
Baule, Rainer

Article  —  Published Version

Credit risk in derivative securities: A simplified approach

Journal of Futures Markets

Provided in Cooperation with:
John Wiley & Sons

Suggested Citation: Baule, Rainer (2021) : Credit risk in derivative securities: A simplified approach,
Journal of Futures Markets, ISSN 1096-9934, Wiley, Hoboken, NJ, Vol. 41, Iss. 5, pp. 641-657,
https://doi.org/10.1002/fut.22189

This Version is available at:
https://hdl.handle.net/10419/242019

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1002/fut.22189%0A
https://hdl.handle.net/10419/242019
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Received: 14 January 2020 | Revised: 2 January 2021 | Accepted: 2 January 2021

DOI: 10.1002/fut.22189

RE S EARCH ART I C L E

Credit risk in derivative securities: A simplified approach

Rainer Baule

Faculty of Business Administration and
Economics, University of Hagen, Hagen,
Germany

Correspondence
Rainer Baule, Faculty of Business
Administration and Economics,
University of Hagen, Universitätsstraße
41, 58084 Hagen, Germany.
Email: rainer.baule@fernuni-hagen.de

Abstract

The pricing of options and other derivatives which are subject to the default

risk of the writer usually requires the calibration of a sophisticated model and

substantial effort in determining the input parameters. We propose a very

simple method to incorporate correlated credit risk into the pricing of vul-

nerable derivatives. The approach is based upon some approximations of more

complex models and requires a minimum of input parameters. It is therefore

easily applicable and maintains the accuracy of sophisticated models to a

large extent, as shown in numerical studies for call options, put options, and

discount certificates.
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1 | INTRODUCTION

Derivative securities which are not settled by a clearing house with a central counterparty or guaranteed by a third
party are subject to the credit risk of the writer. This holds true in particular for retail derivatives, which banks offer to
individual private investors. Retail derivatives have attracted increasing interest, both in practice and in the academic
literature, over the past two decades. Numerous studies have focused on the pricing of such products, for example,
Henderson and Pearson (2011) and Egan (2019) for the U.S. market, Schertler (2016) and Pelster and Schertler (2019)
for the German market, Wallmeier and Diethelm (2009) for the Swiss market, and Célérier and Vallée (2017) for several
European markets. The goal of this paper is to provide a simple model to account for credit risk in the pricing of
derivative products. In contrast to other approaches, the model allows for correlation between market risk and credit
risk, but the application remains easily tractable in terms of input data and numerical complexity.

Banks offer their derivative retail products at prices that exceed the theoretical value by a certain amount—the so‐
called mark‐up or gross margin. While private investors are willing to pay these margins to gain access to derivatives
markets, they reflect the issuing bank's profit before structuring, hedging, and other costs. As margins have fallen
below one percent of the product price for standard products in recent years, credit risk plays an increasingly important
role in their analysis. Hull and White (1995) have proposed a simple way to incorporate credit risk into the theoretical
value of a credit‐risky derivative: Assuming independence between credit risk and market risk (i.e., between the issuer
and the underlying security), the value is simply obtained by discounting the default‐free value with the credit spread
of the issuer.
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Assuming such independence, however, can cause seriously biased results. A prime example of this is a warrant written
by a bank on its own stock. In the case of a call warrant, credit risk subtracts nothing from the default‐free value, because in
any case where the buyer has a claim, it follows that: the call is in the money, the stock price of the bank is above the strike
price, and the bank has not defaulted. In the case of a put warrant, on the other hand, the claim of the buyer is largest when
the stock price has fallen to zero, but this likely means insolvency of the bank and the loss of the claim.

These simple examples show that the actual (negative) value of credit risk depends upon the connection between
issuer and underlying, as well as on the structure of the derivative. Baule et al. (2008) show that an assumption of
independence according to Hull and White (1995) leads to a considerable overestimation of the credit risk for a sample
of real‐world derivatives. They build a structural model which allows for the incorporation of correlations between the
issuer and the underlying. Interestingly, while many subsequent papers acknowledge their work, they continue to use
the simple model of Hull and White. Papers that cite the Baule et al. (2008) paper, but nonetheless use the Hull and
White (1995) approach, include Baule (2011), Baule and Tallau (2011), Baule and Blonski (2015), Entrop et al. (2016),
Schertler (2016), Schertler and Stoerch (2015), Schertler and Stoerch (2018), and Pelster and Schertler (2019).

A likely reason for this persistence is the appealing simplicity of the Hull and White (1995) approach, which only
requires information about the credit spread of the issuer. In contrast, with the Baule et al. (2008) approach, a structural
model of the issuer has to be calibrated, requiring information about its asset volatility, default point, and recovery rate, as
well as correlation of its asset value to the underlying price. There is thus a gap between awareness of the shortcomings of
the Hull and White approach and the usability of the Baule et al. model. The aim of this paper is to close this gap by
proposing an approach that is easily applicable but which takes into account the relation between market risk and credit
risk. The basic idea is to approximate the payoff structure of the derivative by combining a position in the underlying and in
a zero coupon bond. While no correlation needs to be taken into account for the latter, we derive a simple formula for the
former which requires the correlation between underlying and issuer asset value as the only additional input variable. We
show that this approximation vastly improves the accuracy of the credit risk value compared to the Hull and White
approach for different derivatives, namely call warrants, put warrants, and discount certificates.

