) for which the un-
derwriter of the insurance products, HDFC Ergo General Insurance

1 PBI can reduce basis risk by assessing losses at the plot level as opposed to a
distant weather station (reducing spatial basis risk); by covering visible da-
mage, including some pests and diseases, and lodging, as opposed to only
weather-related events (reducing design basis risk); and by following farmer-
specific timing in terms of planting time and the individual seed's crop cycle
instead of the average risk profile for the crop (reducing temporal basis risk).

2 Loss estimation at the field level can be very expensive (since sufficiently
high-resolution satellite data tends to be provided by private companies) and
faces limitations, such as cloud cover, large computational storage and pro-
cessing costs, and poor availability of georeferenced cadasters to accurately
identify insured plots. Moreover, in most settings, basis risk is still present, due
to, for instance, measurement error or intercropping practices. PBI can tackle
many of the issues above. By placing ‘eyes on the ground’, smartphone pictures
can provide a wealth of additional information visible only at ground-level,
such as the standing of the crop or the presence of specific pests, diseases, and
other subtle features indicating damage by hail or suboptimal temperatures
(Hufkens et al., 2019).

3 Wheat was selected because nearly all farmers in the selected districts grow
this crop, whereas there is more heterogeneity in the production of other crops.
Moreover, because agriculture is largely irrigated in Haryana and Punjab, the
main risk for other crops—a drought or late onset of the monsoon—does not
affect production as much as in states with rain-fed agriculture. Wheat is,
however, considered a relatively safe crop in these states, which may reduce the
need for insurance and thus reduce both take-up and compliance with the
picture-taking protocol.
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Limited, could source rainfall and temperature data from weather sta-
tions, to allow for comparisons of PBI and weather index-based in-
surance. From a list of available weather stations, we randomly selected
25 stations stratified by district, with the number of weather stations
per district (ranging from three to eight) being proportional to district
size. Subsequently, we randomly selected two rural villages within a
radius of 5 km from each weather station (to limit geographical or
spatial basis risk), subject to the condition that the village had at least
40 households, 40 main cultivators, or a total population of over 140
individuals during the 2011 Indian Agricultural Census (to capture
enough farming households within each village).4 This resulted in a
study sample of 50 villages.

In each village, we listed all farming households and randomly se-
lected―among those owning a smartphone and planning to grow at
least two acres of wheat during the upcoming Rabi season―15 farmers
for a baseline survey. These farmers were equally distributed across
three categories: operating less than five acres, five to ten acres, and ten
to fifteen acres of farmland. In doing so, we oversampled relatively
smaller farmers, instead of constructing a sample of farmers re-
presentative for our study area, motivated by external validity con-
siderations: representative farmer populations in other states of India
typically have smaller landholdings than farmers in Haryana and
Punjab. In addition, as a smartphone picture can capture only a limited
area, the PBI approach appears more relevant for farmers with smaller
landholdings.

2.2. Insurance products

All farmers in the baseline survey were offered insurance, free of
charge, for one acre of wheat grown during the Rabi 2016/17 season
(spanning November through April). In all 50 study villages, the pro-
duct included a standard weather index-based insurance component
(WBI), which triggered payouts in case of unseasonal rains or above-
normal temperatures between February and April (around flowering
and harvest time). The indices relied on daily minimum temperature
and rainfall collected at the nearest weather station and were developed
based on focus group discussions with farmers, key informant inter-
views with local wheat agronomists, and indices designed by past
governments. For each index, small payouts were triggered once the
index exceeded a strike value, and payouts were linearly increasing in
the index until reaching an exit value. For index levels at or above the
exit value, farmers would receive the total sum insured. Payments were
made for either the rainfall or the temperature index, whichever trig-
gered the highest payout. The maximum payout was 13,000 Indian
Rupees (Rs.) or 200 US dollars per acre. This amount was based on the
average total production costs for one acre of wheat, including labor, as
determined during the initial focus group discussions.

For every weather station, we randomly selected one of the two
villages—or 25 villages in total—to receive in addition to the standard
WBI component a picture-based insurance component (PBI), providing
coverage for visible damage during the Rabi season.5 Farmers from
these 25 PBI villages were informed that to determine payouts, in-
dependent experts would inspect their pictures for visible damage due
to risks beyond their control. This procedure was meant to be as
transparent as possible to participating farmers, who could perceive the
insurer to downplay losses, particularly given the novelty of the

product. Farmers were told that damage below 20 percent would not
trigger payouts; damage between 20 and 50 percent would trigger a
payout of Rs. 3900; damage between 50 and 75 percent would trigger a
payout of Rs. 7800; and damage above 75 percent would trigger the
maximum PBI payout of Rs. 13,000. Farmers would receive a payout for
either the WBI or the PBI component, whichever triggered a higher
payout. In the remaining 25 WBI villages, farmers received payouts for
only the WBI component.6

2.3. Procedures

During July and August 2016, we conducted a baseline survey
among the 15 selected farmers in each of the 50 study villages. In
October 2016, we invited these farmers to village sessions, introduced
as a training on agricultural risk management, in which they were in-
formed that they would receive agricultural insurance for one acre of
wheat grown during the upcoming Rabi growing season. While only
farmers from the 25 PBI villages were insured for damage visible in
their smartphone pictures under PBI, all farmers were told that their
WBI coverage would be conditional on following the picture-taking
protocol. Project staff enrolled these farmers by downloading a dedi-
cated smartphone application named WheatCam, designed to imple-
ment the PBI procedures; by taking an initial picture within the app of a
randomly selected field (i.e. a site); and by training farmers on how to
take repeat pictures of this site.

The protocol requested farmers to regularly capture repeat pictures
of the same portion of the enrolled site throughout the entire growing
season.7 These pictures were ideally taken between 10am and 2pm to
maintain appropriate and comparable lighting levels across all images,
and pictures had to be taken from the same spot, pointing at the same
direction every time. WheatCam facilitated this task through geotags,
used to issue warnings if the farmer was taking a repeat picture at a
different location than the initial picture, and by displaying the initial

4 Weather stations with fewer than five such villages were excluded from the
sampling frame.

5 We randomized the type of insurance product offered to farmers in order to
test whether PBI affects farmer behavior. Lower input application or higher
yields in the group of farmers insured under PBI would indicate the presence of
moral hazard. Ceballos and Kramer (2018a) discuss these analyses in detail and
find no evidence of moral hazard, possibly due to the systematic picture-taking
protocol designed to reduce information asymmetries.

