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A B S T R A C T

While monitoring the effectiveness of forest conservation programs requires accurate data on (changes in) forest
cover, many countries still lack the ability to map local forest inventory, especially in the drylands of Africa
where forest areas are very sparsely covered. In this paper, we present a high resolution tree cover estimation of
twelve gazetted forests in Burkina Faso using Random Forest-based supervised classification and Sentinel-2
satellite imagery sensed between March and April 2016. The methodology relies on ground truth sample points
labeled manually over 10-m resolution images displaying a composite of near infrared (NIR), red and green
bands extracted from Sentinel-2 multi-spectral satellite data to estimate tree cover with an average balanced
accuracy rate of 80 percent. The output is a collection of rasters with binary values representing the combination
of 10, and down-sampled 20 and 60-m bands indicating an estimate of the existence of trees or lack thereof,
usable as a baseline for deforestation monitoring.

1. Introduction

Support for climate change mitigation policies has been mounting
over the past two decades, both within countries as well as inter-
nationally. The loss of forest cover accounts for between 12 and 15
percent of the annual anthropogenic emissions of greenhouse gases –
the second largest source after fossil fuel combustion (Canadell et al.,
2007). Forest conservation is deemed to be a cost-effective way to
mitigate climate change (Nabuurs, 2007). Not only are the opportunity
costs of forest conservation relatively limited, there are also substantial
co-benefits in the form of improved local climate regulation, better
water storage, and biodiversity conservation (Canadell et al., 2007;
Stern, 2007). Economic activities affecting loss of forest cover, espe-
cially in the drylands of Africa, include – but are not limited to –
agricultural expansion, overgrazing, forest fires, demand for firewood
and charcoal, over-exploitation of non-wood forest products, and
mining (Griscom et al., 2017). In addition, the increasing need to grow
food for a growing population around the world, coupled with the still
widespread use of non-sustainable production practices, translates into
increasingly serious forest degradation which threatens the livelihoods
of both current and future generations. Halting deforestation has thus
become a central objective in the climate policy of international
agencies. A key example in point is the United Nations' initiative

“Reducing Emissions from Deforestation and Forest Degradation”
(REDD+) (Ministry of the Environment and Sustainable Development,
Government of Burkina Faso, 2012). This initiative has gained wide
popularity since the 2015 Paris Agreement, and several new countries
have joined (or are preparing to join) this initiative.

Effective protection of forest resources requires detailed knowledge
about the status of the resources, as well as the capacity to monitor
changes. More importantly, the implementation of conservation po-
licies such as payments for avoided deforestation, or the assessment of
the impacts of forest conservation programs in general, demands the
ability to regularly estimate – and as accurately as possible – the size of
the resource stock as well as the changes therein. Global datasets of
land cover, including tree cover, are now publicly available, including
Global Forest Watch at 30m resolution (based on Hansen et al., 2013),
the ESA Land Cover CCI at 300m; the Global Land Cover dataset at
30m from China for 2000 and 2010; and Global, Landsat-based forest-
cover change from 1990 to 2000 from Kim et al. (2014); for an over-
view, see Tsendbazar et al. (2014). Global land cover datasets are cri-
tical and cost-effective sources of information when national mapping
capacity is not available yet. But national mapping is considered more
accurate, as it can better account for the local circumstances (Global
Forest Observation Initiative, 2014). Definitions of both land use and
forest cover can vary largely with the context.
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In this paper we present a low cost, easy to implement alternative
approach to estimate forest cover relying on 10-m resolution Sentinel-2
imagery, highlighting the potential of large temporal and spatial cap-
abilities using free publicly-accessible platform and data. This method
will be especially useful for those countries that lack national mapping
capacity to estimate their forest inventory, including many of the more
arid countries in Africa. We leverage recent advances in satellite ima-
gery technology to analyze large sets of images, and develop a land
cover map for twelve Burkina Faso gazetted forests. The paper con-
tributes to the available literature on satellite based image classification
to map forest cover, especially in the drylands of Sub-Saharan Africa
(SSA). We show the use of different spectral bands and remote sensing-
derived indices to run a multi-spectral-based assessment at the pixel
level, which is our spatial analysis unit. In addition, we present the
accuracy metrics of our estimations at three different probability
thresholds indicating how true positive and true negative rates change
across them.

