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Abstract

In Binary Threshold Public Good (BTPG) games, n players have binary

choices: cooperation or non-cooperation. If at least k players cooperate, a

public good is produced. The case k = n is the Stag Hunt game with the

two pure strategy equilibria E1 (all players cooperate) and E0 (no player

cooperates). In four rather diverse examples of four-player Stag Hunt games,

three prominent concepts of equilibrium selection favor E0. Experiments,

however, result in cooperation frequencies between 70.3% and 99.7%. Also

for k < n, the selected equilibria clearly differ from experimental behavior.

We interpret our observations by suggesting the concept Behavioral Equilib-

rium Selection.

KEYWORD S

equilibrium selection, experiments, global games, payoff dominance, quantal response
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1 | INTRODUCTION

The success of human societies crucially depends on their ability to cooperate, that is, to coordinate costly individual
activities. The Stag Hunt game was introduced by Rousseau (1997, original edition 1762) in order to explain obstacles to
cooperation. In the story described, n hunters can together hunt down a stag, but if one hunter does not cooperate, the
stag escapes. Instead of joining the other stag hunters, every hunter can catch a hare with certainty. A hare, however, is
less valuable than a share of the stag. The two prominent equilibria of this game are E0 where no player cooperates and
E1 where all players cooperate. E1 is the efficient (even pay-off dominant) equilibrium. However, it requires strong
enough beliefs in the cooperation of all other hunters, in other words: trust. If trust is high enough, cooperation is a best
reply; in coordination games, trust breeds reliability. Social scientists and even historians (Fukuyama, 1995) have often
emphasized the important role of trust within groups and within a whole society. Robinson and Acemoglu (2012) inves-
tigate the role of good institutions for the success of a society; but even well designed institutions will not work without
trust in these institutions. Formally, the emergence or nonemergence of trust corresponds to the selection of different

Abbreviations: ACPs, Average contribution probabilities; BES, Behavioral Equilibrium Selection; BTPG, Binary Threshold Public Good; QRE,
quantal response equilibria; TU, Technische Universität.
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equilibria of coordination games. These games often have a large number of equilibria, requiring extremely high, inter-
mediate, or extremely low levels of trust.

In Binary Threshold Public Good (BTPG) games, n players simultaneously contribute to the production of a public
good or not. The public good is produced if at least k players contribute. In our investigation, with an emphasis on the
case k = n (Stag Hunt games), our research questions are: (i) What are the characteristics of equilibria of BTPG games
and which equilibria are selected by the most prominent equilibrium selection theories? (ii) Do the selected equilibria pre-
dict the behavior observed in our four-person BTPG experiments? (iii) Which regularities of behavior are observed in our
experiments? (iv) If the answer in (ii) is negative, how should, considering (iii), an alternative positive theory be shaped?

1.1 | Equilibrium selection

Formal theories of equilibrium selection abstain from concepts as group specific trust and concentrate on the objective
structures of games. With respect to coordination, they try to identify games where trust emerges (or not) from the
incentive structure of these games. For Stag Hunt games, the question is when (under which parameter constellations)
the most prominent theories of equilibrium selection predict the emergence of sufficient trust (E1) or not (E0). Equilib-
rium selection theories often rely on “tracing procedures.” They follow a continuous path of best reply combinations
starting from a state where players expect all others to act randomly or where their information about the parameters
of the game is minimal. Continuously reducing the expectation of random behavior or of “noise” we reach, under cer-
tain conditions, one of the Nash equilibria of the game.

The Linear Tracing Procedure (selecting among all Nash equilibria) and the related concept of Risk Dominance
(making pairwise comparisons) have been introduced by Harsanyi and Selten (1988) as their main principles of equilib-
rium selection for asymmetric games, that is, in the normal case. For symmetric games, they favor symmetric equilibria
(same pay-off for all players) and Pay-Off Dominance (selecting the equilibrium with the highest pay-off). Pay-Off
Dominance has often been criticized and even Harsanyi (1995) abandoned it later. In Stag Hunt games, the priority of
Pay-Off Dominance may cause a switch from equilibrium E0 to E1 when moving from a slightly asymmetric to a sym-
metric game. Therefore, we will apply the criterion of Risk Dominance and the Tracing Procedure also for equilibrium
selection in (almost) symmetric games.

Applications of the Linear Tracing Procedure/Risk Dominance are, for example, van Damme and Hurkens (2004) con-
cerning price leadership in oligopolies and, recently, Mitzkewitz (2017), Boom (2018), and Bolle (2019a, 2019b) concerning
multiple unit auctions, signaling games, and voting games. Van den Elzen and Talman (1999) and Herings and van den
Elzen (2002) propose a numerical algorithm for the application of the Linear Tracing Procedure. Many applications
(e.g., Schmidt et al., 2003, and literature cited in Section 1.2) concern 2 × 2 games in connection with experimental tests.

Carlsson and Van Damme (1993) transform common knowledge games into games of incomplete information with
private and correlated signals (Global Games). While incomplete information (noise) vanishes, equilibrium play con-
verges, under certain conditions, to one of the Nash equilibria of the original game. In an influential article, Frankel
et al. (2003) show that the Global Games selection should be applied only to games with strategic complements because,
otherwise, it may depend on the distribution of noise. For strategic complements, they suggest a method for the deter-
mination of the selected equilibrium (see Section 3.1).

A third prominent method of equilibrium selection was suggested by McKelvey and Palfrey (1995) as the limit of
their quantal response equilibria (QRE) which assume all strategies (from a finite set) to be played with probabilities
that are ordered according to the utilities these strategies gain against the strategies of the other players. QRE has been
applied to several types of experiments (see Goeree et al., 2010; Palfrey et al., 2010), but usually with a finite “precision
parameter” λ. λ = 0 describes completely random behavior, for λ = ∞ a Nash equilibrium is played. On the path from
λ = 0 to λ = ∞, QRE (generically) converges to a Nash equilibrium. While QRE is certainly the most frequently applied
stochastic extension of game theoretic models, Zhang and Hofbauer (2016) assert that there are only rather special
attempts to theoretically characterize limits of QRE. They close this gap for 2 × 2 games.1

1.2 | Experimental studies

Stag Hunt games are mostly investigated as two-player games with the central question being whether Risk Dominance
(mostly E0) or Pay-off Dominance (E1) is a successful prediction. In most cases, there is no clear evidence for the one
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or the other. Rydval and Ortmann (2005), for example, find contribution rates mostly between 1/3 and 2/3 in their
seven 2 × 2 Stag Hunt games. These results considerably deviate from the predictions E0 and E1. In all studies, the
effect of parameter variations or different degrees of information or framing are investigated. Rydval and
Ortmann (2005) find that Loss Aversion partly influences behavior while Feltovich (2011) and Feltovich et al. (2012)
find a strong influence.2 Battalio et al. (2001) find increasing cooperation if the optimization premium (value of success-
ful cooperation minus contribution costs) increases. Whiteman and Scholz (2010) find a positive influence of social cap-
ital (e.g., common norms, reciprocity, and trust). Al-Ubaydli et al. (2013) find that cognitive ability and risk aversion
have no impact on successful coordination while patience does. Büyükboyacı (2014) confirms this for a player's own
risk attitude, but shows that information about the risk attitude of others changes behavior. Blume and Ortmann (2007)
emphasize the positive influence of communication for coordinating on E1. Belloc et al. (2019) report the positive
impact of time pressure on coordination. Feltovich and Grossman (2013) investigate the influence of group size (2–7
players). Without communication, contributions are independent of group size, between 37% and 45%.

For general games with Pareto-ranked equilibria, E0 indicates the least efficient and E1 the most efficient equilib-
rium. With two players, van Huyck et al. (1990) observe behavior in repeated games to converge to E1; for 14–16
players, convergence to E0 is observed (except if contributions are costless). The over-all evaluation of experimental
results differ. For Cooper (2003, p. 1) “coordination failures are routinely observed in experimental games,” while
Devetag and Ortman (2007, p. 14) emphasize that experimental results suggest “myriad ways to engineer coordination
successes in the lab.” Engelmann and Norman (2010, p. 250) state “… previous minimum-effort experiments … find
Pareto-inferior average minimum-effort levels (and indeed rather often the lowest possible minimum-effort level) in
groups with more than three participants.” They find that coordination depends on “Scandinavian virtues”: In an exper-
iment in Copenhagen, cooperation increased with more Danish subjects in a session.

