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A B S T R A C T

The rapid, unplanned urbanisation in Haiti creates a series of urban mobility challenges which can contribute to
job market fragmentation and decrease the quality of life in the city. Data on population and job distributions,
and on home-work commuting patterns in major urban centres are scarce. The most recent census took place
in 2003 and events such as the 2010 earthquake have caused major redistributions of the population. In this
data scarce context, our work takes advantage of nationwide de-identified Call Detail Records (CDR) from the
main mobile operator in the country to investigate night and daytime populations densities and commuting
patterns. We use a non-supervised learning algorithm to identify meaningful locations for individuals. These
locations are then labelled according to a scoring criteria. The labelled locations are distributed in a grid with
cells measuring 500 × 500 m in order to aggregate the individual level data and to create origin-destination
matrices of weighted connections between home and work locations. The results suggest that labor markets are
fragmented in Haiti. The two main urban centres, Port-au-Prince and Cap-Haïtien suffer from low employment
accessibility as measured by the percentage of the population that travels beyond their identified home cluster
(1 km radius) during the day. The data from the origin-destination matrices suggest that only 42 and 40 percent
of the population are considered to be commuters in Port-au-Prince and Cap-Haïtien respectively.

1. Introduction

Rapid urbanisation in Haiti with the absence of economic growth
has led to increasing socioeconomic challenges. Urban areas have
shown steady population growth fueled by both migration and natu-
ral growth. In 2015, official statistics suggest 53 percent of the total
population was considered urban in Haiti (IHSI, 2015). With almost 6
million Haitians living in urban areas, cities now host over 0.5 million
more inhabitants than rural areas. The rapid, unplanned urbanisation
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in Haiti creates a series of urban mobility challenges which can con-
tribute to job market fragmentation and decrease the quality of life
in the city. Data on population distributions and home-work commut-
ing patterns in major urban centres is scarce (Prud’homme and Kopp,
2011). This paper aims to inform the debate about challenges brought
by rapid urbanisation in Haiti by focusing on identifying commuting
patterns in Port-au-Prince and Cap-Haïtien, the main metropolitan areas
of the country hosting about 3.5 and 0.5 million inhabitants each. The
evaluation of connectivity and employment patterns can uncover the
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extent of spatial mismatch in cities, and point at priorities for policy
intervention.

Haiti faces challenges in undertaking traditional estimations of com-
muting patterns from survey data. Since the last national census was
undertaken in 2003, Haiti has suffered a series of tragedies including an
earthquake in 2010, a cholera outbreak in 2011 and Hurricane Matthew
in 2016. Such events had a significant impact on the population distri-
bution and urbanisation trends, and hence lead to questions regarding
the reliability of existing population projections based on past trends.
Origin-Destination (OD) surveys have been successfully used to identify
commuting statistics in Nairobi, Kenya JICA (2013) and Buenos Aires,
Argentina (PTUMA, 2010). However, such surveys can be expensive
and time-consuming, thus reducing periodicity and prevalence. Further-
more, Haiti has never conducted either a comprehensive OD survey nor
an economic census.

While there is no real substitute for the detail and precision of a full
OD survey designed to be representative of all moves within a city, the
country is well-suited for a study based on mobile phone data. Haiti’s
leading mobile network operator has over two-thirds of the market
share in mobile phone subscriptions in the country (CONATEL, 2016).
Information on location, time, and volume of phone calls made through
mobile devices can provide valuable insights into where people live and
work, and their patterns of movement over time. In this study we gath-
ered and analysed data from mobile phone Call Detail Records (CDRs),
with the aim of leveraging the mobility information contained in CDRs
in order to examine commuting patterns. The methods presented in
this paper build on previous research that has successfully used CDRs
to estimate meaningful location for individuals.

The rest of this paper is organised as follows: Section 2 provides an
overview of related work, Section 3 presents the data used in this study,
Section 4 explains the proposed modelling approach. Main outputs are
presented in Section 5. The paper concludes with a brief discussion in
Section 6.

2. Related work

Several studies have made use of CDR data to study human mobil-
ity, both on individual level using disaggregated data (González et al.,
2008; Song et al., 2010; Schneider et al., 2013; Lu et al., 2013; Pap-
palardo et al., 2015) as well as on population level, aggregating CDRs
(Kujala et al., 2016; Tatem et al., 2009; Calabrese et al., 2011). More
specifically, some studies have attempted to derive general laws about
individual mobility by estimating future locations based on historical
trends and the level of predictability of human mobility. These studies
have shown that human mobility can be highly predictable (González
et al., 2008; Song et al., 2010; Lu et al., 2013; Pappalardo et al., 2015).
In other studies, CDRs have been used to study aggregated commut-
ing patterns. Validation of the predicted flows through travel surveys
or traffic counts has highlighted the potential of these data for estimat-
ing commuting patterns in contexts where other data is not available
(Graells-Garrido and Saez-Trumper, 2016; Iqbal et al., 2014; Järv et al.,
2012).

Other studies have used CDRs successfully to identify meaningful
locations in people’s lives on a finer resolution (Ratti et al., 2006;
Pulselli et al., 2008; Reades et al., 2009; Ahas et al., 2010) and have
also studied flows between those places (Isaacman et al., 2011). Ahas
et al. (2010) surveyed the geographic research literature on meaningful
places, which are also known as “anchor points”, “term bases” or “core
stops” in related literature. Meaningful places are defined as “places
where individuals usually spend a considerable amount of time and
which they consider important in the conduct of their everyday lives;
these are typically the home and workplace” (Ahas et al., 2010). The
researchers devised an algorithm which identified meaningful places
of users in Estonia at the tower level. Using a different and simpler,
algorithm, (Isaacman et al., 2011) identified meaningful places of users
in Los Angeles and New York. The identification of meaningful places

focuses on individuals and their relationship with space. Since the focus
of this paper is on connectivity issues and the spatial mismatch between
home and work locations, we chose to investigate the meaningful loca-
tions of individuals.

In order to identify meaningful locations of individuals in both Port-
au-Prince and Cap-Haïtien and ascertain likely commuting behaviours
from identified home and workplace locations, this paper takes an
approach similar to that of Isaacman et al. (2011). This approach allows
us to achieve a finer spatial resolution than the base station level by
exploiting the high temporal resolution of the data. For scaling we
investigate the methods presented in Deville et al. (2014).

3. Data

The datasets available for analysis included CDRs covering the
period from 1st March to 30th May 2016 as well as antennae location
data (Base Station IDs, see Appendix A). There were approximately 2
billion recorded events in the CDR dataset, with an event corresponding
to a call or SMS transactions. Each event in the CDR contained the orig-
inating and destination IMSI (de-identified), MSISDN (de-identified),
IMEI (de-identified), TAC, base station ID and international prefix as
well as the starting time, duration and type of transaction. During a
typical weekday in Haiti, the number of active users increases exponen-
tially beginning at around 4:00, reaches a plateau between 9:00 and
17:00, and then peaks 40 percent above the plateau between 18:00
and 20:00. After peaking, the number of active users decreases rapidly,
being close to zero at around 3:00. (A detailed description of the normal
operation of a mobile phone network including the meaning of standard
abbreviations and how CDRs are captured by the network can be found
in Appendix A).

The Base Station ID dataset contained the base station ID, the lati-
tude and longitude of the base station and the base station generation
(e.g., 1G, 2G, 3G, 4G). We approximated base station coverage using
a Voronoi tessellation which assigned for each tower (the set of co-
located base stations) location a polygon which contains all points in
the plane for which such tower is the closest one. The Voronoi tessel-
lation approach assumes that a cell phone would connect to the clos-
est tower and that tower coverages do not overlap. Individual tower
ranges were estimated as the intersection between the Voronoi tessella-
tion and the national network coverage provided by the mobile network
operator.

Tower density — tower per square kilometre — can vary quite sig-
nificantly across Haiti. In more populated and urban areas tower den-
sity is high. The Port-au-Prince Metropolitan Area has the highest tower
concentration in the country, reaching densities of more than six tow-
ers per square kilometre followed by Cap-Haïtien which has less than a
third of the tower density of the national capital. In the Port-au-Prince
Metropolitan Area itself, there is significant variation in tower density
across its large and varied urban space. The highest tower densities are
found in the main business districts, where they can be more than dou-
ble the tower densities seen in adjacent areas and five to ten times those
densities in the outskirt.

The variability in base station range has implications for the use of
CDR data for population density estimation since network transactions
are only captured at the base station level. In some regions of Haiti,
such as the Northwest, average base station coverage can reach up to
90 square kilometres. The average coverage tends to decrease around
more populated and urban areas. In Port-au-Prince the average base sta-
tion coverage is below 10 square kilometres. The average base station
coverage decreases the closer one gets to the centre of the metropoli-
tan region. Turgeau and Saint Martin have an average coverage below
the equivalent of a circle with a diameter of 900 m which is equivalent
to roughly three street blocks. In more residential areas, the base sta-
tion range increases significantly. In the outskirts of Port-au-Prince, the
average base station range is up to 10 times larger than in the centre.
In Cap-Haïtien the mean base station range in the centre is about twice

134



G.A. Zagatti et al. Development Engineering 3 (2018) 133–165

that in the centre of Port-au-Prince. Similarly to the national capital,
base station range decreases the farther away one goes from the centre
of Cap-Haïtien.

Once we combined the CDRs and the base station datasets, it was
possible to obtain the location of the base station which a user was
connected to when their SIM card became “active”, that is, whenever
an event was recorded in the database.