This research is implemented as part of DIME's impact evaluation
support to the Forest Investment Program (FIP) in Burkina Faso, a
targeted program of the Strategic Climate Fund set up under the
Climate Investment Funds (CIF)3 (Climate Investment Funds, 2014),
from which Burkina Faso has benefited. The project includes the Ga-
zetted Forest Participatory Management Project for REDD+ (PGFC/
REDD+) financed through the African Development Bank (AfDB)
(African Development Bank Group, 2013), which is aiming to conserve
forest cover in Burkina Faso. The information provided in this paper
will enhance Burkina Faso's ability to plan, implement and monitor the
success of their FIP, and provide lessons for other countries in the re-
gion that are also part of the FIP initiative.

In this paper, we present tree cover estimates for the 12 gazetted
forests in Burkina Faso that are targeted by the FIP project, between
March and April 2016. The method used relies on a multi-spectral
image classification at 10-m resolution, improving the prediction
power, and therefore the mapping precision, compared to Landsat-
based classifications. Sentinel-2 imagery contains thirteen spectral
bands, four of which are sensed at a 10-m resolution: red, green, blue
and near infrared (NIR) bands (European Space Agency, 2017).
Goldblatt et al. (2017) have found that higher-resolution images im-
prove the classification accuracy of ecosystems with relatively little tree
crown cover, like forests in arid or semi-arid areas, which cannot be
detected with Landsat imagery.

Image classification is performed using a random forest algorithm as
classifier, as well as the Google Earth Engine (GEE) platform which
combines a multi-petabyte catalog of satellite imagery and geospatial
datasets with planetary-scale analysis capabilities allowing faster GIS
and remote sensing computing. The general classification approach is
based on the construction of a ground truth dataset that leverages on a
false color composite image to label pixels with higher accuracy, and
then uses a k-fold cross-validation approach to determine the prob-
ability of a trained pixel to be classified as tree-covered based on its
spectral signature. The output is a collection of binary rasters that
covers the total area of each one of the 12 gazetted forests of interest,
indicating the existence of trees and displaying the accuracy rate of the
results.

This paper is organized as follows. Section 2 describes the area of
study indicating the agro-ecological characteristics of the forests of
interest as well as the method and data used for the classification.
Section 3 cover the calculations and the data construction process while
section 4 presents the classification results. The fifth section concludes
the paper with a discussion of the results.

2. Materials and methods

2.1. Study context

Burkina Faso is a landlocked country in West Africa, located in the
drylands of Sub Saharan Africa (SSA), between the Sahara Desert and
the Gulf of Guinea (Bastin et al., 2017). Most of the country belongs to
the Sahel region, with semi-arid climatic conditions, considered as the
transition between the Sahara and the Sudanian Savanna with vegeta-
tion dominated by shrubs and steppe (United States Geological Survey,
2016). The southern part of the country is the transition between the
Sahelian and Sudanian climates characteristic of a tropical savanna.
While the north receives an average rainfall of 300–400mm per year,
the south is a more humid area that receives an average annual amount
of rainfall of 650–1000mm and is irrigated by permanent rivers (United
States Geological Survey, 2017). As defined by Fontès and Guinko
(1995), Burkina Faso's agro-ecological zoning distinguishes four main
phytogeographical zones: (from north to south) North Sahelian, South
Sahelian, North Sudanian, South Sudanian (Fig. 1). While the North
Sahelian is the most arid part of the country, the South Sudanian is
benefited by more abundant rainfall and greener vegetation. The North
Sudanian and the South Sahelian are the transition between the other
two zones and show distinct climate conditions, thus the density and
phenological patterns between them varies.

Burkina Faso is implementing a FIP-funded forest conservation
program targeting 12 out of 77 gazetted forests, with the assistance of
the African Development Bank (AfDB) and the World Bank Group
(WBG). The forest classification analyses in this paper focus on those 12
forests, and the output offers a benchmark against which the effec-
tiveness of forest conservation projects can be assessed in the future.
Table 1 and Fig. 2 present the 12 gazetted forests targeted by the
Burkina Faso FIP, where the majority of them (eight) are located in the
North Sudanian and the other four in the South Sudanian.

2.2. Leveraging recent advances in remote sensing technology

The recent advances in satellite imagery and processing technology
have improved the availability of low to no cost satellite images, at
sufficiently high temporal and spatial resolutions. This has, in turn,
pushed the boundaries of forest observation capacities, allowing the
development of global land cover mappings of relatively medium to
high resolution to allow cost effective forest monitoring. Likewise, new
cloud-based platforms such as GEE have provided capability for storing
petabytes of satellite images at a global scale, and algorithms for su-
pervised image classification, with free access for research purposes.
These advances allow the collection and processing of data at a much
larger scale and at higher accuracy even in relatively inaccessible areas
and in regions with insufficient data collection capacity.