6 The research project paid for the premiums. The cost of the stand-alone WBI
product was Rs. 3133 (incl. taxes) in Punjab and the northeastern Haryana
district, and Rs. 3149 in the two western Haryana districts. The premium was
relatively high, at 24 percent of the insured sum, for two reasons. First, given
that the trigger was set to the 70th percentile of historical index values, both the
excess rainfall index and the above-normal temperature index were designed to
trigger small payouts once every three or four years. Second, this non-sub-
sidized premium included a relatively high loading factor of approximately 50
percent. Adding PBI coverage increased the cost of the insurance product by
approximately Rs. 630 (or 20 percent) to Rs. 3760 in the western Haryana and
Punjab districts and Rs. 3779 in the northeastern Haryana districts. This in-
crease in cost reflects the increased probability of payouts for risks not covered
under WBI, including damage due to lodging, hailstorms, pests and diseases,
and wild animals. Further, underwriting the PBI component was relatively
expensive due to a lack of historical yield data to assess risk at the individual
farmer level. Additional costs associated with PBI coverage, notably the data
management and loss assessments by independent experts, were not included in
the insurance premium but borne by the project. At current expert consultancy
rates of Rs. 35,000 per month and assuming an assessment takes about 10 min
per claim, one expert would be able to verify 960 claims per month, resulting in
an approximate cost of Rs. 36.50 per assessment, or—assuming only 20 percent
of farmers file a claim and three experts review each case—an estimated Rs.
21.90 per policy (around 0.34 U.S. dollars); a negligible 0.17 percent of the sum
insured.

7 Initially, we set the number of required pictures to three per week because a
larger number of pictures would benefit the training of image processing al-
gorithms to automate damage assessment. At the same time, loss assessment
experts indicated that losses could be quantified from irregular, infrequent
pictures showing the development of the wheat plant at a few different growth
stages (to verify normal crop growth) in addition to a few pictures at the time of
damage and immediately before harvest (to quantify the nature and level of the
loss). Because of this, combined with technical problems in the initial roll-out of
the WheatCam app, we decided to consider farmers for insurance payouts as
long as they had taken at least 2 pictures throughout the season.
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picture as a “ghost” image (a mildly transparent image): a visual aid
allowing the farmer to align static features in the landscape (such as
distant trees or structures and reference poles in the field) with those
same elements in the initial picture, thus ensuring an almost-identical
view frame throughout the season (panel A of Fig. 1). To further
standardize the time-lapse, WheatCam applied a fixed white balance,
keeping in-camera RGB ratios constant. Pictures were uploaded to a
server automatically and it was not possible to upload pictures taken
outside WheatCam, eliminating possibilities for editing pictures.
Farmers could reach out to project staff throughout the season for
troubleshooting in case they encountered any problems with the app or
protocol.

All farmers who agreed to take pictures were given a set of two
inexpensive poles: an auxiliary pole, which served as a tripod to help
maintain a fixed position from where to place the phone and take the
repeat pictures, and a reference pole, which served as a fixed reference
in the plot to aid with the framing of the picture (panel B of Fig. 1).
Further, due to app compatibility issues with older Android versions in
farmers’ phones at the launch of the project, all farmers who had agreed
to take pictures were provided with a low-cost Android smartphone and
a data plan of Rs. 258 per month to upload the pictures, conditional on
following the protocol.8

At the end of the season, six wheat experts evaluated the pictures
and estimated a percentage of crop damage for each site with at least
two repeat pictures. Each time-lapse was randomly assigned to three
different experts. Assessments were first done by experts individually
and the median assessment was used to determine insurance payouts. In
case of large disagreement between individual assessments, a final
damage estimate was agreed upon through consensus to determine
insurance payouts. Assessments were anonymous with no access to the
farmer's personal details or type of insurance coverage. For farmers
with at least 20 percent estimated damage, claims were submitted to
the insurance company, which issued payments directly into farmers'
bank accounts, based on the experts' loss assessment. Although dis-
bursing payouts in the study season took around four months, this was
mainly due to administrative delays; without those delays, it would
have been possible to disburse payouts within one month from harvest.

3. Data

In this section, we describe the primary data sources used in the
analyses below. First, we use self-reported data collected through
baseline and endline surveys, conducted with all available farmers
during August 2016 and April 2017, respectively. The baseline survey
inquired about an array of farm and household characteristics, in-
cluding plot characteristics, cultivation practices, input use and agri-
cultural technology adoption in previous seasons, household composi-
tion, income and risk perceptions. The endline survey gathered data for
the Rabi 2016/17 season, including cultivation practices, input use and
self-reported wheat yields, perceptions about the insurance product
received, and experiences with the WheatCam app.

Second, as an objective measure of wheat yields, we use crop cutting
exercises (CCEs) conducted during the last month of the wheat growing
season at all sites in which a farmer had taken at least two pictures over
the season. The field team informed farmers of the CCEs only the day
before their visit, so that farmers would not adjust their behavior in
anticipation of these validation visits for picture-based loss assessments.
During this visit, the field team identified two separate sections of one
square meter at each site, both visible in the time-lapse of pictures: one
to the left and one to the right of the reference pole. The heads of the
wheat plants falling inside these sampled square meters were cut,
threshed, and the resulting grain was weighed. We use the average
weight from the two square meters from the same site to determine a
final yield estimate for a given site.9 The CCEs were not used to de-
termine insurance payouts.

Finally, the analyses use the expert assessments of visible damage in
the wheat pictures. Once the Rabi season was over and the time-lapse of
pictures had been processed and cleaned, each crop site was in-
dividually reviewed by three wheat experts. For each site, the experts
would assess whether the crop was damaged. If the crop was damaged,
they would also indicate the loss percentage, cause of damage, and the

Panel A. Ghost image         Panel B. Reference and Auxiliary Poles

Fig. 1. Visual aids for maintaining a fixed view frame through the growing season.
Note: This figure shows the visual aids used to ensure a fixed view frame when taking repeat pictures at a farmer's site. Panel A shows the “ghost” image, consisting of
a mildly transparent version of the initial image that allowed the farmer to align static features in the landscape across pictures. Panel B shows the auxiliary pole,
serving as a tripod to maintain a fixed position for the phone, and the reference pole, serving as a fixed reference point in the plot.

