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Nontechnical Summary 
 
The combination of bottom-up and top-down approaches constitutes a long-standing challenge in applied 

energy policy analysis. The terms ``top-down'' and ``bottom-up'' are shorthand for aggregate and 

disaggregated models. Top-down models examine the broader economy and incorporate feedback effects 

between different markets triggered by policy-induced changes in relative prices and incomes. They 

typically do not feature technological details of energy production or conversion. Energy sectors –  like 

other non-energy sectors – are mostly represented in an aggregate way by means of smooth production 

functions which capture substitution (transformation) possibilities via substitution (transformation) 

elasticities. As a consequence, conventional top-down models cannot readily incorporate different 

assumptions about how discrete energy technologies and costs will evolve in the future; top-down models 

may also violate fundamental physical restrictions such as the conservation of matter and energy. In 

contrast, bottom-up models -- usually cast as mathematical programming problems – describe current and 

prospective technologies in detail. They are therefore well suited to the analysis of specific changes in 

technology or command-and-control policies such as efficiency standards. A common shortcoming of the 

bottom-up analysis is that it fails to account for price distortions, economy-wide interactions and income 

effects. 

The formulation of economic equilibrium conditions as mixed complementarity problem (MCP) provides 

a unifying framework for combining technological details of bottom-up models and economic richness of 

top-down models. However, dimensionality may impose significant limitations on the practical 

application of the integrated MCP framework, particularly when the underlying programming formulation 

of the energy system includes both upper and lower bounds on many decision variables. 

In this paper, we present a decomposition approach that combines different mathematical formats –  

mixed complementarity and mathematical programming – thereby taking advantage of efficient and 

robust solution algorithms for each format: We use complementarity methods to solve the top-down 

economic equilibrium model and quadratic programming to solve the underlying bottom-up energy 

supply model. Our decomposition technique overcomes dimensionality restrictions of the integrated MCP 

framework and can be readily applied to the combination of large-scale top-down and bottom-up models 

for comprehensive energy policy analysis. 
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Abstract

The formulation of market equilibrium problems as mixed complementarity problems (MCP)

permits integration of bottom-up programming models of the energy system into top-down

general equilibrium models of the overall economy. Despite the coherence and logical appeal

of the integrated MCP approach, implementation cost and dimensionality both impose lim-

itations on its practical application. A complementarity representation involves both primal

and dual relationships, often doubling the number of equations and the scope for error. When

an underlying optimization model of the energy system includes upper and lower bounds on

many decision variables the MCP formulation may suffer in robustness and efficiency. While

bounds can be included in the MCP framework, the treatment of associated income effects

is awkward.

We present a decomposition of the integrated MCP formulation that permits a convenient

combination of top-down general equilibrium models and bottom-up energy system models

for energy policy analysis. We advocate the use of complementarity methods to solve the

top-down economic equilibrium model and quadratic programming to solve the underlying

bottom-up energy supply model. A simple iterative procedure reconciles the equilibrium

prices and quantities between both models. We illustrate this approach using a simple

stylized model.

JEL classification: C61, C68, D58, Q43
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1 Introduction

Top-down and bottom-up are the two modeling paradigms to represent interactions between

the energy system and the economy (International Panel on Climate Change (IPCC) [1996]).

The terms “top-down” and “bottom-up” are shorthand for aggregate and disaggregated

models. Models in the first category emphasize economy-wide, while those in the second

category feature sectoral and technological details. The dichotomy of energy-economy models

into top-down and bottom-up approaches is sometimes traced back to competing paradigms.

It should be noted, however, that differences are less of conceptual nature, i.e. due to

controversial theoretical underpinnings, but simply relate to the different levels of sectoral

and technological aggregation as well as to the scope of ceteris paribus assumptions.

Top-down models examine the broader economy and incorporate feedback effects between

different markets triggered by policy-induced changes in relative prices and incomes. They

typically do not feature technological details of energy production or conversion. Energy

sectors – like other non-energy sectors – are mostly represented in an aggregate way by means

of smooth production functions which capture substitution (transformation) possibilities via

substitution (transformation) elasticities. As a consequence, conventional top-down models

cannot readily incorporate different assumptions about how discrete energy technologies

and costs will evolve in the future; top-down models may also violate fundamental physical

restrictions such as the conservation of matter and energy.

In contrast, bottom-up models – usually cast as mathematical programming problems –

describe current and prospective technologies in detail. They are therefore well suited to the

analysis of specific changes in technology or command-and-control policies such as efficiency

standards. A common shortcoming of the bottom-up analysis is that it fails to account for

price distortions, economy-wide interactions and income effects (e.g. revenue recyling effects

of energy taxes).