Finally, in order to scale the estimated evening cell phone user pop-
ulation to the total population, the 2016 population predictions pro-
duced by IHSI (2015) were used. These predictions are based on an
outdated population census from 2003 which has been mostly updated
using administrative records. Since 2003, a number of disasters have
affected the country including an earthquake in 2010, a cholera out-
break in 2011 and Hurricane Matthew in 2016. Such events can have
significant impacts on the population and urbanisation trends, limit-
ing the reliability of population projections based on the 2003 census.
Nevertheless, these were the most comprehensive population estimates
available for Haiti at the time the analysis was undertaken.

4. Methods

4.1. Clustering meaningful locations

Compared to GPS, the accuracy with which we can determine the
exact location of individuals is lower, as it depends on the density
of mobile phone towers. However, in urban areas such as in Port-au-
Prince and Cap-Haïtien tower density is high enough to warrant a good
approximation of a user’s location. A further limitation of CDRs is that
the sampling mechanism is dependent on call frequency, meaning we
only have a record of a user’s location for the times he makes or receives
a call. Since we define meaningful places as places where individuals
spend most of their time, such as their home and workplace we are
likely to accumulate enough samples when aggregating over a period
of time. It is assumed that these meaningful places exert a gravitational
effect on the users, such that the farther users are from any of their
meaningful places, the less likely they are to spend time there. Further,
we assume that calls are location heteroscedastic such that a user is
more likely to place calls at their meaningful places because they tend
to spend more time in there and might find it more convenient to place
the majority of calls in those locations.

Therefore, the distribution of call events will be centred around
those places which are meaningful for an individual. For instance, as
in Fig. 1, if a user lived closer to the centre of a radio cell, a sub-
stantial proportion of call events would be captured by the radio cell
which contains the user’s home place. Adjacent base stations would
capture fewer call events. As such, a good estimate for the user’s home
place would be the centroid of the radio cell. On the other hand, if
the user lived close to the border of a radio cell then it would be more
likely that the neighbouring radio cell would capture approximately the
same volume of call events. In this case, the best estimate for a user’s
home would be a point mid-way between the two neighbouring radio
cells.

However, if a user had their home and workplace in two neighbour-
ing radio cells it would be possible to expect that both radio cells would
capture a substantial level of call activity, but in this case it would
not make sense to estimate a user’s home or work location as a point
between the two radio cells because it would just be conflating the two
places in one estimate. Thus, it is useful to assume that the gravitational
effect exerted by a given place has a limited radius of influence. Hence,
it is only valid to estimate the location of a given place, say the home
location, using radio cells which are within a limited distance apart
from each other. An algorithm that captures the assumptions outlined
above would cluster a number of towers together whose distance does
not exceed a given threshold. The weighted centroid of each cluster can
then be used as the best estimator of each one of a user’s meaningful

location.
The information contained in a user’s CDR was used to produce

accurate estimates of meaningful locations in Isaacman et al. (2011).
The first step of their algorithm sorts the towers a user was connected
to in terms of the days the tower was contacted (“call-days”). This is
an important step in order to minimize the effect of a flurry of activ-
ities which are not associated with the presence of a user in one of
their meaningful locations. For instance, trips which are short in dura-
tion might be associated with a spike in the number of calls, as a user
might call back home to family and friends. These calls would unduly
increase the perceived importance of the location. In the second step,
the CDR events are clustered according to Hartigan’s leader algorithm
(Hartigan, 1975) as described in Isaacman et al. (2011). This algorithm
has a deterministic outcome in the sense that it does not require initial-
isation with a pre-specified number of clusters or centroids. Moreover,
the algorithm is quite efficient with large datasets, as in the present
case.

Following Isaacman et al. (2011), Hartigan’s leader algorithm is
illustrated in Fig. 2 and proceeds as following:

1. Select a threshold.
2. Sort all the towers by the number of “call days” (i.e., the number of

days a user was connected to a given tower).
3. Start from the tower with the highest number of call days and form

a cluster with a centroid in this tower.
4. Move to the next tower:

a) Descend through the cluster list in the order in which they were
created.

b) If the tower is located at a Euclidean distance less than the thresh-
old from the centroid of the current cluster then include that
point in the cluster and recompute the centroid of the cluster
weighted by the number of calls.

c) If the next tower does not comply with (a), then move to the next
cluster and check condition (a). If there is no cluster for which
the tower satisfies (a), then create a new cluster with a centroid
in the current tower.

In the absence of validation data, it is very difficult to calibrate an
unsupervised learning algorithm as the present one. This is a problem
inherent to many other clustering algorithms such as k-means, hier-
archical or Gaussian mixture clustering models. Within- and between-
cluster variation metrics are usually used to determine the ideal param-
eters of each model. In the present case, we adopted a number of strate-
gies to select the ideal threshold size.

The key variable in Hartigan’s leader algorithm is the threshold size.
As the size of the threshold increases the number of clusters tends to
reduce as shown in Fig. 3. Since the Euclidean distance used in this exer-
cise satisfies the triangle inequality, the number of clusters will always
decrease or remain the same as the threshold size increases as proved
by Hartigan (1975), but the rate at which this happen will depend
on empirical factors. On the other hand, the mean and the standard
deviation of distance between towers and cluster centroid will tend to
increase as we increase the threshold size.

In Fig. 3 we ran the algorithm on a randomly selected sample of
10,000 users in Port-au-Prince using different threshold levels to assess
the sensitivity of the results to the threshold chosen. As expected and
shown in the left panel of Fig. 3, the number of clusters per user
tends to decrease as the threshold size increases. The rate at which
this happens substantially increases as the threshold size surpasses the
closest tower mean distance and tapers off as the threshold reaches
10 km.

In Isaacman et al. (2011), the CDR data was validated using infor-
mation provided by volunteers, who identified the precise location of
key sites such as home and workplace. Based on these data, Isaacman
et al. (2011) performed a logistic regression of the clusters identified
on a number of derived CDR statistics such as the total number of clus-
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Fig. 1. Issues around identifying meaningful locations.

ter “call-days”, the number of days between the first and last cluster
“call-day”, the number of times any tower in the cluster was contacted
between 13:00 and 17:00 during weekdays and the number of times
any tower in the cluster was contacted between 19:00 and 7:00 of the
following day at any day of the week.

The researchers found that the most important features for identi-
fying the “meaningfulness” of a cluster were the total number of “call-
days” and the number of days between the first and last cluster “call-
day”. Those measures remove transient places from the list of iden-
tified clusters. As expected from the assumptions outlined above, the
researchers also found that meaningful places from which a user gener-
ates few CDR events were not identified by the algorithm. In the valida-
tion phase, Isaacman et al. (2011) found that the approach maintained
within-4.8 km-accuracy of the meaningful location for 88 percent of the
users.

Since low “call-day” towers can potentially add undesirable noise to
the data, all the clusters which do not contain an aggregated number of
“call-days” above nine — which represents 10 percent of the total days
in the study — have been filtered out in the present case.

Fig. 3 provides an overview of the results for the clustering exer-
cise, when several alternative distance thresholds are applied. The right
panel includes an additional constraint where all clusters with less than
nine “call-days” are excluded from the analysis. As the threshold size
increases, the number of users who have five or more clusters decreases
substantially, leaving most of the users with a single cluster.

Isaacman et al. (2011), find that for cities like Los Angeles and New
York, a distance of 1.6 km works well as a threshold for the cluster anal-
ysis.1 Isaacman et al. (2011) report that in their target urban area tow-
ers might be as dense as 200 m apart, while in suburban areas spacings
of 1.6–4.8 km are more common. For this reason, they choose a thresh-
old of 1.6 km. In the centre of Port-au-Prince the median distance to
the closest tower is 350 m while in suburban areas the median distance
rises to about 500 m. The rate at which the mean and the standard
deviation of the distance between towers and cluster centroid increase
can provide some indication for the ideal threshold. Whereas the mean
centroid distance will tend to shoot up as the cluster becomes more

1 Work on the optimal selection of this threshold is beyond the scope of the present
study.
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Fig. 2. Hartigan-clustering algorithm.

heterogeneous, the standard deviation will increase at a slower rate as
seen in Fig. 4 which depicts the coefficient of variation. At 1 km, the
coefficient of variation stabilizes.

For the reasons above we chose a threshold of 1 km, which is a
compromise between the likely catchment area of a meaningful location
and the amount of towers potentially covered by it. However, further
research is necessary to determine the optimal threshold.

4.2. Labelling meaningful locations

This section focuses describing the process for classifying the mean-
ingful locations identified in the previous section according to the
period of the day which individuals spend in those locations, with par-
ticular emphasis on the distinction between day and evening periods
of the working week. The objective of this part of the exercise is to
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Fig. 3. Number of clusters per user.

Fig. 4. Coefficient of variation of the distance between towers and cluster centroid.

identify home and work locations based on the location of individuals
during day and evening periods.

Locations are meaningful for different reasons and those reasons
are likely correlated with time. For instance, it is expected that users
will sleep at home most days, thus spending most of their nights there,
especially during working days when they might not be travelling or
visiting friends and family. Another meaningful location might be the
user’s workplace where the user might spend most of their daytime dur-
ing working days but not during weekends and holidays. As such it is
reasonable to assume that the presence of the user at any of their mean-
ingful locations is correlated with the time of the day and the day of
the week.

