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Non-Technical Summary

Employing the appropriate statistical model to measures of aggregate labour supply is im-

portant for several empirical applications. For example, whether aggregate hours worked

are specified as a trend or difference stationary time series can have far reaching conse-

quences for the validity of predictions of real business cycle (RBC) models. Hours worked

is also a variable of interest in the estimation of macro elasticities of labour supply and the

empirical assessments of the persistent behaviour of the aggregate labour supply. Tradi-

tionally, macroeconomic labour supply elastisities have been estimated by just evaluating

the cross section dimension of the data due to a lack of time series. Meanwhile, data

availability has improved and allows estimation along the cross sectional and time series

dimension. Appropriate transformations to maintain standard limiting theories or testing

for cointegration to avoid spurious results is then necessary if working with integrated

variables.

The aim of the present paper is to provide cross country evidence of the non-stationarity of

hours worked for OECD countries. For these purposes, panel unit root tests are employed

to improve power against univariate counterparts. It is well known that univariate tests

lack power if the variable is a stationary but highly persistent time series. Since cross

section correlation is a distinct feature of the underlying panel data, results are based on

various second generation panel unit root tests which account for cross section dependence

among units. For robustness reasons, five different panel unit root tests were conducted.

Besides diagnosing the property of non-stationarity quite robustly, more interesting fea-

tures of the data show up. When allowing hours worked to be influenced by a common

factor and applying the PANIC procedure of Bai and Ng (2004) to decompose the factor

structure, the following stands out: Non-stationarity of hours worked originates both from

an integrated common factor and an integrated idiosyncratic component. Since this holds

for all countries, it is an implication for the individual time series being not cointegrated

along the cross sectional dimension.
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Abstract

Hours worked is a time series of interest in many empirical investigations of

the macroeconomy. Estimates of macro elasticities of labour supply, for example,

build on this variable. Other empirical applications investigate the response of

hours worked to a shock to technology on the basis of the real business cycle model.

Irrespective of the problem being addressed, robust inference of empirical outcomes

strongly hinges on the adequately modelling of the time series of hours worked.

The aim of the present paper is to provide cross country evidence of the non-

stationarity of hours worked for OECD countries. For these purposes, panel unit

root tests are employed to improve power against univariate counterparts. Since

cross section correlation is a distinct feature of the underlying panel data, results

are based on various second generation panel unit root tests which account for

cross section dependence among units. If an unobserved common factor model is

assumed for generating the observations, there is indication for both a common

factor and idiosyncratic components driving the non-stationarity of hours worked.

In addition, taking these results together, there is no indication of cointegration

among the individual time series of hours worked.
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1 Introduction

Employing the appropriate statistical model to measures of aggregate labour supply is im-

portant for several empirical applications. For example, whether aggregate hours worked

are specified as a trend or difference stationary time series can have far reaching con-

sequences for the validity of predictions of real business cycle (RBC) models, as the

prominent debate iniated by Gaĺı (1999) and taken up by Christiano, Eichenbaum and

Vigfussion (2003) demonstrates. According to this controversy, the response of the labour

market to technology shocks in a structural vector autoregression (SVAR) analysis cru-

cially depends on the specification of hours worked. If hours worked are employed in

levels, hours usually rise after a positive technology shock. If, on the other hand, hours

worked are used in first differences, hours fall after the same shock. While the first

outcome is in line with the predictions of standard RBC models, so does the latter give

support for New-Keynesian models of the macroeconomy assuming monopolistic competi-

tion, sticky prices and variable effort. However, in order to use SVAR models and impulse

response functions to analyse dynamics of a system, the data must either conform or be

transformed to conform to a tractable probability model so that inference can be drawn

correctly. Therefore, careful inspection of the time series properties of hours worked is

required before specifying these models.

Average hours worked is also a variable of interest in the discussion about the differences

in work effort between Americans and Europeans. Important contributions to this field of

activity are from Prescott (2004), Blanchard (2004) and Alesina, Glaeser and Sacerdote

(2005). Among other things, the reasonings in those papers involve estimates of macro

elasticities of labour supply, a theoretical and empirical assessments of the labour supply

tax rate nexus and many possibly explanations for the persistent behaviour of the ag-

gregate labour supply. Traditionally, macroeconomic labour supply elastisities have been

estimated by just evaluating the cross section dimension of the data due to a lack of time

series. Meanwhile, data availability has improved and e.g. the comprehensive dataset of

Nickel and Nunziata (2001) allows estimation along the cross sectional and time series

dimension. Appropriate transformations to maintain standard limiting theories or testing

for cointegration to avoid spurious results is then necessary if working with integrated

variables.

It is well kown that univariate tests for unit roots lack power if the variable is a stationary

but highly persistent time series. The purpose of panel unit root tests is to increase power

over univariate tests by combining information across units. Standard panel unit root

tests, however, suffer from sizes distortion if the units are cross sectionally dependent, as

it is likely in cross country studies.

The contribution of the present paper is to provide evidence of the non-stationarity of

hours worked for OECD countries by applying several panel unit root tests that allow

for cross country depedencies. A further contribution is to show that cross country
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dependence in hours worked can be empirically handled by allowing a factor structure

to generate this dependency. The feasibility to estimate a common factor structure by

analysing the cross section variation in the data is also an advantage of panel methods

over univariate procedures. Lastly, it is shown that the persistent behaviour of hours

worked originates both from a common factor and country specific sources.

The analysis starts with a short description of the employed data and the data sources.

Then, the results of standard univariate Augemented Dickey-Fuller (ADF) tests are re-

ported and based on the residuals of these ADF regressions the cross section dependence

inherent in the panel is assessed.

After that, the following strategy for unit root testing in cross sectionally dependent panels

is accomplished. First, the panel unit root test of Demetrescu, Hassler and Tarcolea (2005)

is conducted to find out if there is a homogeneous unit root in the data. For robustness

check, the analysis continues with an application of Pesaran’s (2005) and Phillips and

Sul’s (2003) testing methods which assume that cross section dependence origniates from

a single common factor.

In order to examine if there are more than one common factors driving the evolution of

hours worked, the method of Moon and Perron (2004) is employed which adresses this

problem adequately. In a last step, the PANIC procedure from Bai and Ng (2004) is used

to show that the observed non-stationarity is due to both a common unobserved factor

and country specific error components. This result indicates that the individual time

series of hours worked are not cointegrated along the cross sectional dimension. The last

section summarises and concludes.

2 Data

An important requirement for the subsequent estimations is the utilization of sound data

which permit reliable cross country comparisons. Throughout the paper, (average) hours

worked refer to annual hours worked per employee. Hours worked on a per employee basis

is the most comprehensive empirical counterpart for the labour input variable implied by

most macroeconomic theory, e.g. general equlibrium business cycle models.1

The data for 30 OECD countries is taken from the Total Economy Database of the The

Conference Board and Groningen Growth and Development Centre from the University

1Christiano, Eichenbaum and Vigfussion (2003) use total hours worked per capita for the U.S while

Gaĺı (1999) uses total hours worked and demonstrates the robustness of his results against per capita

measures in subsequent papers. Alesina, Glaeser and Sacerdote (2005) base their estimations of the effect

of tax rates on annual hours worked per person in the age of 15 to 64.
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of Groningen. For most countries, the covered period is from 1950 to 2005.2 The figures

include paid overtime hours but exclude paid hours that are not worked due to vaca-

tion, sickness, etc. The University of Groningen compiles the figures from national labour

force surveys and national establishment surveys as well as from national and interna-

tional sources. International data sources include the OECD, the U.S. Bureau of Labour

Statistics and the comprehensive studies of Angus Maddison.3

For interpretation of hours worked per employee as a labour supply quantity, it is im-

portant to notice that mainly three factors are influencing the evolution of this variable.