8 The poles will not be provided moving forward. Pictures of insured sites
were showing enough trees and other permanent structures in the background
to align repeat pictures and verify that pictures were always taken at the same
location. In addition, the provision of smartphones and data plans will be dis-
continued in the future, as farmers often report having a data plan and that this
is not a crucial implementation requirement.

9 Using CCEs is one of the most accurate ways available for estimating plot-
level yields. An improved way for estimating plot-level yields, considered to be
the “gold standard”, is to harvest the entire plot, which was logistically and
financially infeasible in our project. See Lobell et al. (2018) for a complete
discussion. Although it is common agronomic practice to sample larger areas
than one square meter to improve the precision of yield estimates, we find very
high correlation between yield estimates for the samples to the left and to the
right of the reference pole, and the two measures almost always overlap when
discretizing yields into categories. This indicates that the implemented proce-
dure was sufficiently precise for our objective.
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percentage of visible damage that was due to unavoidable hazards or
due to mismanagement by the farmer. Finally, for the few sites in which
experts disagreed substantially on the amount of damage, the experts
jointly discussed the assessments and reached a consensus about the
loss percentage.

Appendix Table A1 summarizes baseline characteristics across dif-
ferent groups of study farmers: all 736 farmers who completed a
baseline interview; the 467 farmers who actively participated in the
project and took at least two pictures throughout the season, thus
qualifying for expert loss assessments; and the 357 farmers for whom
we also conducted a CCE. Attrition in the CCEs is largely due to farmers
having already harvested before the team reached a village, or the crop
not yet having ripened at the time the team reached a village. Active
participation in the project appears unrelated to observable farmer,
household, or farm characteristics, and also differences between
farmers with and without data from CCEs are small and statistically
insignificant. Thus, we find no significant evidence of attrition bias in
terms of observable farm and household characteristics in the samples
used for the analyses.

4. Results

This section reports findings regarding three key knowledge gaps
concerning the feasibility of the picture-based insurance approach.
First, we analyze compliance with the picture-taking protocol. Second,
we assess whether damage can be quantified accurately from smart-
phone camera data or not. Third, we analyze to what extent PBI reduces
basis risk compared with alternative index insurance approaches.

4.1. Compliance with the picture-taking protocol

A first prerequisite for PBI to be feasible is that there is enough
image data available at the time of loss assessment to determine the
damage (if any) suffered by the crop. For this, farmers need to take
pictures of their fields regularly. Out of the full sample of 736 farmers,
548 farmers participated in the village sessions and were trained on the
insurance products. Other farmers were unable to attend or were not
interested in the project. We consider this as a determinant of insurance
take-up, and treat the group of 548 trained farmers as the appropriate
benchmark to study compliance with the picture-taking protocol.
Among this sample, 122 farmers (22.3 percent) did not take any repeat
picture, meaning that they did not qualify for loss assessment.

Panel A of Fig. 2 presents the distribution of the total number of
pictures taken per farmer, conditional on taking at least one repeat
picture. Close to two-thirds (345 farmers or 63 percent) of all trained
farmers took at least four pictures throughout the season—or roughly
one picture per growth stage. While loss assessment can potentially be
done with as little as two pictures (one picture early in the season to
verify normal growth and one picture close to harvest to assess any
damage present in the crop), having four pictures allows to monitor
crop growth throughout the season and to identify the growth stage
(Hufkens et al., 2019), and we hence use this as our preferred com-
pliance measure. Finally, 150 farmers (27.4 percent of trained farmers)
took pictures twice a month or more, resulting in a high-quality time
lapse that is being used to develop image processing algorithms for
automated loss assessment.

Note: This figure shows different statistics of farmer's picture-taking
activity throughout the Rabi 2016/17 season. Panel A shows a fre-
quency histogram indicating the number of farmers that took a certain
number of pictures through the season, conditional on taking at least
one repeat picture. Panel B plots the number of farmers that took at
least one picture per calendar week across the season.

Panel B shows the number of farmers who took at least one picture
in a given calendar week throughout the season. The pattern is en-
couraging, with sustained submissions from an average of 200 farmers
weekly, except for the beginning of the season and the post-harvest

period.10 Thus, while not all farmers followed the requested protocol,
nearly two-thirds of the trained sample submitted at least one picture
per growth stage, and a sustained participation was observed over time.
Notably, WheatCam did not have built-in reminders nor other me-
chanisms such as picture-based advisories or pest and disease detection
services that could have helped encourage further compliance with the
picture-taking protocol.

Finally, we analyze whether farmers' ability and willingness to take
pictures for insurance purposes depends on observable farmer char-
acteristics, using picture-taking activity as a proxy for product en-
gagement. Because smartphones could be a relatively unfamiliar tech-
nology, and technology acceptance could vary across demographic or
socioeconomic dimensions, it is important to analyze whether PBI is
more inclusive for specific segments of the population. To that end,
Table 1 assesses the relationship between trained farmers’ character-
istics and picture-taking behaviors. Column (1) focuses on the extensive
margin, that is, whether a farmer took at least one repeat picture
throughout the season. Column (2) shows the results from Tobit re-
gressions of the number of pictures taken. Finally, Column (3) analyzes
our compliance measure, using a dummy variable taking the value of 1
when a farmer took at least four repeat pictures throughout the season
(approximately one picture per growth stage) and 0 otherwise.

In Column (1), none of the variables predict whether a farmer took
at least one repeat picture, whereas in Column (2), belonging to a lower
caste is a strong determinant for reduced picture-taking in the intensive
margin. Interestingly, farmers sowing a smaller portion of land and
farmers who do not own the insured plot took more pictures on
average. While landless farmers are normally excluded from the crop
insurance market, the present study explicitly allowed them to obtain
coverage, perhaps inducing higher participation among this sample.

Fig. 2. Picture-taking activity.
Note: This figure shows different statistics of farmer's picture-taking activity
throughout the Rabi 2016/17 season. Panel A shows a frequency histogram
indicating the number of farmers that took a certain number of pictures through
the season, conditional on taking at least one repeat picture. Panel B plots the
number of farmers that took at least one picture per calendar week across the
season.