Until now, the most commonly used tool to (Hansen et al., 2007).
This dataset relies on Landsat imagery, and is useful to estimate changes
of forest cover especially in densely forested regions (Churches et al.,
2014). It has been used in several studies to evaluate the impact of
forest conservation policies (e.g. Blankespoor et al. (2017)). A popular
application of the Hansen dataset is the Global ForestWatch, a joint
effort from different organizations to make forest cover layers readily
available via an easy-to-use tool (University of Maryland, 2015).

While other global-scope land cover products (i.e. (Hansen et al.,
2007), (Tsendbazar et al., 2014)) are available, these products trade
global coverage for local accuracy in some contexts (Mitchard et al.,
2015). We build on these global approaches by leveraging similar ap-
proaches in a localized context to create a land cover m quantify forest
change globally is the Hansen's dataset developed using time-series
analysis of Landsat images. This dataset has been published in three
versions which are updated yearly since its first publication in 2013ap
for Burkina Faso, providing improved temporal and spatial resolution.

3 This research is part of DIME's impact evaluation support to the Burkina
Faso's Forest Investment Program (FIP). Generous funding from the Climate
Investment Fund (CIF) and the DIME-hosted i2i trust fund gratefully ac-
knowledged.
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2.3. Sentinel-2 imagery

The European Sentinels consist of a fleet of satellites dedicated to
providing imagery for Earth observation purposes. Sentinel-2 is part of
the European Commission's Copernicus program and provides higher
multispectral resolution with 13 bands that help to monitor variability
in land surface conditions over large areas every 10 days (European
Space Agency, 2015).

This mission supports Copernicus environmental studies that in-
clude monitoring of vegetation, soil, water and coastal areas. Amongst
Sentinel-2 bands, blue (band 2), green (band 3), red (band 4), RGB, and
NIR (band 8), are available at a 10m resolution (European Space
Agency, 2015). The other bands are available at 20-m or 60-m resolu-
tions. These images are freely accessible to the public, and hence re-
present a low-cost solution for Earth observation and image processing
at higher temporal and spatial resolution and with multispectral in-
formation.

2.4. Ground truth training dataset construction

This study uses Sentinel-2 imagery with bands of spatial resolution

that range from 10 to 60m, facilitating the detection of forest covered
areas that may be imperceptible to lower resolution imagery such as
Landsat. It offers an alternative for tree cover classification without the
need for expensive very high-resolution images. The strategy in this
paper for mapping tree cover is based on supervised classification that
uses ground truth labels. Our approach was as follows.

First, we selected the images from the Sentinel-2 image library that
were suitable for the creation of ground truth data. For this, we filtered
images with least cloud cover in 2016 found between March and April,
coinciding with Burkina Faso's dry season. Since Sentinel-2 imagery
comes with 13 spectral bands, it is possible to use different color
combinations to facilitate the visual detection of tree cover in the study
area. Using the combination of red, green and blue color bands, the
contrast between tree cover and other types of land cover is relatively
low, and hence it is hard to determine the location of trees from simple
visual appreciation. Instead, we used the combination of the NIR band,
color red and color green to generate a color composite known as false
color. The false color composite shows trees in brighter color red con-
trasting with darker and lighter colors of other types of land cover.
However, as evidenced by Fig. 3, this composite still does not allow for
accurate detection of the differences between the various types of non-
tree land cover.

Second, we created four 100-square kilometer polygons of equi-
lateral square shape across the 12 project forests, capturing as much as
possible the variation in agro-ecological conditions (Fig. 4). Inside each
square polygon, a total of 1000 ground truth points were randomly
selected, and coded manually using visual interpretation, to serve as
ground truth data. The 4000 ground truth points were displayed
overlaying a Sentinel-2 image where each point falls into a 100-square
kilometer polygon. We manually assigned a value of ‘0’ if that pixel
visually did not have the characteristics of a tree pixel and a value of ‘1’
if the pixel has tree characteristics (see Fig. 5). We decided to not in-
clude other classes of land cover to remain consistent with our original
goal which focuses primarily on tree cover mapping in forests areas as
opposed to land cover mapping generally. In addition, we found, in our
areas of interest, that the pixels that cover built-up areas and water
bodies were too few to include them in the classification algorithm –
not very surprising, as these are gazetted forests. While Sentinel-2

Table 1
Forests participating in the Forest Investment Program (FIP) with their agro-
ecological zones.