There are various hybrid modeling efforts that aim at combining the technological ex-

plicitness of bottom-up models with the economic richness of top-down models. These ef-

forts can be broadly classified into two approaches. The first approach attempts to couple

existing large-scale bottom-up and top-down models (e.g. Hudson and Jorgenson [1974],

Bergmann [1990]). Due to the heterogeneity in complexity and accounting methods across

the sub-models such a “soft-link” approach may face substantial problems in achieving over-

all consistency and convergence of iterative solution algorithms.1 The second approach puts

strong emphasis on overall economic consistency and therefore makes use of a single inte-

grated modeling framework in order to “hard-link” bottom-up and top-down features. Such

an integrated framework is provided by the specification of market equilibrium models as

mixed complementarity problems (MCP – see Cottle and Pang [1992], Rutherford [1995]).

1Manne and Rutherford [1994] employ iterative methods to incorporate general equilibrium effects within the

context of technology-oriented bottom-up models.
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The explicit representation of weak inequalities and complementarity between decision

variables and market equilibrium conditions in the MCP formulation permits the modeler

to capture both technological details and economic richness in a single mathematical format

(Böhringer [1998]). More recently, the availability of robust large-scale solvers for MCP

problems (Dirkse and Ferris [1995]) has promoted the implementation and application of

hybrid energy-economy models in the MCP format to concrete energy regulation policies

(e.g. Böhringer et al. [2003] or Frei et al. [2003]).

Despite the coherence and logical appeal of the integrated MCP approach, algebraic com-

plexity and dimensionality impose significant limitations on its practical application, when

the optimization problem describing the energy system includes upper and lower bounds on

many decision variables. Bounds may also be incorporated in the MCP framework but the

representation of associated income effects becomes rather problematic.

In this paper, we propose a decomposition technique to overcome such dimensionality

restrictions. We describe how an integrated MCP model can be decomposed and solved

iteratively: Complementarity methods are used to solve the top-down economic equilibrium

model and quadratic programming is applied to solve the underlying bottom-up energy

(supply) model. We present a worked example which illustrates the usefulness of the energy-

sector decomposition, both in terms of efficiency of computation and transparency of model

formulation. Convergence of our iterative (Jacobi) algorithm requires that the decomposed

energy sector be small relative to the rest of the economy. In this setting, a Marshallian

demand approximation in the energy sector model provides a precise local representation of

the general equilibrium demand so that overall convergence occurs rapidly.2

The remainder of this paper is organized as follows. In section 2, we extend the top-down

representation of economic market equilibria as a mixed complementarity problem by an

explicit bottom-up linear programming sub-model of energy supply. In section 3, we lay out

how the integrated top-down / bottom-up MCP model can be decomposed. In section 4, we

provide an illustrative numerical example. In secton 5, we conclude.

2 Integrated Model Formulation

Market equilibrium features complementarity between upper and lower bounds on equi-

librium variables and the weak inequalities which characterize market equilibrium. The

complementarity features of market equilibria motivate the mathematical formulation of

market equilibrium problems as a mixed complementarity problem (MCP). The MCP ap-

proach provides a general mathematical format that covers weak inequalities, i.e. a mixture

2In applications in which the energy system turns out to be of sufficient significance that the decomposition is

costly or unreliable, our use of a complementarity formulation for the general equilibrium model permits selected

features of the energy sector to be computed simultaneously with the macro-economy; the remaining part of the

energy systen can then still be solved as a quadratic programming problem.
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of equations and inequalities, and complementarity between variables and functional rela-

tionships. It includes a wide range of mathematical problems including systems of linear or

nonlinear equations or mathematical programs (Rutherford [1995]). The MCP formulation

relaxes the integrability constraints for equilibrium conditions which emerge as first-order

conditions from primal or dual optimization problems. This permits the direct representa-

tion of market inefficiencies such as distortionary taxes or spillovers that cannot be readily

studied in an optimization framework (Böhringer and Rutherford [2005]).

In our formulation of an integrated top-down / bottom-up model we consider a com-

petitive (Arrow-Debreu) economy with n commodities (including economic goods, energy

goods and primary factors) indexed by i, m production activities (sectors) indexed by j,

and h households (including government) indexed by k. We extend the MCP framework

suggested by Mathiesen [1985] by embedding an explicit linear-programming sub-model of

energy supply in the economy. The decision variables of the economy can be classified into

the following categories:

p denotes a non-negative n-vector in prices for all goods and factors,

y is a non-negative m-vector for activity levels of constant-returns-to-scale (CRTS) produc-

tion sectors,

M is a h-vector of consumer income levels,

e represents a non-negative n-vector of net energy system outputs (including, for example,

electricity, oil, coal, and natural gas supplies to residential, industrial, and commercial

customers), and

x denotes a non-negative n-vector of energy system inputs (including labor, capital, and

materials inputs).