10 In the beginning of the season, participation remained limited because
wheat had not started growing yet and because of technical challenges with
WheatCam. In initial versions of the app, GPS restrictions (imposed to prevent
tampering) and frequent crashes were a challenge. These issues were resolved
in later versions of the app.
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Farmers whose plots are located farther from their homes tended to
take more pictures. Although we do not have data to test this hypoth-
esis, this could be related to more established routines for visiting their
plots. Finally, in terms of age, we expected higher technology accep-
tance and hence higher participation among the youngest tercile of
farmers in our sample (those with an age below 30 years) but observe
similar participation across all age terciles, indicating that age is not a
key factor for adoption of this particular technology.

In sum, certain characteristics related to technology acceptance in
other contexts, such as caste and potential access to insurance sub-
stitutes, are also important for compliance with PBI protocols. Other
characteristics, such as a farmer's age, education, landholdings, pro-
gressiveness, or smartphone experience, are not significant determi-
nants of participation.11 Our initial concern that such farmers would be
unwilling to engage with an innovative product through a relative
unfamiliar technology appears unfounded in the context of this study.

4.2. Do pictures capture damage?

A next question is whether damage arising from different types of ha-
zards is indeed visible in a smartphone picture. To address this question, we
will first present qualitative results and descriptive statistics for the expert
loss assessments, followed by a discussion of the agreement across experts.
Finally, we will analyze the association between expert loss assessments and
yields measured through CCEs. From an insurance perspective, it is im-
portant that the loss assessment identifies plots with severe damage. Thus, as
our main measure of (downside) basis risk, we will analyze the proportion of
sites with arguably severe damage for which PBI would have triggered
payouts. We will show that the expert loss assessments would have triggered
insurance payouts for more than 70 percent of sites with severe damage.

Our protocol required farmers to take overview pictures of insured
plots, taken at a distance such that a large fraction of the plot was
visible. We opted for this protocol since close-up pictures could become

subject to tampering too easily. However, damage might be less visible
in overview pictures than in close-up ones, raising the question whether
these pictures can indeed capture damage events. Initial conversations
with local wheat agronomists indicated that overview pictures would
be able to capture most—though not all—hazards and hence eliminate
basis risk. Certain events such as lodging (bending of the wheat plant
due to winds and wet, loose soil), hail, or certain common wheat dis-
eases such as yellow rust would indeed be visible. Other events, such as
blight or heat stress during the grain filling stage would be more dif-
ficult to identify. Endline survey data indicate that farmers have similar
perceptions (Appendix Figure A1), suggesting that PBI is well suited for
minimizing basis risk, at least in the study context.

Table 2 provides descriptive statistics for the expert loss assessments
(and associated insurance payouts). Panel A shows the percentage of cases
for which the assessments triggered a payout, together with the different
PBI payout categories. Based on experts’ visual inspection of the pictures, 9
percent of farmers experienced a loss above 20 percent―thus triggering a
payout. The average PBI payout, conditional on triggering, was Rs. 5,200,
with most cases assessed to have between 20 and 50 percent damage.

Fig. 3 presents a box plot of the expert loss assessments for total da-
mage, including damage both due and not due to mismanagement, or-
dered by the median assessment within a site. The figure reveals a few
interesting patterns. For low levels of damage (median damage below 20
percent), we observe high levels of agreement between experts, with most
assessments falling within the same damage category. For sites with higher
levels of visible damage (median damage above 20 percent), we naturally
observe more disagreement regarding the exact level of damage. Most
experts nonetheless agree on the approximate region in which the damage
falls, and stark outliers are rare. We interpret this consistency across loss
assessments as an indication that the wheat experts can identify crop losses
from direct visual inspection of pictures.

Our main measure for downside basis risk—the proportion of
farmers with severe damage for whom PBI would have triggered an
insurance payout—relates these loss assessments to the CCEs conducted
closely before harvest. Fig. 4 shows a scatterplot, mapping measured
yields on the vertical axis against the final expert loss assessment for the
same field (that is, the joint expert consensus for sites with a lot of
disagreement and median assessment for the rest).12 On the right
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Panel B. Number of farmers taking at least one picture per week

Fig. 2. (continued)

11 Interestingly, picture-taking behavior does not seem to have been affected
by the expectation of losses either. If a farmer were to expect little or no losses
in his plot, it would be reasonable to exert less effort in taking pictures.
However, we find this not to be the case: farmers with little or no losses took a
very similar (and statistically-indistinguishable) number of pictures than those
with severe losses. This is reasonable to an extent, since a farmer cannot rule
out the possibility of his crops being damaged until very close to harvest,
creating dynamic incentives to take pictures as a safeguard measure. We thank
an anonymous reviewer for pointing this out.

12 Ideally, we would convert measured yields into measured damage, as a
percentage of a farmer's attainable yield, but this requires several assumptions,
including an estimate of what the yield would have been in the absence of
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vertical axis, distinguishing between three yield ranges that roughly
echo the average farmer's PBI payout categories, we indicate—by yield
range—the proportion of farmers for which the PBI product would have
triggered a payout. Although the correlation is not perfect, the figure
shows a negative relationship between damage estimated through
pictures and CCE yields, consistent with our hypothesis that picture-
based loss assessments capture crop losses.

From an insurance perspective, it is important that the loss assessment
identifies plots with severe damage, that is, sites with very low yields
(below, for instance, 10 quintals per acre, corresponding to 50 percent

damage for the average farmer). We therefore use the proportion of sites
with arguably severe damage for which PBI would have triggered payouts
as our measure of (downside) basis risk. Experts generally identify severe
damage when it exists. PBI would have triggered for 71.4 percent of sites
with yields lower than 10 quintals per acre. Upon further inspection, of the
four sites with assessed damage under 20 percent (in red in the left-bottom
corner), three did not show any visible damage in the pictures, and one
showed visible damage that was categorized as mismanagement of the
crop under water-logging conditions.

Assessments were less accurate for cases with moderate damage:
while triggering payments for 7.1 percent of farmers with normal yields
(above 16 quintals per acre), experts assessed losses of at least 20
percent for only 6.1 percent of farmers with moderate damage (yields
between 10 and 16 quintals per acre). Conditional on triggering a
payment, average payouts were nonetheless substantially lower for
farmers in the moderate and low/no damage categories, somewhat
mitigating the apparent misclassifications incurred under PBI.