The first influence comes from usual hours worked per week for full-time workers. Besides

paid overtime hours, this component mainly reflects standard weekly hours which are the

result of collective agreements between employer and employees or national legislation.

The next factor affecting annual hours is the fraction of part-time workers. Obviously,

an increase in the fraction of people who chose to work part-time decreases the aggregate

measure of hours worked per employee. A further influence, of cause, comes from days of

paid vacations.

From the decomposition above it can be seen that deterministic or stochastic trends in

hours worked can arise from various sources.

3 Single country analysis

Though the focus of the present paper is on panel unit root tests, a natural starting point

is single country unit root testing. Individual Augmented Dickey-Fuller tests (ADF) for

the logarithm of hours worked are presented below. This preliminary analysis serves

several purposes: First, it gives a quick glance at the time series properties of the data

at hand and at the possibly diffusion of the number of integrated time series in the cross

section. Second, in a next step, the residuals of these ADF regressions are utilised for

estimating and testing the degree of cross section correlation in the panel. Furthermore,

some of the subsequent tests for unit roots in panels with cross section dependence build

on statistics of these univariate regressions.

When specifying ADF regressions, the decision about inclusion of appropriate determin-

istic components is important since the critical values for the ADF tests depend on that

choice. As hours worked do not vary around zero, inclusion of an intercept is essential.

However, deciding about inclusion of a linear trend is not that clear-cut. Wolters and

Hassler (2006), e.g., propose to include a trend in the test regression whenever a series is

2For the Czech Republic, Hungary, Poland, the Slovak Republic, the Republic of Korea and Mexico

shorter periods are observed. See table 1 below and figures 4 to 5 in the appendix for further details on

data coverage. Until 1990, the figures refer to West Germany and to Germany afterwards.
3A more detailed description of the data and adjustment methods can be found under

http://www.ggdc.net
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suspicious of a linear trend upon visual inspection, because decision may not rely on the

standard t-statistic of the estimated coefficient of the time regressor. Hamilton (1994)

recommends to fit a specification that is a plausible description of the data under both

the null hypothesis and the alternative, if the researcher does not have a specific null

hypothesis. He as well proposes to include a linear trend as a regressor if there is an

obvious trend in the data.

A downward trend in hours worked since the seventies is observable for many countries

in the panel (see figure 4 to 7 in the appendix). However, this trend stopped for some

countries during the eighties (Denmark, Spain, United Kingdom, Iceland, Norway, New

Zealand, Sweden and the USA) and still seems to continue e.g. for Germany, Ireland

and Portugal. Standard real business cycle theory states that hours worked should rather

be constant, hypothesizing hours worked being a stationary process fluctuating around

a constant mean.4 This would advise to use an intercept without deterministic trend

specification for the ADF regressions. On the other hand, the increasing participation

rates of women of which many chose to work part-time thereby reducing the aggregate

measure of hours worked could be possibly approximated, at least locally, by a linear

trend specification. Neither economic theory nor visual inspection of hours worked for

most countries provides clear guidance as to include a linear trend or not in the regressions.

Therefore, both specifications are considered below.

In summarising table 1, the following can be observed: On the 10% level of significance for

the ADF regressions including only an intercept, the null hypothesis of non-stationarity

is rejected only for New Zealand. When concentrating on the outcomes of the ADF tests

which employ an intercept and trend specification, the null hypothesis is not rejected for

any of the countries in the cross section. Overall, regarding hours worked as non-stationary

time series is favoured over a trend stationary specification.

However, ADF tests lack power relative to the alternative that the series is a persistent,

but stationary process. For example, this lack of discriminatory power is one of the reasons

why Christiano, Eichenbaum and Vigfusson (2003) regard classical univariate unit root

diagnostics not helpful in deciding whether to treat hours worked for the US as trend or

difference stationary stochastic process.5 Increasing power of unit root tests through the

pooling of information across countries is the primary aim of panel unit root tests and

a reason for the popularity of these tests. Therefore, testing the order of integration of

hours worked with the help of panel data seems to offer an obvious solution to the power

problem. The next section gives a brief outline of the panel assumptions and hypothesis

employed in the remainder of the paper.

4Constant behaviour of hours worked per worker is a feature of the balanced growth path if the number

of workers grows with population in the long-run.
5Christiano, Eichenbaum and Vigfusson (2003) circumvent deciding on the basis of univariate unit

toot tests. Instead, they employ an encompassing criterion to select between the competing specifications.

Cf. pp.8 for details.
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Table 1: Individual ADF (li) test statistics

Intercept Intercept and trend

Country Obs.∗ t-stat p-value li t-stat p-value li

Australia 56 -2.20 0.21 0 -1.69 0.74 0

Austria 56 0.87 0.99 1 -2.82 0.20 1

Belgium 56 -1.95 0.31 1 0.17 1.00 0

Canada 56 -1.75 0.40 2 -1.14 0.91 2

Switzerland 56 -1.72 0.42 0 -1.11 0.92 0

Czech Republic 17 -0.87 0.77 0 -1.69 0.71 0

Germany 56 -1.58 0.49 0 -0.62 0.97 0

Denmark 56 -0.77 0.82 2 -0.84 0.96 1

Spain 56 -0.44 0.89 1 -1.73 0.72 1

Finland 56 -1.10 0.71 0 -1.47 0.83 0

France 56 -0.21 0.93 1 -1.79 0.70 0

United Kingdom 56 -0.74 0.83 3 -1.31 0.87 2

Greece 56 -1.58 0.49 0 -0.84 0.95 0

Hungary 26 -2.51 0.12 0 -2.09 0.52 0

Ireland 56 0.35 0.98 2 -2.03 0.57 0

Iceland 56 -1.38 0.59 3 -0.44 0.98 2

Italy 56 -0.27 0.92 0 -1.34 0.87 5

Japan 56 -0.26 0.92 1 -1.35 0.87 0

Republic of Korea 44 -2.01 0.28 0 -1.34 0.86 0

Luxembourg 56 -1.39 0.58 1 -0.80 0.96 2

Mexico 47 -1.63 0.46 2 0.54 1.00 9

Netherlands 56 -2.03 0.27 1 1.36 1.00 0

Norway 56 -0.95 0.76 1 -0.93 0.94 1

New Zealand 56 -2.71 0.08 0 -0.44 0.98 4

Poland 17 -1.17 0.66 0 -2.23 0.45 0

Portugal 56 -1.07 0.72 0 -0.91 0.95 8

Slovak Republic 17 -1.24 0.63 0 -1.18 0.88 0

Sweden 56 -1.86 0.35 1 -0.78 0.96 1

Turkey 56 -1.58 0.49 0 -0.84 0.95 0

United States 56 -0.91 0.78 1 -1.59 0.78 0

Notes: ∗ total number of Observations. All tests were executed with the help of Eviews 5.1. MacKinnon

(1996) p-values. Lag length li was chosen due to the minimum of the modified Schwarz information crite-

rion. Maximum lag length was 3, 5, 9 or 10, depending on individual number of time series observations

from the intervall [17, 56].
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4 Panel analysis

4.1 The panel unit root framework

Surveys of panel unit root tests are given by, among others, Breitung and Pesaran (2005),

Choi (2004), Banerjee (1999) and with a special focus on second generation panel unit

root tests by Gutierrez (2005), Jang and Shin (2005) and Gengenbach, Palm and Urbain

(2004). Only the basic framework is given below.