As in Mathiesen’s model a competitive market equilibrium for this economy is represented

by a vector of activity levels, a non-negative vector of prices, and a non-negative vector of

incomes such that:

• No production activity makes a positive profit (zero-profit condition):3

−Πj(p) ≥ 0 (1)

in which Πj(p) denotes the unit profit function for CRTS production activity j, which

is calculated as the difference between unit revenue and unit cost (i.e., Πj(p) = rj(p)−
cj(p)).

3We omit tax distortions from this exposition solely to economize on notation. An important and appealing

feature of the top-down general equilibrium framework is its ability to address the welfare consequences of energy

policy from a public finance perspective, i.e. accounting for initial tax distortions and public sector budget

constraints.
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• Excess supply (supply minus demand) is non-negative for all goods and factors (market

clearance condition):

∑

j

∇Πj(p) yj +
∑

k

ωk + e ≥
∑

k

dk(p,Mk) + x (2)

in which ωk indicates the initial endowment vector for household k and d(k,Mk) is the

utility-maximizing demand vector for household k.

• Expenditure does not exceed income (budget constraint):

Mk = pT [ ωk + θk(e− x) ] (3)

in which θk represents the share of energy-sector rents that accrue to household k

(rents depend on household ownership of energy resources). The equations which de-

fine consumer income levels are conceptually distinct from the zero profit and market

clearing conditions in that there is no explicit complementarity at work in this part of

the model. The income variables are added to the equilibrium system solely as a means

of simplifying the expression of household demand.

Furthermore, we assume that the equilibrium levels of energy sector outputs and inputs

are consistent with profit-maximization, taking market prices as given:

• Energy sector supply and demand vectors are profit-maximizing choices subject to tech-

nical constraints. That is, e and x solve a linear programming model. For concreteness,

we will assume that this bottom-up model can be written as:

max pT (e− x) (4)

subject to

Ax + Bz ≥ Ce

e, x ≥ 0, ` ≤ z ≤ u

in which A,C ∈ RM×n, and B ∈ RM×N characterize technical constraints and z ∈ RN

denotes decision variables of the energy system.

In the integrated model formulation the linear program can be incorporated through the

associated Kuhn-Tucker conditions and solved simultaneously with the equilibrium condi-

tions (1)-(3):

CT π ≥ p, e ≥ 0, eT (CT π − p) = 0

p ≥ AT π, x ≥ 0, xT (p−AT π) = 0

Ax + Bz ≥ Ce, π ≥ 0, πT (Ax + Bz − Ce) = 0

` ≤ z ≤ u, λ, µ ≥ 0, λ(z − `) = 0, µ(u− z) = 0

λ + BT π = µ
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The attribution of energy-sector rents to households can be made explicit by writing (3)

as:

Mk = pT ωk + Θk(µT u + λT `)

in which Θk ∈ Rh×N determines rents on energy-sector resources to households.

The integrated equilibrium for this hybrid top-down / bottom-up model then consists

of m + 3n + h + M + 3N equations as compared with the standard economic model of

dimension m + n + h and the original linear programming model with M constraints and

N + 2n variables.4 If computational complexity increases superlinearly with the problem

dimension, a decomposition approach can outperform a simultaneous solution algorithm,

provided that sufficiently few outer iterations are required to solve the decomposed model.

3 A Decomposition Strategy

The introduction of an energy-sector sub-model within the general equilibrium framework

poses computational challenges when the dimensionality of the energy sector – captured by

N + M in our abstract setting – is very large relative to the dimensionality of the standard

economic model given by n + m + h. While an integrated MCP formulation is attractive for

highly aggregated energy system representations, it has limited practicality for large-scale

systems with bounds on many variables due to the need to account for associated income

effects. The added dimensionality poses two problems. First, the enlarged system may

be more difficult to solve. Second, and more importantly in our view, the model is more

awkward to implement because of the larger number of variables and equations as well as

the complexity of explicit income constraints. Compactness of representation leads to fewer

potential sources of error and more rapid model development. Calendar time rather than

CPU time is the primary concern of the applied analyst.

In view of the challenges presented by the complementarity format we propose a decom-

position strategy for the integrated model in which the energy system bottom-up component

can be computed separately from the top-down economic general equilibrium sub-model.