4.3. Does PBI reduce basis risk compared to index insurance?

In this subsection, we compare the effectiveness of PBI and alter-
native index products in terms of their ability to provide comprehensive
coverage with minimal basis risk. We compare PBI with both the WBI
product and a simulated area-yield insurance (AYI) product. AYI pays
out according to the average yield estimated from a limited number of
crop-cutting exercises (CCEs) in a given geographic area (such as a
village or block in the case of India). The comparison with such a
product is highly relevant. In India alone, the Pradhan Mantri Fasal
Bima Yojana (PMFBY, or Prime Minister's National Crop Insurance
Scheme), which was launched in 2015/16 and covered more than 40
million farmers during the Kharif 2017 season, relies mostly on this
type of loss assessment mechanism (Bhushan and Kumar, 2017).

Table 2 summarized the proportion of farmers for whom the WBI
product triggered, and the average payouts in case the product trig-
gered. In contrast to the 9% of farmers for whom the PBI product
triggered, WBI triggered payouts for a significantly higher 22.8% of
farmers, an implausibly high number given that no widespread damage
due to excess rainfall or extreme heat was reported in the Rabi 2016/17
season. Table 2 Panel B shows that the average payout for WBI was
quite lower than that for PBI.13 This reflects the fact that WBI tended to

Table 1
Factors related to picture-taking behavior and compliance.

(1) (2) (3)

Took repeat
pictures

Number of
repeat pictures

Took at least
four pictures

OLS Tobit OLS

Landholdings (HAs) −0.001 −0.201 0.001
(0.004) (0.246) (0.005)

Age is under 30 years −0.008 −0.121 0.032
(0.047) (2.645) (0.049)

Age is over 50 years 0.062 1.847 0.045
(0.057) (2.566) (0.051)

Highest level of education 0.014 0.087 0.005
(0.012) (0.535) (0.011)

Belongs to sched./OB caste −0.148 −8.768** −0.129
(0.095) (3.843) (0.094)

Perception of yield
variability

0.002 −0.414 −0.008
(0.011) (0.634) (0.013)

Household size −0.008 −0.201 −0.006
(0.008) (0.357) (0.005)

Takes pictures on phone
often/very often

−0.064 −2.397 −0.067
(0.045) (2.825) (0.055)

Has network signal often/
very often

0.011 0.338 0.004
(0.044) (3.556) (0.050)

Ever used laser land
leveller

−0.058 −1.357 −0.043
(0.050) (3.053) (0.049)

Wheat yield Rabi 2015/16 0.007 0.831 0.014
(0.010) (0.597) (0.012)

Share of income from crops 0.088 4.201 0.010
(0.127) (8.007) (0.138)

Share of crop income from
wheat

0.121 2.557 0.235
(0.165) (8.489) (0.178)

Fraction of land planned to
be sown with wheat

−0.227 −28.704* −0.410*
(0.151) (15.265) (0.216)

Owns insured plot 0.022 −9.409* −0.076
(0.075) (4.866) (0.074)

Distance from plot to home
(in minutes)

−0.000 0.085* 0.001
(0.001) (0.044) (0.001)

Mean of dep. Variable 0.726 14.14 0.631
Observations 539 539 539
R-squared 0.118 0.123

Note: This table shows ordinary least squares and Tobit regressions for the
determinants of various measures of picture-taking activity. Standard errors,
clustered at the village level, are in parentheses. We also control for a constant,
weather station fixed effects, and dummy variables to indicate PBI villages and
villages where payments were conditional on not burning the previous season's
crop residue (this condition was orthogonal to the treatment under considera-
tion). We do not present coefficients for these variables here. Columns (1) and
(2) are conditional on a farmer taking an initial picture. The variables “Owns
insured plot” and “Distance from plot to home (in minutes)" were imputed for
13 missing observations using the mean value of the observed sample. A
dummy to account for this imputing is controlled for but not reported.
***p < 0.01, **p < 0.05, *p < 0.10.

Table 2
Loss assessments and insurance payouts.

Mean Std. Dev. Median N

Panel A: Triggering of indices

PBI index triggered (%) 9.0 – – 412
Slightly damaged: 20–50% (payout Rs. 3,900) 6.3 – – 412
Severely damaged: 50–75% (payout Rs.

7,800)
2.4 – – 412

Fully damaged: 75–100% (payout Rs, 13,000) 0.3 – – 412
WBI index triggered (%) 22.8 – – 412
Panel B: Payout if index triggered (in Rs.)
PBI payout 5,200 2,188 3,900 37
WBI payout 2,307 585 2,259 94

Note: This table shows summary statistics of weather-based insurance (WBI)
and picture-based insurance (PBI) payouts across all study villages. The table
includes only the 412 farmers for which a loss assessment based on their pic-
tures was completed. In WBI only villages, PBI payouts include the hypothetical
payouts that would have been made based on experts' loss assessments of pic-
tures if farmers would have been insured under PBI.

(footnote continued)
damage, which is unavailable given the endogenous, farmer-specific component
of yields. We therefore assess the relationship between assessed damage and
measured yields as opposed to measured damage.

13 The maximum WBI payout was Rs. 3,382, indicating that the index was far
from the product's exit trigger at which it would have paid the full coverage
amount of Rs. 13,000. PBI payouts, on the other hand, include one case with a
full payout and five cases where the intermediate payout (Rs. 7500) was issued.
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trigger at relatively low index values, around levels at which substantial
damage to the crop is uncommon, potentially inducing numerous in-
stances of false positives. On the other hand, as Fig. 4 indicates, PBI
identified farmers with substantial damage, naturally resulting in
higher payouts.

We did not implement an AYI product but can simulate payouts
under this approach, using the yield data collected through CCEs right
before harvest. Specifically, we randomly select four farmers for each
(a) district or (b) cluster of two nearby villages (located within 5 km
from the same weather station), construct an area-yield index based on
their average yields, and assume payouts are triggered (to all farmers in
the district or cluster) when this area-yield index is below 16 quintals
per acre (20 percent or more below normal yields). We repeat this
exercise 10,000 times and report the relevant average values across
these iterations. In a way, this is a best-case scenario for AYI, given that
the data used to determine the index and the data used to validate this
index are originating from the same dataset, which is rarely the case in
practice.