In order to understand where individuals systematically spend their
time, it is necessary to make assumptions about their routines. As a
starting point, it is assumed that individuals are likely to place or
receive calls with the same probability throughout their waking hours,
which here are assumed to range from 7:00 to 23:00. Likewise, it is also
assumed that individuals are likely to place calls with the same proba-
bility throughout the week. If we assume that call placement is location
heteroscedastic, then call events can only be independent of time if the

location of an individual is independent of time as well. Therefore, to
label one of the meaningful places identified above as home or work
using time information, we need to assume that call placement at dif-
ferent locations is not independent of time.

If location is dependent on time, then the call frequency distribution
at a given location should be centred around the period in which a user
is more likely to be present there. Let p(c) be the probability that an
individual makes a call at a given time and let p(x) be the probability
that the individual is at a given location x at a given time of the day.
Then the probability that a call made in a given location at time t is,
according to Bayes’ rule: p(t ∣ c, x) = p(x∣c,t)p(t∣c)

∑tp(x∣c,t) .
Assuming that call placement is independent of time, we have

that p(t ∣ c) = p(t) which is constant across time. Then the probabil-
ity of observing many calls at a given period of the day is propor-
tional to the amount of time spent in a given place, that is: p(t ∣ c, x) =

p(x∣t)p(x∣c)p(t)
p(x∣c)∑t p(x∣t)p(t) =

p(x∣t)
p(x) .

Therefore, the meaningful locations identified in the previous
section can be classified according to the period of the day in which
they are most active in terms of network activity. Since the distribution
of meaningful locations can be characterised according to the period of
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Fig. 5. Scoring criteria.

the day, such distributions can be used to estimate the population dis-
tribution during the day and evening times. Second, based on the iden-
tified commuting patterns between day and evening times, it is possible
to develop an understanding of the location of residential and business
districts.

Using ground-truth data from volunteers, Isaacman et al. (2011)
classified the identified meaningful locations into home and work loca-
tions by means of two independent algorithms. The algorithms calcu-
late a score for each important cluster using coefficients obtained from a
logistic regression of the ground truth classification on a number of CDR
derived statistics. The researchers found that the single most dominant
factor for home classification was the rank of the number of events that
take place in the evening. For work classification the first most dom-
inant factor was the rank of the number of events which take place
in the daytime followed by the inverse of the number of events which
take place in the evening. This reflects the assumption that a person’s
workplace is somewhere where they do not usually spend their nights.

The researchers found that the home and work algorithms classified
50 percent of the clusters as home or work with errors below 1.5 km
and 1.3 km respectively. Moving out to the 95th percentile the home
and work algorithm achieved 6.1 km and 34.1 km errors respectively.
The substantial increase in the reported error at the 95th percentile for
the “work” algorithm was mainly caused by the volunteers not using
their cell phone regularly at work.

In the present case, no ground truth data are available to run a logis-
tic regression. As such, another approach which captures the assump-
tions outlined above and the logic present in Isaacman et al. (2011)
is necessary. The clusters identified in the previous section are classi-
fied according to a scoring criteria. The scoring criteria assigns two-
dimensional points to each event in the CDR dataset based on its times-
tamps. The first dimension — the hour score — captures the hours of
the day. Events which fall between 7:00 and 8:00 and between 17:00
and 19:00 are assigned a score of zero. Events between 8:00 and 17:00
are assigned a score of one and events between 19:00 and 7:00 of the
following day are assigned a score of minus one. The second dimension
— the weekday score — captures the days of the week. Events which
fall between Monday and Friday are assigned a score of one and events
that fall in the weekends are assigned a score of minus one. The scor-
ing criteria is illustrated in Fig. 5. Once all the events are assigned a
score, the total score is aggregated by cluster and normalised by the
total number of CDR events.

Analogously to Isaacman et al. (2011), the hour score weights calls
during the day and evening time in opposite ways such that call events
that fall during the night will contribute against call events which hap-
pen during the daytime. To soften this effect two buffers are constructed
around the beginning of the day and at the end of the day, where call
events do not add up to the score. Similarly, the day score will assign
positive scores to call events that fall during the weekday and negative

Fig. 6. Hour score versus weekday score.
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Fig. 7. Distribution of hour and weekday scores.

scores to calls that fall in the weekend.
In order to classify the clusters into day and evening time clus-

ters, the neutral score is calculated. The neutral score represents the
score that would be assigned to a cluster if CDR events were evenly
distributed across time in that cluster. Assuming that a user is usu-
ally awake between 7:00 and 23:00, the neutral hour score would be
0.3125. On the other hand, assuming that a user places calls with equal
probability throughout the week, the neutral weekday score would be
0.429. Given that many call events take place on weekends and that
some users might work Saturdays and/or Sundays, the neutral weekday
score is then adjusted downwards and set equal to 0. Further research
is required to determine the ideal neutral scores for classification pur-
poses.

Clusters which have an hour score above the neutral time score and
a day score above the neutral weekday score are classified as daytime
clusters. On the other hand, clusters which have an hour score below
the neutral hour score and a weekday score above the neutral day score
are classified as evening time clusters. All the other clusters are left
undecided. Once all clusters are classified, a second classification pro-
cedure is followed.

Since the scoring criteria do not ensure that all users will be assigned
an evening cluster, all the clusters of those users who do not have an
evening cluster are re-labelled as evening. This choice should bias the
share of commuters in the total population downwards, but avoids the
opposite and stronger effect that would arise from dropping those indi-
viduals without a meaningful evening location. This step is taken under

the assumption that all the users in the dataset must have an evening
location. Further, for those individuals whose clusters conflate home
and work locations, their call patterns do not likely have a strong sig-
nature since their calls are likely evenly spread during their waking
hours. Those are the individuals whom the algorithm might not be able
to identify a night-time meaningful place for. Figs. 6 and 7 show that
most of them are indeed located close to the neutral lines. If we were
to drop those observations in which the algorithm cannot determine a
night-time meaningful place, the share of non-commuters in the total
population would decrease, but the absolute number of commuters and
its spatial distribution would remain the same (ignoring those few indi-
viduals who have an unknown and a daytime clusters). That means
that commuting distance statistics across commuters would remain
unaffected.

The methods do not guarantee that all individuals will have day
and evening time locations. Those individuals who have both locations
are considered commuters. Those who do not have locations in both
categories are seen as non-commuters and both their day and evening
time locations are assumed to be the same. Those are individuals who
might work close to home or who might not work at all and for whom
the call signature is random.

Second, the algorithm above does not ensure that all users will have
a single day or evening time cluster. For instance, it is possible that
some users have two evening time clusters. In those cases, each cluster
will be counted proportionally to the total number of CDR events such
that all clusters with the same classification contribute a total of one to
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the total population count.
In Fig. 6 the scoring algorithm was run on the randomly selected

sample of 10,000 users in Port-au-Prince as in the previous section.
The figure depicts all the clusters found by running Hartigan’s leader
algorithm across the scoring space. The upper right-hand corner above
the hour neutral score and right to the weekday neutral score represents
all the clusters classified as daytime clusters. On the other hand, the
lower right-hand corner below the hour neutral score and right to the
weekday neutral score represents all the clusters classified as evening
time clusters. All the clusters on the left hand side are left as undecided.
The clusters which have been re-labelled as evening clusters can be
spotted as those clusters outside of the lower-right quadrant shaded in
blue. Most of them are in the bottom of the daytime cloud.

The distribution of clusters is depicted in the histograms in Fig. 7
which shows cluster counts across the hour and weekday score ranges.
The first row depicts all the clusters found by running Hartigan’s leader
algorithm before filtering. A significant amount of noise can be seen
when clusters which have less than ten call days are included as they
tend to cluster on the extremes of the scoring range.

The second row depicts only the clusters which have not been fil-
tered out. For this particular sample, the algorithm found that all the
users had an evening location, of which 20 percent were re-labelled as
a result of the scoring algorithm, 47 percent had a daytime location and
13 percent had some clusters left undecided.

The panel on the left shows the histogram for the hour score. Before
re-labelling, a little more than half of the clusters are classified as
evening time clusters and the rest as daytime. After re-labelling, about
30 percent of clusters to the right of the hour neutral line are re-assigned
to evening clusters. The distribution of clusters to the left and right of
the hour neutral line is quite different. Whereas the number of clusters
tend to decrease as one move further to the left of the hour neutral line,
the number of clusters is quite uniform to the right of the hour neutral
line, even peaking at the far right. That is indicative of the fact that
evening clusters have their call pattern more evenly distributed across
the day. Whereas, daytime clusters have their call pattern largely con-
centrated during daytime, suggesting that those places might actually
be workplaces.

When looking at the panel on the right, it is possible to note that
most of the evening clusters are located around value 0.429, which rep-
resents the true weekday neutral score as discussed above implying that
calls are randomly distributed across the week. On the other hand, day-
time clusters scores is skewed to the right, suggesting that call pattern
is more prevalent during weekdays constituting another indication that
those might indeed be workplaces.

In the absence of ground truth data, it is impossible to validate
this algorithm. Nevertheless, we performed sensitivity analysis to assess
how robust the final results are to changes in key parameters. In order
to carry out the sensitivity analysis, those parameters are varied within
certain bounds and the resulting outputs are compared with a view
to identifying systematic variations which could invalidate the final
results. The results from the sensitivity analysis suggest that there is
no systematic variation from the final choice of labelling parameters.
More information can be found in Appendix B. Finally, it is worth men-
tioning that the method does impose a minimum commute distance
since a person who works and live within a 1 km radius will be labelled
as non-commuter. The very definition of commuting is subjective. The
objective of this paper was to consider only individuals who commute
above a certain threshold, below which commuting would be much
harder to detect and would not be as relevant to policy-making.