It is assumed that the time series for N cross sections evolve according to:

hit = dit + xit (1)

xit = φixit−1 + uit (2)

where i = 1, ..., N , t = 1, ..., Ti and dit represents deterministic components including

any individual intercepts or individual time trends or both. The cross section specific

autoregressive coefficient is φi. Equations (1) and (2) translate into an expression for the

observable variables:

hit = φihit−1 + dit − φidit−1 + uit (3)

Panel unit root tests of the first generation assume independent units hit and typically

suppose that the idiosyncratic disturbances uit are i.i.d. across i and t with E(uit) = 0,

E(u2
it) = σ2

i and E(u4
it) < ∞.6 Examples of the modelling strategy of uit in the presence

of cross section dependence are given below.

Most panel unit root tests build their testing strategy around ADF type regressions cor-

responding to equation (3).

A test for the presence of a unit root in the panel is represented by the null hypothesis

H0 : φ1 = · · · = φN = φ = 1. Two types of tests can be distinguished, dependent on the

alternative hypothesis under consideration. The first type of test considers a homogeneous

alternative, i.e. it takes the form H1 : φ1 = · · · = φN = φ < 1. Examples are the tests of

Levin, Lin and Chu (2002), Breitung (2000) and Hadri (2000). The second sort of tests

employs a heterogeneous alternative hypothesis: H1 : ∃i with φi < 1, i = 1, ..., N . This

implies that there is a subgroup N0 ≤ N for which φ1 < 1, ..., φN0
< 1. The tests of Im,

Pesaran and Shin (2003), Maddala and Wu (1999) or Choi (2001) involve this alternative

hypothesis.7 Irrespective of the alternative under consideration, when the null hypothesis

of a unit root is rejected, one can only conclude that a certain fraction of units in the

6Cf. for example, Breitung and Pesaran (2005), pp.4
7Breitung and Pesaran (2005) note, that despite the different treatment of the alternative hypothesis,

both tests can be consistent against both types.
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panel is stationary. The panel unit root tests under cross section dependence outlined in

the subsequent sections assume a heterogeneous alternative throughout.

As mentioned above, the advantage for testing the unit root hypothesis on the basis of

cross sectional time series is the amplification of power. The gain in power by switching

from univariate unit root tests to panel unit root tests is well documented for example in

the papers of Levin and Lin (1992) and Levin, Lin and Chu (2002).

However, if the panel features cross section dependence, classical panel unit root tests

suffer from serious size distortions. As it is shown in the next section, the panel data of

hours worked for OECD countries is characterised by significant cross section correlation

that should not be neglected in unit root testing. Therefore, outcomes of first generation

panel tests for unit roots in hours worked are not reported here.

The implication of cross section dependence is surveyed by several authors. Gengen-

bach, Palm and Urbain (2004) give a brief literature overview to simulation studies that

assess the performance of panel unit root tests under the presence of cross correlation

and cross section cointegration. Banerjee et al. (2005) demonstrate how panel unit

root tests become oversized in the presence of long-run cross unit relationships. Hassler

and Tarcolea (2005) also conclude by investigating nominal long-term interest rates for

12 OECD countries that ignoring or modelling cross-correlation in multi-country stud-

ies may heavily affect the outcome of non-stationarity panel analyses. Pesaran (2005)

demonstrates by means of Monte Carlo simulations that panel unit root tests that do not

account for cross section dependence can be seriously biased if the degree of dependence

is sufficiently large. Phillips and Sul (2003) show that OLS estimators provide little gain

in precision compared with single equation OLS when cross section dependence is ignored

in the panel regression. Furthermore, commonly used panel unit root tests are no longer

asymptotically similar under the presence of cross section dependence. Strauss and Yigit

(2003) demonstrate that the greater the extent of cross correlations and their variation,

the higher is the size distortion of the Im, Pesaran and Shin (2003) test.

4.2 Cross section dependence in the panel of hours worked

There are several potential causes for cross section dependence in the present panel:

Common observed and unobserved factors or general residual correlation that remains

after controlling for common influences. Examples for such factors affecting average hours

worked are the above-mentioned technology shocks.

Pesaran (2004) proposes a simple test for error cross section dependence that has correct

size and sufficient power even in small samples. To check if the OECD panel at hand

is characterised by cross section dependence, the residuals of the individual ADF (li)

regressions from the preceding single country analysis are used to compute Pesaran’s

(2004) test statistic. The test draws on the residuals of both the intercept only and the
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intercept and linear trend specifications. The test statistic of cross section dependence

for an unbalanced panel is computed as8

CD =

√
2

N(N − 1)

(
N−1∑

i=1

N∑

j=i+1

√
Tij ρ̂ij

)
, (4)

where ρ̂ij are the pairwise correlation coefficients from the residuals of the ADF regres-

sions. The correlations are computed over the common set of observations Tij for i and

j, i 6= j. The CD statistic is distributed standard normal for Tij > 3, if the number of

country specific observations exceeds the number of regressors in the underlying equation

and sufficiently large N . As Pesaran(2004) demonstrates the good performance of the

CD test in small samples, it seems to be well suited for the present cross section of 30

countries with numbers of time observations ranging from 17 to 56.

Table 2: Test of cross section dependence within different regions

OECD European Union Europe Northern Europe Non Europe BIG7

Residuals from ADF (li) regression with intercept

CD statistic 12.71 5.79 9.92 7.61 3.46 5.22

p-value 0.00 0.00 0.00 0.00 0.00 0.00

ρ̂ 0.10 0.08 0.10 0.33 0.09 0.16

Residuals from ADF (li) regression with intercept and linear trend

CD statistic 12.96 6.22 10.41 7.96 2.74 6.09

p-value 0.00 0.00 0.00 0.00 0.01 0.00

ρ̂ 0.10 0.08 0.11 0.34 0.08 0.18
Notes: CD test is based on the residuals of the individual ADF (li) regressions, sample is unbalanced,

i.e. Ti ∈ [17, 56]. The CD statistic is asymptotically normally distributed. P-values refer to a two-sided

test. ρ̂ is the simple average of the pair-wise residual correlation coefficients.

OECD=Australia, Austria, Belgium, Canada, Switzerland, Czech Republic, Germany, Denmark, Spain,

Finland, France, United Kingdom, Greece, Hungary, Ireland, Iceland, Italy, Japan, Republic of Korea,

Luxembourg, Mexico, Netherlands, Norway, New Zealand, Poland, Portugal, Slovak Republic, Sweden,

Turkey, Unites States

European Union=Austria, Belgium, Czech Republic, Germany, Denmark, Spain, France, United

Kingdom, Greece, Hungary, Ireland, Italy, Luxembourg, Netherlands, Poland, Portugal, Slovak Republic,

Sweden

Europe=Austria, Belgium, Switzerland, Czech Republic, Germany, Denmark, Spain, Finland, France,

United Kingdom, Greece, Hungary, Ireland, Iceland, Italy, Luxembourg, Netherlands, Norway, Poland,

Portugal, Slovak Republic, Sweden

Northern Europe=Denmark, Finland, Iceland, Norway, Sweden

Non Europe=Australia, Canada, Japan, Republic of Korea, Mexico, New Zealand, Turkey, USA

BIG7=Canada, Germany, France, United Kingdom, Italy, Japan, USA

8Cf. Pesaran( 2004), p.17
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Table 3: Cross section dependence across Europe and Non European countries

ADF with intercept ADF with intercept and trend

CD statistic 4.60 4.67

p-value 0.00 0.00

ρ̂ 0.03 0.04
Notes: CD test is based on pair-wise resdidual correlations between each european and non european

country. See table 2 for further notes.