Forest Agro-ecological zones Name

1 South Sudanian Bontioli Gazetted Forest (Total Reserve)
2 South Sudanian Bontioli Gazetted Forest (Partial Reserve)
3 North Sudanian Tissé Gazetted Forest
4 North Sudanian Sorobouli Gazetted Forest
5 South Sudanian Sylvo-pastoral Zone of Tapoa - Boopo
6 North Sudanian Toroba Gazetted Forest
7 South Sudanian Nazinon Gazetted Forest
8 North Sudanian Kari Gazetted Forest
9 North Sudanian Tiogo Gazetted Forest
10 North Sudanian Ouoro Gazetted Forest
11 North Sudanian Koulbi Gazetted Forest
12 North Sudanian Nossebou Gazetted Forest

Fig. 1. Agro-ecological zones in Burkina Faso. Source: Bognounou et al. (2010).

G.S. Adjognon, et al. Development Engineering 4 (2019) 100039

3



images show distinguishable patterns between different types of crops
in other regions of the world (Belgiu and Csillik, 2018), in this case are
not so evident. Since our assessment only considers the winter season
when soil and moisture is significantly lower, crop fields that do not
depend on an irrigation system (that is most of the cases in this area)
reflect a very similar spectral signature to the surrounding vegetation.
In addition to this, most of the gazetted forests show a lower agri-
cultural activity, resulting in a low percentage of crop field ground truth
points compared to other land cover classes.

2.5. Classification assessment

Every Sentinel-2 image consists on 13 spectral bands the combina-
tion of which results in a spectral signature for each pixel. RGB bands
create color contrasts between different types of land cover that a naked
eye can distinguish and these bands represent an important part of the
pixel's spectral signature. However, using only the RGB would limit the
wavelength range of our classification method from 0.45 to 0.69 μm,
while the full range of the wavelength reflected from the surface could
reach up to 2.5 μm using the remaining bands available on these images
(European Space Agency, 2015). For example, the NIR (0.7 μm–0.9 μm)
band provides information about the greenness of the reflected surface
which helps us to identify live and healthy vegetation, while the short-
wave infrared (SWIR) (0.9–2.5 μm) bands provide information about
the water content of the surface being useful to differentiate dry bare
land from wet soils where vegetation is more likely to exist (Davison
et al., 2006). Furthermore, their higher wavelengths are less affected by

atmospheric disturbances and are used to build indices that are used to
detect vegetated and non-vegetated land cover. In addition to these
bands, we use three bands with 60m spatial resolution: aerosols (band
1), water vapor (band 9) and cirrus (band 10). They provide data that is
not reflected from the surface but they do provide relevant information
for atmospheric corrections. While we selected images with low per-
centage of cloud cover during Burkina Faso's dry season, smaller clouds
and airborne particles formed by evaporation, fires, pollution, etc.
could be affecting the absorption of sunlight and therefore the re-
flectance values of the bands' wavelengths. The information from these
bands is included as part of the prediction input to add data from un-
observed patterns that might be affecting the other bands reflectance
values. These are also rescaled to the resolution of the classification
output (10m) using the nearest neighbor method.

The Sentinel-2 image bands can be used to calculate indices that are
able to capture specific types of land cover, and are especially useful for
detecting (changes in) vegetation and soil (Pesaresi et al., 2016). Puletti
et al. (2018) have found that including vegetation indices to the ma-
chine learning algorithm produce better classification results compared
to those obtained when it's only used the simple images, therefore we
have calculated and included the following:

• Normalized difference vegetation index (NDVI): reflects the relation
between red visible light (RED, which is typically absorbed by a
plant's chlorophyll) and NIR wavelength (which is scattered by the
leaf's mesophyll structure) (Glenn et al., 2008). The NDVI is calcu-
lated as (NIR-RED)/(NIR + RED);

Fig. 3. Sentinel-2 10-m resolution using RGB band combi-
nation vs false color combination (NIR, red and green) for a
sylvo-pastoral zone in the Tapoa Boopo forest. From left to
right: a) shows Google high resolution basemap as a visual
reference, b) shows the Sentinel-2 RGB image and c) shows
the Sentinel-2 false color image. The Sentinel-2 images were
obtained in March 2016. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 2. The locations of the gazetted forests in Burkina Faso, including the 12 FIP forests.
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• Normalized difference water index (NDWI): captures the amount of
water present in leaf internal structures and is useful to detect water
bodies (Gao, 1999). Short wave infrared (SWIR, with wavelengths
between 1400 and 2400 nm) is absorbed by water, and hence can be
used to detect the presence of soil in plants. The NDWI is calculated
as (NIR-SWIR)/(NIR + SWIR);
• Normalized difference built index (NDBI): captures the relation
between the SWIR and the near infra-red wavelengths (Zha et al.,
2013). Contrasting the other indices where the NIR band appears
with a positive sign in the numerator, here it is subtracted showing
higher values in areas with low vegetation. The index assumes a
higher reflectance of built-up areas in the medium infra-red wave-
length range than in the near infra-red. In forests like Bontioli,
where small built-up areas can be found, the NDBI will give addi-
tional information to confirm that those pixels should not be clas-
sified as non tree cover. It is calculated as: (SWIR-NIR)/
(SWIR + NIR);

