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Abstract

This paper studies models of processes generating censored outcomes with endoge-

nous explanatory variables and instrumental variable restrictions. Tobit-type left cen-

soring at zero is the primary focus in the exposition. The models studied here are

unrestrictive relative to others widely used in practice, so they are relatively robust

to misspecification. The models do not specify the process determining endogenous

explanatory variables and they do not embody restrictions justifying control function

approaches. The models can be partially or point identifying. Identified sets are char-

acterized and it is shown how inference can be performed on scalar functions of partially

identified parameters when exogenous variables have rich support. In an application

using data on UK household tobacco expenditures inference is conducted on the co-

effi cient of an endogenous total expenditure variable with and without a Gaussian

distributional restriction on the unobservable and compared with the results obtained

using a point identifying complete triangular model.
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1 Introduction

This paper develops and applies results on the identifying power of models for continuous

censored outcomes, focussing on cases with left censoring at a fixed known value. In econo-

metrics the Tobit model, Tobin (1958), is a well known example of such a model.

In contrast to the classical Tobit model, the focus is on cases in which one or more of

the explanatory variables is endogenous and there are exogenous variables that satisfy ex-

clusion restrictions that limit their degree of influence on the censored outcomes. These

instrumental variables (IVs) are restricted to be distributed to some degree independently of

the unobserved variables in the structural equation for the censored outcomes. A variety of

independence restrictions are considered, including mean, quantile, and full stochastic inde-

pendence restrictions, with both parametric and nonparametric distributional restrictions.

This paper is unlike most that allow for endogenous explanatory variables in situations

in which outcomes are censored because there is no specification of the determination of

the endogenous explanatory variables as either a deterministic or stochastic function of

the exogenous explanatory variables and instruments. Consequently the models studied

here are incomplete for the determination of endogenous explanatory variables. The IV

approach explored here is an alternative to approaches that use complete models, which

are prey to misspecification if they introduce an incorrect specification of the genesis of

endogenous explanatory variables. STATA’s ivtobit command,1 despite its name, computes

estimates of parameters of Tobit models with endogenous explanatory variables using a

complete triangular model assuming Gaussian unobserved variables. That attack does not

deliver consistent estimates when endogenous variables are discrete or affected by multiple

sources of heteorgeneity. By contrast, the IV approach employed here can be used when

endogenous variables are discrete or when the way in which endogenous variables’values

are generated is unrestricted. The IV approach is a useful alternative to control function

approaches which require endogeneity to be absent once there is conditioning on identifiable

functions of observed variables. This paper shows how inferences can be drawn using censored

data and weakly restrictive robust IV models.
1StataCorp (2019).
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The models studied are single equation IV models for a censored outcome variable. They

fall in the class of generalized instrumental variable models analyzed in Chesher and Rosen

(2017), henceforth CR17. We use techniques developed in that paper to carry out identi-

fication analysis, and we show how to implement the high level results given in CR17 in

models for censored outcomes. The models are in general partially identifying but they can

be point identifying, and it is usually not possible to determine identification status using

the data available in applications. We conduct inference on scalar functions or subvectors of

partially identified parameters following the approach of Belloni et al. (2018) based on a self-

normalized critical value as in Chernozhukov et al. (2019), which is appropriate for inference

based on a very large number of moment inequalities. The approach applies regardless of

identification status, and we propose a method for implementation when exogenous variables

have rich support. We illustrate with an application to UK household survey data recording

tobacco expenditures in which around 70% of households record zero expenditures.

The main focus in this paper is on IV Tobit models with left censoring at zero, with and

without a Gaussian distributional restriction on the scalar unobserved variable. However it

is straightforward to extend to cases with right censored outcomes and to cases in which

the censoring value is stochastic, distributed independently of the unobserved variable in the

censored outcome equation.2 Leading examples with right censoring arise when the censored

outcome is the time until some event occurs, so the methods developed here find application

in models of durations admitting endogenous explanatory variables.3

As noted, much of the prior literature studying models with censored outcomes and

endogenous explanatory variables relies on a complete model for the determination of en-

dogenous variables. Examples include the fully parametric specifications studied in Heck-

man (1978), Nelson and Olson (1978), Amemiya (1979), Smith and Blundell (1986), Newey

(1987), and Blundell and Smith (1989) that made early contributions to the study of limited

dependent variable models (including Tobit models in particular) permitting endogenous

explanatory variables and enabling consistent estimation by way of control function ap-

proaches and marginal or conditional maximum likelihood procedures.4 Control function

approaches for semiparametric triangular models for censored outcomes are provided in Das

(2002), Blundell and Powell (2007), and Chernozhukov et al. (2015). These papers do not

2Cases in which the censoring variable is also endogenous are considered in ongoing research.
3See for example Lancaster and Chesher (1984), Lancaster (1985), Olsen and Farkas (1989), Frandsen

(2015), and Wrenn et al. (2017).
4Comparisons of the effi ciency of different procedures are provided in Newey (1987) and Blundell and

Smith (1989).
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require parametric distributional restrictions on unobservable heterogeneity, with Das (2002)

employing symmetry restrictions and Blundell and Powell (2007) and Chernozhukov et al.