In an experimental investigation of financial attacks,3 Heinemann et al. (2004, 2009) support the Global Games
selection. In contrast, Cabrales et al.'s (2007) experiments show frequent deviations from this equilibrium and empha-
size the importance of learning after which behavior can also converge to the payoff-dominant equilibrium. Also Duffy
and Ochs (2012) find significant deviations from the Global Games equilibrium.

QRE has been applied to several types of experiments, often in connection with additional assumptions as social
preferences and usually with a finite “precision parameter” λ. Because QRE(λ) is not necessarily unique, mostly the
unique equilibrium on the path from λ = 0 to λ = ∞ is selected for the description of experimental behavior. An exam-
ple of applying QRE to coordination games is Anderson et al. (2001). They show that, QRE is able to explain that effort
levels decrease with increasing numbers of players or when effort costs increase (which does not affect the set of Nash
equilibria). For further applications see Palfrey et al. (2010).

There are several experimental investigations of BTPG games with k < n, aiming mostly at identifying factors that
encourage or discourage contributions by the game participants. The case k = 1 refers to the Volunteer's Dilemma
(Diekmann, 1985). Experimental results (Diekmann, 1993; Franzen, 1995) reject theoretical predictions from the
unique mixed strategy equilibrium (see Section 2) about success probabilities (decreasing with group size) and about
the order of contribution frequencies (higher for high cost players). Bolle (2017) finds limited abilities of backward
induction in a sequential Volunteer's Dilemma experiment. Experiments with intermediate thresholds 1 < k < n
require contributions from two of three players up to 6 of 10. Some examples from the vast literature are: Van de Kragt
et al. (1983) emphasize the importance of communication for successful coordination. Dawes et al. (1986) investigate
the (positive) influence of refunds of insufficient contributions and the punishment of successful free riding. Erev and
Rapoport (1990) show that the sequential-moves game leads to more efficient outcomes than the simultaneous-moves
game and that the information provided to the players in the sequential game matters. They and McEvoy (2010) find
that, in sequential decisions, the pivotality (criticality) of players increases the contribution frequency. Bartling et al.
(2015) find that pivotality increases responsibility attribution.

Linear Public Good games have a unique equilibrium and are, therefore, quite different from BTPG games. One interest-
ing comparison, however, is the behavior in the positive frame (public good) vs. the negative frame (common pool). In spite
of the theoretical equivalence, we often observe much more cooperation in the positive than in the negative frame
(Andreoni, 1995; Dufwenberg et al., 2011; Park, 2000; Willinger & Ziegelmeyer, 1999). In the meta-study of Zelmer (2003)
the difference is, however, only weakly significant. The negative frame of a BTPG game is, for example, an environment
with positive external effects, which collapses if a threshold of individually profitable but environmentally harmful activity is
surpassed. Sonnemans et al. (1998) is the only BTPG experiment with a positive and a negative frame. In their experiments
with a partner design (the same group interacts over 20 periods) they again find more cooperation in the positive frame. In
our experiments with a stranger design (changing coplayers in every period), there are no significant differences.
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Our experimental four-person games cover a wide range of parameters: Symmetric, mildly asymmetric and strongly
asymmetric games as well as games in the positive and the negative frame. For our four Stag Hunt games, all three
equilibrium selection principles select E0; but with average contribution frequencies between 70.3% and 99.7% (for dif-
ferent games and different player types) behavior is much closer to E1. After the analysis of Stag Hunt games, we extend
our investigation to BTPG games with k < n. These are not games with strategic complements; therefore, we do not
apply the Global Games selection. Asymmetric BTPG games with k < n have a plethora of equilibria, which makes the
pairwise comparisons of Risk Dominance rather tedious. Therefore, in these cases only the Linear Tracing Procedure
and limits of QRE are applied. Behavior is clearly different from the equilibrium selection predictions; but it is also sig-
nificantly different from any prediction with homogeneous behavior of the whole population. In addition to this impor-
tant result, further characteristics of experimental behavior are described and supported by nonparametric tests.
Assuming a nonhomogeneous population, a behavioral theory is outlined (in particular for Stag Hunt games) which
successfully describes behavior.

1.3 | Outlook

In Section 2, we define BTPG games and characterize their equilibria. Games in the negative frame are defined and
social preferences are introduced. In Section 3, we investigate equilibrium selection theoretically. We apply the Global
Games selection to Stag Hunt games and the Linear Tracing Procedure to all BTPG games, Risk Dominance is applied
to Stag Hunt games and almost symmetric BTPG games. All the general theoretical results (Propositions 2, 3, 4, 5, 6 and
Lemma 1) are novel. Selection by QRE is determined numerically only for the experimental cases. We develop the the-
ory before we describe our experiments because it facilitates the understanding of our parameter choices. In Section 4.1,
we describe our experiments. In Section 4.2, we justify our parameter choices, discuss the applicability of the theoretical
results, and determine the minimum strength of social preferences for switching equilibrium selection (in Stag Hunt
games) from E0 to E1. Section 5 reports averages and distributions of individual behavior and derives eight experimen-
tal results. These rely on a larger variance of experimental parameters than any other study from this field. Section 6
outlines a behavioral theory for BTPG games, in this paper mainly for Stag Hunt games. Section 7 concludes.

2 | BTPG GAMES

2.1 | General theory

Definition 1. In a BTPG game, n players simultaneously contribute to the production of a public good or not. The pub-
lic good is produced if at least k players contribute. Contributing players bear costs ci > 0; if the public good is pro-
duced, all players enjoy benefits Gi > ci. There are no refunds if the public good is not produced.

The players' contribution probabilities are denoted as p = (pi)i = 1, …, n. Q = Q(p) denotes the probability of success,
that is, that k or more players contribute to the production of the public good. Q−i (Q+i) denote the probability of suc-
cess if i does not contribute (contributes). A player is decisive if exactly k − 1 other players contribute. The probability
qi = Q+i − Q−i that exactly k − 1 other players contribute is called the decisiveness of player i.

Note that Q+i, Q−i and qi depend only on pj, j ≠ i. Player i's expected revenue is

Ri pð Þ=Gi*Q pð Þ−pici
=Gi*Q− i + pi* Gi*qi−ci½ �: ð1Þ

A mixed strategy equilibrium with 0 < pi < 1 requires that Ri is independent of pi, that is,

∂Ri=∂pi =Gi*qi−ci =0: ð2Þ
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If Gi * qi − ci < (>)0 then player i contributes with pi = 0 (1). Inserting qi from (2) into (1) provides us with the equi-
librium profit which i expects if she plays a mixed strategy.

Ri =Gi*Q− i =Gi*Q+ i−ci: ð3Þ

Proposition 1. The following statements apply in equilibrium:

i. If i plays a strictly mixed strategy, then qi = ri = ci/Gi.
ii. qi > ri implies pi = 1 and qi < ri implies pi = 0.
iii. Ri = GiQ−i applies for pi < 1 and Ri = GiQ+i − ci for pi > 0.
iv. If there are two equilibria p and p0 with pi ≥ pi0 for all i, then p Pareto-dominates p0. If, in addition, pi > pi0 for at least

two i, then p strictly Pareto-dominates p0.

Proof 1. Statements (i) and (ii) follow from (2). Statement (iii) follows from (3). Statement (iv) follows from Ri = GiQ−i

and the fact that Q−i is (strictly if there is pj > pj0) larger for p than for p0.

Definition 2. We call players with equal ri = ci/Gi almost symmetric. If all players are almost symmetric, the game is
called almost symmetric.

Mixed strategy equilibria depend only on ri. For Harsanyi and Selten (1988) all players in an almost symmetric game
are symmetric and are required to play the same strategy. As we will see in Section 3, for QRE, the players are not sym-
metric and may play different strategies.