Fig. 5 summarizes the proportion of farmers for whom the PBI and
WBI products triggered and the average simulated proportion of
farmers for whom the district-level and village cluster-level AYI pro-
ducts would have triggered. As in Fig. 4, we disaggregate farmers into
three yield categories, roughly echoing the damage categories used for

PBI payouts. Horizontal lines indicate the proportion of farmers re-
ceiving a payout for a given product across the three yield categories.
For each product, the left bar is our main measure of downside basis
risk: the proportion of farmers with severe damage for whom a product
triggers a payout. The middle bar indicates to what extent a product
accurately triggers payouts for farmers with moderate levels of damage,
and finally, the right bar provides a measure of upside basis risk: the
proportion of farmers with normal yields for whom the insurance
product nonetheless triggers a payout.

First, when comparing PBI with WBI, the contrast is striking. WBI
fails to identify farmers with severe damage altogether, mainly because
damage arose from hail storms and lodging events which WBI was not
designed to cover. For farmers with moderate damage, WBI was more
likely to trigger than the PBI product, making small insurance payouts
to 36.4 percent of farmers. Worryingly, however, for farmers with low
or no damage, WBI triggered significantly more often than PBI, issuing
small payouts for 24.2 percent of farmers with yields above 16 quintals
per acre, which is indicative of upside basis risk in the WBI product. Of
course, these findings are only applicable to the specific WBI product
implemented in this project and to the specific study season under
consideration, which was not characterized by severe covariate weather
shocks affecting wheat. However, comparable high levels of basis risk
have been found across similar WBI products in the literature (see

Fig. 3. Individual expert loss assessments.
Note: The figure shows the dispersion of individual experts’ damage assessments across different levels of median damage assessment at a site (where for each crop
site there are three expert assessments). A median damage assessment category may contain multiple sites with the same median assessment.

Fig. 4. Yields from crop-cutting exercises (CCEs) and
expert loss assessments.
Note: This figure shows a scatterplot of (a) wheat
yields captured during CCEs conducted immediately
before harvest and (b) the median damage assess-
ment from wheat experts based solely on the time-
lapse of pictures from the entire season. Each ob-
servation corresponds to one single plot. ⱡ indicates
the probability of receiving a payout in each actual
yield category; and the average payout is shown
within brackets.
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Morsink et al., 2016), suggesting that our finding may generalize to
other seasons.14

Second, the simulated AYI products also suffer from high levels of
basis risk; the district-level product triggers payouts for, on average,
22.1 percent of the farmers with severe damage; 8.9 percent of the
farmers with moderate damage; and 5.5 percent of the farmers with no
or minimal damage. The cluster-level product (encompassing two
nearby villages), which is closer to the operational guidelines followed
in India's national crop insurance scheme (the PMFBY), performs
slightly better, triggering payouts for 34.4 percent of farmers with se-
vere damage, 13.1 percent of farmers with moderate damage, and 3.6
percent of farmers with no/minimal damage. As would be expected due
to spatial correlation in yields, measuring yields for a cluster of nearby
villages―although costlier and logistically more cumbersome―reduces
basis risk compared to measuring district-level yields, but still fails to
trigger for the majority of farmers with severe damage. Product per-
formance also varies widely across simulations, as indicated by wide
confidence intervals.

PBI suffers from both advantages and disadvantages compared with
these products. While PBI appears well-suited to identify farmers with
severe damage, it does not help distinguish farmers with moderate
damage from farmers with less or no damage. Thus, instead of testing
PBI as a standalone product against potential alternatives, there is po-
tential for it to complement existing index products, acting as a top-up
component that can identify severe localized damage. Such a scheme
also introduces the possibility for the traditional index product to
capture non-visible crop damage, a task for which PBI is inadequate.
Appendix 1 simulates the advantages (in terms of reduced basis risk)
from bundling PBI with existing index products.

All in all, the findings above indicate that PBI can bring about sig-
nificant improvements in insurance coverage for farmers experiencing
severe damage. Although PBI fails to identify cases with moderate da-
mage, it does trigger payouts for 71.4 percent of those with severe
damage. This is a substantial improvement over both WBI and simu-
lated AYI products, which identify on average at best 34.4 percent of
these cases. PBI can hence be a valuable complement to include as a
fail-safe trigger in traditional index products.

5. Conclusions

Picture-Based Insurance (PBI) is a new approach to improve
smallholder farmers’ access to affordable but high-quality crop in-
surance. By leveraging increasing smartphone ownership among
smallholder farmers and relying on automated image processing tech-
niques, the goal of PBI is to combine key advantages of index in-
surance―fast and inexpensive claims processing―with those of in-
demnity insurance―low basis risk and easy-to-understand products. To
our best knowledge, the feasibility of this approach has never been
evaluated systematically, and this study is a first step in that direction.
Based on a first pilot year, we find that (a) farmers are able—at lar-
ge—to comply with picture-taking protocols and send in smartphone
pictures of their crops on a regular basis; (b) expert loss assessments are
able to detect, using these smartphone pictures, the majority of cases
with severe damage; and (c) PBI reduces downside basis risk compared
to both weather index-based insurance and area-yield insurance.

With the insurance product provided for free during this initial
season, we are unable to inform questions about the levels of take-up
that would be observed were PBI to be offered commercially.15 We
focus instead on assessing the technical feasibility of such an approach
for insuring agricultural risks, both in terms of farmers complying with
the PBI protocol and of pictures serving as a medium to identify damage
in the crop. In future research, it is important to study PBI sustainability
considerations under commercial premium rates, including the ques-
tion whether shifting costs associated with claims verification to the
client—by requesting farmers to take pictures—reduces take-up in
settings with already low demand for insurance. In a follow-up study,
having to take pictures did not crowd out demand and no evidence was
found of adverse selection or moral hazard (Ceballos and Kramer,
2018a,2018b). Nonetheless, given the challenges that donors, policy-
makers and insurance providers have faced in scaling index insurance,
further research around the sustainability of PBI would not be mis-
placed.

Moving forward, scaling-up of the PBI approach could take a few
forms. First, an insurance product could be implemented featuring two
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Fig. 5. Payouts from different insurance products by
crop-cutting yields.
Note: This figure shows the probability of receiving a
payout from four alternative insurance products for
three groups of farmers based on their yield during
the Rabi 2016/17 season. The horizontal blue bars
represent the probability of receiving a payout for a
given product across all farmers. The vertical grey
bars indicate confidence intervals at the 95 percent
level.