2 | MODELING CORRELATED CREDIT RISK

Johnson and Stulz (1987) pioneered the pricing of “vulnerable options” (i.e., options subject to default risk). In their
structural model, the option is the sole liability of its writer (or issuer). Klein (1996) extended the structural model and
allowed for exogenous recovery rates. The approach is further developed by Ammann (2001), for example, with
stochastic interest rates. The model of Baule et al. (2008), sketched in the following, is basically set up along the lines
given by the Klein (1996) approach, with the modification that absolute bankruptcy costs are fixed and do not depend
on the actual issuer asset value at default. Regarding the underlying, the assumed process under the risk‐neutral
measure is a standard geometric Brownian motion as in the Black and Scholes (1973) model:

dS r S dt σ S dW= + ,t t S t
S (1)

where St is the underlying stock price1 at time t , σS is its volatility, r is the risk‐free rate, andWS is a standard Wiener
process. We should note that this assumption merely affects the valuation of credit risk; for determining the default‐
free derivative value, any sophisticated model can be used, for example, with time‐varying or stochastic volatility.
Regarding the writer or issuer of the derivative, its asset value also follows geometric Brownian motion, in line with the
seminal approach of Merton (1974):

dV r V dt σ V dW= + ,t t V t
V (2)

whereVt is the issuer asset value at time t , σV is its volatility, andWV is a second Wiener process. The two processes are
correlated with parameter ρ:

Corr dW dW ρ( , ) = .S V (3)

A default event occurs if and only if the asset value at the expiry dateT of the derivative is below the default point D. In
the event of a default, the buyer of the derivative receives a constant fraction δ of the promised payoff.

1
In the following, we refer to the underlying as a stock. Of course, other underlying types such as stock indices are also possible.
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Baule et al. (2008) show that in this framework, the value of a defaultable zero coupon bond with maturity T and
notional 1 is given by

ZB e δ N b= [1 + ( − 1) (− )],d rT
0

−
2 (4)

where ⋅N ( ) represents the cumulative standard normal distribution function. N b(− )2 equals the risk‐neutral T ‐year
default probability, with b2 given by

∕ ∕( )
b

V D r σ T

σ T
=
ln( ) + − 2

.
V

V
2

0
2

(5)

The value of the defaultable zero coupon bond can also be expressed in terms of its credit spread s and the value ZB0 of
a risk‐free zero coupon bond:

⋅ ⋅ZB e ZB e e= = .d sT sT rT
0

−
0

− − (6)

Comparing (4) with (6) yields

⇒

e δ N b

N b
e δ

δ

= 1 + ( − 1) (− )

( ) =
−

1 −
.

sT

sT

−
2

2

− (7)

Now we consider a defaultable stock certificate. At maturity T , this certificate pays the buyer an amount equal to the
stock price ST , as long as the issuer has not defaulted. In the case of an issuer default, it pays the fraction δ ST . The
value of such a certificate is given by Baule et al. (2008):

S S δ δ N a= [ + (1 − ) ( )]d
0 0 2 (8)

with

∕ ∕( )
a

V D r σ ρ σ σ T

σ T
b ρ σ T=

ln( ) + − 2 +
= + .

V V S

V
S2

0
2

2 (9)

It follows

⋅

⋅

S S δ δ N b ρ σ T

S δ δ N N
e δ

δ
ρ σ T

= [ + (1 − ) ( + )]

= + (1 − )
−
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+ ,

d
S

sT

S

0 0 2

0
−1

−⎡
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⎛
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⎛
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⎞
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⎞
⎠⎟

⎤
⎦⎥⎥

(10)

using (7).
As a first approximation, we set the recovery rate δ = 0. This might sound like a rough approximation; however, we

will calibrate the model to the credit spread s of the issuer. As a benchmark, the model should perfectly explain this
spread, or, equivalently, the price of a defaultable zero coupon bond of the issuer. This can be achieved by various
combinations of the parameters σV (the asset volatility), ∕V D0 (the leverage ratio), and δ (the recovery rate). The
tractability of the model relies upon the fact that none of these parameters has to be explicitly specified; only the credit
spread s is required as an input. We therefore fix δ at an arbitrary value; for simplicity, we set it at δ = 0. The numerical
analysis will show that a different value of δ only has a minor impact on the results for defaultable derivatives.

With this approximation, the value of a defaultable stock certificate simplifies to

⋅S S N N e ρ σ T= ( ( ) + ).d sT
S0 0

−1 − (11)

This equation yields an “effective credit spread” for the stock certificate, sS
eff , which we label the discount factor to

obtain the defaultable value from the default‐free value:

⇒

S e S

s
T

N N e ρ σ T

=

=−
1
ln ( ( ) + ).

d s T

S
eff sT

S

0
−

0

−1 −

S
eff

(12)

The effective credit spread is specific for the stock certificate.
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Now we consider an arbitrary derivative on the stock, with price St, written by the defaultable issuer, with asset
value Vt . As Baule et al. (2008) show, the valuation requires the calibration of the complete model, and involves a
bivariate normal distribution. The extent to which the correlation between the underlying stock price and the issuer
asset value influences the value of credit risk (i.e., the derivative‐specific effective credit spread) depends upon the
payoff structure of the derivative. We will approximate this payoff structure by combining a stock certificate and a zero
coupon bond.