• Enhanced vegetation index (EVI): index that improves sensitivity in
high biomass regions reducing the atmosphere influences, especially
in areas of dense canopy which uses the blue band to correct aerosol
influences in the red band, showing photosynthetically active ve-
getation (Huete et al., 1994, 1997, 2013). It is calculated as: G *
((NIR - RED)/(NIR + C1 * RED - C2 * BLUE + L)), where coeffi-
cients are adopted from the MODIS-EVI algorithm indicating the
gain factor (G = 2.5), the adjustment for correcting differential, red
radiant and non-linear transfer through canopy (L = 1), and the
aerosol resistance term which corrects atmospheric influences in the
red band (C1 = 6 and C2 = 7.5). EVI adjustments are designed to
make EVI more robust than NDVI in areas with high soil exposure
and in dense vegetation, but also more sensitive than NDVI to var-
iation in the viewing geometry, surface albedo, and sun elevation
angle across variable terrain (Garroutte et al., 2016). However,
there are some existing scientific controversies that question the use
of EVI (Morton et al., 2014; Saleska et al., 2007), therefore we

Fig. 4. Identification of four 100-square kilometers. polygons within the 12 project forests, taking into account the geographic distribution of the country's gazetted
forests, the various agro-ecological zones they are located in as well as their latitudes, to account for differences in ecosystems across the country.

Fig. 5. Ground truth dataset created from random points overlying Sentinel-2 images where tree covered pixels are identified with a brighter color red. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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decided to also include NDVI, an index that has been widely used in
remote sensing and classification algorithms, for example: Puletti
et al. Puletti et al. (2018); Goldblatt et al. (2016, 2017). The in-
clusion of these two indices that are highly correlated, does not
affect the model's prediction power and results, since Random Forest
classifier is a nonlinear algorithm (Breiman, 2001) and these are less
affected by multicollinearity (Morlini, 2006; Feng et al., 2018);
• Urban index (UI): measures the density of man-made constructions
where higher values indicate a higher built-up intensity area
(Kawamura et al., 1996). It is calculated as: (SWIR2 - NIR)/
(SWIR2 + NIR). The SWIR2 band corresponds to the short-wave
infrared with a wavelength between 2107 nm and 2294 nm that
represent the highest wavelength values of Sentinel-2 bands which
are reflected when some minerals like metals appear. Therefore,
when SWIR2 values are higher relative to NIR values, this typically
means that the pixel lacks vegetation and contains more built-up
areas, similar to how the NDBI works. The inclusion of the NIR is
helpful to identify areas with no vegetation as the NDBI does, but
with the SWIR2 band, reflectance with higher bandwidths will be
captured. Using this index, a larger bandwidth spectrum is covered,
adding information to detect possible patterns of more types of land
cover that should not be classified as tree cover.

While RGB and NIR are sensed at a 10m resolution, the short wave
infrared bands (SWIR1 and SWIR2) are available at a 20m resolution.
To address this spatial resolution difference, the pixel values with lower
resolution are re-sampled to fit the 10m resolution using the nearest
neighbor method. The classification assessment consisted in dividing
the ground truth data randomly into five folds to perform a k-fold cross
validation that could use four folds to train the pixels and one fold to
test the accuracy of the results (Fisher et al., 2017). That means that
each set of ground truth points for each fold inside a sample polygon
was used four times as a training point and one time as a test point.

Because the methodology relies on a supervised classification
method, we needed to find an adequate classifier to train and classify
pixels. A classifier is a collection of condition-action rules used in
learning systems (Lanzi et al., 2018). Classifiers can be found in two
types: parametric and non-parametric. A parametric classifier is based
on the statistical probability distribution of each class and relies on the
statistical data of samples. A non-parametric classifier is used to esti-
mate the probability of unknown density functions, such as those used
in machine learning (Kumar and Sahoo, 2012). There are a number of
classification algorithms that we could use for our classification. Since
the purpose of this work is not to test the differences between different
classifiers, we rely on previous studies that have used different