4.3. Griding meaningful locations

Hartigan leader’s algorithm can only produce point estimates associ-
ated with high uncertainty given that the performance of the algorithm
decreases as the base station range increases. In order to minimize this
effect, the point estimate is turned into an area estimate and an equal

probability is assigned to each point in the estimate.
The area estimate is constructed as a buffer of 750 m around the

point estimate if the cluster contains more than one tower, as is often
the case in urban areas. When the point estimate only contains one
tower, the cluster centroid is equal to the coordinates of the cell phone
tower. In such case, the area estimate is chosen as the Voronoi polygon
encompassing that tower. Home-work commuting link from a point in
a home buffer to a point in a work buffer will count for the probability
mass in the home buffer times the probability mass in the work buffer. If
a person does not commute, we only spread the probability mass around
the estimated point. We do not estimate commutes between points in
the buffer.

The buffer size was chosen after experimenting with different sizes,
and 750 m proved to be large enough to remove border effects but
small enough to minimize the loss of resolution. This number can be
contrasted with the standard errors reported by Isaacman et al. (2011)
described above. Further discussion can be found in Appendix C.

The estimates are then intersected with a Universal Transverse Mer-
cator zone 18N regular grid containing grid cells measuring 500 m by
500 m. The mass emanating from a grid cell equals the area of over-
lap between the area estimate and the cell. For instance, if half of the
estimate falls in a given cell, that cell will count for half of a location.
Each grid cell is summed across all individuals in order to obtain the
population distribution. The counts are proportionally adjusted accord-
ing to the area of intersection between the area estimate and the grid
cell.

4.4. Scaling

The methodology described in the previous sections allows one to
estimate the evening cell phone user population. However, the goal of
this paper is to understand the distribution and dynamics of the entire
Haitian population. Therefore a scaling procedure which provides a
mapping from cell phone to population numbers is required.

The final estimated evening cell phone user population density can
be seen in Fig. 8. This final estimate was obtained by running the algo-
rithm described in the previous sections on the whole CDR dataset. The
dataset contained approximately 5.2 million users, 83 percent of which
were considered for analysis since they had at least one cluster above
nine call-days. A total of 10.8 million clusters — both day and evening
time — were found, which implies 2.5 clusters per user on average. The
highest concentration of cell phone users is located in and around Port-
au-Prince. The sprawl around the national capital is considerably larger
than elsewhere in the country. Following Port-au-Prince, one finds large
urban sprawls around Cap-Haïtien, Gonaïves and Les Cayes, all of which
are regional capitals.

In order to scale the estimated evening cell phone user population
to the total population, we considered two models. The first model was
a simple linear model 𝜌c = 𝛾 + 𝛼𝜎c, where 𝜌c is the 2015 population
density at administrative 3 (or “Commune”) level predicted from the
census by IHSI (2015) which was chosen as the target variable since
the population census likely reflects evening population given focus on
residence. 𝛾 is a constant and 𝜎c the evening cell phone density. To
merge the target and covariate datasets, we sum all the covariate grid
cells that fall within the target geographic region. Those cells that fall
at the border of geographic regions are weighted by the percentage
of the overlapping area. This method of aggregation is similar to the
one used in Tatem (2017). We run the regression at the highest target
resolution we have to scale our estimates. The linear model assumes
that beyond a population density baseline, cell phone density is pro-
portional to population density. For instance, one could assume that
mobile phone ownership is a constant factor across households.

The second model was a super-linear model ln𝜌c = ln 𝛼 + 𝛽 ln𝜎c,
which assumes that 𝛾 = 0, that is, population density baseline is zero.
On the other hand, the model assumes that the elasticity of cell phone
user density to population density is not unit, that is, a percentage
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Fig. 8. Evening time cluster distribution.

change in cell phone ownership does not translate in a constant percent-
age change in population density. It could be argued that regions with
higher cell phone density would be regions where marginal increases of
cell phone users would not translate in significant marginal population
density increases since in those regions cell phone ownership would
be closer to population saturation, as is often the case in urban areas
in high income countries. Alternatively, cell phone ownership might
be highly concentrated such that an increase in cell phone ownership
does not necessarily reflect significant population density increases.
Table 1 shows the coefficients of the models estimated with OLS
procedures.

The linear model produces a much stronger fit to the data as can
be gleaned from the lower standard error. The standard error from
the linear model is 1.5 times the mean population density which is
about half of the standard error from the super-linear model. The lin-
ear model indicates that population density is about 1.7 times larger
than the cell phone user density beyond a baseline of 180 people per
square-kilometre.

On the other hand, the super-linear model suggests that the elastic-
ity of cell phone user density to population density is rather small at
0.391 ± 0.02. Deville et al. (2014) use a super-linear model to produce
dynamic population maps for Portugal and France, where they find elas-
ticities of 0.803 ± 0.015 and 0.902 0.036 for each country respectively.
The researchers report that the results are rather sensitive to the values

of 𝛽 with significant increases in the root-mean square errors within
different scenarios analysed.

Despite the methodological difference in estimating cell phone user
density between Deville et al. (2014) and this paper, the significant dif-
ference of the elasticity between Haiti (0.391), Portugal (0.803) and
France (0.902) could be explained by the fact that cell phone penetra-
tion is much lower and uneven in Haiti, which is a developing coun-
try with a significant proportion of the population living in poverty.
A 1 percent increase in cell phone user density in Haiti probably
translates into a small percentage increase in population density, since
higher user density in a particular area, such as a richer area, could be
due to higher penetration rates, but not necessarily higher population
densities.

At the same time, it is possible to argue that the scale ratio (𝛼) is
much larger in Haiti than in Portugal and France. Deville et al. (2014)
points out that changes in 𝛼 are corrected by total population adjust-
ments. In Haiti a phone user is likely to account for many more people
than a phone user in Portugal or France, because there are few cell
phone users relative to the total population.

Despite the arguments in favour of the super-linear model, the
model performance is considerably poorer than the linear model.
Fig. 9 depicts the fit for both models. The linear model has a confi-
dence interval which encompasses a much larger number of points,
especially closer to the extremes of the distribution. When compar-

Table 1
Linear and super-linear model for scaling cluster distribution. Significance at 0.05 (*) and 0.001 (**).

Linear model Super-linear model

No. obs. 570 562
R-squared 0.823 0.413
Log-like. −4772.90 −185.99
Std. error (absolute) 1048.80 2299.30
Std. error (𝜌c) 153.421 335.341

Coef. Std. error z Coef. Std. error z

𝛾 179.1501** 45.054 3.976 0 – –
𝛼 1.6748** 0.033 51.333 58.2580** 1.08893 48.128
𝛽 1 – – 0.3911** 0.02 19.831
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Fig. 9. Linear versus super-linear model fit – log scale.

Fig. 10. Observed versus predicted population density — log scale.

ing the predicted values from the model with the IHSI (2015) pro-
jection values in Fig. 10, it is possible to confirm that the lin-
ear model produces an improved fit around the whole range of the
distribution.

Given the improved performance of the linear model, this model was
chosen over the super-linear model to scale the evening cell phone user
density. Further, the linear model renders itself to simpler and more
intuitive interpretations while providing an improved fit to the data.
This model is much more flexible in accounting for disparate penetra-
tion rates than the log-log model which holds the intercept, 𝛾 , equals
to null. By allowing the intercept to vary, the linear model is able to
account for a mean baseline population density which does not have
access to cell phones at all.

The predicted population density using the linear model is depicted
in Fig. 11. Regions without any evening clusters were set to zero
under the assumption that most regions without any cluster would
be de-populated, especially around metropolitan areas which are the
focus of this paper. Nevertheless, it is a fair critique to say that some
vast areas of the country which are predicted to be empty might
have people which are not captured by the methodology described
in the previous section. Those areas are mostly located in the coun-
tryside of Haiti where mobile phone ownership and usage could be
expected to be rather low. In those areas, the model is expected to per-
form much worse and make relative comparisons between rural areas
much less accurate. In urban areas which is the focus of the paper,
the model performs much better and relative comparisons are more
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accurate.
Since the focus of this report is on the metropolitan regions of Port-

au-Prince and Cap-Haïtien, it is important to assess the model fit for
these two areas. In the first row of Fig. 12, predicted and IHSI (2015)
projection values are compared. In Port-au-Prince it can be seen that a
number of areas were overestimated especially towards the middle of
the distribution. The second row of Fig. 12 depicts the ratio between
predicted and observed population figures. Port-au-Prince is charac-
terised by regions on its outskirts where the model produces relatively
high over-predictions and areas in the centre where the opposite is true
and under-prediction is more common. Although that may be caused by
flaws in the linear model, there is another competing reason why that
might be the case.

In the case of Port-au-Prince, the 2010 earthquake destroyed a sig-
nificant number of structures in the city centre causing many businesses
to move from the centre to the outskirts, especially towards Pétion-
Ville in the Southeast. The earthquake also promoted the development
of Canaan in the North fringe of Port-au-Prince, which served as a
temporary camp to those affected by the disaster and developed into
a sprawling slum (Nöel, 2012). Other disasters which affected rural
areas of the country like hurricane Mathew in 2016 that affected the
southern coast have likely caused a number of Haitians to migrate
to Port-au-Prince and settle in the fringes of the town where land
is more available. Given this anecdotal evidence, it is possible to
assume that the changes spurred by these events would have caused
the sorts of changes predicted by the model and not captured by
IHSI (2015) population projections based on the outdated 2003 cen-
sus. Thus, one would see under-prediction in the centre and over-
prediction in the periphery if comparing the model with the outdated
census.