The solution procedure involves iterative solution of the top-down general equilibrium model

given net supplies from the bottom-up energy sector sub-model followed by the solution of

the energy sector sub-model based on a locally calibrated set of demand functions for energy

sector outputs. When (e−x) and θ are given exogenously, the top-down general equilibrium

model can be solved as a complementarity problem of dimension m + n + h.

Suppose that the computed equilibrium prices are p̄ (based on an initial guess for the

energy sector response ē, x̄, and θ̄). The next step in a recursive solution procedure updates

the values of (e − x) and θ based on p̄. One might then consider a direct solution of the

4The linear programming model represents upper and lower bounds on decision variables through implicit

Kuhn-Tucker conditions, such that we can reduce the number of constraints by 2N as compared with the integrated

MCP formulation.
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profit-maximizing linear program (4) which characterizes the choices of an individual firm.

However, this approach is quite likely to fail because the profit-maximizing linear program

does not take account of the response of market demand to changes in energy prices. Suppose

that these demand elasticities are given by ε.5 We can then write the demand for energy

good i as:

ei(p) = ēi [1− εi(pi/p̄i − 1)]

where εi is the demand elasticity and ēi and p̄i denote the observable reference quantities

and prices for the demand function calibration.

The calibrated inverse demand function is:

pi(e) = p̄i [1− (1− ei/ēi)/εi]

and the integrated market demand function is:
∫

pi(ei)dei = p̄iei

[
1− ei − 2ēi

2εiēi

]
,

Am aggregate (integrated) multicommodity energy systemn may then be solved as a

quadratic programming problem of the form:6

max p̄T (e− x)− 1
2

∑

i

p̄iei

εiēi
(ei − 2ēi) (5)

subject to the same constraints which appear in (4) in order to compute a partial market

equilibrium model for the energy sector based on linear demand functions locally calibrated

to the given macroeconomic equilibrium.

Figure 1 illustrates the basic steps involved in the iterative model solution. The top-down

model is solved as a complementarity problem, taking net energy supplies (ēi) and energy

sector inputs (x̄) as given. The computed equilibrium determines prices (p̄i) and a set of

linear demand curves for energy sector outputs (Di(p; ε)). These demand curves and relative

prices parameterize the bottom-up model which may be solved as a quadratic program.

We graphically portray the iterative solution process in Figures 2 and 3. Figure 2 sketches

a simplified partial equilibrium model where we neglect general equilibrium and cross-market

price effects. Here, we essentially use the decomposition procedure to compute a single-

sector Marshallian market equilibrium with a nonlinear demand curve (DD) and a piecewise

linear supply schedule (S). The starting point of the algorithm is an initial estimate Q0

of the quantity of energy supply. This quantity has an associated market price (marginal

5If – as is commonly the case – the general equilibrium model is based on nested constant-elasticity-of-

substitution technologies and preferences, the demand elasticity of individual market segments is roughly equal

to the elasticity of substitution.
6We assume in this algorithm that the energy sector faces constant prices for non-energy economic inputs,

which is a reasonable assumption considering that the energy sector typically comprises at most 5% of the overall

economic activity.
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Top-Down Model

F (z) ⊥ ` ≤ z ≤ u

Bottom-Up Model

maxxT Qx

s.t. Ax = b

`x ≤ x ≤ ux

→ p̄i, Di(p; ε)

↑

←S̃i, ē, x̄

↓

Figure 1: Iterative Decomposition Algorithm

willingness to pay) of P0 and market equilibrium point a. Having computed this equilibrium

(ignoring the supply schedule), the algorithm next evaluates the energy market based on a

linear demand curve calibrated to the market equilibrium at point a. The solution to the

supply problem maximizes the sum of consumer and producer surplus (the shaded area),

resulting in an equilibrium supply of Q1 at a marginal cost of c1. Given Q1, the algorithmic

steps are repeated to converge at the equilibrium solution (P ∗, Q∗).

Figure 3 illustrates the same procedure for a multi-market general equilibrium in which

shifts in the demand for one good induce changes in the demand for other goods through

general equilibrium income and cross-market price effects. At the benchmark point we have

an energy demand function D0 − D0 which is locally approximated by a linear demand

function at point a. At the next iteration, changes in energy supplies and associated general

equilibrium effects lead to the energy demand function D1−D1 which is approximated locally

at b.
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P*

QQ0 Q1Q*

P

P0

P1

S

D

D

a

b

c1

Figure 2: Iterative Adjustments: Single Market Partial Equilibrium

4 An Illustrative Example

As illustration of the algorithm’s implementation and computational efficiency, we have for-

mulated a stylized representative agent model with two non-energy goods(x,y) and a set

of four energy goods (OIL, GAS, COL (coal), and ELE (electricity)). We begin with an

algebraic characterization of our model in a primal optimization setting. We then provide

a re-formulation of the model as a mixed complementarity problem. Next, we lay out the

decomposition of the integrated top-down/bottom-up model. Finally, we lay out the decom-

position of the integrated top-down/bottom-up model, describing how such a model can be

calibrated to base-year social accounts.