Table 2 shows the CD statistics for countries within the OECD, the European Union,

Northern Europe, Non-European countries and the Big Seven western industrial coun-

tries. The upper part of table 2 contains CD statistics that employ residuals from ADF

estimations with intercept only while the lower part displays the results that rely on ADF

residuals from a intercept and linear trend regression. The hypothesis of zero cross section

correlation is rejected for all regions and both ADF specifications at the 1%-level of signifi-

cance. In both specifications, according to the average correlation coefficients, the highest

degree of cross section dependence is found for the countries within the group of Northern

Europe, followed by the countries within the Big 7. The group of Non-European countries

shows about the same degree of dependence as the countries within the European Union

and within geographical Europe.

The CD statistic can also be used to test for dependence across regions with distinct

countries. Table 3 displays the CD statistic that builds on correlations which are computed

for the ADF residuals of each European country with the residuals of each Non-European

country.9 By rejecting the null hypothesis of cross section indepencence at the 1%-level,

these test statistics also indicate the presence of error dependence across the countries

of Europe and the group of Non-European countries. However, the average residual

correlation coefficient ρ̂ is rather low.

Overall, the outcomes of the preceding tests clearly indicate the presence of cross section

dependence of hours worked in the panel of OECD countries. In addition, the estimates of

the average correlation coefficients for different regions suggests that residual correlation

is rather heterogeneous than homogeneous.

Tests for the presence of unit roots in hours worked should take these dependence into

account in order to produce reliable results. The next section addresses this issue by

applying second generation unit root tests for panel data.

9For this version of the test, the CD statistic is calculated as CDN1N2
=√

1
N1N2

(∑N1

i=1

∑N1+N2

j=N1+1

√
Tij ρ̂ij

)
, whereas N1 is the number of countries in region 1 and N2 is

the number of countries in region 2.
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4.3 Panel unit root tests for cross sectionally dependent panels

In this section, five different panel unit root tests which allow for cross section dependence

among units are illustrated and the respective procedures are applied to the OECD sample

of hours worked. These tests originate from Demetrescu, Hassler and Tarcolea (2005, DHT

hereafter), Pesaran (2005, Pesaran hereafter), Phillips and Sul (2003, PS hereafter), Moon

and Perron (2004, MP hereafter) and Bai and Ng (2004, BN hereafter).10 Pesaran, PS,

MP and BN assume cross section dependence arising from common unobserved factors,

while the DHT test builds on a modified inverse normal method to account for dependency

in the data. The advantage of the test procedures of DHT and Pesaran is that they can be

applied to unbalanced panels, while the tests of PS, MP and BN require balanced panels.

In that case, balancing the panel reduces the cross section dimension to N = 24 and fixes

the time dimension to T = 56.11

The testing strategy builds on the briefly sketched approach in Gengenbach, Palm and

Urbain (2004): In a first step, the tests of DHT, Pesaran, PS and MP are used to test

for the presence of a unit root in the data. If cross section dependence is due to common

factors and unit roots were indicated in the first step, the BN procedure is employed to

test for the presence of unit roots in the idiosyncratic components and the common factors

separately. In addition, this amounts to a test for no cointegration among the individual

time series of hours worked.

4.3.1 Demetrescu, Hassler and Tarcolea (2005, DHT)

The DHT test directly builds on the test statistics of the outcomes of the individual ADF

tests from section 3. The test statistic is constructed as a linear combination of individual

specific probits ti corresponding to the p-values pi resulting from the individual unit root

tests. The probits are quantiles from the standard normal distribution of the respective

p-values. This proceeding corresponds to the inverse normal method and DHT propose

a modified version for panel unit root testing to account for dependencies in the probits.

These dependencies in turn stem from the dependencies in the underlying test statistics

and reflect cross section dependence.

The recommended (unweighted) test statistic by DHT due to Hartung (1999) to test for

a unit roots in the panel against the heterogeneous alternative is 12

10Tests that build on a GLS approach are not considered in the present analysis as they rely on T

being substantially larger than N which is not the case for the panel data at hand. Cf. e.g Breitung and

Das (2005).
11Balancing the panel drops the observations for the Czech Republic, Hungary, Mexico, Poland, Slovak

Republic and the Republic of Korea.
12Cf. DHT, p. 5
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t(ρ̂∗, κ) =

∑N

i=1 ti√
N + N(N − 1)

[
ρ̂∗ + κ

√
2

N+1
(1 − ρ̂∗)

] (5)

where ρ̂∗ = max
(
− 1

N−1
, ρ̂
)
, ρ̂ = 1 − 1

N−1

∑N

i=1(ti − t)2, t = 1
N

∑N

i=1 ti as the arithmetic

mean of the probits ti, which are calculated from the inverse of the standard normal

distribution Φ−1.

The contribution of DHT is to show that under which conditions the statistic of (5) follows

a standard normal distribution. In addition, it is demonstrated that the test is robust if

the correlation of the probits is varying at a certain degree. Furthermore, on experimental

grounds, DHT provide evidence that the modified inverse normal method is reasonably

reliable when applied to ADF tests in correlated panels. This holds also when N = 25 and

T = 50 but it is shown that the modified inverse normal method results in an undersized

test in the presence of weak correlation.

The test statistic t(ρ̂∗, κ) is readily computed with the p-values from table 1. The value of

ρ̂∗ amounts to 0.16 in the intercept case and to 0.05 in the intercept and trend case. DHT

and Hartung (1999) propose to use κ = κ1 = 0.2 or κ = κ2 = 0.1(1 + 1
N−1

− ρ̂∗). This

parameter is meant to regulate the actual significance level in small samples.13 In the

simulation studies of DHT, the experimental size of the test is not sensitive to the choice

of κ.14 The test statistic here is slighty influenced by the choice of κ in the intercept and

trend case. However, the test decision is not affected by this option. Table 4 shows test

results.

Table 4: Results of modified inverse normal method

Intercept Intercept and trend

t(ρ̂∗, κ1) 0.72 3.63

p-value 0.76 1.00

t(ρ̂∗, κ2) 0.76 4.02

p-value 0.78 1.00

Notes: Test statistics are based on MacKinnon (1996) p-values of individual ADF tests. N = 30 and

Ti ∈ [17, 56].

The low level of significance for both the intercept only and intercept and trend specifi-

cation clearly implies not rejecting the homogeneous unit root hypothesis.