On the other hand, these sort of events would have caused little
impact to Cap-Haïtien, in which case the IHSI (2015) population pro-
jections would be closer to reality and the predicted model would be
closer to the IHSI (2015) projections. This is indeed what can be seen
from the scatter plot comparing observed and predicted values in Cap-
Haïtien where the points are very close to the 45◦ line. In line with
the scatter plot, the map depicting the ratio between predicted and
observed values also contain values much closer to one.

This scaling exercise highlights the fact that the method could be
valuable in estimating population densities in the absence of up-to-
date census estimates in line with other methodologies such as Tatem
(2017); Deville et al. (2014). The scaled population densities pro-
duced here could be used to understand population growth within the
main metropolitan regions of the country. However in contrast with
other methods, the methodology in this paper is dual in the sense
that the labelling of meaningful locations required to avoid diluting
the home location of an individual across multiple meaningful loca-
tions makes OD matrices a natural way of expressing and analysing the
results.

Once evening population is estimated, the ratio between cell phone
population and the total population is used to adjust each row of the
OD matrix between evening and daytime clusters, thus producing an
adjusted OD matrix. As such, it is assumed that all displacements from
a given cell grid can be adjusted uniformly. However, it is possible
to envisage situations in which such a condition does not hold. For
instance, if a grid cell contains children and adults who have different
destinations, it could be the case that child cell phone users might have
a higher rate of adjustment than adult users as cell phone ownership
among children is lower than for adults. Since this kind of analysis
is not feasible with the present dataset, these kinds of biases are not
considered in this paper.

5. Results

This section presents and explores population distributions obtained
from CDRs using the methods described in the previous section and

focusing on the metropolitan areas of Port-au-Prince and Cap-Haïtien.
Since commuting behaviour is predicted for the whole country, an arbi-
trary rectangular surface given by a set of coordinates which might
include a larger area than the administrative boundaries is used to
define those metropolitan regions. The methods used in this report esti-
mate stationary population distributions for two different categories.
The first category is weekday daytime, which for most adults is likely
to be work location. The second category is weekend and weekday
evening, which for most people is likely to be home location. The labels
day and evening time are used throughout this section to identify the
first and the second category respectively.

It is important to keep in mind that the methods centre on station-
ary distribution of day and evening time populations, which is ideal
for understanding regular commuting behaviour. The model does not
take into account peak fluctuations which might be caused by particu-
lar events and days of the week nor does it attempt to assess seasonal
fluctuations.

Second, the method might have an upward bias in the estimates of
commuting distance since only those with commutes outside of their
home tower coverage area will show up as having distinct home and
work locations. On the other hand, this is mitigated by the fact that
tower density is endogenous to phone user density, meaning that the
algorithm will be more accurate where most of the phone users are
located and by extension the population. In order to investigate this
phenomenon we plotted the relationship between cell phone tower cov-
erage area and percentage of commuters at night in Fig. 13. There is an
inverted-U relationship between both variables. For towers with a small
coverage area we see a lower percentage of commuters, which is likely
caused by the fact that those towers are located in the centre of town
where the share of commuters is lower since economic opportunities
tend to be nearby. The percentage of commuters increases as the tower
coverage increases since those towers are located further away from
the centre of economic opportunities. However, for towers with high
coverage areas, we find that the percentage of commuters start to fall
likely caused by the upward bias present in the clustering algorithm.
For those individuals who work and live within the boundaries of a
cell phone tower, the clustering algorithm will identify a single cluster
which conflates both home and work locations. Thus, only those users
who commute long distances will have distinct clusters and for this rea-
son the commuting distances will be upward biased in those towers.

In order to mitigate this bias, we calculated commuting distance
metrics simple and weighted by the share of users in the cell phone
tower that are deemed to commute. Those statistics are shown in
Table 2. Overall, we find no significant differences whether the met-
rics are weighted or not. When looking at commuting distances strat-
ified by distance from the centre of town we find that the weighted
mean commuting distance is slightly higher than the simple mean for
those commuters living between 1 and 5 km of the centre. We see an
inverse relationship when looking at those living between 5 and 25 km
of the centre. These trends are in line with the inverted-U relationship
described above.

Port-au-Prince has a three-pointed star shape with a dominant cen-
tre surrounded by three substructures. The metropolitan area contains
3.5 million inhabitants, 42 percent of whom are considered commuters.
Fig. 14 depicts the Port-au-Prince population distribution during day
and evening time. The panel on the right shows population distribution
during the evening time which most likely reflects home locations. The
centre of Port-au-Prince sees the highest population densities, reaching
up to 60,000 people per square kilometre during the evening. The den-
sity around the centre, which include neighbourhoods like Portail Léo-
gane, Turgeau and Fort National, can be over 50,000 people per square
kilometre reaching 55,000 people per square kilometre around Portail
Léogane. Pétionville is the second most populated region in Port-au-
Prince reaching densities of up to 50,000 people per square kilometre
in its centre. To the west of the National Palace high population den-
sity is observed along Route Nationale 2 which leads to Carrefour. The
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Fig. 11. Predicted population distribution — linear model.

Table 2
Key population and commuting statistics.

Port-au-Prince Cap-Haïtien

Total Population 3.5 million 0.508 million
Mean Trip 2.5 km 2.8 km
Weighted Mean Trip 2.5 km 2.8 km
Median Trip 1.1 km 1.6 km
Weighted Median Trip 1.1 km 1.6 km

Non-Commuters Commuters Non-Commuters Commuters

simple weight. simple weight.

As percentage of total 58.14% 41.86% 60.51% 39.49%
Mean Trip – 4.5 km 4.5 km – 4.7 km 4.7 km
Median Trip – 3.1 km 3.1 km – 3.3 km 3.3 km
Live less than 1 km from the centre 4.13% 2.86% 12.02% 6.13%
Mean Trip – 3.37 km 3.36 km – 3.73 km 3.71 km
Median Trip – 2.11 km 2.11 km – 2.52 km 2.52 km
Live within 1 km and 5 km of centre 33.61% 31.67% 46.87% 56.81%
Mean Trip – 3.29 km 3.29 km – 3.09 km 3.10 km
Median Trip – 2.52 km 2.52 km – 2.55 km 2.57 km
Live within 5 km and 25 km of centre 61.67% 65.27% 40.94% 36.98%
Mean Trip – 5.12 km 5.04 km – 7.24 km 6.6 km
Median Trip – 3.66 km 3.62 km – 5.84 km 5.55 km

East side of Carrefour is the most populated part of the neighbourhood
with densities lower than the centre of Pétionville. To the Northeast of
the National Palace population is concentrated around Delmas. Past the
airport, high relative densities are observed in Croix-des-Bouquets to
the East and along Route Nationale 1 until the intersection with Route
Nationale 3. Around this intersection one finds Cannan with around
10,000 to 15,000 people per square kilometre in its densest part. This
is one of the most recent additions to Port-au-Prince, formed from tem-
porary camps set up post-earthquake.

In terms of daytime population distribution one sees significant
movement from the edges of Port-au-Prince towards the centre. The
maps in Fig. 15 show the number of commuters as a percentage of
day and evening time population. Not surprisingly, the centre of town

sees commuters representing a substantial share of the population dur-
ing daytime at around 72 percent but a very small share during the
evening at around 40 percent. On the other hand, Carrefour and Canaan
sees the opposite trend. It is interesting to note that along Route
Nationale 1 and 8 which goes to Canaan and Croix-des-Bouquets respec-
tively one sees a large increase in the share of commuters during the
daytime.

The overall picture is one of concentration toward the city centre
during daytime and inversely one of diffusion toward the outskirts dur-
ing the evening. Fig. 16 shows that total population within 5 km of
the city centre is about 5 percent higher during daytime than in the
evening. If the focus is exclusively on commuters then the picture is
even more striking with 46 percent of the commuters within 5 km

145



G.A. Zagatti et al. Development Engineering 3 (2018) 133–165

Fig. 12. Observed versus predicted population density at metropolitan level.

of the city centre during daytime versus less than 37 percent in the
evening.

Using a GIS layer that contains neighbourhood classification derived
from an automated building detection algorithm using remote sensing
data (Antos et al., 2016), we compare in Fig. 17 population densities
and commuting patterns across different neighborhoods. As expected,
high population density areas align with high- built-up density zones,
which have the second largest evening population density at around
18,000 inhabitants per square-kilometre followed by medium and low
built-zones. Shanty zones have the highest evening population density
at close to 25,000 inhabitants per square-kilometre. When looking at
commuting, we find a major shift in population density in industrial
zones which see an increase of 40 percent in population density during
the day. High-density and other built-up zones also see population rises
during the day. On the other hand, shanty- and medium-density built-
up zones serve as dormitory areas. Some other areas with land cover
classifications pointing at forests, bare soil, shrub and agriculture, are
too small to provide illustrative comparisons. Those regions tend to be
detected in the fringes of major neighborhoods. For this reason densi-
ties estimated in those areas are significantly higher than what would
be expected. Although the GIS layer constitutes only an estimated clas-
sification, the agreement between this layer and the results presented
in this paper brings strength to both pieces of evidence.

In the case of Cap-Haïtien, the centre exerts substantial pull. There
are approximately 500,000 people living in Cap-Haïtien, 40 percent of
whom are commuters. Fig. 18 shows that close to 60 percent of its pop-
ulation is concentrated within 5 km of the city centre. The attraction
exerted by the city centre is powerfully illustrated by the fact that dur-
ing the day 40 percent of all commuters can be found within 1 km of
the city centre and nearly 80 percent within 5 km.