The case k = n is called the Stag Hunt game and was first discussed by Rousseau (1997, first edition 1762). There are
two (symmetric) pure strategy equilibria, namely all players contributing (E1) and all players not contributing (E0). Pos-
sibly, one strictly mixed strategy equilibrium exists where qi * Gi − ci = 0, that is,

Q
j≠ipj =

ci
Gi
= ri. Multiplying all these

equations, taking the (n − 1)th root and dividing the result by
Q

j≠ ipj = ri yields

pi =

Q
jrj

� � 1
n−1

ri
: ð4Þ

The condition for the existence of this equilibrium is pi ≤ 1 for all i. This condition is always fulfilled for n = 2 or
if all ri are identical. Smaller ri are connected with larger pi. In almost symmetric games, there are no pure/mixed
strategy equilibria. If some players contribute with probability 1 and the others play the mixed strategy equilibrium of
a reduced Stag Hunt game, the latter would earn zero revenues (Proposition 1 (iii)) and the former necessarily less
because they incur costs with a higher probability. For players with different ri the same argument applies for the
highest ri player; but there may be pure/mixed strategy equilibria where the lowest ri players contribute with cer-
tainty. If, according to (4), the player with the lowest ri shows pi > 1, we set pi = 1 and compute (3) without ri and
with n − 2 instead of n − 1.Thus all pj, j ≠ i increase and i still has the incentive to contribute with certainty. If nec-
essary, we repeat the procedure of setting pj = 1 for j with the lowest rj of the remaining players. This procedure nec-
essarily stops, if only two players remain.

Lemma 1. Every Stag Hunt game has at least one strictly mixed or pure/mixed strategy equilibrium. In an almost sym-
metric Stag Hunt game, there is always a strictly mixed strategy equilibrium but no additional pure/mixed strategy
equilibrium.

(Without proof.)
The case k = 1 is the Volunteer's Dilemma, first investigated by Diekmann (1985, 1993). There are n pure strategy

equilibria where exactly one player contributes. The only completely mixed strategy equilibrium is derived from Propo-
sition 1 (i), ri = qi =

Q
j ≠ i(1 − pj) and therefore
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pi =1−

Q
jrj

� � 1
n−1

ri
: ð5Þ

This equilibrium exists under the same conditions as that of the Stag Hunt game. Because of Proposition 1
(iii) and Q+i = 1, in this equilibrium players earn Ri = Gi − ci, that is, as much as players who contribute with cer-
tainty.

In cases 1 < k < n, there are
n

k

� �
asymmetric pure strategy equilibria where exactly k players contribute, and there

is the unique symmetric pure strategy equilibrium E0. For almost symmetric games with ri = ρ, asymmetric mixed
strategy equilibria may exist but are difficult to implement; symmetric mixed strategy equilibria (if existent) are more

plausible. If all players contribute with probability π, player i's decisiveness is qi = f π,k,nð Þ= n−1

k−1

� �
*πk−1 1−πð Þn−k. f

is a unimodal function of π with a maximum at �π= k−1ð Þ= n−1ð Þ and with ρmax = f �πð Þ.

Lemma 2. For 1 < k < n with ri = ρ > ρmax, there is no solution of qi = ρ, for ρ = ρmax there is one solution, and for
ρ < ρmax, there are two solutions π* < �π< π**.

(Without proof.)
In cooperative pure strategy equilibria, the contributing players need a sufficient amount of trust in the willingness

of some or all players to contribute. Trust completely characterizes the two pure strategy equilibria of the Stag Hunt
game: Sufficiently high trust makes all players contribute and vice versa. Equilibrium selection predicts whether, under
certain pay-off structures, enough mutual trust emerges. For k < n, behavior is motivated by the level of trust in others
and own attempts to free ride.

2.2 | Positive versus negative frame

The negative frame of the Linear Public Good problem is the strategically equivalent Common Pool problem
with the possible overexploitation of common resources. For the BTPG game, let us first give an example: In the
basin of a river, n similar chemical plants are situated which can either purify their polluted water or discharge
it nonpurified into the river (an action with negative opportunity costs ci). If at least k of the plants discharge
polluted water then a critical pollutant concentration is exceeded which, because of legal obligations, no longer
allows the waterworks supplying the region with water from the river. They must use water from a distant
source and all customers, including the n plants have to pay increased prices (negative benefit Gi). While, in this
case, legal restrictions define a clear threshold, in other cases the threshold may be fuzzy but facilitate the expo-
sition of a problem. For example, Russill and Nyssa (2009) observe a “tipping point trend in climate change
communication.”

We define a negative frame as Gi < ci < 0. After exchanging the labels of strategies “contributing” and “not
contributing,” the game is equivalent to a game with opportunity costs and benefits 0 < − ci < − Gi in the positive
frame with a threshold n − k + 1. Therefore, we apply equilibrium selection only for the positive frame.

2.3 | Social preferences

Pure strategy equilibria as E0 and E1 are not affected by social preferences, except in the cases of, for example, extreme
altruism or spite. Their selection, however, may change with altruism, inequality aversion or other deviations from
income maximization. Let us investigate, as an example, the consequences of introducing altruism and/or warm glow
in the spirit of Andreoni's (1989, 1990) suggestion. This changes the game only insofar as the cost/benefit ratios ri are
multiplied by a factor. Following Andreoni (1989, 1990) we add an “altruistic” term by substituting Gi by Gi + ai * G−i

with G−i =
P

j ≠ iGj and we introduce an additional “warm glow” utility wi = bi * ci of contributing to the public good.
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(Expressing warm glow as fraction of costs simplifies the following formulas.) With such a utility function, players who
play mixed strategies with probabilities pi have revenues

Ri =Q* Gi + ai*G− ið Þ− 1−bið Þ*pi*ci: ð6Þ

Contributing is now a best reply if

Gi + ai*G− ið Þ*qi− 1−bið Þ*ci≥0 or ð7Þ

qi≥ri*siwith si =
1−bi

1+ ai*G− i=Gi
: ð8Þ

As an example, take n = 4, ai = 0.5, and bi = 0. If all Gi are equal, we get si = 0.4. Mixed strategy equilibria and the
selection of equilibria now depend on ri * si instead of ri. As it will become apparent in Section 3, the smaller si, the
more probable it is that the three selection theories do not select E0.

3 | EQUILIBRIUM SELECTION

3.1 | The global games selection for Stag Hunt games

The Stag Hunt game as defined in Section 2 assumes common knowledge. We can add “noise” to this game by assum-
ing that revenues depend on an unknown state for which players receive private and correlated signals and thus trans-
form it into a Global Game. For the technical definition of these games, see Frankel et al. (2003). While noise vanishes,
equilibrium play converges, under certain conditions, to one of the Nash equilibria of the original game. Frankel
et al.'s (2003) determination of a unique limiting equilibrium relies on revenue functions (1) having bounded derivatives
(obviously true in our setting) and strategies being strategic complements. For Stag Hunt games, Q−i = 0 and
qi =

Q
j ≠ ipj applies. According to (1), if a player j increases pj, then qi, Ri(pi, p−i) = pi(Giqi − ci), as well as Ri(pi + ε, p−i)

− Ri(pi, p−i) = ε(Giqi − ci) increase. The latter is Frankel et al.'s (2003) definition of complementarities. It implies that i's
best reply does not decrease when pj increases.

Proposition 2. If
P
i
ri >1, then a* = (0,…, 0) is the unique Global Games equilibrium of a Stag Hunt game.

Proof. See Appendix.

Corollary 1. In the two almost symmetric experimental treatments with cost/benefit ratios ri = 0.4 for all i and in the
asymmetric treatment with r = (0.225, 0.25, 0.275, 0.3), the unique Global games equilibrium in the positive frame is
a* = (0, 0, 0, 0) and a* = (1, 1, 1, 1) in the negative frame. In the case r = (0.1, 0.2, 0.3, 0.4) with

P
i
ri =1, the condi-

tion of Proposition 2 fails.

Proof. Proposition 2.

For k < n, qi is no longer a monotone function of pj, that is, strategies are no longer strategic complements. Frankel
et al. (2003) show that, then, the selected equilibrium can depend on the distribution of noise.