13Cf. Hartung (1999) for details.
14However, DHT assume stronger correlation in their simulation study than it is indicated for hours

worked in the OECD panel according to table 2.
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4.3.2 Pesaran (2005, Pesaran)

It is well conceivable that cross section dependence in international data on hours worked

can occur because of common global factors like a global trend or cyclical element. The

country figures suggest that there is co-movement between hours worked (see figures 4 to

7 in the appendix). The Pesaran test and also the subsequent methods do account for

cross section dependence through the assumption that one or more common unobserved

factors are driving the dependence structure.

Pesaran builds on the assumption that the error terms uit of equation (3) follow a single

common factor structure

uit = λift + εit (6)

The common unobserved factor ft is always assumed to be stationary and impacts the

cross section times series with a fraction determined by the individual specific factor

loading λi. For the idiosyncratic errors εit, the same assumptions as under the panel

unit root tests of the first generation hold, i.e. they are are i.i.d. across i and t with

E(εit) = 0, E(ε2
it) = σ2

i and E(ε4
it) < ∞. Furthermore, εit, ft and λi are mutually

independent distributed for all i.

Thus, cross section dependence arises due to the common factor, which can be approx-

imated by the cross section mean ht = 1
N

∑N

i=1 hit.
15 Pesaran proposes the following

augmented Dickey-Fuller regression:

∆hit = ai + αihit−1 + βiht−1 +

p∑

j=1

γij∆hit−j +

p∑

j=0

θij∆ht−j + dit + εit (7)

The test for the presence of a unit root can now be conducted on the grounds of the

t-value of αi either individually or in a combined fashion. The first satistic is denoted as

cross sectionally augmented Dickey-Fuller CADFi statistic while the latter resembles the

familiar IPS statistic of Im, Pesaran and Shin (2003) and is constructed as

CIPS =
1

N

N∑

i=1

CADFi (8)

Pesaran investigates the performance of the CADFi and CIPS tests by means of Monte

Carlo simulations and shows that these tests have satisfactory size and power even for

relatively small values of N and T , i.e. even in the case of N = T = 10. In the linear

15If a common time specific effect is the only source of cross section correlation, the correlation can be

eliminated by subtracting cross sectional means from the data. Pesaran, Shin and Smith (1995) propose

this proceeding. However, Strauss and Yigit (2003) demonstrate through Monte Carlo simulation that

demeaning the data leads to false inference in panel unit root tests if the original data generating process

had heterogeneous correlation, i.e. if pair-wise cross-section covariances of the error components differ

across units.

12



trend model, power rises quite rapidly with both N and T if T > 30. This small sample

property renders the Pesaran test quite appealing for an application to the present OECD

cross section.

Due to the presence of the lagged level of the cross sectional average, the limiting distri-

bution of the CADFi statitics and the CIPS statistic does not follow a standard Dickey-

Fuller distribution. However, Peseran provides critical values based on simulations for the

CADF and CIPS-distributions for three cases (no intercept and no trend, intercept only,

intercept and trend).

Table 5 reports the results of the CIPS test for hours worked for the unbalanced OECD

panel and different lag length l.

Table 5: Results of the CIPS test

l 0 1 2

CIPSc -1.91 -2.17 -1.77

CIPSc,τ -2.35 -2.72 -2.25

Notes: Entries are averages of t-values. CIPSc is based on individual CADF regressions with l lags

of differences including an intercept only, while CIPSc,τ is based on CADF regressions including an

intercept and trend. Critical values for N = 30 and T = 50 are tabulated in Pesaran (2005). They are

-2.30/-2.16/-2.08 for the 1%/5%/10% level of significance in the intercept only case, and -2.78/-2.65/-2.58

for the intercept and trend case. N = 30 and Ti ∈ [17, 56].

The CIPS statistic is not smaller than any of the critical values corresponding to the 1%,

5% or 10% level of significance for all specifications. The case when l = 1 in the trend

and intercept model is an exception. Here, the test indicates stationarity at the 5% level

of significance. Otherwise, the outcomes are not very sensitive to the choice of number of

lagged differences l. Thus, on the basis of the common unobserved factor assumption for

the error process, the Pesaran test gives indication of non-stationarity of hours worked.

4.3.3 Phillips and Sul (2003, PS)

PS also assume that cross section dependence arises from a single common factor in uit.

The errors uit follow the same data generating process as in equation (6). Similar to

Pesaran, the idiosyncratic errors εit are i.i.d with variance σ2
i , the factor loadings are

non-stochastic and the common factor ft is i.i.d. N(0, 1).

The idea of PS is to remove this common factor effect by pre-multiplying the original

data with a projection matrix F̂λ, thereby eliminating cross section dependence. The

projection matrix F̂λ is obtained by an orthogonalisation procedure that builds on a

moment based method for estimating the factor loadings λi and the covariance matrix

13



Σε of the idiosyncratic errors.16 Following the terminology of Jang and Shin (2005), this

proceeding will be denoted projection de-factoring.

The transformed data h+
it = F̂λhit is then used to perform individual ADF regressions.

Since h+
it are asymptotically uncorrelated across i, standard panel unit root tests with the

de-factored data are feasible.

PS propose to combine p-values of the univariate ADF regressions with de-factored data

to construct meta-statistics just as in Choi (2001) or DHT to test for unit roots in the

panel.17 The first test statistic is a Fisher type and given by18

P = −2
N−1∑

i=1

ln(pi) (9)

while the second statistic is a inverse normal test, denoted

Z =
1√
N

N−1∑

i=1

Φ−1(pi) (10)

Once again, pi defines the p-values of the univariate ADF tests with de-factored data and

Φ−1 is the inverse of the standard normal distribution. For fixed N and as T → ∞, P

converges to a χ2
2(N−1) distribution and Z to a standard normal distribution.

PS provide guidance to the small sample performance of their proposed tests via Monte

Carlo experiments. It is shown that the tests have good size and power properties even

in cases were N = 10 and T = 50.19 The results for the PS panel test for a homogeneous

unit root in average hours worked is reported in table 6. Note that the test results rely

on a balanced panel.

Both the P and the Z statistic strongly imply not rejecting the unit root hypothesis for

the intercept only as well as the intercept and trend specification.

So far, the test of Pesaran and PS failed to reject the unit root hypothesis for hours

worked when allowing a single factor structure in the composite error term. In the next

16Cf. PS, p. 237 for details to the orthogonalisation procedure.
17In fact, PS propose two additional statistics to test for a homogeneous unit root in the panel that

build directly on the coefficient estimates of the individual autoregressive parameters. PS refer to them

as G tests. However, as PS demonstrate by means of simulation experiments that the P and Z test have

considerably greater power than the G tests, they are not pursued here.
18The sums of the test statistics goes over i to N − 1 since the transformation due to removal of the

cross section dependence in the limit reduces the panel to dimension N − 1. Cf. PS, p. 238.
19Jang and Shin (2005) report an experimental size of 9.7% at the 5% nominal level for the PS panel

unit root procedure and a sample with N = 25 and T = 50. However, their experiment is not strictly

comparable to the PS experiment since Jang and Shin (2005) base statistics on simple averages of t-values

instead of considering the P and Z statistics.
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Table 6: Results of PS panel test

Intercept Intercept and trend

Fisher P test 17.09 33.93

p-value 0.99 0.91

Inverse normal Z test 7.57 2.62

p-value 1.00 1.00

Notes: Computational work was performed in GAUSS. A GAUSS code is available from Donggyu

Sul. Here, the lag order of the univariate ADF regressions is chosen based on the top-down method.

Maximum number of lags was set to 10. N = 24 and T = 56.

section, it is investigated if there is more than one factor causing the dependence pattern

of the data.