Despite the centre exerting substantial attraction over commuters in
both metropolitan regions, most commuters will not commute a much
greater distance than those living in the centre. In Port-au-Prince, it is
estimated that the median trip is 1.1 km and 3.1 km if only commuters
are considered. In Cap-Haïtien, the corresponding statistics are slightly
higher at 1.6 km and 3.3 km respectively (see Table 2).

Those who live and work in the outskirts of Port-au-Prince, for
instance, tend to travel smaller distances and they are likely spending
their daytime in regions such as Croix-des-Bouquets and Pétionville.
Commuting statistics vary across different neighborhoods in Port-au-
Prince. In shanty zones commuters represent just below 8 percent of
the total the evening population and they commute on average 3.4 km.
On the other hand, commuters represent 26, 32 and 2 percent of the
population in high-, medium- and low-density zones, commuting an
average of 3.8, 4 and 4.8 km respectively.

In both urban areas median trip distances are low since it represent
less than an hour of walking. On top of that, non-commuters comprise
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Fig. 13. Cell phone tower coverage bias.

Fig. 14. Population distribution day versus evening and all versus commuters — Port-au-Prince. Concentric rings at 1, 5, and 25 km from city centre.

a significant share of the population reaching 40 percent in both cities.
Given the characteristics of the algorithm, it is possible that for those
individuals walking short distances to work, both home and work loca-
tions get conflated into a single estimate. As a consequence, the access
to a large array of economic opportunities is likely low for the majority

of the individuals. The fragmentary nature of these commuting patterns
are indicative of fragmented labor markets which are unlikely to act as
matchmakers, decreasing the probability of effectively pairing employ-
ers and employees.

Fig. 15. Commuters as percentage of population — Port-au-Prince. Concentric rings at 1, 5 and 25 km from city centre.
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Fig. 16. Cumulative population distribution from city
centre for different categories — Port-au-Prince.

Fig. 17. Population distribution by neighbourhood type — Port-au-Prince.

This hypothesis is made stronger looking at the unequal distribution
of travel distances. The distribution of travel distances for commuters
that live the furthest from the city centre (beyond 5 km) in Port-au-
Prince and Cap-Haitian is long-tailed, meaning that a number of com-
muters have the longest commutes as they are more isolated from eco-
nomic opportunities and have to incur longer trips to reach these. The

distribution of travel distances can be found in Figs. 6 and 11 in the
appendix.

In line with our findings, Lozano-Gracia and Garcia Lozano (2017)
reports that based on household expenditure surveys one can assume
that 73.4 percent of the population in Port-au-Prince walk everywhere
or do not travel since they report no expenditure on regular trans-
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Fig. 18. Cumulative population distribution from city centre for
different categories — Cap-Haitian.

port. Avner et al. (Feb/2017) finds similar dynamics in African cities
which develop as collections of small, scattered neighborhoods with
pockets of high-population density. The percentage of trips made by
foot in Nairobi, Lagos, and Addis Ababa ranges from 30 to 45 per-
cent, while reaching nearly 70 percent in Dar es Salaam and Kam-
pala. Avner et al. (Feb/2017) also reports that average commuting
distances is less than 6 km in Dar es Salaam, which is about dou-
ble of the distance found for the cities analysed here. Lozano-Gracia
and Garcia Lozano (2017) makes an extensive analysis of accessibil-
ity in Port-au-Prince and Cap-Haïtien using the OD matrices produced
in this paper and comparing the results with other cities around the
world.

A more detailed discussion of the results focusing on Port-au-Prince
and Cap-Haïtien can be found in Appendix D.

6. Conclusion

This paper innovates from previous literature by developing a
methodology for labelling meaningful locations in the absence of
labelled data and by constructing an OD matrix depicting regular com-
muting patterns. Our work demonstrates the usefulness of using CDRs
in data-poor environments. While such data cannot replace a well-
designed travel survey, it provides enough information for a first assess-
ment of the conditions on the ground and provides useful information
to help inform policy and investments decisions. Future work should
focus on assessing the precision of estimates such as those presented
in this paper, as they compare to data collected from large and more
detailed surveys, while also comparing the relative costs in terms of
time and money.

The methodology developed in this paper could be validated with
more traditional methods such as travel surveys, ideally by linking

mobile phone and survey data. The efficiency and simplicity of the
methodology developed in this paper could eventually allow for the
development of real-time applications for monitoring commuting pat-
terns in order to assist urban planners in their daily tasks.

The identification of meaningful places is also an input to an
employment accessibility analysis and the identification of the degree of
integration/fragmentation of labor markets in Port-au-Prince and Cap-
Haïtien.
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Appendix A. Cell phone network and CDR

The CDR dataset used in this study originates from the normal operations of a mobile phone network and their intended purpose is as a billing
instrument. A mobile telephone network is a geographically distributed radio network that enables communication via voice, text or data between
two or more mobile devices — such as cell phones. Mobile devices communicate with each other through a network of base stations, which route
the signal emitted from the originating mobile device to the destination mobile device. The position of a base station is fixed through most of its life,
though some base stations can be relocated according to operational requirements. The base station is optimised according to a set of modulation
parameters in order to reach an expected radio cell coverage.

Any base station can only handle a fixed amount of data per unit of time due to the limited amount of radio frequencies available. This
phenomenon limits the amount of mobile devices that can establish communication with the rest of the network at any point in time. The network
operator can adjust the expected base station coverage according to demand, such that more populated areas are serviced by a higher amount of
low range base stations. As such, base station density tends to be positively correlated with population density. Base stations can be co-located.
However, to avoid interference they might operate at different frequency bands and/or might cover different areas. A group of co-located base
stations form a tower.

Due to environmental factors, the base station range is not fixed and tends to vary around its expected value. Its approximate coverage can
only be discovered through field measurements and/or from simulations conducted as part of the radio planning and optimisation processes. A
coarse estimation of the base station coverage area can be derived from antenna configuration parameters (e.g., antenna height, beam-width, tilt).
When such parameters are not available, base station coverage can be approximated using a Voronoi tessellation which assigns for each base station
location a polygon which contains all points in the plane for which such base station is the closest base station. Therefore, a Voronoi tessellation
approach assumes that a cell phone would connect to the closest tower and that tower coverages do not overlap.

Mobile devices such as cell phones are uniquely identified via the International Mobile Subscriber Identifier (IMSI) which is usually provisioned
in the Subscriber Identity Module (SIM card) of a mobile device. An IMSI is usually associated with a Mobile Station International Subscriber
Directory Number (MSISDN) which is the standard phone number that users dial on their phone. The difference between the IMSI and the MSISDN
is analogous to the difference between the IP address of a website which uniquely identifies a website on the internet and the website URL which is
the mnemonic address used to access a website through the browser. A physical device such as a phone associated with the mobile device is uniquely
identified via the International Mobile Station Equipment Identity (IMEI), the first 8-digit portion of the IMEI is known as the Type Allocation Code
(TAC) which identifies the model and origin of the phone.

A mobile device spends most of its time in an “idle” state, i.e., not engaged in exchanging data with the network. The device switches to “active”
when it is assigned radio resources to engage in data packets or signalling messages exchange. At any point in time only a small fraction of all mobile
devices are found in the “active” state. Any “idle” mobile device is logically attached to a single network but is not assigned any radio resources.

When “idle”, the mobile device makes decisions autonomously on which base station to listen to and when to switch to another base station
when moving around. In this case, the mobile device is a passive receiver. Thus, the network has no way of detecting a base station change unless the
mobile device decides to report this event explicitly. On the other hand, when the mobile device is “active” all decisions involving radio resources
are taken by the network. As such, the network is able to track the position of active mobile devices at the base station level. The exact coordinates
of a mobile device are never revealed to the operator and are, in fact, not required for the normal operations of the network.

In order to bill their customers, the network operator maintains a database of Call Detail Records (CDR). Every voice and data connection
generates “tickets” that are sent to the billing system for charging purposes. This database is usually kept in a data warehouse for a long period
of time which allows for revenue collection and dispute resolutions. CDR formats are not necessarily standardised across different networks, but
the database will usually contain at least the MSISDN and IMSI for each SIM card, the starting time and duration of the connection, the type of
connection and the base station ID of the starting base station where the connection was initiated.

Appendix B. Sensitivity analysis

There are a number of different parameters which control the labelling of clusters as day and evening time clusters including the start of the
day, the end of the day, the buffer between the periods of the day and the buffer between weekends and weekdays. Each choice of parameter values
results in a different way of labelling clusters as day and evening time clusters. We selected the parameters for the production of the final results
according to sensible assumptions about the routines of the individuals in Port-au-Prince. Further, it was considered that Cap-Haïtien residents were
likely to behave similarly.

The goal of the sensitivity analysis is to assess how robust the final results are to changes in key parameters. In order to carry out the sensitivity
analysis, those parameters are varied within certain bounds and the resulting outputs are compared with a view to identifying systematic variations
which could invalidate the final results. The results from the sensitivity analysis suggest that there is no systematic variation from the final choice
of labelling parameters. Key parameters included those used to define the hour and the weekly score as follows:
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Fig. B.1. Sensitivity analysis parameters.

The variation in input parameters resulted in 162 different combinations of parameters. Each combination gave rise to a different neutral hour
score, whereas the neutral weekday score was kept at zero. For each combination of parameters the clusters generated from the randomly selected
sample of 10,000 users in Port-au-Prince were classified and gridded according to the methods outlined in the previous section.

Fig. B.2. Distribution coefficient of variation (𝜎∕𝜇) - log scale.