3.2 | The linear tracing procedure and risk dominance for BTPG games

Harsanyi and Selten (1988) select equilibria mainly by the application of the Linear Tracing Procedure. The procedure
starts from the centroid of a game Γ which consists of the strategy profile where every pure strategy is played with the
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same probability. In games with binary pure strategies, both strategies are played with probability ½. In the Tracing Pro-
cedure, for every 0 ≤ s ≤ 1, equilibria are determined in a game Γ(s) where player i assumes that, with probability s, the
original game Γ is played, and with 1 − s the other players decide according to the probabilities of the centroid. If there
is a unique continuous path of equilibria from s = 0 to s = 1, then the equilibrium at s = 1 is selected. If there are differ-
ent paths with different equilibria at s = 1, then Harsanyi and Selten (1988) suggest additional criteria for the selection
of a unique equilibrium.

Proposition 3. (almost symmetric BTPG games). Let us define q 0ð Þ= f 1
2 ,k,n
� �

, If ri = ρ for all i, the Linear Tracing Pro-
cedure selects the following equilibria.

i. If k = 1, the unique mixed strategy equilibrium (5) is selected.
ii. If 1 < k ≤ n and ρ > q(0), then E0 is selected.
iii. If 1 < k < n and ρ < q(0), then the equilibrium with π** from Lemma 2 is selected.
iv. If k = n and ρ < q(0), then E1 is selected.

Proof. See Appendix.

Proposition 4. (asymmetric BTPG games). Let us assume r1 < r2 < …. < rn and define m as m = 0 if
r1 > q 0ð Þ= f 1

2 ,k,n
� �

and m = n if rn≤ q(0). Otherwise m is defined by rm≤ q(0) and rm+1> q(0). The Linear Tracing
Procedure selects the following equilibria.

i. If 1 < k ≤ n and m < k − 1, then E0 is selected.
ii. If 1 < k ≤ n and m ≥ k, then the equilibrium is selected where players 1, …, k contribute and the

others not.
iii. If 1 < k ≤ n and m = k − 1 then (i) applies if sk − 1 < sk and (ii) applies if sk − 1 > sk where sk − 1 and sk are defined by

(1 − sk − 1)q(0) = rk − 1 and (1 − sk)q(0) + sk * 1 = rk.
iv. If k = 1, then player 1 contributes and the others do not.

Proof. See Appendix.

Note that Propositions 3 and 4 leave a gap for ri which are neither equal nor strictly ordered. This gap can easily be
closed but needs discussing additional subcases.

Corollary 2. For r = (0.4, 0.4, 0.4, 0.4) and r 0 = (0.225, 0.25, 0.275, 0.3) and r 00 = (0.1, 0.2, 0.3, 0.4), the Linear Tracing
Procedure predicts:

i. In Stag Hunt games (k = 4), with cost/benefit ratios r, r0 and r00, E0 is selected.
ii. In Volunteer's Dilemma games (k = 1), equilibrium (5) is selected for r and the equilibrium, where only player 1 con-

tributes, for r0 and r00.
iii. In games with intermediate thresholds (k = 2, 3), E0 is selected for r. The equilibrium, where only the first k players

contribute, is selected for r0 and r00.

Proof. Corollary 2 follows directly from Propositions 3 and 4, for statement (iii) with q 0ð Þ= f 1
2 ,2,4
� �

= f 1
2 ,3,4
� �

=3=8
for k = 2 and k = 3 and q 0ð Þ= f 1

2 ,4,4
� �

=1=8 for k = 4.

Risk Dominance is concerned with the pairwise comparison of equilibria. The risk dominance relation can be
intransitive (Harsanyi & Selten, 1988, p. 217). For the question of whether a mixed or pure strategy equilibrium p risk
dominates another equilibrium p0, first the bicentric prior of p and p0 is derived. For our games with two pure strategies,
we have to determine, for every 0 ≤ t ≤ 1, whether ai = 1 (contribute) or ai = 0 (do not contribute) is a best response of
player i to the other players contributing according to the t-mixture of p−i = (p1, …, pi − 1, pi + 1, …. pn) and p0−i, that is,
with probabilities t * p−i + (1 − t) * p0−i. The shares of t with ai = 1 constitute a vector of prior probabilities. For the two
equilibria and these priors (instead of those of the centroid), the Linear Tracing Procedure is carried out. If one of the
two equilibria is selected it is said to risk dominate the other.
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Proposition 5. In Stag Hunt Games, if ri >
Q

j≠i 1− rj
� � 1

n−1

� �
for all i, then E0 risk dominates all other equilibria.

Proof. See Appendix.

In almost symmetric games, we have with ri = ρ for all i. Harsanyi and Selten (1988) require equilib-
rium selection to be independent of positive linear utility transformations of all players. Therefore, for
them, our almost symmetric games are symmetric. They also require that symmetric players play the same
strategy.

Proposition 6. Let us assume an almost symmetric BTPG game in the positive frame.

i. For k = 1, there is a unique symmetric equilibrium, described by (5).
ii. For 1 < k < n and ρ > ρmax, E0 is the only symmetric equilibrium.
iii. For 1 < k < n and ρ ≤ ρmax let π* ≤ π** be the (one or) two solutions of f(π, k, n) = ρ. If 1− π*

π** < π* or 1− π*

π** > π**,
then E0 risk dominates the only two other symmetric equilibria p* = (π*) and p** = (π**).

Proof. See Appendix.

Corollary 3. In the experimental cases (positive frame), in Stag Hunt games and, for almost symmetric games, for thresh-
olds k > 1, E0 risk dominates all other equilibria.

Proof. Corollary 3 follows directly from Propositions 5 and 6, statement (iii) with π* = 0.22 and π** = 0.46 for k = 2
(implying 1− π*

π** > π**) and π* = 0.54 and π** = 0.78 for k = 3 (implying 1− π*

π** < π*).

3.3 | Equilibrium selection by logistic QRE for the experimental cases

McKelvey and Palfrey (1995) define QRE and use a variant of the Tracing Procedure from Harsanyi and
Selten's (1988) theory to select a generically unique equilibrium. QRE assume all strategies (from a finite set) to be
played with probabilities that are ordered according to the utility a strategy gains against the strategies of other
players. Let us assume the positive frame and that player i contributes with probability pi. In the case of logistic
QRE and Stag Hunt games with the two strategies contributing and not contributing the probability of player i of
contributing is

pi =
exp λ qi*Gi−cið Þð Þ

exp λ qi*Gi−cið Þð Þ+exp λ*0ð Þ =
1

1+ exp −λ qi*Gi−cið Þð Þ : ð9Þ

qi * Gi − ci and 0 are the expected utilities after choosing contributing and not contributing. In the negative frame,
utilities are different but we reach the same formula, only with qi =

Q
j ≠ i(1 − pj). λ is the “precision parameter” char-

acterizing the magnitude of deviations from best responses. The solution of the system (9) is the QRE with λ, denoted
as QRE(λ). For λ = 0, pi = 0.5 for all i. For λ ! ∞, QRE(λ) converges to a Nash equilibrium. Generically, there is a
unique continuous path from QRE(0) to QRE(∞), and QRE(∞) is suggested by McKelvey and Palfrey (1995) for equilib-
rium selection. For 2x2 coordination games, Zhang and Hofbauer (2016) completely characterize the selection by
QRE(∞).

We determine QRE(∞) numerically. We use λ(i) = 0.05 * 1.001i, i = 0, …, 10,000 which results in λ values from
0.05 to 1096. The equilibrium with λ(i) is used as the starting value for the numerical computation of the equilib-
rium with λ(i + 1). Figure 1 shows that always the equilibrium without cooperation is selected: (0,0,0,0) in the posi-
tive and (1,1,1,1) in the negative frame. For k < n, respective computations are carried out. The paths of
QRE equilibria are shown in the Appendix (Figures A1, A2, and A3). The results in the positive frame are presented
in Table 1. The contribution frequencies in the negative frame with a threshold k, ACF−

i kð Þ, are equal
to 1−ACF +

i n−k+1ð Þ, where ACF +
i n−k + 1ð Þ is the contribution frequency in the positive frame with a threshold
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n− k+ 1. Note that the selection by QRE(∞) may differentiate between almost symmetric players with different ci and
Gi values.