4.1 The Integrated Model in a Primal Optimization Setting

Energy goods are produced by a discrete number of technologies.7 Aggregate supply Ei of

energy good i equals output zit from all technologies t producing that energy good i:

Ei =
∑

t

zit (6)

7In our numerical model implementation, we can vary the number of technologies available for producing each

energy good in order to perform sensitivity analysis of computational efficiency with respect to the dimensionality

of the energy system sub-model (see Figure 5).
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P

P0

P1

S

D0
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D0

D1.D*

D1.D*

Figure 3: Iterative Adjustments: Multimarket General Equilibrium

Consumer demand is modelled as budget-constrained utility maximization by a represen-

tative agent:

max u(xc, yc, Ec) s.t. pxxc + pyyx +
∑

i

pE
i Ec

i = M

where u denotes the utility from consumption of non-energy goods xc and yc as well as from

the final energy consumption composite Ec; px, py, and pE
i are the prices for non-energy and

energy goods; EC
i refers to the final consumption demand of energy good i; and M denotes

the income of the representative household.

Consumer preferences which trade off composite final energy Ec and non-energy goods

at a constant elasticity of substitution (CES) are given as:

u(xc, yc, E
c) =

(
αE(1−σC)

c + (1− α)(xθC

c y(1−θC)
c )1−σC

)1/(1−σC)

(7)

where σC is the substitution elasticity; α denotes the distribtuion parameter; and θC is the

value share of x demand in the Cobb-Douglas xy-composite of final demand.

Substitution possibilities across energy goods in final demand are characterized by a CES

function:

Ec =

(∑

i

βiE
c
i
(1−σEC)

)1/(1−σEC)

(8)

where βi is the distribution parameter; and σEC denotes the elasticity of substitution.

Consumer income (M) is determined by wages w, earnings r on sector-specific capital

9



and scarcity rents uit on capacities of energy technology t producing energy good i:

M = rxK̄x + ryK̄y + wL̄ +
∑

it

µitz̄it (9)

where K̄y, K̄x denote sector-specific (fixed) capital; L̄ is the fixed labor supply; and z̄it

denotes the capacity constraint on technology t producing energy good i.

Goods x and y enter intermediate demand to energy production and final consumption

demand:

x =
∑

it

ax
itzit + xc (10)

y =
∑

it

ay
itzit + yc (11)

where ay
it (ax

it) denote the (per-unit) input coefficient of non-energy input to the production

of energy good i by technology t; zit is the activity level of technology t delivering energy

good i.

Energy supplies enter as intermediate inputs into the production of non-energy goods and

final demand. Furthermore energy supplies serve as intermediate inputs to the production

of other energy goods. 8 The market clearance condition for energy good i is:

Ei = Ex
i + Ey

i + Ec
i +

∑

i′t

bii′tzi′t (12)

where bii′t is the input coefficient of energy good i into technology t producing energy good

i′.

The labor market is cleared by the real wage w:

Lx + Ly = L̄ (13)

Likewise, rental rates rx and ry clear sector-specific capital markets:

Kx = K̄x (14)

Ky = K̄y (15)

Upper bounds on energy sector technologies are realized through adjustment of technology-

specific rents µit:

0 ≤ zit ≤ z̄it (16)

Production of non-energy goods x and y is based on profit maximization subject to

technical constraints:

max pxx− wLx +
∑

i

pE
i Ex

i s.t. x = fx(K̄x, Lx, gx(Ex))

8Coal and gas serve as inputs to the production of electricity, crude oil is refined into transportation fuels, etc.
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and

max pyy − wLy +
∑

i

pE
i Ey

i s.t. y = fy(K̄y, Ly, gy(Ey))

Three-level nested separable CES functions characterize trade-offs between primary fac-

tors and energy in the production of goods x and y. At the top level, an energy composite is

combined with a Cobb-Douglas aggregate in labor and capital subject to a constant elasticity

of substitution:

fi(K̄i, Li, Ei) = φi

(
γiE

(1−σi)
i + (1− γi)K̄θ

i L
(1−θi)(1−σi)
i

)1/(1−σi)

i ∈ {x, y}

where φi is the efficiency parameter, γi is the distribution parameter, and σi is the elasticity

of substitution.