To this end, we assume that the default‐free value ≔f f S( )0 0 0 of the derivative and its delta Δ0, the first derivative
with respect to the underlying price, are given. These values can be obtained from the Black and Scholes (1973) model
or from any other pricing model. The function ⋅f ( )0 denotes the default‐free value dependent on the underlying level.
As a first attempt, we approximate the payoff πT by Δ0 positions in the underlying and a remaining position in a zero
coupon bond:

≈ ⋅ ⋅ ⋅π S f S e ZBΔ + ( − Δ ) .T T
rT

T0 0 0 0 (13)

(Note that ZB = 1T .) Under this approximation, the value of the defaultable derivative is given by

≈ ⋅ ⋅ ⋅

⋅ ⋅

f S f S e ZB

S f S e

Δ + ( − Δ )

= Δ + ( − Δ ) .

d d rT d

d sT

0 0 0 0 0 0 0

0 0 0 0 0
−

(14)

When there is no default risk, S S=d
0 0 and s = 0. Therefore, (14) yields f f=d

0 0.
However, the delta Δ0 is a symmetrical measure, which gives an approximation of the payoff profile according to

(13) both for upward and downward movements of the underlying. For the value of default risk, the promised payoff of
the derivative dependent on the default of the issuer is of primary interest. The linear approximation should therefore
be particularly good in cases when the issuer defaults. Default occurs when the asset value at time T falls below the
default point, D. We thus consider the conditional expected underlying level, given that the issuer asset value VT
reaches this default point:2

≔ ∣S E S V D[ = ].T T
− (15)

In Appendix A, it is shown that this underlying level is given by

⋅ ∕( )( )S S r ρ σ T ρ σ T N e= exp − 2 − ( ) .S S
sT−

0
2 2 −1 − (16)

With this value, we calculate a “downside delta” as

f S f S

S S
Δ̃ =

( ) − ( )

−
.0

0 0 0
−

0
−

(17)

The motivation for the downside delta is as follows: We want to approximate the derivative payoff by a position in the
underlying and a position in the zero coupon bond, similar to the usual replication approach in derivatives pricing. In a
dynamic replication, the number of positions in the underlying is given by the standard delta. But this delta varies over
time, and the approximation requires a static replication. Most relevant for the approximation are underlying paths that
correspond to a default of the issuer. This event is related to an expected underlying level S−. The downside delta can
therefore be interpreted as an average delta over all underlying paths that start at the current level, S0, and end at the
expected level at default, S−.3

Thus, the downside delta can be used instead of the original delta to obtain a better approximation than by
using (14):

≈ ⋅ ⋅f S f S eΔ̃ + ( − Δ̃ ) .d d sT
0 0 0 0 0 0

− (18)

Figure 1 visualizes the approximation of the payoff profile for a discount certificate by the delta approach (14) and the
downside delta approach (18).

2
Alternatively, we have also considered the expected underlying level, given that the issuer asset value VT falls below the default point, ∣ ≤E S V D[ ]T T . However, this conditional expectation yields

slightly worse results on average.
3
In this interpretation, the dependence of delta upon the remaining time to maturity is neglected.
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With the approximation based on the downside delta Δ̃0, the effective credit spread seff is given by

⋅ ⋅e S f S e e fΔ̃ + ( − Δ̃ ) = .s T sT s T
0

−
0 0 0 0

− −
0

S
eff eff

(19)

Using the first‐order Taylor approximation of the exponential function, ≈e x1 +x , the effective credit spread
of the derivative is a weighted average of the actual credit spread s and the effective credit spread of a stock certificate
sS
eff (12):

≈
⋅ ⋅

s
S s f S s

f

Δ̃ + ( − Δ̃ )
.eff S

eff
0 0 0 0 0

0

(20)

Note that this value can fall below zero in certain cases when f0 is small. Thus the effective credit spread used for
valuation should be the maximum of 0 and the value given by (20).

Summing up, the effective credit spread of a vulnerable derivative can be calculated as follows:

• Input for credit risk valuation: unconditional credit spread, s; correlation between underlying and issuer, ρ.
• Calculate effective credit spread for a vulnerable stock certificate, sS

eff (12).
• Calculate conditional stock price, S− (16).
• Calculate downside delta, Δ̃0 (17).
• Calculate effective credit spread, seff (20), subject to a minimum value of 0.

The risk‐adjusted value of the derivative is then obtained by discounting the risk‐free value with the effective credit
spread.

It should be noted that this approach nests the Hull and White (1995) model as a special case: When the correlation
parameter ρ is 0, Equation (12) yields s s=S

eff and the default‐free value is discounted with the unconditional spread.
Furthermore, for debt instruments whose payoff is uncorrelated with the issuer asset value (in particular for straight
bonds), the downside delta is 0, and Equation (20) also yields the unconditional credit spread.

What are the benefits of this simple approach over the Baule et al. (2008) model? First, it gets by with a minimum of
input requirements: Besides the unconditional credit spread s, only the correlation ρ between the underlying stock
price and the issuer asset value is required as an additional input parameter. In contrast, the Baule et al. model requires
the issuer asset volatility σV , its default point ∕D V0, and the recovery rate δ. Second, it is computationally easier to
handle, since it does not need a bivariate normal distribution.

Of course, the simplification comes at the cost of a potential inaccuracy. In the next section we conduct several
analyses about the additional model errors and their sources and relate them to the basic Hull and White (1995) model
error when correlation between market risk and credit risk is ignored.

FIGURE 1 Approximation of the payoff
profile for a discount certificate. At maturity a
discount certificate pays the holder an amount
equal to the level of the underlying stock (ST) or
a fixed cap (here, 10), whichever is smaller. The
payoff is given by the dashed line, the value by
the dotted line. A first linear approximation of
the payoff is based on the delta of the certificate
(dash‐dotted line). When the stock price risk is
positively correlated with the issuer's credit risk,
the pattern for decreasing underlying levels is
more crucial. Therefore, the approximation
based upon the downside delta (solid line) is
better suited to the valuation of credit risk. In
this example, the underlying level is 10, and the
time to maturity is 1 year
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3 | NUMERICAL STUDY

3.1 | The impact of correlation

Before going into the details of a model analysis, we take a look at the general impact of correlation on the price of a
vulnerable derivative. We consider three basic types of derivatives: call options, put options, and discount certificates.
For initial insight, the derivatives are at the money (underlying level and strike price equal to 10) and time to maturity
is 1 year. The underlying volatility is 0.2.