4 | EXPERIMENTS

4.1 | Treatments and logistics

All our experimental games are with four players who can invest ci in the production of a public good. If at least k
players invest, the public good is produced and they receive benefits Gi. In Treatment SymPos (almost symmetric, posi-
tive frame), players 1 and 2 with (ci, Gi) = (4, 10) Lab-Dollars are called small players; players 3 and 4 with (ci,
Gi) = (8, 20) are called large players. The players in this treatment are almost symmetric.

A session of our experiments consisted of 32 games (periods) with the same eight subjects who, in SymPos, always
kept their role as a small or a large player. In every session of SymPos, there were four players of each type. In every
period (game), they were allocated randomly to two experimental groups under the restriction that every group con-

sisted of two small and two large players. There are
4

2

� �
*

4

2

� �
=36 different combinations of four-player groups.

FIGURE 1 QRE selection in the experimental Stag Hunt games. pSmall (pLarge) = probability of contributing by small (large) player in

the almost symmetric games SymPositive with ci
Gi

� �
= 4

10,
4
10 ,

8
20 ,

8
20

� �
and k = 4 and SymNegative with ci

Gi

� �
= −4

−10 ,
−4
−10 ,

−8
−20 ,

−8
−20

� �
and k = 1.

pSmall (pLarge) = probability of lowest (highest) cost player in the asymmetric games AsymLow with ci
Gi

� �
= 4:5

20 ,
5
20 ,

5:5
20 ,

6
20

� �
and AsymHigh

with ci
Gi

� �
= 2

20,
4
20 ,

6
20 ,

8
20

� �
and k = 4 in both cases. Remarks: All paths of QRE start at QRE(0) = (0.5,0.5,0.5,0.5) and end at the Nash

equilibrium QRE(1,096) = (0, 0, 0, 0) in the positive frame and QRE(1,096) = (1, 1, 1, 1)in the negative frame. In the almost symmetric

games, the strategies of the two small and the two large players are equal. For the asymmetric games the strategies of the middle cost players

are not indicated

TABLE 1 Selections of equilibria by QRE(∞) in the positive frame

Sym Pos AsymLow AsymHigh

ci/Gi 4/10 8/20 4.5/20 5/20 5.5/20 6/20 2/20 4/20 6/20 8/20

k

1 0.60 0 1 0 0 0 1 0 0 0

2 0.46 0.46 1 0.73 0.75 0 1 1 0 0

3 0 0 1 1 0.7 0.73 1 1 1 0

4 0 0 0 0 0 0 0 0 0 0

BOLLE AND SPILLER 913



During the 32 periods, all thresholds k = 1, 2, 3, 4 were adopted in a random order in blocks of eight repetitions. Exam-
ple: In periods 1, …, 8 (position 1) the threshold was k = 3, In periods 9, …, 16 (position 2) the threshold was k = 1, in
periods 17, …, 24 (position 3) the threshold was k = 4, and in periods 25, …, 32 (position 4) the threshold was k = 2. In
the 10 sessions with treatment SymPos, each k was used either 2 or 3 times at each of the four positions. Interaction
was anonymous; players did not know whether and when they might have met a coplayer from a previous round. Sub-
jects were not informed about the order of the thresholds in the beginning, but only when the threshold changed. They
were informed about how many players contributed to the public good, but not who contributed.

In Treatment SymNeg (almost symmetric, negative frame) Gi and ci have the same absolute values as in SymPos, but both
are negative, that is, players earn a profit by contributing and suffer a loss if the threshold is reached or surpassed. Again,
players 1 and 2 are called small players and 3 and 4 large players. All players in SymPos and SymNeg have cost/benefit ratios
ci/Gi = 0.4. In the asymmetric treatments AsymLow and AsymHigh, benefits were Gi = 20 and only costs varied. In treatment
AsymLow, contribution costs (ci) and cost/benefit ratios (ri) had a small spread; in treatment AsymHigh they showed a large
spread. (See Table 2.) The costs and benefits of a player define his type. A player kept his type during the whole experiment.
Every subject participated in only one treatment. The course of a session was the same as for treatment SymPos.

The experiments were conducted as computerized laboratory experiments (implemented in a z-tree program design,
Fischbacher, 2007) at two locations, the Vialab (V) of the Europa-Universität Viadrina in Frankfurt (Oder) and in the
experimental laboratory of the Technische Universität (TU) Berlin. Table 2 describes the experimental parameters and
how many sessions of a treatment were conducted at TU and Viadrina.

Before subjects played the games, they got printed instructions and had the possibility to ask questions. Instructions
contained general information, the description of the Binary Threshold Public Good game and an example calculation
(see Appendix). Furthermore, they had to answer five comprehension questions to make sure that everyone understood
the game. The experiment did not start until all subjects had answered the questions correctly. In cases of problems,
personal advice was given. In every period the subjects were reminded of the actual threshold and, every eighth period,
the changing of the threshold was announced. In each period, subjects were informed on the decision screen that the
group composition had changed and they were required to decide whether to contribute. On the profit display screen,
they were informed about the number of contributing players and whether the threshold was reached. They further
received information about their payoff in the current period.

In all of the 32 periods, players were endowed with 8 Lab-Dollars in the positive frame and 20 Lab-dollars in treat-
ment SymNeg.4 If the threshold of k contributions was reached or surpassed, all players received the benefit Gi (suffered
losses in treatment SymNeg); otherwise, they received nothing. Their total income in a period consisted of their endow-
ment minus their costs of contributing (if they contributed) plus possible (positive or negative) benefits. One Lab Dollar
was worth 4 Eurocents. The total income of a subject consisted of the sum of incomes in all periods.5 Participants
earned between 17 and 36 Euros with an average of 28.11 Euros. Sessions lasted roughly 45 min.

The design of our experiment is comparable with many other investigations of Stag Hunt games and other “simple”
games, for example, with Feltovich (2011) and Feltovich et al. (2012), who also investigate equilibrium selection. In
every session, their subjects played five different two-player games (three of them Stag Hunt games), each with 20 or
40 repetitions.

4.2 | The applicability of theory and the choice of parameters

Let us assume (i) that a player's goal is utility maximization with a utility function which is linear in incomes of all
players. Let us further assume that (ii) in one shot games, a certain principle of equilibrium selection applies. Then,

TABLE 2 Game parameters (in lab dollars) in the four treatments for players i = 1,2,3,4 and number of sessions with eight subjects

either at TU (Technische Universität Berlin) or V (Europa-Universität Viadrina Frankfurt (Oder))

Treatment Endowment Costs ci Benefits Gi ci/Gi #sess. At (V, TU)

SymPos 8 (4,4,8,8) (10,10,20,20) 0.4 (10, −)

SymNeg 20 (−4,−4,−8,−8) (−10,−10,−20,−20) 0.4 (10, −)

AsymLow 8 (4.5, 5, 5.5, 6) 20 (0.225, 0.25, 0.275, 0.3) (6, 12)

AsymHigh 8 (2, 4, 6, 8) 20 (0.1, 0.2, 0.3, 0.4) (10, 6)
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equilibrium selection does not change when we regard finitely repeated instead of one-shot games. In period 32, all sub-
jects know that this is the last game played. Therefore, equilibrium selection (ii) of the one shot game applies and,
because of (i), the selection of E is independent of the play in previous periods. Now, backward induction applies as
usual. Note that the incorporation of equilibrium selection is essential; otherwise, in repeated games, the equilibrium
may switch from period to period.6

If subjects believe that noncontribution has to be expected in one-shot games and, disregarding backward induction,
try to conserve cooperation in future periods by cooperating in the present period, then we should observe “end effects”
as in finitely repeated Prisoner's Dilemma games. We will look for evidence of dynamic behavior in our data, but we
will find almost constant behavior in the asymmetric games (all periods) and in the symmetric games (periods 17–32).

In this paper, we want to test the predictive power of the three most often used equilibrium selection theories. As
these are static theories they should be applied only to one-shot games or if behavior is stationary. If, for our investiga-
tion, we use only the data from period 1 or only from period 32, we arrive at exactly the same conclusions as when
using averages over stationary behavior. Almost all experiments with public goods production and with other “simple”
games have a repeated games design. One-shot games suffer from the problem that, even after some previous test
games, we may doubt that subjects “understand” the game and have rational expectations about the behavior of their
coplayers. In linear Public Good games, for example, we regularly observe decreasing contributions, ultimately with
“steady state behavior” close to the unique equilibrium of the game which requires zero contributions. An additional
argument for our design is that, in “real life,” people play sequences of similar games with different people.