At the lower level, energy inputs are combined (to a sector-specfic energy input composite

Ei) in a manner which distinguishes the differences in substitutability between electricitiy,

coal, oil, and gas:

Ei = E
θele

i
ele,i

(
δiE

(1−σE
i )

col,i + (1− δi)(E
θi,oil

oil,i E
(1−θi,oil

gas,i )(1−σE
i )

)(1−θele
i )/(1−σE

i )

i ∈ {x, y}

where θele
i is the value share of electricity in the Cobb-Douglas energy composite demand

of sector i; δi is the distribution parameter; θoil
i refers to the value share of oil in the Cobb-

Douglas oil-gas composite; σE
i denotes the substituion elasticity between coal and the oil-gas

composite.

Energy sector supplies are produced by profit-maximizing firms. The technology t that

produces energy good i is then selected at a level which maximizes returns subject to capacity

constraints:

max zit

(
pE

i − pxax
it − pyay

it −
∑

i′
pE

i bi′it

)
s.t. zit ≤ z̄it

4.2 The Integrated Model as a MCP

The model presented above omits a number of complications which arise in applied general

equilibrium models. These might include multiple consumers with distinct preferences, taxes

(on energy, goods or factor incomes), knowledge spillovers, or imperfect competition. In the

absence of these features which typically violate integrability conditions, the integrated model

can be solved as a conventional nonlinear program by maximizing u subject to (6) through

(16). The optimization approach is, however, often too restrictive in terms of the model

features which need to be included for concrete policy analysis.

The complementarity format offers a flexible alternative to non-linear optimization as

a means of representing economic equilibrium models through “canonical” general equillib-

rium conditions (see conditions (1), (2), and (3)). In the MCP framework, the algebraic

representation of our stylised model begins from the dual cost minimization problems of the

individual producers. For sectors i = {x, y} we have cost-minimizing unit energy costs given

by:
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pE
i =

(pele

θele
i

)θele
i

{
δi

(pcol

δi

)(1−σE
i )

+(1− δi)
[( poil

(1− δi)θoil
i

)θoil
i

( pgas

(1− δi)(1− θoil
i )

)(1−θoil
i )](1−σE

i )
}1/(1−σE

i )

Unit profit functions for x and y are in turn given by:

Πi = pi − 1
φi

[
γi

(pE
i

γi

)(1−σi)

+(1− γi)
( ri

θi(1− γi)

)θi(1−σi)( w

(1− θi)(1− γi)

)(1−θi)(1−σi)
]1/(1−σi)

The unit cost of energy inputs to final demand are given by:

pE
c =

(∑

i

βi

(
pE

i

βi

)1−σEC )1/(1−σEC)

and the resulting cost of a unit of final consumption is:

pc =


α

(
pE

c

α

)1−σC

+ (1− α)

((
px

θC(1− α)

)θC (
py

(1− θC)(1− α)

)(1−θC)
)1−σC 


1/(1−σC)

Finally, the unit profit associated with technology t for energy good i = {col, oil, gas, ele}
is:

ΠE
it = pE

i − pxax
it − pyay

it −
∑

i′
pE

i bi′it − µit

Given the underlying functional forms, we observe that the complementarity conditions

only will apply for the energy sector technologies and the shadow prices on the associated ca-

pacity constraints; all of the macro economic prices and quantities will be non-zero. By use of

Shepard’s Lemma we can then write the equilibrium as the following mixed complementarity

problem:

• Zero-profit conditions:

z̄it ≥ zit ⊥ µit ≥ 0 (17)

−ΠE
it ≥ 0 ⊥ zit ≥ 0 (18)

Πx = 0 (19)

Πy = 0 (20)
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• Market clearence conditions:

x =
∑

it

ax
itzit + c

∂Πc

∂px
(21)

y =
∑

it

ay
itzit + c

∂Πc

∂py
(22)

L̄ = x
∂Πx

∂w
+ y

∂Πy

∂w
(23)

K̄x = x
∂Πx

∂rx
(24)

K̄y = y
∂Πy

∂ry
(25)

∑
t

zit −
∑

i′t

bii′tzi′t = c
∂Πc

∂pE
i

+ x
∂Πx

∂pE
i

+ y
∂Πy

∂pE
i

(26)

c =
M

pc
(27)

• Income balance:

M = rxK̄x + ryK̄y + wL̄ +
∑

it

µitz̄it (28)

Table 1 provides a summary of the variables appearing in the integrated model.