4.3.4 Moon and Perron (2004, MP)

The MP test for a homogeneous unit root is similar to the PS test in that it also removes

dependency that arises from common factor by projection de-factoring. Yet it differs

from the PS proceeding mainly in two ways. First, it allows cross section dependence to

originate from more than one common factor. Secondly, the derivation of the projection

matrix differs from the PS method. MP estimate the factor loadings λi, which are required

to obtain the projection matrix, by a principal component estimation scheme.

MP assume that the error term from equation (3) follows

uit = λ′

ift + eit (11)

where in this case ft is a (K × 1) vector of common unobserved factors and λi is the

corresponding (K×1) vector of factor loadings. Similar to the assumptions of Pesaran and

PS, the idividual specific error components eit and the common factors ft follow stationary

and invertible MA(∞) processes that are independent of each other.20 In the unit root

case, φi = 1 in equation (3) and this implies that the factors and idiosyncratic components

integrate to
∑t

s=1 fs and
∑t

s=1 eis, respectively. By assumptions, MP allow the non-

stationary factors to cointegrate while cointegration among the integrated idiosyncratic

errors is excluded.

MP’s testing procedure is summarised as follows. In a first step, under the null hypoth-

esis of a homogeneous unit root in equation (3), the pooled OLS estimator φ̂pool of the

autoregressive coefficient is obtained. This estimator is used to construct an estimate of

the composite error terms ûit = hit − φ̂poolhit−1 and by means of principal components

20Cf. MP, pp. 84 for the full set of assumptions.
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analysis, an estimate of the factor loadings Λ̂ = (λ̂1, ..., λ̂N)′ is attained. The (N × K)

matrix Λ̂ is then utilised to construct the projection matrix Q�

Λ = IN − Λ̂(Λ̂′Λ̂)−1Λ̂′ for

removing common factor effects from the original data. However, this procedure requires

the knowledge of the number of common factors K. In practise, this not the case and the

number of factors need to be estimated. For these purposes, MP suggest to use the infor-

mation criteria of Bai and Ng (2002) which necessitate the setting of a maximal number

Kmax of factors.

With the projection matrix at hand, MP propose the following modified pooled estimator

of the de-factored data:21

ρ̂∗

pool =
tr(H−1Q

�

ΛH ′) − NTγ̂N
e

tr(H−1Q
�

ΛH ′

−1)
(12)

In equation (12), tr(.) is the trace operator and γ̂N
e an estimator of the cross-sectional

average of the one-sided long-run variance of the idiosyncratic errors eit in (11) and is

meant to account for serial correlation in the transformed idiosyncratic errors eit.

MP suggest to use the following t-statistics for testing the homogeneous unit root hy-

pothesis against the heterogeneous alternative:

t∗a =

√
NT (ρ̂∗

pool − 1)
√

2ϕ̂4
e/ω̂

4
e

(13)

t∗b =
√

NT (ρ̂∗

pool − 1)

√
1

NT 2
tr(H−1Q

�

ΛH ′

−1)

(
ω̂e

ϕ̂2
e

)
(14)

Equation (13) and (14) involve estimators of the long-run variances ω2
ei

of eit, where ω̂2
e is

an estimator for the cross sectional average of ω̂2
ei

and ϕ̂4
e a cross sectional average of ω̂4

ei
.

As MP note, averaging the individual specific long-run variances should remove some of

the uncertainty inherent in estimation of long-run variances and improve unit root testing

over univariate counterparts. However, bias in the estimation of these variances will not

be removed through averaging.

MP show that under the null hypothesis, the statistics t∗a and t∗b converge to a standard

normal distribution as N → ∞ and T → ∞ with N/T → 0.

MP also demonstrate that their tests have no power against local alternatives in the case

where heterogeneous deterministic trends exit in the data. Therefore, the tests should

not be used if one assumes linear time trends in the deterministic components of the data

generating process of (3).

The simulation experiments of MP confirm the good power and size results of the t-tests,

especially when T = 300. They also conclude that the number of factors is estimated

21The vectors hi = (hi2, ..., hiT ) and hi,−1 = (hi1, ..., hiT−1) have been horizontally concatenated to

the matrices H and H−1.
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imprecisely for a small number of cross sections (N = 10). If the number of cross-sections

is at least 20, the number of factors can be estimated with high precision.22 Since MP do

not consider samples with less than 100 time series observations in their simulation, the

applicability of the MP procedure for the present panel data of hours worked is assessed

with help of the experiments of Gengenbach, Palm and Urbain (2004) and Gutierrez

(2005).

From the tables of Gengenbach, Palm and Urbain (2004)23 it can be seen that both

statistics of MP have rejection frequencies lower than the nominal size if T = 50 and

N = 10 or N = 50, irrespective of whether the non-stationarity originates from the

idiosyncratic components or common factors. For the near unit root case, power of the

MP test is good if N > 10.

Although Guiterrez (2005) concludes that the MP tests in general show good size and

power for various values of N and T and different model specifications, the results also

indicate that for N = 20 and T = 50 the t∗a is undersized while t∗b has in general rejection

frequencies higher than the nominal size.24

As mentioned above, in applied work the number of common factors needs to be estimated.

In conducting the MP test for hours worked, the seven information criteria for estimating

the number of factors that are due to Bai and Ng (2002) are considered.25

The application of the information criteria to the logarithm hours worked in the balanced

OCED panel results in inconclusive estimates of the number of factors. The criteria

PCp1, PCp2, PCp3 and ICp3 are highly sensitive to the choice of Kmax and always choose

the maximum number Kmax. ICp1 selects two numbers of factors if Kmax is less than

12. For Kmax > 12, the chosen number of factors by ICp1 also strictly monotonically

increases with K = Kmax and always ends up with K = Kmax. The criteria ICp2 always

prefers K = 1 as long as Kmax < 17. For Kmax > 17, the chosen number of factors is

Kmax. BIC3 also prefers one factor as long as the maximum number does not exceed 6.

For higer values of Kmax, the BIC3 monotonically increases as well. The latter is the

preferred criteria of MP in small samples.26

Congruent results are obtained when setting Kmax = 6 and focusing on ICp2 and BIC3

in which case it is recommended to assume one common factor. However, for robustness

check, the case K = 2 and K = 6 is also considered below. Under the assumption of one

common factor, the data generating processes of the MP, PS and Pesaran tests are the

22This is due to Bai and Ng (2002).
23Cf. Gengenbach, Palm and Urbain (2004), pp. 26. The comments refer to the simulation results

assuming a single common factor
24CF. Guiterrez (2005), p. 11, table 1.
25Cf. MP, pp. 93 or Bai and Ng (2002), pp 201 for a detailed description of these information criteria.
26In absence of a formal criterion, MP and Bai and Ng (2002) set Kmax = 8 in their simulation studies

for all values of N and T .
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same and the only difference is in the treatment of the common unobserved factor in the

estimation strategy.

As in MP, the long-run variances are estimated using the Andrews and Monahan (1992)

method. Tabel 7 shows results of the MP panel unit root test for hours worked.

Table 7: Results of MP panel test

K 1 2 6

t∗a -0.09 -0.10 -0.10

p-value 0.46 0.46 0.46

t∗b -9.71 -9.16 -11.72

p-value 0.00 0.00 0.00

Notes: Computational work was performed in Matlab. A Matlab code is available from Benoit Perron.