(2015) using conditional quantile restrictions.

Our approach is in the spirit of Manski and Tamer (2002), which pioneered the use

of incomplete models for censored outcomes or covariates and used partial identification

analysis. That paper characterized identified sets and proposed consistent set estimators for

a variety of models with censored variables, in which the censoring process is not specified.

In the IV Tobit models studied here, the censoring process is specified, but endogenous

explanatory variables are permitted and it is the lack of specification of their determination

that renders the models incomplete. In this respect the models studied here have similarities

with the model studied in Hong and Tamer (2003). That model employs conditional quantile

restrictions with a censored outcome variable and does not impose a specification of the

process determining values of endogenous explanatory variables. The model of Hong and

Tamer (2003) is incomplete but the focus there is on settings in which the parameters of the

model are point identified. Suffi cient conditions for point identification are proposed along

with a point estimator, and the asymptotic properties of the estimator are characterized. The

support conditions shown to guarantee point identification are strong and there are many

cases arising in practice in which they will not be satisfied. We characterize sharp identified

sets for model parameters applicable when these support conditions are not guaranteed

to hold, and we illustrate the use of inference that is robust to the possibility of partial

identification.

There is also research that considers the different but important problems of endogenous

censoring of explanatory variables. This includes Khan and Tamer (2009), Khan et al.

(2011), and Section 7 of Chesher and Rosen (2020b).

This paper makes several contributions to the literature on models of censoring with

endogenous explanatory variables and instrumental variable restrictions.

1. As already pointed out, the vast majority of the previous papers on this topic consider

models that, unlike those considered here, require a complete specification for the

determination of endogenous explanatory variables. Our analysis thus shows what

can still be learned when the specification of the genesis of endogenous explanatory

variables is dropped.

2. We consider the use of more or less demanding restrictions on the distribution of

unobservable heterogeneity conditional on instruments. This can be used to assess
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(for example) how robust empirical findings are to relaxation from a full stochastic

independence restriction to selected conditional quantile restrictions.

3. Our analysis is robust to the possibility of partial identification, and is thus applica-

ble when data are not compatible with conditions that are known to ensure point

identification.

4. We show how to conduct inference on functions or subvectors of parameters partially

identified by moment inequalities in these IV Tobit models, using recent developments

in Chernozhukov et al. (2019) and Belloni et al. (2018) allowing for a large number of

moment inequalities relative to the sample size, as encountered in our application.

5. We show how quantile independence restrictions at multiple quantiles can be incorpo-

rated. This enables the study of the increase in identifying power as one moves from

invoking a single conditional quantile restriction to successively more quantile restric-

tions, approaching full stochastic independence as more such restrictions are imposed.

6. We show how to determine the identifying power of an IV model for censored outcomes

under a stochastic independence restriction with a nonparametric specification of the

distribution of the unobservable variable in the structural equation for the censored

outcome.

The paper proceeds as follows. In the following section we present the class of IV Tobit

models studied. In Section 3 we characterize the identified set of structures —combinations

of structural functions and distributions of unobservable heterogeneity —that are compatible

with the censored outcome model. The identified set is shown to comprise those structures

that lie in the intersection of two sets, each defined by a collection of conditional moment

inequalities. We show how under some circumstances certain subsets of the inequalities

reduce to moment equalities, and we show how exclusion restrictions can be incorporated

into the characterization of the identified set. In Section 4 we analyze the identifying con-

tent of various restrictions on the joint distribution of exogenous variables and unobservable

heterogeneity, such as conditional mean, conditional quantile, and stochastic independence

restrictions. In Section 5 we describe how inference is carried out using results from Cher-

nozhukov et al. (2019) and Belloni et al. (2018), and we propose a practical approach for

application of the inference method when an identified set is characterized by conditional

moment inequalities with continuous conditioning variables. We illustrate with an applica-

tion in which we focus on conducting inference on the effect of total household nondurable
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expenditure on the share of expenditure spent on tobacco, previously considered using a

control function approach in Adams et al. (2019). All proofs and figures are provided in in

the Appendix.