With strong enough altruism or warm glow as described at the end of Section 2, E0 needs no longer be selected in
Stag Hunt games. Let us investigate the effect (for Stag Hunt games) if all ri are changed to s * ri as the introduction of
altruism/warm glow in Section 2 suggests.7 The Global Games selection of E0 needs s ≥ 0.63 for the symmetric games
and s ≥ 0.95 (1) for AsymHigh (AsymLow). The Linear Tracing Procedure needs s ≥ 0.31 for the symmetric games and
s ≥ 0.50 (0.69) for AsymHigh (AsymLow). Risk Dominance needs s ≥ 0.31 for the symmetric games and s ≥ 0.75 (0.45)
for AsymHigh (AsymLow). The QRE selection of E0 requires s ≥ 0.29 for the symmetric games and s ≥ 0.38 (0.39) for
AsymHigh (AsymLow). Therefore, except for the Global Games selection for the asymmetric games, we need consider-
able amounts of altruism in order to prevent equilibrium E0 to be selected.

Our choice of the cost/benefit ratio ρ = ri = 0.4 in the almost symmetric games has been guided by the goal to make
cooperation neither “too easy” nor “too risky.” Prima facie, the risk of investing and losing 32 cents seems to be high
against the chance of winning additional 48 cents if the other three players also invest. The magnitude of ρ was also
limited by the fact that, for thresholds k = 2 and 3, and ρ > 4/9, symmetric strictly mixed strategy equilibria (which we
wanted to use as benchmarks for the empirical frequencies) do not exist.

For the choice of cost/benefit ratios of the asymmetric games, the question which ratios are comparable with those
of the symmetric games is difficult. The first idea might be that the average should be the same; on second thought, in
Stag Hunt games the same maximum seems plausible. If one player refrains from cooperation this is plausibly the
player with the maximum ratio—and all others may expect this. Of course, such simplified rationale ignores higher
levels of reasoning. Our treatment “AsymHigh” with the large spread of cost benefit/ratios has the same maximum as
the symmetric games but a smaller average, namely 0.25. Our treatment “AsymLow” has almost the same average as
“AsymHigh,” namely 0.26, but a lower maximum, namely 0.3. Therefore, we have the possibility to test whether, for
cooperation rates, the maximum of cost/benefit ratios is important, but not the average or vice versa. These two hypoth-
eses are not alternatives and they have a weak fundament. A more formal aspect is our derivation of limits of s to altru-
ism/warm glow for which E0 is selected. For all our selection theories, we found the same qualitative result: In the
symmetric treatments, E0 is selected for lower s than in the asymmetric treatments.

5 | RESULTS

5.1 | Stag Hunt games

The average contribution frequencies are presented in Table 3. In one of eight tests, the results in the TU and V labora-
tories differed (5% level). Nonetheless, we aggregate our data.

Result 1: In the four Stag Hunt games, the selection of E0 (E1) in the positive (negative) frame by the Linear Tracing
Procedure, Risk Dominance, by Global Games, and by QRE(∞) is clearly rejected. The results are closer to Pay-off Dom-
inance with the contrary prediction.
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Result 2: Large and small players do not behave significantly differently.
Result 3: Players in the negative and in the positive frame do not behave significantly differently.
Result 4: There is a partly significant tendency that, in asymmetric games, players with low cost/benefit ratios contrib-
ute more frequently than players with high cost/benefit ratios.

For a further illustration of the results and further tests, we investigate the distribution of individual contribution
frequencies ICF = number of contributing decisions of a player in the eight repetitions of a game (Figures 2 and 3).
Comparing the distributions by chi-square tests, we confirm Results 2 and 3. With ICFs, we can also test the hypothesis
that subjects behave according to a unique mixed strategy or a pure strategy plus “trembling hands” deviations. Then,
ICFs should be distributed binomially—but they are not.

Result 5: The hypothesis of a binomial distribution of ICFs is rejected for the almost symmetric games and for asymmet-
ric games (except for the player type with the lowest cost/benefit relation) with extreme levels of significance (p < 10−10

in Figures 2 and 3).

FIGURE 2 Distributions of individual contribution frequencies ICF in eight repetitions of almost symmetric Stag Hunt games with

r = 0.4 in the positive frame (blue, 80 subjects) and in the negative frame (red, 80 subjects). Tests: In chi-square tests, the distributions of ICF

in the positive frame (χ2 = 8,272, df = 7, p < 10−10) and 8-ICP in the negative frame (χ2 = 6,098, df = 7, p < 10−10) are significantly different

from binomial distributions but not significantly different from one another (χ2 = 11.2, df = 8, p = 0.189)

TABLE 3 Average contribution probabilities (ACPs) in almost symmetric games with r = 0.4 and in two games with different r

SymPositive, k = 4 Two small pl. with c/G = 4/10 Two large pl. with c/G = 8/20

ACP 0.744 0.809

SymNegative, k = 1 Two small pl. with c/G = 4/10 Two large pl. with c/G = 8/20

1-ACP 0.703 0.744

AsymLow, k = 4 c/G = 4.5/20 c/G = 5/20 c/G = 5.5/20 c/G = 6/20

ACP 0.997 0.948 0.931 0.944a

AsymHigh, k = 4 c/G = 2/20 c/G = 4/20 c/G = 6/20 c/G = 8/20

ACP 0.984 0.945 0.918 0.883a,b

Notes: k = necessary number of contributions for the production of the public good. For the asymmetric games, aggregated data from TU and V. Tests: No
significant differences between small and large players in two-sided Wilcoxon matched pairs-test. No significant differences between positive and negative
frame in two-sided Mann–Whitney tests between ACP(pos. frame) and 1 − ACP(neg. frame). All tests are based on averages from 10 sessions and p < .05.
aSignificant differences between player types compared with type ci/Gi = 6/20 (8/20) and ci/Gi = 4.5/20 (2/20) in two-sided Wilcoxon tests on the 5% level. Tests
are based on averages from 18 sessions (low asymmetry) and 16 sessions (high asymmetry) and p < .05.
bSignificant difference (5% level) between the six sessions at TU and the 10 sessions at V in two-sided Mann–Whitney tests.
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Table 2 as well as Figures 2 and 3 suggest (and chi-square and Wilcoxon tests confirm) that, in the asymmetric
games, average contribution frequencies are higher than in the almost symmetric games. We have derived this in the
last section from the “stability” of the E0 selection against altruism/warm glow preferences.

Finally, we briefly consider the dynamics of the games (Figures 4 and 5). Games are played in eight rounds, but
have different positions in the order of games with thresholds k = 1,2,3,4. When, for example, a game is played as the
third game, it is played in periods 17–24. While contributions in the asymmetric games are on a continuously high level,
contributions in the symmetric games show a surprising dynamic. If the Stag Hunt game was played first (periods 1–8)
or second (periods 9–16), then contributions are strongly decreasing. If players had previous experience with two games

FIGURE 4 Frequency of contributions in the Stag Hunt game over periods in different positions. Blue = AsymHigh, green = AsymLow

FIGURE 5 Contributions (noncontributions in the case of SymNeg) in the Stag Hunt game over periods. Black = SymPos,

red = SymNeg

FIGURE 3 Distributions of individual contribution frequencies ICF in eight repetitions of the Stag Hunt game in the low asymmetry

treatment (blue, 144 subjects) and in the high asymmetry treatment (red, 128 subjects). Tests: In chi-square tests with classes {0,1,2,3}, {4,5},

{6},{7},{8}, the distributions of ICFs in the treatment with small asymmetry (χ2 = 18,586, df = 3, p < 10−10) and in the treatment with large

asymmetry (χ2 = 3,050, df = 3, p < 10−10) are significantly different from binomial distributions but not significantly different from one

another (χ2 = 6.0, df = 4, p = 0.201). Also the distributions for the three player types with the highest cost/benefit ratios are significantly

different from a binomial distribution
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with other thresholds, they keep cooperating on the same level as in asymmetric games. Therefore, we have no hints
concerning the question whether average costs or maximum costs are more important for cooperation in Stag Hunt
games.