Intercept only case. N = 24 and T = 56.

The t∗a statistic implies not rejecting the null of a homogenous unit root in the panel for

the assumption of one, two or six common factors. In contrast, the t∗b statistics rejects for

all specifications. When considering the results of both test statistics, the conclusions to

be drawn are highly contradictory. There is some evidence that the t∗b statistic is oversized

in small samples in Gutierrez (2005). Since there is no general guidance as to which t-

statistic should be preferred in applied settings, the MP test alone offers no direction

in the present analysis. However, the results of the previous tests suggest to put more

confidence into the t∗a in the present estimation and to conclude that the MP panel unit

root test also fails to reject the null hypothesis.

4.3.5 Bai and Ng (2004, BN)

Instead of treating the common factors as a nuisance, they become a direct object of

further investigation in the BN testing framework. BN build on very similar assumptions

as MP. BN call their testing procedure Panel Analysis of Non-stationarity in Idiosyncratic

and Common components (PANIC), whereas the acronym nicely summarises the intended

aim: While allowing the data being driven by one or more common factors and idiosyn-

cratic components, the time series properties of these elements are assessed separately

without a priori knowledge whether these elements are stationary or integrated. Since

the panel unit root tests give evidence for the non-stationarity of hours worked so far, the

BN test is employed to determine the source of non-stationarity. On the grounds of the

previous analysis, it is assumed throughout that hours worked are driven by idiosyncratic

elements and a single unobserved common factor.27

27If there is more than one common integrated factor, these factors need to be tested for cointegration

in order to obtain the number of common stochastic trends. BN explain the testing strategy for this case.
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In the presence of a single common factor, the data generating process of BN is

hit = dit + λiFt + Eit (15)

where the common factor Ft and the idiosyncratic errors Eit follow AR(1) models with

a polynomial lag structure of i.i.d. shocks. Concerning the deterministic elements dit,

an intercept or a trend or both are allowed. If the errors Eit are independent across

units, i.e. if the cross section dependence can be effectively represented by a common

factor structure like in the Pesaran, PS and MP setting, pooled tests for unit roots in the

idiosyncratic components are feasible. An appealing feature of the pooled tests is that

they can be regarded as a panel test of no cross-member cointegration. The workings of

the latter will be demonstrated below.

The strategy to consistently estimate the individual components of (15) even if some or

all elements of Ft and Eit are integrated of order one is as follows. In a first step, the

hit’s are differenced if the deterministics include only an intercept or are differenced and

demeaned if dit includes and intercept and trend.28 Like in MP, the principal component

method is employed with the differenced data and the common factors, factor loadings

and residuals are estimated.

In a next step, the estimates of the differenced factors and idiosyncratic error components

are re-integrated à la x̂t =
∑t

s=2 ∆x̂s and separately tested for unit roots. Let Êit and

F̂t be the re-integrated estimates of the common factor and idiosyncratic components.

Since Êit = hit − λ̂iF̂t, Jang and Shin (2005) denote such a proceeding as subtraction

de-factoring. For unit root testing, BN propose to employ the usual t-statistics of ADF

regressions in the common factor and idiosyncratic components, respectively. For the

model with an intercept only, the t-statistics to test the common factor for a unit root

is denoted ADF c
�

F
. If the model contains an intercept and linear trend, the statistic is

ADF c,τ
�

F
. Accordingly, the t-statistics for individual unit root tests of the idiosyncratic

components are denoted ADF c
�

E
(i) and ADF c,τ

�

E
(i).

BN show that the asymptotic distribution of ADF c
�

E
(i) coincides with the usual DF dis-

tribution (no intercept), while ADF c
�

F
has the same limiting distribution as the DF test

for the intercept only case. Furthermore, ADF c,τ
�

F
follows a DF distribution for the case

with intercept and trend in the limit. However, the limiting distribution of ADF c,τ
�

E
(i) is

proportional to the reciprocal of a Brownian bridge and critical values are not tabulated

yet and need to be simulated.29

For independent Eit, BN propose a pooled test for unit roots in Êit due to Choi (2001)

that builds on combining p-values pc
�

E
(i) of ADF c

�

E
(i) and are similar to the test statistics

of PS and DHT:

P c
�

E
=

−2
∑N

i=1 ln pc
�

E
(i) − 2N

√
4N

(16)

28For details to this procedure, cf. BN, pp. 1137
29Since this is beyond the scope of the present paper, this test will no bet considered below.
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The test statistic P c
�

E
is asymptotically distributed standard normal. The hypothesis of

a homogeneous unit root in the idiosyncratic components is rejected for large positive

values P c
�

E
.

The pooled test can also be regarded as a panel test of no cross-member cointegration

since no stationary combination of the individual variables hit can be obtained such that

the unit root hypothesis holds for all i. On the other hand, if the common factor is

integrated of order one and there are some stationary Eit’s, then the common factor and

the stationary variables are cointegrated with vector (1,−λi)
′. If the P c

�

E
statistic rejects

and all idiosyncratic components can be seen as stationary, the hit’s cointegrate and the

matrix Q�

Λ of MP for de-factoring the data serves as a cointegration matrix. 30

BN enrich their work with simulation studies to investigate the small sample performance

of the PANIC procedure. They conclude that the proposed tests have good power even

when N = 40 and T = 100. However, these values are nearly twice as large as the

panel dimension of hours worked. Jang and Shin (2005) find that tests based on the

BN method have sizes close to the nominal level when T = 50 and N = 25 and power

is slightly better than for the PS and MP procedure. In the case where a unit root is

present in the common factor and in all idiosyncratic errors, the simulation experiment

of Gegenbach, Palm and Urbain (2004) show that the tests of BN for the intercept only

case have rejection frequencies close to the nominal size even when N = 10 and T = 50.

If there is a unit root in the common factor and the idiosyncratic components are near

unit root, the ADF c
�

F
rejects with a frequency at the nominal level, while P c

�

E
has more

power than ADF c
�

E
(i). Although the PANIC method is derived for applications with large

dimensional panels where a high number of cross sections permits consistent estimation

of the common factors while the large T dimension allows application of central limit

theorems, there is some simulation evidence that the BN test gives reasonable guidance

also in samples of moderate size.

Table 8: BN results for common factor and pooled idiosyncratic components

ADF c
�

F
ADF c,τ

�

F
P c

�

E

test statistic -1.98 -0.90 -0.48

p-value 0.30 0.95 0.69

Notes: MacKinnon (1996) p-values. N = 24 and T = 56.