2 The IV Tobit model

Scalar endogenous outcome Y1, possibly endogenous vector Y2, exogenous vector Z ∈ RZ ,

and unobserved scalar U ∈ R satisfy:

Y1 = max(Y ∗1 , 0), Y ∗1 = m(Y2, Z, U) (1)

where the function m is strictly increasing in its third argument (U) and for all y2 and z,

m(y2, z,−∞) ≤ 0. There is the inverse function m−1(y2, z, y∗1) such that for all y
∗
1, y2 and z

m(y2, z,m
−1(y2, z, y

∗
1)) = y∗1.

In a leading case of interest the function m is linear

m(y2, z, u) = αy2 + βz + u,

as in the classical Tobit model which has U ∼ N(0, σ2) independent of Z and no endogenous

explanatory variables. In the linear case the inverse function is

m−1(y2, z, y
∗
1) = y∗1 − αy2 − βz.

We consider cases in which the model embodies a parametric specification of the distribu-

tion of U , for example U ∼ N(0, σ2), and cases in which there is no parametric specification.

We consider models restricting U and Z to be stochastically independent, less restrictive

specifications requiring quantile independence at specified quantiles, or, alternatively, mean

independence restrictions.

We cast the problem into the Generalized Instrumental Variable framework set out in

CR17 in which a structure, (m,GU |Z) comprises two components, namely (i) a structural

function and (ii) a distribution of unobservable heterogeneity conditional on each possible

value of exogenous variables. The first of these components, the structural function, de-

termines which combinations of (Y, Z, U) can jointly occur. In the IV Tobit model this is
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fully determined by the function m.5 The second component of a structure is a collection of

conditional distributions of U given Z, denoted

GU |Z ≡
{
GU |Z(·|z) : z ∈ RZ

}
where for any set S ⊆ R

GU |Z(S|z) ≡ P[U ∈ S|Z = z].

A model, A, comprises a list of restrictions on structures, defining a set of admissible

structures,MA, which satisfy the restrictions. A model’s restrictions may limit the depen-

dence between U and Z and may require that the function m satisfies conditions additional

to those so far imposed, for example functional form and exclusion restrictions. When U

and Z are stochastically independent a collection GU |Z is a singleton {GU} where GU is the

marginal distribution of U . A model can additionally impose parametric restrictions on the

distribution of U .

In summary, throughout the paper a model is referred to as an IV Tobit Model if it

satisfies the following definition.

Definition 1 An IV Tobit Model A comprises a set of restrictions on the process generating
observed variables Y1, Y2, and Z such that (1) holds for some unobservable variable U residing

on the same probability space as (Y1, Y2, Z). The function m and conditional distributions of

U given Z are restricted to belong to some set,MA, of admissible pairs (m,GU |Z).

A variety of IV Tobit Models are considered, imposing different sets of restrictions on the

pair (m,GU |Z). When convenient, notation G̃U |Z (t|z) ≡ GU |Z((−∞, t] |z) is used to denote

the conditional cumulative distribution function of U given Z = z associated with GU |Z(·),
and g̃U |Z (·|z) is used to denote the corresponding conditional density when conditions are

such that the density exists.

5In CR17 notation h : RY ZU → R is used to denote a structural function defined on the support of
(Y,Z, U) such that h (Y,Z, U) = 0 with probability one. In the the IV Tobit model there is a unique
mapping from values of (Y2, Z, U) to values of Y and it is more natural to work with this function, m,
directly. In the notation of CR17, one would define h (Y, Z, U) ≡ Y1 −max (0,m (Y2, Z, U)).
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3 Identification

3.1 Characterizations of identified sets

CR17 gives characterizations of identified sets of structures from which identified sets of

structural features are obtained by projection. The characterizations make use of residual

sets associated with a structure (m,GU |Z). A residual set is the set of values of unobserved

U that, for a structural function m, can deliver the value y of endogenous Y when exogenous

Z is equal to z. In the IV Tobit model the residual sets are singleton sets when y1 > 0 and

semi-infinite intervals when y1 = 0, as follows.

U(y, z,m) =

{
(−∞,m−1(y2, z, 0)] , y1 = 0

{m−1(y2, z, y1)} , y1 > 0

Let FY |Z ≡{FY |Z(·|z) : z ∈ RZ} denote the collection of conditional distributions of Y
given Z, where for any set6 Y ⊆ RY

FY |Z(Y|z) ≡ P[Y ∈ Y|Z = z].

Data is informative about this collection of distributions, which is assumed to be identified.

The following Proposition characterizes the identified set of structures given knowledge of

FY |Z .