As a benchmark, we calibrate the Baule et al. (2008) model to an unconditional credit spread of s = 0.01. With a
recovery rate of δ = 0.5, this is achieved with a default point ∕D V = 0.80 and an issuer asset volatility of σ = 0.1197V .4

Figure 2 shows the derivative values dependent on the correlation between the underlying and the issuer asset
value. For call options, the value lies between the bounds determined by the Black and Scholes (1973) value and the
Hull and White (1995) value. For correlations above 0.5, the true value converges to the Black and Scholes value. Thus,
as long as the correlation is not very small, adjusting this value with the Hull‐White approach is worse than no
adjustment at all.

For put options, the true value is always lower than the Hull and White value. Therefore, the Hull and White
approach highly underestimates the necessary adjustment. Already for a correlation of 0.2, the correct adjustment must
be twice as large as in the Hull and White model.

For discount certificates, the impact is not so large. The value is again between the bounds of the Black and Scholes
and the Hull and White model. For a correlation of 0.5, the correct adjustment is about 80% of the Hull and White
adjustment.

3.2 | Effective credit spreads

Deriving an effective credit spread for a derivative according to (20) involves a number of approximations: To obtain
the simple formula, we have assumed a zero recovery rate and approximated the payoff profile by a straight line. This
static replication of the derivative by a stock certificate and a zero coupon bond is the basic model simplification. For
numerical convenience, we additionally used the first‐order Taylor series. In the following, we provide some numerical
tests to judge whether the simplifications still yield reasonable results. To this end, we compare the effective credit
spread for a vulnerable derivative obtained by the approximation outlined in this paper with that of the Baule et al.
(2008) model. We use the calibration of the previous section (unconditional credit spread of s = 0.01, recovery rate of
δ = 0.5, default point ∕D V = 0.80 , and issuer asset volatility σ = 0.1197V ).

Figure 3 shows the results for call options. The three graphs relate to correlations between underlying and issuer of
0.2, 0.5, and 0.8, respectively. Each graph shows the effective credit spread dependent upon the strike price of the call
for underlying volatilities of 0.1, 0.2, and 0.4. Most important is that the approximation (solid line) is fairly close to the
actual model value (dashed line) in all cases. Thus, the approach outlined here is a clear improvement over the Hull
and White (1995) approach (constant spread of 0.01). As for the size of the spread, the Hull and White assumption of
zero correlation considerably overestimates the actual spread, provided that the correlation or the strike price is not
very low. For a medium correlation of 0.5, the effective credit spread for an at‐the‐money call option is below 0.002 in
all cases.

Figure 4 shows the results for put options, replicating the correlation and volatility scenarios of Figure 3. Unlike call
options, the Hull and White (1995) approach now underestimates the actual credit spread considerably, in particular
when the put is out of the money. (Note that the scale of the y‐axis is 10 times larger than in Figure 3). For a correlation
of 0.5, the effective credit spread is larger than 0.03 in all cases. The approximation is still close to the Baule et al. (2008)
model, although some larger deviations occur for deep‐out‐of‐the‐money puts. However, it is noteworthy that the
absolute value of these puts is very small; for a medium volatility of 0.2, the put value falls below 0.01 when the
underlying level falls below 7.

Finally, Figure 5 shows the results for discount certificates. A discount certificate is a popular retail derivative that has
been the focus of several academic studies (including Baule, 2011; Baule et al., 2008; Entrop et al., 2016; Schertler, 2016,

4
Note that other combinations of ∕D V0 and σV lead to exactly the same results, as long as the credit spread and the recovery rate are matched.
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among others). This is simply a combination of a zero coupon bond and a short position in a put option (see also the payoff
diagram in Figure 1). The construction of the graphs in Figure 5 is analogous to those for call and put options in Figures 3
and 4. For discount certificates, the approximation is nearly identical to the actual model value. For small correlations
between underlying and issuer, the effective credit spread is only slightly below the unconditional value. The deviations
become larger with increasing correlation, with increasing underlying volatility, and with increasing strike level.

FIGURE 2 Value of a call option (upper
graph), put option (middle graph), and discount
certificate (lower graph), dependent on the
correlation between underlying and issuer asset
value. For each derivative, both the underlying
level and the strike price are 10, the underlying
volatility is 0.2, and the time to maturity is
1 year. The dashed line shows the derivative value
based on the Baule et al. (2008; BEW) model,
calibrated to a credit spread of 0.01 and a recovery
rate of 0.5. The solid line shows the approximation
based on Equation (20). The benchmark values of
the Black and Scholes (1973) and Hull and White
(1995) models are given by the long‐dashed lines
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FIGURE 3 Effective credit spread of a call
option. The underlying level is 10, and the time
to maturity is 1 year. The dashed line shows the
effective credit spread dependent on the strike
price, based on the Baule et al. (2008;
BEW) model, calibrated to a credit spread of 0.01
and a recovery rate of 0.5. The solid line shows
the approximation based on Equation (20). The
three graphs represent settings with correlations
between underlying and issuer asset value of 0.2
(upper), 0.5 (middle), and 0.8 (lower), each with
underlying volatilities of 0.1, 0.2, and 0.4