Table 1: Equilibrium Variables in the Integrated Model

Activity variables

c Aggregate consumption

x, y Production of goods x and y

Ei Aggregate output of energy good i

zit Production by technology t for energy good i

Ex
i , Ey

i Demand for energy good i in sectors x and y

Ec
i Final demand for energy good i

Lx, Ly Labor demand in goods x and y

Price variables

pc Price index of final consumption

px, py Non-energy goods x and y

pE
i Energy prices for i = {oil,gas,col,ele}
w Wage rate

rx, ry Returns to non-energy capital

µit Energy sector rents

Income variable

M Income of representative agent
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4.3 Decomposition

Our decomposition strategy requires that we separate the integrated model into a top-down

model of the overall economy and a bottom-up model of the energy supply system. Within

the top-down model, we treat net energy system netputs as exogenous. Energy supply

activities are no longer endogenous and we can drop equations (17) and (18). Net energy

supplies and inputs of non-energy goods to the energy system enter the top-down model

as parameters. Parameterized energy-sector netputs S̃i and inputs x̃E and ỹE are valued

at market prices which implicitly include rents on specific energy resources (so we can drop

these from the income constraint). The adjusted market clearance condition for energy goods

within the top-down model is:

S̃i = Ex
i + Ey

i + Ec
i (29)

and the revised market clearance conditions for non-energy goods are:

x = x̃E + c
∂Πc

∂px
(30)

and

y = ỹE + c
∂Πc

∂py
(31)

The revised income balance (28) reads:

M = rxK̄x + ryK̄y + wL̄ +
∑

i

pE
i S̃i − pxx̃E − py ỹE (32)

The bottom-up model can be represented as a quadratic programming problem in which

the sum of producer and consumer surplus is maximized subject to supply-demand balances

for energy and resource bounds on technologies:

max
∑

i p̃E
i (1 + 2S̃i−Si

2εiS̃i
)− p̃xxE − p̃yyE (33)

subject to

Si =
∑

t zit −
∑

i′t bii′tzi′t

xE =
∑

it ax
itzit

yE =
∑

it ay
itzit

0 ≤ zit ≤ z̄it

Table 2 summarizes the additional variables and parameters appearing in the bottom-up

(sub-)model.
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Table 2: Variables and Parameters in the Decomposed Model

Variables

Si Net supply of energy good i

xE , yE Aggregate demand for x and y as inputs to energy production

zi,t Activity level of technology t producing energy good i

Parameters

S̃i Reference level of demand or supply for energy good i

p̃E
i Reference price of energy good i

p̃x, p̃y Reference prices of non-energy goods x and y

εi Demand elasticity for energy good i

4.4 Parameterization

Before we perform numerical simulations we parameterize our stylized model with economic

data. The benchmark statistics are given in Table 3 in terms of a social accounting matrix

King [1985]. In the initial aggregate dataset energy constitutes 10% of overall final demand.9

The bottom part of Table 3 provides details on the energy demand structure in sectors x

and y as well as in final demand. The column labelled “e” summarizes total energy supplies

by energy carrier i and non-energy inputs to energy production (in our case there are only

inputs of the macro good y).

Table 3: Base Year Social Accounts

x y e fd Key

x 15 -15 x: energy intensive production

y 100 -24 -76 y: macro production

l -5 -40 45 e: energy production

k -5 -50 55 fd: final demand

ele -2 -5 10 -3 ele: electricity

oil -1 -2 7 -4 oil: oil

gas -1 -1 3 -1 gas: gas

col -1 -2 4 -1 col: coal

We have implemented a generic procedure how the aggregate description of the economy’s

energy supply side can be further detailed through a discrete representaiton of energy supply

technologies thereby warranting consistency with the aggregate data set as given in Table

3. First, one can specify the desired number of technologies which are available for the

generation of energy commodities.10 In a second step, the program randomly generates a
9We have parameterized the energy intensity of final demand within our computer programs to investigate

how the convergence of the decomposition procedure depends on the size of the energy sector – see Figure 6.
10We can thus perform sensitivity analysis on the computational gains/cost of the decomposition method with

respect to the number of technologies.
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cost distribution for each technology thereby assigning a certain fraction of technologies as

initially idle (non-profitable) at benchmark prices. The cost structure of discrete technologies

– fuel costs and non-energy input costs – is then again assigned randomly; capital earnings,

i.e. scarcity rents on technological capacities, are determined as a residual (if a technology

is initially idle, the initial rents are obviously zero). Finally, relative capacities are randomly

assigned and scaled such that net energy supply equals the given overall economic energy

demand (see Table 3).