Result 6: When played as the third or fourth block in the sequence of the experimental games with thresholds 1,2,3,4,
the Stag Hunt game (k = 4 in SymPos, k = 1 in SymNeg) is played constantly with cooperation rates about 90% or
above.

Finally, let us emphasize:

Result 7: Result 1 is maintained if we evaluate behavior only in period 1 or in period 32.

5.2 | Non-Stag Hunt BTPG games

Table 4 reports results for symmetric and Tables 5 and 6 for asymmetric games. In the following, all results with an
apostrophe attached (e.g., Result 10) are concerned with symmetric non-Stag Hunt games, all those attached with a dou-
ble apostrophe (e.g., Result 400) are concerned with asymmetric non-Stag Hunt games. This notation allows a better
comparison of results with those for Stag Hunt games.

Result 10: With two exceptions where the predictions by Pay-off Dominance (PO Dom) and Risk Dominance/Linear
Tracing Procedure or QRE(∞) coincide, PO Dom is always superior.
Result 20: With one exception, large and small players do not behave significantly different.
Result 30: Players in the negative and in the positive frame do not behave significantly different.

TABLE 4 Average contribution frequencies ACF +
i kð Þ in treatment SymPos and 1−ACF−

i 5−kð Þ in treatment SymNeg

ACF +
i kð Þ 1−ACF−

i 5−kð Þ Predictions

k SmPl LaPl SmPl LaPl PO Dom R Dom/LTP QRE(∞)

1 0.35# 0.37# 0.25§ 0.41 0.26 0.26 (0.60,0)

2 0.49# 0.56 0.43# 0.51# 0.46 0 0.46

3 0.61 0.63# 0.57# 0.61# 0.78 0 0

Notes: PO Dom = pay-off dominance. R Dom/LTP = risk dominance as well as linear tracing procedure. Small player type i = SmPl with (Gi, ci) = (10, 4) and
large player type i = LaPl with (Gi, ci) = (20, 8); k = threshold. Predictions are the same for small and large players except for QRE(∞) and k = 1 with the

prediction pi = 0.6 for small and pi = 0 for large players. All tests are two-sided, at the 5% level, and based on averages in 10 sessions. Small versus large
players: §Significant in Wilcoxon matched pairs-tests. k (position of *) versus k + 1: #Significant in Wilcoxon matched-pairs test. For k = 3, the comparison is
with the contribution frequencies in Table 3. SymPos versus SymNeg: No significant differences in Wilcoxon tests of ACF +

i kð Þ versus 1−ACF−
i n−k+1ð Þ.

TABLE 5 Average contribution frequencies of the four player types in treatment AysmLow (aggregated over V and TU) and predictions

Experiment Linear tracing procedure QRE(∞)

ri 0.225 0.25 0.275 0.3 0.225 0.25 0.275 0.3 0.225 0.25 0.275 0.3

k

1 0.39 0.50 0.33* 0.25* 1 0 0 0 0.75 0.77 0 0

2 0.62 0.63 0.48* 0.48 1 1 0 0 1 0.73 0.75 0

3 0.73 0.79 0.73§ 0.56*§ 1 1 1 0 1 1 0.7 0.73

Notes: All tests are two-sided, at the 5% level, and based on averages in six sessions at V and 12 sessions at TU. V versus TU: Three differences are significant
(bold types) in Wilcoxon tests, three higher probabilities in TU, one in V. k versus k + 1: 9 of the 12 differences are significant in Wilcoxon matched-pairs tests
with 18 independent sessions. (Exceptions k = 2, ri = 0.2, k = 2, ri = 0.3). All differences between k and k + 2 are significant. Player types: * (§) Significant

differences between player types compared with the type ri = 0.225 (0.25) in Wilcoxon matched pairs tests.
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Result 80: Confirming the prediction by PO Dom, the contribution probability is always higher for threshold k + 1 than
for k (significantly in 8 of 12 cases).

The asymmetric games do not have Pareto-ordered equilibria, but again we find large differences when comparing
predictions by the Linear Tracing Procedure and QRE(∞) with experimental behavior. The following results refer to
both tables.

Result 100: Average contribution probabilities are clearly different from those of the equilibria selected by the Linear
Tracing Procedure and QRE(∞).
Result 400: There is a partly significant tendency that, in asymmetric games, players with low cost/benefit ratios contrib-
ute more frequently than players with high cost/benefit ratios. This tendency is much stronger in the games with high
asymmetry.
Result 800: The contribution probability is always higher for threshold k + 1 than for k (significantly in 20 of 24 cases).

For (almost) symmetric as well as for asymmetric games we again find:

Result 70/700: Result 1 does not change if we take into account only the behavior in period 1 or in period 32.

Testing the distributions of ICFs for non-Stag Hunt games, we again find:

Result 50/500: The hypothesis of a binomial distribution of ICFs is rejected for the almost symmetric games and for asym-
metric games with extreme levels of significance (p < 10−10).

6 | A POSITIVE THEORY FOR STAG HUNT GAMES

Results 5/50/500 show that all theories assuming a homogenous population with stationary behavior are rejected with
extreme levels of significance. According to Pay-off Dominance and, with a sufficiently altruistic population, according
to the other three selection theories, contribution rates should be 1 in the Stag Hunt game—but this does not explain
the distribution of ICFs, even if we assume a constant error rate. A successful explanation of the results requires the
assumption of subpopulations with different behavior. Assuming that such subpopulations exist, Bolle (2019b) explains
the data of this investigation in the framework of his Behavioral Equilibrium Selection (BES) theory.

According to estimations of BES, for our Stag Hunt games, an (aggregate) subpopulation plays “always cooperate”
(as if selecting E1) with a joint share between 67% and 80% of the population. There may be different motives for con-
tributing (which refer to different subpopulations in the games with k < n): E1 is fair; E1 is the most efficient equilib-
rium; according to the Categorical Imperative, contributing is simply the right thing to do.8 3–7% of the population play
“never cooperate” (as if selecting E0), and 17–26% play a mixed strategy (from an equilibrium with a certain warm glow
parameter). There are deviations from strategies of about 0.03, that is, the pure strategy populations contribute with
probabilities 0.97 and 0.03; because of the relatively low magnitude of these deviations, one might think of them as
trembling hand behavior. For details, see Bolle (2019b).

TABLE 6 Average contribution frequencies of the four player types in treatment AsymHigh (aggregated over V and TU) and predictions

Experiment Linear tracing procedure QRE(∞)

ri 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

k

1 0.68 0.34* 0.23* 0.28* 1 0 0 0 1 0 0 0

2 0.78 0.61 0.40* 0.42* 1 1 0 0 1 1 0 0

3 0.93 0.84 0.69*§ 0.64*,§ 1 1 1 0 1 1 1 0

Notes: Tests are two-sided, at the 5% level, and based on averages in 10 sessions at V and 6 sessions at TU. V versus TU: No significant differences in Wilcoxon
tests. k versus k + 1: All differences are significant in Wilcoxon matched-pairs tests (except k = 1, ri = 0.1,). Player types: * (§) Significant differences compared
to the type with ri = 0.1 (0.2) in Wilcoxon matched pairs tests.
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In order to show that the assumption of three (aggregated) subpopulations in Stag Hunt games is not only successful
for our data, we apply it to data of Feltovich (2011). His experimental procedure is comparable with ours. Subjects play
three 2 × 2 Stag Hunt and two Hawk Dove games in blocks with 20 repetitions, that is, his subjects play 100 periods. The
order of the blocks is randomized. We investigate only the Stag Hunt games and only the experiments in a stranger design
(changing partners in every period). We test the hypothesis that depending on the parameters of the game, his subjects can
be separated into three subpopulations: P1, P0, and Pm playing “always cooperate,” “never cooperate,” and a mixed strat-
egy (possibly from the unique mixed strategy equilibrium Em with a certain warm glow parameter). The payoff matrix of
the game stag hunt high payoffs (SHH) is presented in Table 7. The payoff matrices of the two other Stag Hunt games are
derived from SHH by subtracting 140 in the game stag hunt medium payoffs (SHM) or 240 in the game stag hunt low pay-
offs (SHL) from all payoffs of SHH. All Stag Hunt games have the same unique mixed strategy equilibrium Em*, with
π* = 0.69 (without social preferences). Feltovich (2011) shows that, although the set of equilibria does not change, lower
payoffs make subjects in Stag Hunt games more cooperative. Our three-populations analysis does not provide new insights
regarding the origin of this behavioral shift but describes its nature in greater detail.