3.3 | Comparative static

While the effective credit spread allows for a first judgment of the appropriateness of the approach, in this section we
consider the ultimate output of the model, the derivative value. We calculate call values, put values, and discount
certificate values for a variety of strike prices, with five different models:
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FIGURE 4 Effective credit spread of a put
option. The underlying level is 10, and the time
to maturity is 1 year. The dashed line shows the
effective credit spread dependent upon the strike
price, based on the Baule et al. (2008; BEW)
model, calibrated to a credit spread of 0.01 and a
recovery rate of 0.5. The solid line shows the
approximation based on Equation (20). The
three graphs represent settings with correlations
between underlying and issuer asset value of 0.2
(upper), 0.5 (middle), and 0.8 (lower), each with
underlying volatilities of 0.1, 0.2, and 0.4

• Baule et al. (2008) model with recovery rate 0.5 (“true value”),
• Baule et al. (2008) model with recovery rate 0.0,
• simplified model using the effective credit spread according to Equation (20),
• Hull and White (1995) model, and
• Black and Scholes (1973) model.
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The derivatives follow the same structure as in Section 3.2. In particular, the initial underlying level is S = 100 , the time
to maturity is T = 1 year, and the unconditional credit spread is s = 0.01. For the volatility and the correlation we use
the intermediate values of σ = 0.2 and ρ = 0.5.

The model values are shown in Table 1. For call options, in line with the analysis in Section 3.1, the Black and
Scholes (1973) model values do not differ too much from the “true” values. In contrast, the Hull and White (1995)

FIGURE 5 Effective credit spread of a
discount certificate. The underlying level is 10,
and the time to maturity is 1 year. The dashed
line shows the effective credit spread dependent
upon the strike price (cap), based on the Baule
et al. (2008; BEW) model, calibrated to a credit
spread of 0.01 and a recovery rate of 0.5. The
solid line shows the approximation based on
Equation (20). The three graphs represent
settings with correlations between underlying
and issuer asset value of 0.2 (upper), 0.5
(middle), and 0.8 (lower), each with underlying
volatilities of 0.1, 0.2, and 0.4
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model values substantially underestimate the true values. The reason is that for call options, the effective credit spread
is considerably smaller than the unconditional spread. It is therefore better to go without any adjustment for credit risk
than to adjust by an amount which is far too large. The simplified approach suggested in this paper yields a con-
siderable improvement compared to Black and Scholes (1973) for in‐the‐money calls. The effect of the simple recovery
assumption is of similar size as the remaining approximation (linearization of the payoff). The largest error occurs for
at‐the‐money calls, but remains fairly small with 0.0008 in absolute terms and 0.08% in relative terms.

For put options, the situation is reversed: The Hull and White (1995) model underestimates the value of credit risk.
Thus, the Black and Scholes (1973) model without any adjustment performs worse. But also the Hull and White
approach only goes half way for in‐the‐money puts and less for out‐of‐the‐money puts. It is therefore also not re-
commendable to use a model without correlation adjustment for put options. The simplified model is fairly close to the
true value, with some deviations in relative value for out‐of‐the‐money puts. Interestingly, the linearization error offsets
parts of the error which occurs according to the recovery assumption. The absolute error stays below 0.0005 to 0.001 in
all cases, while the largest relative error occurs for out‐of‐the‐money puts with 0.5%. At the same time, the Hull and
White model error is 5% for out‐of‐the‐money puts.

For discount certificates, the use of the Hull and White (1995) model leads to less biased results compared to plain‐
vanilla options. It overestimates the value of credit risk, but its results are far closer to the true value than the Black and
Scholes (1973) values. The simplified model yields a further significant improvement. Throughout all strike levels, the
absolute error is below 0.001 and the relative error below 0.01%. In contrast, the worst results for the Hull and White
approach are obtained for large strike prices, with 0.02 (absolute) and 0.2% (relative).

Table 2 takes a closer look at out‐of‐the‐money calls and puts. As Figures 3 and 4 suggest, larger deviations between
the actual effective spread and the proposed approximation occur for out‐of‐the‐money options. However, as these
options have small values, discounting with a biased spread might have a negligible impact. Table 2 provides