In order to understand whether the variation induced by different input parameters can be explained by any of the parameters described above,
Fig. B.2 depicts the correlation between the parameters and the normalised grid cell area estimate values. Each grid cell is normalised by subtracting
the minimum value of the grid cell and dividing by the grid cell range. The figure depicts in red and blue the values below and above the 80th
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percentile of the coefficient of variation distribution, respectively. There does not seem to be any systematic variation across any input parameter
variation both for day and night times.

Fig. B.3. Coefficient of variation (𝜎∕𝜇) — log scale.

Table Appendix B depicts the Ordinary Least Square (OLS) regression of the normalised grid cell estimates on the input parameters. Overall, the
final results suggest that the input parameters have very little explanatory power on the final estimates. Even though any single coefficient of the
regression might be significant, they are very close to zero suggesting that the variation induced by systematically changing the input parameters
has no significant effect on the final results.

The conclusion of the sensitivity analysis is that although the day and evening time distribution of clusters are significantly different, systematic
variation of the scoring criteria around its margin does not produce any systematic variation. That might be explained by the fact that the bulk of
CDR events within day and evening clusters fall outside of the margins of the scoring criteria and moving the start and end of the day or adding
buffers between them will not produce any systematic change in the final aggregated results. For this reason, the final input parameters as described
in the previous section were chosen as the midway input parameters in the set of all the input parameter combinations.

Fig. B.4. Coefficient of variation (𝜎∕𝜇) - log scale.
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Table B.1
OLS between normalised values and scoring parameters — significance at 0.05(*) and 0.001(**).

Day time Evening

Area Point Area Point

No. obs. 620,946 154,386 629,370 156,492
R-squared 0.002 0.001 0.004 0
Log-like. −1.04E+05 −44,112 −1.03E+05 −47,483

Coef. Std. error z Coef. Std. error z Coef. Std. error z Coef. Std. error z

Intercept 0.357 ** 0.008 42.502 0.535 ** 0.019 28.221 0.560 ** 0.008 67.508 0.394 ** 0.019 20.553
buffer_morning −0.006 ** 0 −12.81 0.005 ** 0.001 5.426 0.016 ** 0 37.236 −0.002 0.001 −1.465
buffer_night 0.005 ** 0 23.08 0.001 0.001 1.039 −0.001 ** 0 −6.521 0.001 * 0.001 2.44
buffer_week 0.015 ** 0.001 20.515 0.007 ** 0.002 4.076 −0.004 ** 0.001 −5.785 0 0.002 −0.132
work_end 0.003 ** 0 6.405 −0.002 * 0.001 −2.281 −0.001 0 −1.193 0.005 ** 0.001 4.854
work_start 0.007 ** 0 16.743 −0.005 ** 0.001 −5.016 −0.014 ** 0 −31.14 0 0.001 −0.418

Appendix C. Gridding

The different buffer sizes are compared in Fig. C.1 which shows cluster distribution during evening and day time for different buffer sizes of
0 m, 750 m and 1500 m for the randomly selected sample of 10,000 users in Port-au-Prince. As can be seen from these images, a small buffer size
contains a lot of isolated points and stark variations, whereas the buffer size of 1500 m contains a lot of smoothed-out regions.

Fig. C.1. Daytime and evening cluster distribution — buffer variation.
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Appendix D. Population distribution and commuting patterns

Appendix D.1. Port-au-Prince

Appendix D.1.1. Population distribution
Port-au-Prince contains 3.5 million inhabitants, 42 percent of whom are considered commuters. Fig. D.2 depicts the Port-au-Prince population

distribution during day and evening time. The first row depicts all inhabitants of the metropolitan region and the second row depicts commuters
only. The panel on the right shows population distribution during the evening time which most likely reflects home locations. The population of
Port-au-Prince is scattered in a three-pointed star shape with its centre at the National Palace and the edges reaching to Carrefour on the West,
to Pétionville on the south-east and to Canaan and Croix-des-Bouquets on the north-east. The centre of Port-au-Prince sees the highest population
densities, reaching up to 60,000 people per square kilometre during the evening. The density around the centre, which include neighbourhoods like
Portail Léogane, Turgeau and Fort National, can be over 50,000 people per square kilometre reaching 55,000 people per square kilometre around
Portail Léogane.

Pétionville is the second most populated region in Port-au-Prince reaching densities of up to 50,000 people per square kilometre in its centre. To
the west of the National Palace high population density is observed along Route Nationale 2 which leads to Carrefour. The East side of Carrefour is
the most populated part of the neighbourhood with densities lower than the centre of Pétionville. To the North east of the National Palace population
is concentrated around Delmas. Past the airport, high relative densities are observed in Croix-des-Bouquets to the East and along Route Nationale 1
until the intersection with Route Nationale 3. Around this intersection one finds Cannan with around 10,000 to 15,000 people per square kilometre
in its densest part. This is one of the most recent additions to Port-au-Prince, formed from temporary camps set up post-earthquake.

Fig. D.2. Population distribution day versus evening and all versus commuters — Port-au-Prince. Concentric rings at 1, 5, and 25 km from city centre.

154



G.A. Zagatti et al. Development Engineering 3 (2018) 133–165

In terms of daytime population distribution one sees significant movement from the edges of Port-au-Prince towards the centre. The movements
are more clearly depicted in the second row of Fig. D.2, which depicts only commuters. Taking into account the whole population, the area around
the National Palace can reach densities of up to 90,000 people per square kilometre during the day, which is 1.5 times higher than during evening
time. Pétionville also sees some net increase during the day. Mean population density in the centre of Pétionville rises by 27 percent to just below
50,000 people per square kilometre from just below 40,000 during the evening. Likewise, some other regions to the north-east of the city centre
also see some net increase, for example Saint Martin. Further north, the centre of Croix-des-Bouquets sees a net increase of 39 percent during
daytime. On the other hand, some areas are notably residential. Carrefour and Canaan are two of those which see net decreases of 8 and 30 percent
respectively.

Fig. D.3 can increase one’s understanding of the main attracting and repelling regions. On the left and right-hand side the number of commuters
as a percentage of day and evening time population, respectively, are depicted. Not surprisingly, the centre of town sees commuters representing
a substantial share of the population during daytime at around 72 percent but a very small share during the evening at around 40 percent. On the
other hand, Carrefour and Canaan sees the opposite trend. It is interesting to note that along Route Nationale 1 and 8 which goes to Canaan and
Croix-des-Bouquets respectively one sees a large increase in the share of commuters during the daytime.

Fig. D.3. Commuters as percentage of population — Port-au-Prince. Concentric rings at 1, 5 and 25 km from city centre.

Turning one’s attention to population distribution in relation to the city centre, Fig. 16 can be helpful. The graph depicts the cumulative
percentage of inhabitants who are located at a given distance from the centre of Port-au-Prince for different categories. The image suggests that
for every kilometre from the city centre one sees approximately an extra 8 percent of the total population of Port-au-Prince. There are no major
inflection points until one reaches 10 km from the city centre, when the cumulative distribution begins to tapers off. The lack of any other major
breakpoint is the result of the population of Port-au-Prince being distributed along a three-pointed star with three smaller focal points in Carrefour,
Pétionville and the region comprised of Delmas, Croix-des-Bouquets and Cannan.
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Fig. D.4. Relative population distribution within buffers (1, 5 and 25 km from city centre) — Port-au-Prince. Total population in brackets.

Nevertheless, one notices that there is a clear move towards the city centre during daytime. At any given distance from the city centre total
population is always smaller during evening time than during daytime and this contrast is even more marked for data on commuters only.
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Fig. D.4, depicts the relative population distribution of Port-au-Prince along concentric circles centred in the city centre at the National Palace
with radius of 1, 5 and 25 km. Each map depicts the normalised density calculated over the density of each buffer in order to highlight the main
inhabited areas in those buffers during the day and night.

The second row of Fig. D.4 depicts the relative distribution of the population located at least one kilometre and at most five kilometres from the
National Palace. It can be seen that during daytime, population is concentrated around the town centre, but during the evening time the population
disperses towards two circles concentrated around Portail Léogane and another around Fort National.

The last row of Fig. D.4 depicts the third buffer which is located at least 5 and at most 25 km from the city centre. In agreement with the
hypothesis put forward above, population seems to be concentrated around three secondary centres namely Carrefour, Pétionville and the north of
Port-au-Prince. Despite being a residential region, Carrefour still hosts a number of people during the daytime, since only about 40 percent of the
population seem to commute from this area during the day. As discussed above, Pétionville hosts a significant number of people during daytime
due to a large influx of commuters. During the evening, the population is slightly more dispersed from its centre. Finally, the region north of
Port-au-Prince contains pockets of people around Delmas, Croix-des-Bouquets and Cannan. Similarly to Pétionville, the centre of Croix-des-Bouquets
sees a large relative increase in people during the day.

Appendix D.1.2. Population flows
It is worth analysing the flow of people from each of the buffers in order to understand usual commuting behaviour. Fig. D.5 depicts the flow of

commuters from each specified buffer. The column on the left depicts the daytime (work) location of the individuals who live in the selected buffer.
The column on the left depicts the evening time (home) location of the individuals who work in the selected buffer. For instance, the column on the
right shows where those people living in the centre of Port-au-Prince go to work, whereas the column on the left shows where those people working
in the centre of Port-au-Prince live.