Results for the ADF c
�

F
, ADF c,τ

�

F
and P c

�

E
test are shown in table (8). Test statistics for the

common factor are computed for the intercept and intercept and trend case. In both cases,

the test does not reject and an integrated common factor can be assumed. In addition,

the pooled test of the idiosyncratic errors also fails to reject in the intercept only case

30Cf. Gegenbach, Palm and Urbain, p. 13, for these points.
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Table 9: Results of BN’s test for unit roots in idiosyncratic errors

ADF c
�

E
(i) p-val. Imp ADF c

�

E
(i) p-val. Imp

Australia -0.26 0.59 3.02 Ireland 0.03 0.69 4.62

Austria -1.10 0.24 3.84 Iceland -0.09 0.65 3.68

Belgium -0.15 0.63 3.33 Italy -0.72 0.40 5.88

Canada -0.11 0.64 3.17 Japan -1.09 0.25 0.60

Switzerland -0.71 0.41 9.18 Luxembourg 0.10 0.71 4.92

Germany 0.52 0.83 4.81 Netherlands 0.06 0.70 4.88

Denmark 0.16 0.73 3.26 Norway -1.52 0.12 10.72

Spain -1.92 0.05 0.95 New Zealand -0.18 0.62 3.67

Finland 0.45 0.81 4.82 Portugal 0.48 0.82 5.38

France -0.57 0.47 6.01 Sweden -0.08 0.65 2.20

United Kingdom -0.88 0.33 9.73 Turkey -1.62 0.10 5.57

Greece -1.62 0.10 5.57 United States -0.38 0.54 3.06

Notes: Computational work was performed in Matlab. A Matlab code is available from Serena Ng. MacK-

innon (1996) p-values. Lag length was chosen due to the minimum of the modified Akaike information

criterion. Imp = St.Dev(
�

λi

�

Ft)

St.Dev(
�

Eit)
. N = 24 and T = 56.

so that two conclusions can be drawn. First, the non-stationarity of hours worked for

which nearly all panel tests of the previous sections found evidence, seems to originate

from a common as well as country specific sources. Second, the insignificance of the P c
�

E

statistic implies that the non-stationarity hypothesis can not be rejected jointly. Since

testing the idiosyncratic errors jointly for a homogenous unit root amounts to a test of no

cointegration, the outcomes here give evidence that there is no cointegration among the

individual time series of hours worked.

The results for individual unit root tests of the country specific errors are reported in

table 9. The insignificance of the ADF c
�

E
(i) for all countries except Spain confirms the

result of the P c
�

E
test. For Spain it can be conjectured at the 10% level of significance

that hours worked and the common factor cointegrate since these two components form

a stationary linear combination.

Columns 4 and 8 of table 9 show the impact of the common factor in relation to the

idiosyncratic component. This measure is calculated as the standard deviation of the

country specific factor effect (λ̂iF̂t) divided by the standard deviation of the estimated

errors Êit. This ratio is greater than one for all countries except for Spain and Japan and

indicates that most of the variation in the logarithm hours worked arises from the common

factor. For Spain and Japan, idiosyncratic elements are more important in driving the

evolution of hours worked.

To get a visual impression of the decomposition of the BN procedure, the graphs of the

estimated factor component λ̂iF̂t and country specific elements for Japan, Germany and
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Norway are depicted by the figures 1 to 3. These countries are chosen because they show

a low, medium and high impact of the common factor in relation to their country specific

effects.

Figure 1: Japan
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For Japan, it can be seen that the time path of hours worked is dominated by country spe-

cific influences, while the German evolution of hours worked is marked by the downward

trend of the common factor, which is overlaid by the idiosyncratic component. Norway,

on the other side, shows a development of hours that is mainly in line with the common

factor and exhibits country specific influences with a cyclical movement around the factor

trend.

It is important to notice that actual hours worked and the common factor do not de-

scribe some kind of equilibrium as the idiosyncratic errors, defined as the residual from

the linear relationship between the country specific factor influence and actual hours, are

non-stationary. The decomposition rather shows that, although a common integrated

factor can substantially influence the development of hours (e.g. Norway), the persis-

tent behaviour of this variable is not solely due to a common stochastic trend but also

characterised by persistent country specific determinants.
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Figure 2: Germany
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5 Summary and conclusion

The results of the present analysis show that evidence in favour of the non-stationarity

hypothesis of hours worked per employee in the OECD countries is vast.

Simple ADF tests for individual countries are not able to reject the unit root hypothesis

both in the intercept and intercept and linear trend model.31. However, univariate unit

root tests lack power against local alternatives in finite samples. This is one of the reasons

why researchers sometimes doubt the implications of these tests when the alternative

under consideration is a stationary but persistent series. Panel unit root tests are able

to substantially increase power over univariate tests if the panel data is cross sectionally

independent. In the presence of cross section dependence, this needs to be accounted for

in order to retain the high power properties of these tests.

In the present analysis, it was first shown that the cross sectional observations for hours

worked are characterised by heterogeneous cross section dependence. Second, panel unit

root tests of the second generation that account for this dependence were applied. For

robustness reasons, five different panel unit root tests were conducted and only under rare

circumstances, rejections of the homogeneous unit root hypothesis were observed.

Besides diagnosing the property of non-stationarity quite robustly, more interesting fea-

tures of the data show up. When allowing hours worked to be influenced by a common

31New Zealand is the solitary exception, where the individual ADF test rejects at the 10% level of

significance in the intercept only specification
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Figure 3: Norway
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factor and applying the PANIC procedure of Bai and NG (2004) to decompose the factor

structure, the following stands out: Non-stationarity of hours worked originates both from

an integrated common factor and an integrated idiosyncratic component. Since this holds

for all countries, it is an implication for the individual time series being not cointegrated

along the cross sectional dimension.

However, the empirical analysis here refers to rather abstract and intangible concepts

like ‘common unobserved factors’ and ‘persistent idiosyncratic components’ which help to

empirically model the data properties quite well, but give no further insights into economic

relations. The cited literature in the introduction to this paper illustrates rudimentary

that various candidates for persistently influencing the aggregate labour supply and for

explaining cross country differences have been proposed and also empirically investigated.

Further work in this direction should follow.

Based on the results of the present analysis, it is strongly recommended to transform

hours worked to obtain a stationary time series if one employs econometric methods that

rely on standard asymptotic theory or to use the analytical tools that have been developed

for investigating non-stationary variables if one considers the level of hours worked.
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Figure 4: Hours worked per worker
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Figure 5: Hours worked per worker
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Figure 6: Hours worked per worker

Italy

1, 5 0 0

1, 7 0 0

1, 9 0 0

2 , 10 0

19 5 0 19 6 0 19 7 0 19 8 0 19 9 0 2 0 0 0

Japan

1, 6 0 0

1, 7 5 0

1, 9 0 0

2 , 0 5 0

19 5 0 19 6 0 19 7 0 19 8 0 19 9 0 2 0 0 0

South Korea

2 , 0 0 0

2 , 2 0 0

2 , 4 0 0

2 , 6 0 0

19 5 0 19 6 0 19 7 0 19 8 0 19 9 0 2 0 0 0

Luxembourg

1, 3 0 0

1, 6 5 0

2 , 0 0 0

2 , 3 5 0

19 5 0 19 6 0 19 7 0 19 8 0 19 9 0 2 0 0 0

Mexico

1, 3 0 0

1, 6 5 0

2 , 0 0 0

2 , 3 5 0

19 5 0 19 6 0 19 7 0 19 8 0 19 9 0 2 0 0 0

Netherlands

1, 2 0 0

1, 5 5 0

1, 9 0 0

2 , 2 5 0

19 5 0 19 6 0 19 7 0 19 8 0 19 9 0 2 0 0 0

Norway

1, 2 0 0

1, 5 0 0

1, 8 0 0

2 , 10 0

19 5 0 19 6 0 19 7 0 19 8 0 19 9 0 2 0 0 0

New Zealand

1, 6 0 0

1, 8 0 0

2 , 0 0 0

2 , 2 0 0

19 5 0 19 6 0 19 7 0 19 8 0 19 9 0 2 0 0 0

30



Figure 7: Hours worked per worker
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