TABLE 1 Comparative static analysis

Strike 8 9 10 11 12

Call options

BEW (“true”) 2.317 1.541 0.9405 0.5291 0.2766

BEW (δ = 0) 2.318 1.541 0.9408 0.5292 0.2766

This paper 2.318 1.542 0.9413 0.5293 0.2767

HW 2.299 1.528 0.9320 0.5241 0.2739

BS 2.322 1.543 0.9413 0.5293 0.2767

Put options

BEW (“true”) 0.0808 0.2655 0.6262 1.176 1.884

BEW (δ = 0) 0.0799 0.2641 0.6245 1.174 1.882

This paper 0.0804 0.2650 0.6255 1.175 1.883

HW 0.0851 0.2742 0.6394 1.192 1.903

BS 0.0860 0.2769 0.6458 1.204 1.922

Discount certificates

BEW (“true”) 7.606 8.382 8.892 9.393 9.646

BEW (δ = 0) 7.606 8.383 8.983 9.395 9.648

This paper 7.606 8.382 8.983 9.394 9.647

HW 7.601 8.373 8.969 9.376 9.627

BS 7.678 8.457 9.059 9.471 9.723

Note: The table reports values of call options, put options, and discount certificates, for different strike prices obtained with different models: the Baule et al.
(2008) (BEW) model with recovery rate 0.5 as the benchmark, the same model but with recovery rate 0.0, the simple approximation proposed in this paper, the
Hull and White (1995) (HW) model, and the Black and Scholes (1973) (BS) model. The underlying level is 10, the time to maturity is 1 year, the volatility is 0.2,
and the correlation parameter is 0.5.
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comparative statics of call and put option values with a strike price 20% out of the money, where the correlation, the
volatility, and the time to maturity is modified. Basically, the results confirm the findings for the base case (ρ = 0.5,
σ = 0.2, T = 1). The Hull and White (1995) model overestimates the value of credit risk for call options and under-
estimates the value for put options, increasingly for larger correlations. The approximation suggested in this paper
works fairly well in all situations, with an absolute error below 0.0003 in most cases. Only for put options at higher
volatilities or with larger maturities does it reach values up to 0.001 in absolute terms, and the relative error goes up to
0.5%, similar to the base case.

3.4 | Error analysis

In addition to the comparative static analysis, this section provides a more comprehensive error analysis. To this end,
we construct a random sample of 1000 call options, put options, and discount certificates each. The derivatives follow
the same structure as in Section 3.2. In particular, the initial underlying level is S = 100 , the time to maturity is T = 1

year, and the unconditional credit spread is s = 0.01. The sample is drawn randomly with the following specifications:

• strike price between 8 and 12, uniformly distributed,
• stock price volatility between 0.1 and 0.4, uniformly distributed,
• correlation parameter between 0.2 and 0.8, uniformly distributed.

All random draws are independent.
For an error decomposition, we separately consider the recovery assumption, the linear approximation, and the

first‐order Taylor series expansion. Similar to the previous section, we calculate different model values:

(a) Baule et al. (2008) model value with recovery rate 0.5 (“true value”),
(b) Baule et al. (2008) model value with recovery rate 0.0,
(c) simplified model value using the effective credit spread according to Equation (19) without Taylor series ap-

proximation, and
(d) simplified model value using the effective credit spread according to Equation (20) with Taylor series.

TABLE 2 Additional comparative static analysis for out‐of‐the‐money options

ρ 0.2 0.8

σ 0.1 0.4

T 0.5 2

Call options (Strike = 12)

BEW (“true”) 0.2757 0.2767 0.0300 1.0136 0.0891 0.6559

This paper 0.2760 0.2767 0.0300 1.0139 0.0891 0.6566

HW 0.2739 0.2739 0.0297 1.0038 0.0887 0.6436

BS 0.2767 0.2767 0.0300 1.0139 0.0891 0.6566

Put options (Strike = 8)

BEW (“true”) 0.0840 0.0749 0.0014 0.5368 0.0226 0.1859

This paper 0.0840 0.0746 0.0014 0.5357 0.0225 0.1854

HW 0.0851 0.0851 0.0016 0.5517 0.0237 0.1988

BS 0.0860 0.0860 0.0016 0.5572 0.0238 0.2028

Note: The table reports values of call options and put options with strike price 20% out of the money, with varying correlation parameter, volatility, and time to
maturity. In the base case ρ= 0.5, σ= 0.2, T= 1, and year. The models applied are the Baule et al. (2008) (BEW) model with recovery rate 0.5 as the benchmark,
the simple approximation proposed in this paper, the Hull and White (1995) (HW) model, and the Black and Scholes (1973) (BS) model.
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The difference (b)− (a) is the recovery assumption error; the difference (c)− (b) is the linearization error; and the
difference (d)− (c) is the Taylor approximation error. The error components add up to the total error (d)− (a).

Additionally, we calculate

(e) simplified model value with standard delta instead of downside delta,
(f) Hull and White (1995) model value, and
(g) Black and Scholes (1973) model value.

Table 3 reports the mean error (bias) of the sample, the root mean squared error, and the maximum absolute
error for the 1000 derivatives. The smallest error components occur for call options. The reason is that the effective
credit spread seff for call options is always lower than the unconditional spread s (as long as the correlation is
positive). With respect to the Hull and White (1995) approach, the average errors confirm the comparative static
analysis: Since the effective credit spread for call options tends to be nearer to zero than to the unconditional
spread, adjusting the Black and Scholes (1973) value with the Hull and White approach is very often worse than
with no adjustment made at all.

For put options and discount certificates, recovery assumption error and linearization error are mirror images. This
observation can be explained by the payoff profiles of put options and discount certificates, which are also mirror
images of each other. For both types of derivatives, recovery assumption error and linearization error are negatively
correlated; hence, the total error is smaller than the sum of the two single errors. Both the bias and the root mean
squared error are similar in size to call options and are below 0.001. (The average call option value in the sample is 1.2,
the average put option value 0.9, and the average certificate value 8.7). Compared to Hull and White (1995) and Black
and Scholes (1973), this is an improvement by a factor of about 15–70. The maximum absolute error values further
show that there are no larger outliers. The proposed simple model can therefore be used for a large range of derivatives
without risking excessively large approximation errors.