The first row of Fig. D.5 depicts commuters from the centre of town. It is possible to see that most commuters who live in this area travel to
Delmas and Pétionville during the day. Fig. D.3 in the previous section shows that the share of commuters in the centre of Port-au-Prince is rather
small, which is likely due to the fact that most people who live in the centre of Port-au-Prince also work there. The centre of Port-au-Prince sees a
huge influx of people from different areas during the day including Carrefour and Martissant on the West, Pétionville on the Southeast and Delmas
on the Northeast.

Fig. D.6, depicts the distribution of distance travelled for each buffer. The column on the left depicts the distance travelled by individuals who
live in the selected buffer, thus showing how far they likely travel from home to their workplace. The column on the right depicts the distance
travelled by individuals who work in the selected buffer, thus showing how far they likely travel from their workplace to home. The blue legend
depicts those who travel outside of their buffer and the red one those who remain inside. The graph also shows the amount of people undertaking
each commute.

The first row of Fig. D.6 reaffirms the claim that many more people travel into the city centre than to the outside of it. There are about 4.5
commuters who go into the city centre during the day for every commuter who goes out of the city centre. It can be seen from Fig. D.6 that most
commuters to the city centre will travel a distance between zero and five kilometres. There is a relative high number of people who will travel
between five and ten kilometres, and those people are likely located in the edges of the three-pointed star discussed previously.

The second row of Fig. D.5 reiterates that most people within a buffer of at least one and at most five kilometres from the city centre will
commute to the city centre to work and a significant share will also commute to Pétionville. There is a considerable number of people who work
and live in the same buffer, as depicted in the left pane of Fig. D.6. The same figure also shows that most commuters will not commute a much
greater distance than those living in the centre. In fact, the trend seems to go the other way. This buffer is a net importer of people during daytime,
with about a five percent more people coming in during the day than leaving. People working in this buffer will travel from two to five kilometres
to work and seem to flow from the same directions as those coming to work in the centre of town.

People who live in the most distant buffer see similar movements of large number of people going to work in the centre of Port-au-Prince and
Pétionville. The region has almost 20 percent more commuters during commuting to work in the morning than commuting from work during the
evening. Nevertheless there is more variation, with people living in this buffer going to work as far as Croix-des-Bouquets and Cannan.

The histogram shows that there is a number of people who travel relatively greater distances to work. The graph shows that those who tend to
travel longer distances to work also tend to go out of the buffer during the day, suggesting that those are the ones who travel to the centre of town.
A large proportion of those people likely travel from Carrefour. On the other hand, those who live and work in this buffer tend to travel smaller
distances and they are likely spending their daytime in regions such as Croix-des-Bouquets and Pétionville. The pane on the left of Fig. D.5 confirms
this, as the many well lit places all over the buffer indicate that people who work in this buffer also tend to live in the same region and travel
smaller distances.
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Fig. D.5. Flows from buffer (commuters only) day versus evening time — Port-au-Prince. Concentric rings at 1, 5 and 25 km from city centre.
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Fig. D.6. Distribution of euclidean distances travelled from buffer (commuters only) day versus evening time — Port-au-Prince. Concentric rings at 1, 5 and 25 km from city centre.

Appendix D.2. Cap-Haïtien

Appendix D.2.1. Population distribution
There are approximately 500,000 people living in Cap-Haïtien, 40 percent of whom are commuters. The vast majority of the population lives

towards the centre of town on the West side of the bay and Mapou River and along the South bay east of Mapou River. The highest evening
population density can be found around La Fossette, a popular middle to low income residential neighbourhood to the west of River Mapou, and
close to the only bridge linking both sides of town. Densities in these regions can reach just below 40,000 people per square kilometre. On the other
side of the bay, density is higher around Petite Anse, where it oscillates around 20,000 people per square kilometre.

Cap-Haïtien is not as big as Port-au-Prince. Population density decreases as one travels south along Mapou river. Population density is high
within a narrow two kilometre strip west of Mapou river and six kilometres from the mouth of the river until Haut-du-Cap. Outside of Cap-Haïtien,
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population is relative higher along Route Nationale 1 from Vaudreuil to Moustique to the South-West, in Quartier Morin, Limonade and Trou-du-
Nord to the South-East and in Milot to the South. Arguably most of those regions are not part of the metropolitan area of Cap-Haïtien but are
nevertheless mentioned here since they are covered by the grid under consideration. Population density in those areas fluctuates between 500 and
a 1000 people per square kilometre and is particularly higher in Vaudreuil and Trou-du-Nord. Outside of those satellite regions, density drops
dramatically reaching below 500 people per square kilometre.

Fig. D.7. Population distribution day versus evening and all versus commuters — Cap-Haïtien. Concentric rings at 1, 5, and 25 km from city centre.

During daytime most commuters in Cap-Haïtien head towards the business district right in the centre of town where population density can be as
high as 80,000 people per square kilometre similar to Port-au-Prince. Petite Anse sees significantly fewer commuters than the centre of Cap-Haïtien
and average population density actually drops during daytime by about 24 percent from 13,000 people per square kilometre during the evening to
about 10,000 during the day. Driving south from the business district along River Mapou, daytime density gradually decreases but at a faster rate
than during the evening.

The centre of Cap-Haïtien sees a substantial increase in the relative number of commuters during the day as can be gleaned from Fig. D.8. During
the day, commuters represent just below 70 percent of the total population in the centre, dropping to just a quarter of the population during the
evening. The region of Petite Anse sees the opposite trend with the share of commuters dropping to below 30 percent during the day and rising to
above 40 percent during the evening.

Fig. D.8. Commuters as percentage of population — Cap-Haïtien. Concentric rings at 1, 5 and 25 km from city centre.
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Fig. D.9. Relative population distribution within buffers (1, 5 and 25 km from city centre) — Cap-Haïtien. Total population in brackets.
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As previously mentioned, Cap-Haïtien is characterised by a vast concentration of people along the thin strip running two kilometres west of River
Mapou and five kilometres south from the mouth of River Mapou up to Haut-du-Cap. This is reflected in Fig. 18 depicting cumulative population
distribution from the city centre with an inflection point at five kilometres.

The figure suggests that about 60 percent of the population in Cap-Haïtien can be found within five kilometres of the city centre at a rate of
about 12 percent of the total population for every kilometre from the centre. When considering the distribution of commuters during the day, one
finds an even greater concentration of people towards the centre of town. During the day, 40 percent of all commuters can be found within one
kilometre of the city centre and about 80 percent within 5 km.

The relative population distributions within 1, 5, and 25 km buffers are depicted in Fig. D.9. In line with the analysis above, most of the
population living and working within one kilometre of the city centre is located towards the south of the business district in La Fossette
and closer to the only bridge linking the two sides of town. During the daytime, the centre of Cap-Haïtien sees its population almost dou-
ble.

Likewise, between one and five kilometres from the city centre, during daytime, most of the people are located close to the only bridge linking
both sides of Cap-Haïtien. The buffer sees a net loss of people during the day, most of whom likely go to the centre of town. During the evening, the
population disperses towards the south of River Mapou and towards Petite Anse. This buffer holds the largest number of people during the night
out of all the other buffers considered.

At distances bigger than 5 and less than 25 km from the city centre, one finds population scattered across small villages in what is mostly rural
areas. Most of the population can be found along Route Nationale 1 with particular focus on Vaudreuil which is just south of Haut-du-Cap along
this motorway. Other focal points include south of Petite Anse in Quartier-Morin, Limonade and the small village of Trou du Nord in the Southeast.
This buffer holds during the night about 20 percent fewer people than the previous buffer but loses approximately 40 percent less people during the
day.

Appendix D.2.2. Population flows
The flow of commuters from each buffer during the day and evening time is depicted in Fig. D.10. The distribution of distances travelled is

depicted in the following Fig. D.10. The first row of Fig. D.10 left pane shows that a number of commuters who live in the centre of town tend to
go to Petite Anse during the day and some others tend to travel further south along River Matou. The centre of Cap-Haïtien sees about six people
commuting into the area during the day for every commuter who travels outside of it.

The histogram (first row, right column) shows that about 70 percent of the trips to the centre are less than five kilometres. Most of those trips
are from commuters who live in the second buffer either further south along River Matou or in Petite Anse. The second row left pane of Fig. D.10
shows that the vast majority of commuters in the second buffer takes that direction. About 95 percent of the commuters (Fig. D.10, second row,
right column) in the second buffer travel less than 5 km to work.

The histograms in the first and second row on the right hand side show two peaks. The second peak on the right suggests that there is
a small fraction of people who travel a considerable distance during the day of around 15 km. The histogram in the third row of Fig. D.11
depicting travelled distance in the morning from the third buffer confirms that indeed there is a bimodal distribution with two peaks at 5 and
15 km.

This fact suggests that there are two groups of people who travel to the centre of Cap-Haïtien. The first one includes the majority of commuters
who live concentrated around Vaudreuil and south of Petite-Anse. The second group is smaller and is scattered around the countryside in small
villages such as Quartier-Morin, Milot and Trou-du-Nord in and around the main access routes to Cap-Haïtien including Route Nationale 1, 3
and 6. On the other hand, those who work in the third buffer tend to travel around five kilometres back home with a significant number of
them working in Vaudreuil and south-east of Petite Anse (Quartier-Morin, Limonade and Trou-du-Nord) and returning back home to the second
buffer.
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Fig. D.10. Flows from buffer (commuters only) day versus evening time — Cap-Haïtien. Concentric rings at 1, 5 and 25 km from city centre.
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Fig. D.11. Distribution of euclidean distances travelled from buffer (commuters only) day versus evening time — Cap-Haïtien. Concentric rings at 1, 5 and 25 km from city centre.
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Appendix E. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.deveng.2018.03.002.
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