14 Even in years with catastrophic damage from the perils aimed to be cov-
ered through the weather index, WBI may suffer from fundamental design is-
sues such as the specific choice of index, temporal coverage, and heterogeneity
in exposure to these risks, resulting in a large degrees of design basis risk even
at the covariate level.

15 The free nature of insurance coverage means that we have observed an
upper bound of take-up. We may however have observed a lower bound for
compliance, conditional on already having insurance, by making insurance
available free of charge, through three channels: (i) selection into the sample of
those with lower valuation and thus lower willingness to comply; (ii) farmers
not feeling the “sunk costs” of acquiring insurance that could induce higher
compliance in a commercial setting; and (iii) a zero price signaling low quality,
thus discouraging compliance (see Cohen and Dupas, 2010).

F. Ceballos, et al. Development Engineering 4 (2019) 100042

9



layers: (i) a standard low-cost index, for instance a weather index or a
coarse area-yield index; and (ii) damage estimates from visual inspec-
tion of pictures by experts. To make this approach scalable, the main
difference with the approach that we followed would be for time-lapses
of pictures to be assessed only in case the first layer does not trigger a
significant payout, and only for farmers who file an insurance claim for
visible damage. The pictures and engagement with farmers could gen-
erate the ground truth data needed to further strengthen the quality of
the standard low-cost index, so that not only farmers with the PBI layer
benefit.

Second, combining ground pictures and claims data from the initial
seasons, together with weather data, georeferenced yield data, and
satellite observations of insured plots, algorithms can be developed for
automated claims processing, which would further decrease cost and
improve the speed of damage assessments. For instance, vegetation and
texture indices are already being derived from the pictures throughout
the season, and used to approximate growth stages (Hufkens et al.,
2019). Insurers could use this to dynamically adjust their weather in-
dices, based on the productivity loss from a weather event predicted for
the observed growth stage, reducing temporal basis risk (Dalhaus et al.,
2018). Moreover, while the development of machine learning algo-
rithms to detect visible damage requires a large amount of data to train
reliable models, functional models could be developed after a few
seasons, boosting the scalability of the PBI approach (whether in
combination with other index products or as a standalone instrument).

Importantly, this approach is not exclusively reserved to areas with
sufficient smartphone penetration. An equivalent insurance model
could be achieved by relying on village representatives, who could be
provided with an inexpensive Android smartphone (when one is not
already available) and requested to visit every insured plot a few times
a week to capture the corresponding repeat picture. This representative
could also serve as distribution channel and as a key link with the in-
surance company, in exchange for a commission on premiums.
Moreover, future efforts could make communication two-way, poten-
tially in partnership with telecoms or financial institutions trying to
increase their market share among smallholder farmers and concentrate
on bundling picture-based insurance with agro-advisory and pest de-
tection services to make the benefits of taking pictures more salient to
farmers. This more holistic risk management system could also help
minimize any potential picture tampering as it would be in the best
interest of the farmer to provide accurate information on the crop
status.

It is worth noting that the implementation costs under PBI versus
either WBI and AYI are of a different nature. On one hand, WBI and AYI
products have a fixed implementation cost at the regional level, in-
troducing an implicit trade-off between basis risk reduction and cost:
while a geographically-narrower index may reduce the level of basis

risk, it can do so only at the expense of increasing the per-cluster im-
plementation cost. Such a tradeoff is not present in PBI, where the
quality of coverage of the insurance product is unaffected by increasing
cluster size. On the other hand, using pictures as a method for loss
verification carries a constant variable cost, both in terms of the time
needed for experts to assess losses for each individual site (which may
reduce with time, once algorithms for automatic loss assessment are
developed), and in terms of the cost for farmers, including time spent
taking repeat pictures and costs of cellular data to upload these pictures
to the server (which could potentially be overcome by including PBI
within the umbrella of a subsidized national crop insurance scheme).
Given this variable nature of costs associated with PBI, this proposed
solution may be better-suited to riskier cash crops such as fruits or
vegetables, which are not grown on a sufficiently large scale to justify
the fixed costs of implementing an area-yield insurance scheme.

In conclusion, smallholder farmers can benefit from access to an
ecosystem of insurance products, catering to their individual pre-
ferences and characteristics, and tackling the nature of production risks
in a given geographic area and for a given crop. In this regard, PBI is a
promising concept to complement existing insurance products, serving
as an additional layer to protect against extreme damage and reduce
basis risk, while at the same time retaining the cost advantages of more
traditional index schemes. It has the potential to bring about important
changes in how insurance is offered to smallholders in rural areas of the
developing world.
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Appendix. A1 Descriptive statistics

Table A1
Descriptive statistics and attrition

(1) (2) (3) (4) (5) (6)

Completed base-
line

Qualified for loss assessment
(LA)

Difference
(2)–(1)

Completed LA and
CCE

Difference
(4)–(1)

Difference
(4)–(2)

PBI village 0.503 0.467 −0.036 0.462 −0.041 −0.005
(0.071) (0.074) (0.076)

Age (in years) 39.143 39.364 0.221 39.423 0.280 0.059
(0.722) (0.759) (0.814)

Completed tertiary education 0.438 0.443 0.006 0.420 −0.017 −0.023
(0.019) (0.022) (0.024)

(continued on next page)
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Table A1 (continued)

(1) (2) (3) (4) (5) (6)

Completed base-
line

Qualified for loss assessment
(LA)

Difference
(2)–(1)

Completed LA and
CCE

Difference
(4)–(1)

Difference
(4)–(2)

Belongs to sched./OB caste 0.102 0.077 −0.025 0.067 −0.035 −0.010
(0.029) (0.027) (0.028)

Landholdings (hectares) 8.845 8.937 0.092 8.990 0.144 0.052
(0.181) (0.212) (0.251)

Household size 6.240 6.156 −0.084 6.132 −0.109 −0.025
(0.119) (0.140) (0.157)

Perception of yield variability 3.993 4.073 0.080 4.073 0.080 0.000
(0.088) (0.094) (0.096)

Share of income from crops 0.835 0.842 0.008 0.845 0.010 0.002
(0.012) (0.013) (0.015)

Share of crop income from wheat 0.376 0.383 0.008 0.389 0.013 0.005
(0.010) (0.012) (0.013)

Fraction of land planned to be sown with
wheat

0.961 0.965 0.003 0.969 0.008 0.004
(0.007) (0.007) (0.006)