TABLE 3 Error analysis

Simple model

SM(Δ) HW BSRR Linear Taylor Total

Call options (⋅10−3)

ME 0.30 0.31 0.02 0.63 1.26 −10.16 2.03

RMSE 0.42 0.40 0.03 0.80 1.82 11.57 3.39

MaxAE 1.09 0.95 0.07 1.54 5.77 27.30 15.33

Put options (⋅10−3)

ME −1.75 0.71 0.22 −0.82 4.35 15.52 25.11

RMSE 1.93 0.79 0.28 0.95 5.59 18.13 28.97

MaxAE 3.29 1.77 0.77 1.82 15.47 41.49 65.54

Discount certificates (⋅10−3)

ME 1.75 −0.71 −0.01 1.03 −4.47 −15.53 71.79

RMSE 1.93 0.79 0.01 1.18 5.49 18.14 72.53

MaxAE 3.29 1.77 0.03 2.30 15.34 41.50 94.23

Note: The table reports mean errors (ME, biases), root mean squared errors (RMSE), and maximum absolute errors (MaxAE) for a sample of call options, put
options, and discount certificates. The sample consists of 1000 random draws each, with the strike price uniformly distributed between 8 and 12, the stock price
volatility uniformly distributed between 0.1 and 0.4, and the correlation uniformly distributed between 0.2 and 0.8. The initial underlying level is 10, the
risk‐free rate is 0.03, and the unconditional credit spread is 0.01. The total model error is the difference between the output of the proposed simplified model
and the benchmark Baule et al. (2008) model. It is additively decomposed into recovery assumption error (RR), linearization error (linear), and Taylor series
approximation error (Taylor). Errors of the simple model with standard delta, the Hull and White (1995) model, and the Black and Scholes (1973) model are
also given. For comparison, the average derivative values in the sample are 1.2 (call options), 0.9 (put options), and 8.7 (discount certificates).
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The Taylor approximation error is the smallest component in all cases. This observation justifies its use, which is
rather a convenience than a necessity.5

Finally, the table demonstrates the usefulness of the downside delta approach: When the simple model is applied
with the standard delta, the model still outperforms the Hull and White (1995) approach, but the resulting errors are
considerably larger than those with the suggested downside delta.

3.5 | Correlation estimation

While the other model parameters are usually observable, the correlation parameter must be estimated. In the case of
exchange‐traded issuers, Baule et al. (2008) suggest estimating correlations from time series of the issuer's stock price as
a proxy for its asset value. This approach is also common for credit portfolio modeling, for example, with the widely
used industry model CreditMetrics (e.g., Crouhy et al., 2001). Duellmann et al. (2010) show that estimating asset
correlations from stock price time series leads to less biased results than other approaches. In this section we analyze
correlation estimation error and its impact on the model output.

In doing so, we use a similar simulation setup as Duellmann et al. (2010). We simulate time series of the underlying
stock price and the issuer asset value according to Equations (1)–(3).6 The issuer parameters are the same as in
Section 3.2, namely ∕D V = 0.80 and σ = 0.1197V . From the issuer asset value we calculate its stock price with the Black
and Scholes (1973) model, following Duellmann et al. (2010) in assuming a debt maturity of 1 year. The risk‐free rate is
0.03. For the stock price, we draw a random volatility uniformly distributed between 0.1 and 0.4 in each simulation run.
We simulate weekly data over 2 years and estimate the correlation between the issuer's observable stock price returns
and the underlying, using the standard estimator. This procedure is repeated 1000 times, for correlations of 0.2, 0.5, and
0.8, respectively.

Furthermore, Duellmann et al. (2010) consider stochastic correlations, which follow a mean reversion process:

dρ κ ρ ρ dt σ dW= ( ¯ − ) + ,t t ρ t
ρ (21)

with parameters κ = 1 and σ = 0.085ρ (where the Wiener processWt
ρ is independent ofWt

S andWt
V ). We adapt their

approach and also estimate correlations based on simulated time series under this regime, with long‐term mean values
ρ̄ of 0.2, 0.5, and 0.8, respectively.

The estimation errors are given in the first section of Table 4. As in the previous error analysis, the table reports
the mean error (bias), the root mean squared error, and the maximum absolute error within the 1000 draws. The
bias is slightly negative in all cases. The root mean squared error reaches values of 0.1 and decreases for larger
correlation parameters. The estimation of the mean correlation in the stochastic regime is not seriously worse than
in the constant correlation case. However, in both cases, some outliers can produce large estimation errors of
about 0.3.

The following sections of Table 4 report the impact of correlation estimation error on the final model output, the
derivative value. For this analysis, the 1000 random derivatives described in Section 3.4 are revalued with a disturbed
correlation parameter, where the disturbance reflects the estimation error as discussed. Looking at the root mean
squared error, the impact is largest for low correlations, with a value of about 0.003 for all three derivative types. On the
one hand, this error is considerably larger than the model error itself, as analyzed in Table 3. On the other hand, it is
still well below the alternative models of Black and Scholes (1973) and Hull and White (1995). Thus, while correlation
estimation imputes an unavoidable source of additional error, even a disturbed correlation parameter yields acceptable
results in most cases.

5
The exact solution of Equation (19) is

⋅ ⋅( )
s

T

S s T f S sT

f
= −

1
ln

Δ̃ exp − + ( − Δ̃ ) exp(− )
.eff

S
eff

0 0 0 0 0

0

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

6
The simulations are run under the physical measure with drift rates of 0.12, following Duellmann et al. (2010).
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4 | CONCLUSION

The negative value of default risk inherent in a vulnerable derivative depends on the structure of the derivative when
the default of the issuer is not independent of the market risk of the underlying. The effective credit spread, defined as
the discount rate to obtain the risk‐adjusted value from the default‐free value, can have values differing substantially
from the unconditional credit spread for straight bonds of the issuer. In particular, for call or put options, but also for
other structured derivatives such as discount certificates, using the unconditional credit spread as suggested by Hull
and White (1995) can therefore lead to substantially biased results.

We have proposed a simple approach to incorporate correlated credit risk in the valuation of vulnerable derivatives
that requires a minimum of data and effort. In addition to the unconditional credit spread, the only necessary input
parameter is the correlation between the underlying price and the issuer asset value. Furthermore, the simple cal-
culation requires nothing more than a univariate normal distribution.