Figure 4 illustrates the step-wise energy supply structure by technologies in merit order for

the different energy commodities (the number of available technologies has been set to 10 in

this example). At benchmark energy prices of unity, the break-even “point” for technologies

is at marginal costs of 1 – all technologies that are more expensive will be initially inactive.
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Figure 4: Energy Supply Schedules (Number of Technologies = 20)

4.5 Computational Results

In order to illustrate the potential usefulness of our decomposition approach, we provide

some numerical tests with the calibrated version of our stylized model. As an exogenous

policy shock, we assume a technological breakthrough which reduces non-energy inputs to

non-fossil electricity generation technolgies by a half.
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The decomposed integrated model is solved iteratively in its top-down and bottom-up

sub-models. After the exogenous policy shock, we may first solve the top-down model. Next,

we solve the bottom-up model taking into account the equilibrium prices of the top-down

model. The solution values of the bottom-up model are subsequently used to update the

quantities on energy system outputs and inputs which enter into the top-down model.

Figure 5 provides some evidence on the computational efficiency of our decomposition

algorithm. We compare the computational cost for the integrated model formulation vis--

vis the decomposed model formulation as a function of the number of energy technologies.

It becomes evident that the decomposition delivers substantial time savings towards an

increasing number of technologies.

Figure 5: Computational Cost of Decomposition

Figure 6 investigates the convergence performance of the decomposed model with re-

spect to the energy intensity of final demand. The graph shows how iterations required for

convergence increase with the size of the energy sector.

5 Conclusions

The combination of bottom-up and top-down approaches constitutes a long-standing chal-

lenge in applied energy policy analysis. The formulation of economic equilibrium conditions

as mixed complementarity problem provides a unifying framework for combining techno-

logical details of bottom-up models and economic richness of top-down models. However,
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Figure 6: Convergence Performance of Decomposed Model as a Function of Energy Intensity

dimensionality may impose significant limitations on the practical application of the inte-

grated MCP framework, particularly when the underlying programming formulation of the

energy system includes both upper and lower bounds on many decision variables.

In this paper, we have presented a decomposition approach that combines different math-

ematical formats – mixed complementarity and mathematical programming – thereby taking

advantage of efficient and robust solution algorithms for each format: We use complementar-

ity methods to solve the top-down economic equilibrium model and quadratic programming

to solve the underlying bottom-up energy supply model.

Our decomposition technique overcomes dimensionality restrictions of the integrated

MCP framework and can be readily applied to the combination of large-scale top-down

and bottom-up models for comprehensive energy policy analysis.
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Böhringer, C., “The Synthesis of Bottom-Up and Top-Down in Energy Policy Modeling,”

Energy Economics, 1998, 20 (3), 233–248.

, A. Müller, and M. Wickart, “Economic Impacts of a Premature Nuclear Phase-Out

in Switzerland,” Swiss Journal of Economics and Statistics, 2003, 139 (4), 461–505.

and T.F. Rutherford, “Integrating Bottom-Up into Top-Down:A Mixed Comple-

mentarity Approach,” Discussion Paper No. 05-28, ZEW, Mannheim 2005.

Cottle, R. W. and J.-S. Pang, The Linear Complementarity Problem, Academic Press,

1992.

Dirkse, S. and M. Ferris, “The PATH Solver: A Non-monotone Stabilization Scheme

for Mixed Complementarity Problems,” Optimization Methods & Software, 1995, 5,

123–156.

Frei, C.W., P.-A. Hadi, and G. Sarlos, “Dynamic formulation of a top-down and

bottom-up merging energy policy model,” Energy Policy, 2003, 31 (10), 1017–1031.

Hudson, E.A. and D.W. Jorgenson, “US energy policy and economic growth, 1975-

2000,” The Bell Journal of Economics and Management Science, 1974, 5, 461–514.

International Panel on Climate Change (IPCC), Climate Change, 1995: Economic

and Social Dimensions of Climate Change – Contribution of Working Group II to the

Second Assessment Report of the Intergovernmental Panel on Climate Change, Cam-

bridge, 1996.

King, B., “What is a SAM?,” in “Social Accounting Matrices: A Basis for Planning,”

Washington D. C.: The World Bank, 1985.

Manne, A.S. and T.F. Rutherford, “International trade, capital flows and sectoral anal-

ysis: formulation and solution of intertemporal equilibrium models,” in W.W. Cooper

and A.B. Whinston, eds., New Directions in Computational Economics, Springer, 1994,

pp. 191–205.

Mathiesen, L., “Computation of Economic Equilibrium by a Sequence of Linear Comple-

mentarity Problems,” in A. Manne, ed., Economic Equilibrium – Model Formulation

and Solution, Vol. 23 1985, pp. 144–162.

Rutherford, T. F., “Extensions of GAMS for Complementarity Problems Arising in Ap-

plied Economics,” Journal of Economic Dynamics and Control, 1995, 19, 1299–1324.

19