Fig. 6. Methods flowchart. This flowchart shows in 14 steps how we estimated forest cover for each FIP forest from raw satellite imagery and simple vector data
defining areas of study.
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classification algorithms to run similar experiments. Goldblatt et al.
(2016) tested three different classifiers to classify land cover: (i) the
Classification and Regression Tree classifier (CART); (ii) the Support
Vector Machine classifier (SVM); and (iii) the Random Forest classifier.
Belgiu and Dragut (2016) have tested the Random Forest classifier in
remote sensing and found that it successfully handles high data di-
mensionality and multicolinearity, being both fast and insensitive to
overfitting (Belgiu and Dragut, 2016). Goldblatt et al. (2017) have also
used Random Forest to classify tree cover in Brazilian semiarid eco-
systems with similar results and Puletti et al. Puletti et al. (2018) have
reached an accuracy rate of 83% when using Random Forest to map
types of forest cover in the Italian Mediterranean. A Random Forest
classifier is a supervised learning method that uses kernel functions
(vectors within matrices) to define vector parameters of the data pro-
ducing multiple decision trees, using a randomly selected subset of
training samples and variables (Belgiu and Dragut, 2016). In practice,
the method consists of a decision-tree classifier that includes k-decision
trees (k-predictors) (Cutler et al., 2012; Karlson et al., 2015) When
classifying an example, the example variables are run through each of
the k tree predictors, and the k predictions are averaged to get a less
noisy prediction (by voting on the most popular class). The learning
process of the forest involves some level of randomness; each tree is
trained over an independent random sample of examples from the
training set and each node's binary outcome in a tree is determined by a
randomly sampled subset of the input variables (Rodriguez-Galiano
et al., 2012).

3. Calculations

The overall method flowchart used in this paper is summarized in
Fig. 6. Our ground truth dataset consists of 4000 ground truth points.
Using this ground truth data and the classifier described above, we
trained all pixels within each of the 12 FIP forests. The pixel-based
classification method used the thirteen spectral bands of Sentinel-2
imagery plus the five indices explained above. The number of trees used
for Random Forest classifier was determined based on Goldblatt et al.
(2016, 2017). Goldblatt et al. estimated the average accuracy that re-
sulted from using 1, 3, 5, 10, 50 and 100 decision trees. They found that
on average, accuracy was highest when using between 10 and 50 de-
cision trees. Based on this evidence, we also decided to use 20 decision

trees for our assessment.
The classification algorithm was applied not only to the area inside

the sampled square polygon, but it was also extrapolated to the rest of
the area within the FIP forests, assuming that neighboring forests have
homogeneous land cover patterns given the proximity to the sampled
area and their location within the same agro-ecological zone.

To estimate the accuracy of the supervised classification algorithm
we use a k-fold cross validation where in each experiment, four folds
are used as training dataset and the remaining fold is used as the testing
fold. The experiment is run five times where each fold works as the
testing dataset. To calculate the accuracy metrics of our assessment, we
used posterior probabilities to assign a continuous value between ‘0’
and ‘1’ to each pixel, which represents the conditional probability of
taking a certain value based on the spectral signature of the pixel -– the
more vegetation the pixel has, the higher the value the posterior
probability will be (Goldblatt et al., 2016; McRoberts et al., 2014).
Since treetops might not be big enough to fully cover the area of a
Sentinel-2 pixel and the number of tree cover pixel training samples is
much lower than the number of sample pixels without tree cover, the
likelihood of a pixel to be classified as having no tree cover is higher.
Therefore, the lower the probability of being classified as tree cover, the
higher the true positive rate will be. Using a one hundred percent
posterior probability classification would result in very few rates of true
positives.

Since we used the method of posterior probabilities, the output of
this algorithm is an image formed by pixels where each one has a value
between ‘0’ and ‘1’ representing the likelihood of being classified as tree
or non-tree covered. Then, we defined thresholds to determine the es-
timated binary value of each pixel observation. We selected the
threshold values of 10 percent, 20 percent and 50 percent to observe
how true negative and true positive rates behave.

At the same time, we produced a table indicating the labeled value
of the test set of points and the predicted value of those same points
based on the classification algorithm. These were used to calculate
accuracy metrics of the classification focused on sensitivity and speci-
ficity. The sensitivity evaluates how good the model is at predicting true
positives (similar to the type I error in statistics), while the specificity
estimates show how likely it is to have a false negative (akin to a type II
error) (Wang et al., 2010). Table 2 summarizes the accuracy metrics
based on the three thresholds. Overall, the 10 percent threshold gen-
erated the highest true positive rates (TPR) in these forests but also
generated the lowest rates of true negatives (TNR). As thresholds in-
creased, true positive rates dropped but true negative rates went up,
resulting in higher balanced accuracy rates (BAR = [TPR + TNR]/2).
These outcomes suggest that isolated trees have a canopy smaller than
the Sentinel-2 pixel size and provide lower values for vegetation of the
pixel spectral signature. Furthermore, the lowest threshold will result in
the highest true positive rates and the highest threshold will result in
the highest true negative rates, but in both cases the balanced accuracy
rate will be smaller than setting a 0.5 threshold. We used the raster with
the classified image displaying the classification results from the three
different thresholds used. Then, these rasters allowed us to calculate the
number of pixels that represent forest cover under that threshold and
exported the classified image to a map.