However, the correlation parameter is not readily observable and must be estimated. Following Duellmann et al.
(2010), among others, we propose estimating this parameter from stock price time series of the issuer and the
underlying. When no stock price time series is available for the issuer, an average value of similar issuers—for example,
members of a country‐specific banking sector index—could be used instead. While such an averaging certainly in-
troduces a further approximation, it is still more desirable than relying on the zero‐correlation assumption of Hull and
White (1995), especially given the empirical fact that correlations tend to increase with falling stock prices, and thus
with increasing default probability (e.g., Longin & Solnik, 2001).

While we have used the simple Black and Scholes (1973) model as a benchmark, the idea of calculating an effective
credit spread to discount the default‐free value could also be used for other benchmark models. Nonetheless, the effective

TABLE 4 Correlation estimation

Constant correlation Stochastic correlation

ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ̄ = 0.2 ρ̄ = 0.5 ρ̄ = 0.8

Correlation estimates

ME −0.002 −0.016 −0.016 −0.004 −0.012 −0.018

RMSE 0.093 0.076 0.041 0.094 0.078 0.042

MaxAE 0.385 0.345 0.189 0.358 0.358 0.147

Call options (⋅10−3)

ME −0.31 −0.27 −0.01 −0.49 −0.21 −0.02

RMSE 2.80 1.00 0.18 2.90 0.97 0.13

MaxAE 18.87 7.75 1.78 16.27 6.81 1.53

Put options (⋅10−3)

ME −0.03 0.56 0.55 0.12 0.24 0.67

RMSE 3.01 2.85 1.45 3.37 3.03 1.53

MaxAE 11.80 10.59 5.17 12.50 11.45 7.99

Discount certificates (⋅10−3)

ME 4.41 −0.58 −0.57 −0.12 −0.24 −0.70

RMSE 3.02 2.91 1.51 3.40 3.09 1.58

MaxAE 11.93 10.70 5.28 12.63 11.60 8.17

Note: The first section of the table reports mean errors (ME; biases), root mean squared errors (RMSE), and maximum absolute errors (MaxAE) of correlation
estimators. According to the model specification (with drift rate 0.12, asset volatility 0.1197, stock price volatility randomly drawn from a uniform distribution
between 0.1 and 0.4), time series of the issuer asset value and the underlying stock price were simulated. From the issuer asset value, its stock price was
obtained with the Black and Scholes (1973) model (assuming a debt maturity of 1 year, an initial debt‐to‐asset ratio of 0.8, and a risk‐free rate of 0.03).
Correlation estimates were based on 2 years of weekly simulated underlying and issuer stock price returns. The first columns refer to a constant correlation
assumption, and the last ones, to stochastic correlations according to Equation (21). The following sections of the table report the impact of a disturbed
correlation parameter on the derivative values. The figures are based on random samples as in Table 3, with disturbed correlation parameters according to the
estimation method as described.

BAULE | 655



credit spread calculation relies upon the assumption of a linear correlation between diffusion processes of the issuer and the
underlying. Other dependency structures, such as co‐jumps in both processes, are not considered. While there are recent
approaches which account for these structures, such as the model of Tian et al. (2014), these models involve both greater
complexity and the estimation of further parameters, which is associated with additional estimation error.

In this light, unavoidable model risk remains, since the true dependence structure is not observable. While we have
used the Baule et al. (2008) model as a benchmark throughout this paper, this model is of course not perfect. Therefore,
deviations from this model, which we have termed “errors,”may be acceptable when they are small relative to the over
all impact of correlation. We have shown that this over all impact can be huge: For call options, the Black and Scholes
(1973) value is often better than the Hull and White (1995) value; and for put options, the actual value of credit risk can
be several times larger than implied by the Hull and White model. It is therefore necessary to account for correlation in
the pricing of vulnerable derivatives. Exactly how correlation is incorporated into the model is a second‐order question.
Given that model risk and parameter estimation risk remain, the simplified model proposed in this paper is as simple
as possible and as complicated as necessary.
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APPENDIX A: CONDITIONAL EXPECTATION
We are interested in the expected value of the underlying level ST , given that the issuer asset value VT has reached the
default point D. A default inT occurs if and only ifV D<T . Under the assumption of a zero recovery rate, the expected
payoff of a corporate zero coupon bond with notional 1 under the risk‐neutral measure equals the nondefault prob-
ability, which is given by e sT− (Hull & White, 1995):

∕( )e P V D P R D V= 1 − ( < ) = 1 − < lnsT
T T

V−
0

with the log return ≔ ∕R V VlnT
V

T 0. The log returns of the issuer and the underlying are normally distributed (e.g.,
Hull, 2018):
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We use the well‐know properties of the conditional normal distribution: For two correlated normals ( )Y N μ σ~ ;1 1 1
2 ,

( )Y N μ σ~ ;2 2 2
2 , the distribution of Y2 conditional on Y y=1 is also normal with expectation ⋅ ∕μ y μ ρ σ σ+ ( − )2 1 2 1 and

variance ρ σ(1 − )2 2
2 (e.g., Casella & Berger, 2002). Hence, the conditional expectation of RT

S is given by:
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For a normal Y N μ σ~ ( ; )2 , Yexp( ) is log‐normally distributed with expectation ∕μ σexp( + 2)2 (e.g., Hull, 2018). With
the variance of the conditional log return, ρ σ T(1 − ) S

2 2 , we finally get the conditionally expected stock price:
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