TABLE 7 Stag Hunt game (SHH)

Coop Non-coop

Coop 360, 360 40, 260

Non-coop 260, 40 260, 260

FIGURE 6 Individual frequencies (ICFs) of cooperative or peaceful behavior in the Stag Hunt games. “0” indicates the category of
subjects who never or only once cooperated, “2” the catagory who, two or threee times contributed, and so forth. Blue: SHH, Red: SHM,

Green: SHL

TABLE 8 Parameters (standard errors in brackets) and evaluation of the three-population model for the 2 × 2 Stag Hunt game in a

stranger design

α1 α0 αm π ε χ2 p (df = 4)

SHH 0.182 0.299 0.519 0.486 0.076 6.06 .195

(0.030) (0.036) (0.013) (0.012)

SHM 0.276 0.379 0.345 0.488 0.057 9.52 .049

(0.033) (0.036) (0.016) (0.008)

SHL 0.767 0.057 0.176 0.601 0.031 3.93 .415

(0.033) (0.017) (0.027) (0.006)
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Because our hypothesis is about static behavior, we omit the initial five of the 20 rounds for every game (see
Feltovich, 2011, Figure 3, for evidence that, in the first five rounds, an adaptation process may have occurred). For
the remaining 15 decisions, we count, for every subject, the number ICF of cooperative decisions. After merging
adjacent classes, the distribution of the ICFs is presented in Figure 6. Table 8 provides the minimum chi-square esti-
mations based on the distributions in Figure 6. It shows that the distribution of ICFs can be successfully interpreted
as a superposition of three binomial distributions according to the strategies of the subpopulations P1, P0, and Pm
plus a “trembling hand” error ε which is the same for all decisions. All estimations of π are close to ½, which may
alternatively be interpreted as a simple heuristic. The main effect of subtracting a constant amount from the payoff
matrices is the increase of the P1 subpopulation but not a systematic increase of π. SHL shows shares of populations
which are comparable with the shares reported for our four-person Stag Hunt games. SHM and SHH show less
cooperation.

7 | CONCLUSION

Investigating BTPG games, we have illustrated the difference between experimental behavior and equilibria selected by
Risk Dominance, the Linear Tracing Procedure, limits of Global Games, and limits of QRE. Our results are obtained for
a broader range of parameters than those in earlier investigations and can therefore claim more generality. In our
experimental Stag Hunt games, we find high average contribution rates (between 70.3% and 99.7% for different games
and player types). These results completely contradict all the applied equilibrium selection theories, which predict zero
contributions. For almost symmetric games with k = 2 or 3, again E0 is selected by Risk Dominance and the Tracing
Procedure, for k = 3 also by QRE(∞). For asymmetric games with thresholds k < n, the Tracing Procedure selects the
pure strategy equilibria where exactly the k players with the lowest cost/benefit ratios contribute, and QRE(∞) select
either these or alternative pure/mixed strategy equilibria. All these predictions are completely different from experi-
mental results.

In addition to testing equilibrium selection theories, we report a number of behavioral regularities (Results 2–8).
Any positive theory of behavior in BTPG games has to imply these regularities. We find that theoretic invariances con-
cerning small and large players and a positive vs. a negative frame are supported by nonsignificant differences (Results
2 and 3). Players with lower cost/benefit ratios contribute more often (Result 4). With increasing thresholds, players
contribute more frequently (Result 8). We also find that, on average, cooperation rates are higher in our asymmetric
than in our symmetric games, but this is not true if we compare behavior only in periods 17–32. Players in the symmet-
ric treatments seem to learn from similar games they played in periods 1–16. Such type of learning is characteristic for
“real life.” It has been observed also in previous studies and is discussed as “hysteresis effect” by Romero (2015). Most
important, however, for any positive theory is Result 5: A homogeneous population playing a single deterministic or
stochastic strategy cannot explain behavior in BTPG games. In Stag Hunt games, E1 is a far better description of behav-
ior than E0, but E1 plus a constant trembling hand error is still significantly rejected.

Based on this fundamental result, we outline a “semirational” theory of BES in Section 6. For Stag Hunt games,
BES predicts three subpopulations, playing the strategies from E0 and E1, and a mixed strategy. All strategies are
perturbed by a constant trembling hand error. Successful estimations (nonrejection by a chi-square test for individual
contribution frequencies) are reported for our data as well as data from Feltovich (2011).

We contradict extant equilibrium selection theories, but do not state that earlier experimental results are less reli-
able than ours. Some of them are based on different games (e.g., Minimum Effort instead of Stag Hunt games), most of
the Stag Hunt games are 2 × 2 instead of our 2 × 2 × 2 × 2 games, and all games have different incentives. Compared
with all the investigations from the literature, our experiments have larger variations. This shows the stability of our
results for a large region of parameters, but not necessarily for all parameters. The connection between the parameters
of, for example, a Stag Hunt game and the amount of cooperation we observe is still an open question. BES states that
there are six subpopulations (four of them playing according to E1 in Stag Hunt games) with different principles of
behavior. The shares of the populations are to be estimated, however. In Bolle (2019a 2019b), it is shown that these
shares are constant over thresholds k = 1,2,3,4; they are similar but significantly different for our games with different
cost/benefit ratios. The parameter changes of Feltovich (2011), however, cause considerable changes of population
shares (Section 6). A theory which predicts the frequencies of behavioral modes (equilibrium strategies or not) from the
parameters of a game may be based on a meta-study with the application of BES (or a similar theory); but our opinion
is that we still need much more experience with different parameters before we can predict those shares.
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ENDNOTES
1 In addition to these concepts, there are the theory of Güth and Kalkofen (1989), approaches with learning to play equilibria
(e.g., Berninghaus & Ehrhart, 1998) and other dynamic approaches (Binmore & Samuelson, 1999; Young, 1993). Kim (1996) investigates
further proposals for equilibrium selection in symmetric normal form games with Pareto-ranked equilibria.

2 Data of Feltovich (2011) will be further investigated in Section 6.
3 Successful financial attacks require a sufficient number of attackers. If all players are required to attack, we have a Stag Hunt game, other-
wise a game where a club good is provided (only the attackers earn a profit). Therefore, attacks are strategic complements.

4 Thus, incomes in SymPos and SymNeg are equal if the distribution of contributing decisions in SymPos is the same as the distribution of
noncontributing in SymNeg.

5 There is a long tradition of propagating stochastic payment according to a single period, for example, Azrieli et al. (2018). Paying all periods
may cause wealth effects with consequences for risk attitudes and hedging of choices. We are aware of this danger, but not paying every
period may have disadvantages, too. With many periods, the subjects may lack the direct experience of profitable and unprofitable deci-
sions. Our subjects have to adapt to the special environment of the experiment. There may be a learning process until they are sure about
their decisions. We discuss this issue in connection with Figure 5 and with the estimation of a behavioral model with data from
Feltovich (2011) in Section 6. Learning may be much easier with “real pay-off” in separately paid periods.

6 We could try to apply equilibrium selection to the repeated game instead of the stage game. Every selection with arbitrary switches between
equilibria, however, has to solve the coordination problem involved in such a sequence of equilibria. This problem is similar to selecting
asymmetric equilibria in symmetric games.

7 This is an analysis under complete information. If there is incomplete information about other's social preferences, dynamic behavior cau-
sed by Bayesian updating of beliefs about the distribution of preferences in one's session is implied. Bolle (2017) applies such a model in
order to explain behavior in sequential Volunteer's Dilemma games.

8 Also Faillo et al. (2013, p. 1) find that efficiency (Pareto dominance) and fairness are “good predictors for coordination choices.”
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