4. Results and discussions

Our analysis yielded twelve classified images corresponding to the
twelve FIP forests of interest. The resulting raster dataset shows the
pixels classified as tree cover using the 10, 20 and 50 percent thresh-
olds. Fig. 7 shows an example of the pixels from the rasters representing
tree cover in Tissé Forest using the three different posterior probability
threshold values used for the output of the classification. We can ob-
serve that as we increase the threshold, the number of pixels classified
as tree cover decreases and some smaller tree tops might be not de-
tected. However, using lower thresholds, the number of pixels classified

Table 2
Accuracy metrics for the training and testing datasets inside the four polygons
used for classification.

Threshold= 0.1 Threshold= 0.2 Threshold= 0.5

P1 TPR 0.97 TPR 0.92 TPR 0.82
TNR 0.41 TNR 0.64 TNR 0.84
Balanced 0.69 Balanced 0.78 Balanced 0.83
Threshold= 0.1 Threshold= 0.2 Threshold= 0.5

P2 TPR 0.98 TPR 0.92 TPR 0.78
TNR 0.29 TNR 0.52 TNR 0.78
Balanced 0.63 Balanced 0.72 Balanced 0.78
Threshold= 0.1 Threshold= 0.2 Threshold= 0.5

P3 TPR 0.97 TPR 0.93 TPR 0.83
TNR 0.42 TNR 0.61 TNR 0.82
Balanced 0.69 Balanced 0.77 Balanced 0.83
Threshold= 0.1 Threshold= 0.2 Threshold= 0.5

P4 TPR 0.97 TPR 0.93 TPR 0.8
TNR 0.33 TNR 0.55 TNR 0.77
Balanced 0.65 Balanced 0.74 Balanced 0.78
Threshold= 0.1 Threshold= 0.2 Threshold= 0.5

Avg TPR 0.97 TPR 0.92 TPR 0.81
TNR 0.36 TNR 0.58 TNR 0.80
Balanced 0.67 Balanced 0.75 Balanced 0.80
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as tree cover increases, but this might be leading to some extent of
misclassification. Therefore, the optimal threshold to use as the classi-
fication output, will depend on the trade off between the true positive
rate and the balanced rate.

We estimated the total tree-covered area by summing the areas of
the pixels classified as ‘tree cover’ using the 10 percent, 20 percent and
50 percent threshold. We then calculated the share of tree cover area in
the total forest area. The results for each forest, are presented in Table 3
and in Figs. 8–10.

The output rasters were also exported as a KML file to Google Fusion
tables to present the full estimated forest cover classification using the
lowest threshold.

We found that the estimation of tree cover with relatively low tree
canopy density can be mapped at a low cost using satellite images and
cloud-based platforms. The resulting average balanced accuracy rates
are 0.67, 0.75 and 0.8 depending on the posterior probability thresh-
olds used as output from a Random Forest-based classification.

5. Conclusions

Monitoring progress towards REDD + requires a better ability for
government to monitor forest cover, and track changes resulting from
various programs. In attempt to generate forest cover datasets better
tailored to the specific conditions of the drylands, we provided a new

estimation of forest cover using higher resolution satellite images, in
combination with ground truth points carefully labeled inside the area
of interest.

We have demonstrated the opportunity for taking advantage of
higher resolution and freely available Sentinel-2 satellite images to map
forest cover in the drylands, using twelve FIP focused Burkina Faso
forests as an example for the period covering March–April 2016. Higher
resolution imagery such as Sentinel-2 provide a low-cost approach to
map tree cover in these special agro-ecological conditions.

However, this study is subject to some limitations. First, while the
10m Sentinel-2 images used are of higher resolution than other satellite
images, the classification derived from them is still not perfect. For
example, tree tops could measure as small as 3m of diameter and since
we are using bands with resolutions ranging from 10 to 60m, these
could remain undetected by our classification algorithm. Second, while
using Sentinel-2 imagery to label the ground truth points, we used vi-
sual interpretation and labeled manually 4000 points, exposing the
ground truth data to potential human error due to fatigue or mis-
interpretation. This has also limited the number of points that we could
label and use as ground truth. Future possibilities may include crowd-
sourcing this activity through online platforms integrating GIS cap-
abilities. This would allow for more flexibility in our sampling strategy,
using enough ground truth points, and capturing enough of the spatial
variability in spectral signature in the areas of interest.