Wheat yield Rabi 2015/16 19.570 19.556 −0.015 19.568 −0.002 0.012
(0.156) (0.178) (0.196)

Ever used laser land leveler 0.707 0.700 −0.008 0.713 0.006 0.014
(0.038) (0.043) (0.046)

Distance from plot to home (minutes) 15.900 15.777 −0.123 16.545 0.645 0.768
(1.186) (1.385) (1.586)

Owns insured plot 0.938 0.941 0.004 0.936 −0.002 −0.006
(0.011) (0.012) (0.015)

Takes pictures on phone often/very often 0.774 0.752 −0.023 0.754 −0.021 0.002
(0.025) (0.026) (0.029)

Has network signal often/very often 0.755 0.756 0.000 0.754 −0.002 −0.002
(0.030) (0.032) (0.034)

Number of farmers 736 467 357

Note: This table shows the mean value of baseline farmer characteristics across different sub-groups of study farmers. Column 1 includes all farmers who completed a
baseline interview, column 2 those farmers who qualified for expert loss assessments, and column 4 those for whom both loss assessment and crop cutting exercises
were conducted. Columns 3, 5, and 6 show the results of tests of equality of means between every pair of groups, where none of the differences are statistically
significant. ***p < 0.01, **p < 0.05, *p < 0.10.

A2 Simulations of an area-yield index

This appendix describes a simulation exercise to illustrate the advantages of bundling PBI with, alternatively, WBI and AYI products. Table A2
summarizes the results from such an approach. We first consider a lenient policy that triggers payouts when expert assessments indicate that the
farmer experienced at least 20 percent damage. In Panel A, combining this lenient PBI policy with AYI reduces downside basis risk compared with
the standalone AYI products, by increasing the proportion of farmers with less than 10 quintals per acre receiving payouts from less than 40 percent
to approximately 75 percent. At the same time, it increases the proportion of farmers that receive payouts while not experiencing damage, leading to
upside basis risk and higher costs of the insurance policy. However, it is worth noting that in identifying farmers with severe damage, the district-
level product now performs as well as the product measuring yields at the village-cluster level, and the number of farmers with moderate damage
that would receive payouts under the combined district-level product is almost as high as when AYI is offered at the village level. In other words, at a
low additional cost, PBI reduces downside basis risk, potentially realizing cost savings by reducing the number of CCEs required for AYI loss
indemnification.

Compared with introducing PBI in an AYI product, combining PBI with the WBI product results in a similar proportion of farmers with severe
damage receiving payouts, while increasing the probability of payouts among farmers with moderate damage. However, under such a product, 30
percent of farmers without damage would receive payouts, due to the high degree of upside basis risk in the WBI product.

In Panel B, we consider bundling with a stricter PBI policy that pays out only in case experts identify more than 50 percent damage in the
pictures. This product, when combined with AYI products, increases the overall proportion of farmers receiving payouts only slightly compared to
the standalone AYI products in Fig. 5, limiting the additional costs of providing PBI, while still significantly increasing the proportion of farmers with
severe damage receiving payouts. The combined village-level product would have made payouts to 66.3 percent of farmers with severe damage, to
13.1 percent of farmers with moderate damage, and to only 3.9 percent of farmers with limited or no damage. Combined, these findings indicate that
using pictures for loss assessment in combination with AYI can substantially reduce the downside basis risk in AYI products observed in the
simulations, without significant increases in costs.
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Table A2
Bundling PBI with index insurance products

Probability of receiving a payout

Yields < 10 quintals/acre Yields 10–16 quintals/acre Yields > 16 quintals/acre Overall proportion of payouts

Mean Std. dev. Mean Std. dev. Mean Std. dev.

A. WBI/AYI + Lenient PBI
Weather index-based insurance (WBI) 0.714 0.394 0.300 0.325
Area-yield: District level 0.766 0.087 0.142 0.125 0.119 0.074 0.146
Area-yield: Village cluster level 0.744 0.035 0.179 0.043 0.101 0.016 0.133
B. WBI/AYI + Strict PBI
Weather index-based insurance (WBI) 0.571 0.364 0.248 0.271
Area-yield: District level 0.657 0.143 0.089 0.136 0.060 0.082 0.086
Area-yield: Village cluster level 0.663 0.069 0.131 0.052 0.039 0.017 0.072
Number of observations in total** 14 33 310 357
Number of weather stations 5 17 25 25
Number of districts 2 6 6 6

Notes: * Cost estimates between standalone AYI and PBI are not comparable since they depend on statistical estimation of expected payouts under each insurance
system, for which we do not count with data. Instead, the cost estimates under PBI reflect the additional costs for, respectively, loss assessments and additional
expected payouts for idiosyncratic events (for which we take as representative Rabi, 2016-17 season payouts). Mean and standard deviation based on a simulation
with 10,000 replications and 4 CCEs per geographical unit (weather station level or district level). We are not simulating area-yield indices at the village level due to
a limited number of observations in villages. ** Observations that are randomly selected for inclusion in the CCEs in a simulation are dropped from the payout
analyses for that simulation in order to avoid mechanical correlations between the CCE yields and insurance payouts, which we would not avoid to occur in the actual
implementation given that for one village with more than 100 farmers there are typically 4 CCEs.
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A3 Farmers' perceptions of wheat hazards
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Fig. A1. Farmers' Perceptions of Wheat Hazards.
Note: This figure shows farmers perceptions around wheat hazards, captured during the baseline survey. Panel A shows answers to questions on whether different
hazards to wheat would be visible in overview pictures (taken from a distance of approximately 5-15 meters). Panel B presents the extent to which farmers are
concerned about different hazards (self-reported at baseline) and the average rate of occurrence of the hazard during the Rabi 2016/17 (self-reported at endline). To
measure the former, we asked farmers during the baseline to divide tokens between different hazards, with more tokens being allocated to hazards that worried the
farmer more.

Note: This figure shows farmers perceptions around wheat hazards, captured during the baseline survey. Panel A shows answers to questions on
whether different hazards to wheat would be visible in overview pictures (taken from a distance of approximately 5–15 m). Panel B presents the
extent to which farmers are concerned about different hazards (self-reported at baseline) and the average rate of occurrence of the hazard during the
Rabi 2016/17 (self-reported at endline). To measure the former, we asked farmers during the baseline to divide tokens between different hazards,
with more tokens being allocated to hazards that worried the farmer more.
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