Finally, using the Random Forest classifier, we performed the clas-
sification using 20 trees based on the results of other studies (Goldblatt
et al., 2016). For future research, we propose to use an accuracy as-
sessment using different number of trees and test for the optimal
number of trees needed for this specific area altogether with a k-fold
cross validation where the division in folds of the data into training sets
and test sets will produce statistics about how accurate the classifiers
are.

Extension of this work would include the remaining 55 gazetted
forests of Burkina Faso, for a more comprehensive monitoring of forests
resources in Burkina Faso. It will also use higher resolution images from
tasked satellites or drone images to improve ground truth labeling that
could increase the precision of the training data used for the classifi-
cation. This method should then be incorporated into a routine forest
monitoring system allowing Burkina Faso's government to track in real
time changes in forest resources and evaluate the outcomes of con-
servation programs. Several other countries in the Sahel regions could
also adopt this approach for a consistent progress towards reduced
deforestation in the Sahel region.

Fig. 7. Comparison between different threshold outputs.
This image shows a zoomed sample in Tissé Forest with
centroid −2.889619, 12.170764 showing tree cover pixels
obtained from our image classification method using the
three different threshold outputs over a high resolution
image. On the top row from left to right: 0.1, 0.2 and 0.5
thresholds. On the bottom row we show the high-resolution
image used as background for comparison purposes.

Table 3
Image classification results using the threshold of 0.5

Forest Forest name No tree
cover %

Tree cover
%

Total area
(has.)

1 Foret,Classée de Bontioli
(R. Totale)

59.22 40.78 14,146.88

2 Foret,Classée de Bontioli
(R. Partielle)

73.41 26.59 33,816.16

3 Foret Classée de Tissé 59.08 40.92 20,863.17
4 Foret Classée de Sorobouli 75.10 24.90 21,155.34
5 Zone sylvo-pastorale Tapoa

- Boopo
65.12 34.88 87,842.02

6 Foret Classée de Toroba 46.92 53.08 4719.88
7 Foret Classée du Nazinon 54.93 45.07 15,166.93
8 Foret Classée de Kari 65.18 34.82 11,659.07
9 Foret Classée de Tiogo 63.95 36.05 30,785.28
10 Foret Classée de Ouoro 63.77 36.23 7461.86
11 Foret Classée du Koulbi 84.58 15.42 40.832.49
12 Foret Classée de Nossebou 78.27 21.73 6557.53
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6. Glossary

ArcMap: is a geographic information system (GIS) software devel-
oped by Esri for working with maps and geographic information.
Basemap: Map provided by software applications to show an image
of the area observed for visual appreciation.
Classifier: A machine learning method to assign values to a set of
observations given their attributes.
GEE: Google Earth Engine is an online platform that leverages cloud-
computational services for planetary-scale analysis and consists of
petabytes of geospatial and tabular data, including a full archive of
Landsat scenes, together with a JavaScript, Python based API (GEE
API), and algorithms for supervised image classification.
KML: a keyhole markup language file is an XML notation for

expressing geographic annotation and visualization within Internet-
based developed by Google Earth.
Landsat: is an Earth Observation mission launched jointly by NASA
and USGS that represents the world's longest continuously acquired
collection of space-based moderate-resolution land remote sensing
data (USGS).
Multispectral: dataset that combines data with different wavelength
ranges across the electromagnetic spectrum.
Phytgeography: branch of botany that studies the geographical dis-
tribution of vegetation.
Pixel: is the basic unit of programmable color on a computer display
or in a computer image.
RGB: normal color visualization using red, green and blue color
combination.

Fig. 8. Forest cover by gazetted forest for 0.1 threshold.

Fig. 9. Forest cover by gazetted forest for 0.2 threshold.
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TIFF: a tagged image file format (known as TIF or TIFF) is a com-
puter file that stores georeferenced raster images for analysis and
visualization.
Top of atmosphere: is mainly used to help mathematically quantify
Earth science parameters because it serves as an upper limit on
where physical and chemical interactions may occur with molecules
in the atmosphere (NASA).
Tree canopy: refers to the upper layer or habitat zone, formed by one
or a group of mature tree crowns that are identified as rounded
shapes from the air.
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