Proposition 1 The identified set of structures delivered by an IV Tobit model, A, and a

collection of conditional distributions of Y given Z, FY |Z ≡{FY |Z(·|z) : z ∈ RZ} is

I(FY |Z ,RZ , A) = I1(FY |Z ,RZ , A) ∩ I2(FY |Z ,RZ , A), (2)

where

I1(FY |Z ,RZ , A) ≡
{

(m,GU |Z) ∈MA : ∀t ∈ R, GU |Z((−∞, t]|z) ≥ C(z, t,m) a.e. z ∈ RZ

}
,

(3)

6To keep the notation uncluttered the support of Y is taken to be independent of z. This can easily be
relaxed.
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I2(FY |Z ,RZ , A) ≡
{

(m,GU |Z) ∈MA : ∀[t1, t2] ⊂ R,
GU |Z([t1, t2]|z) ≥ ∆ (z, t1, t2,m) a.e. z ∈ RZ

}
, (4)

∆ (z, t1, t2,m) ≡ B(z, t2,m)−B(z, t1,m),

B(z, t,m) ≡ P [0 < Y1 ≤ m(Y2, Z, t)|Z = z],

D(z, t,m) ≡ P[Y1 = 0 ∧ 0 ≤ m(Y2, Z, t)|Z = z],

and

C(z, t,m) ≡ P [Y1 ≤ m(Y2, Z, t)|Z = z] = D(z, t,m) +B(z, t,m).

The proof of the Proposition follows from application of the inequality

GU |Z(S|z) ≥ P[U(Y, Z, h) ⊆ S|Z = z] (5)

to sets S comprising certain intervals on the real line. The probability P[U(Y, Z, h) ⊆ S|Z =

z], termed a containment probability, is the conditional probability given Z = z of the

occurrence of a value of Y that can occur only when unobserved U takes a value in the

interval S.7 The expressions ∆ (z, t1, t2,m), B(z, t,m), D(z, t,m), and C(z, t,m) defined in

the Proposition help to provide concise representations for these containment probabilities.

Specifically, for intervals (−∞, t] that are unbounded below:

P[U(Y, Z,m) ⊆ (−∞, t] |Z = z] = C(z, t,m). (6)

For intervals [t1, t2], with t1 > −∞ but with t2 ≥ t1 unrestricted:

P[U(Y, Z,m) ⊆ [t1, t2]|Z = z] = ∆ (z, t1, t2,m) , (7)

from which it also follows that for intervals [t1,∞) with t1 > −∞:

P[U(Y, Z,m) ⊆ [t1,∞)|Z = z] = P [Y1 > 0|z]−B(z, t1,m). (8)

7Other characterizations of identified sets are available. One such will be employed when we consider the
force of the restriction that unobserved U is mean independent of Z. All of the characterizations follow from
the result that a structure (m,GU |Z) is in the identified set if and only if for all z in the support of Z the
distribution GU |Z(·|z) is selectionable with respect to the distribution of the random set U(Y,Z;m) induced
by the distribution of (Y,Z) delivered by the process under study. Definitions and details are in CR17.
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In addition, it will be useful later to have an expression for the containment probability

which applies for intervals [t1, t2] with t1 finite or infinite, as follows.

P[U(Y, Z,m) ⊆ [t1, t2]|Z = z] = 1[t1 = −∞]× P[Y1 = 0 ∧ 0 ≤ m(Y2, Z, t2)|Z = z]+

P[Y1 > 0 ∧m(Y2, Z, t1) ≤ Y1 ≤ m(Y2, Z, t2)|Z = z] (9)

3.2 Characterizations using singly-infinite systems of moment in-

equalities

The sets I1(FY |Z ,RZ , A) and I2(FY |Z ,RZ , A) are determined by systems of respectively

singly- and doubly-infinite moment inequalities. Under additional restrictions that imply

that B(z, t,m) is everywhere differentiable in t the doubly-infinite system can be replaced

with an equivalent singly-infinite system. This can have computational advantages.

With G̃U |Z(·|z) denoting the conditional cumulative distribution function of U given

Z = z the condition

GU |Z([t1, t2]|z) ≥ ∆ (z, t1, t2,m)

that appears in I2(FY |Z ,RZ) can be expressed as

G̃U |Z(t2|z)− G̃U |Z(t1|z) ≥ ∆ (z, t1, t2,m) .

From this, with a differentiability restriction, Proposition 2 provides a singly-infinite moment

inequality characterization for the set I2(FY |Z ,RZ , A) originally defined in (4).

Proposition 2 Suppose m(y2, z, t) is everywhere differentiable with respect to t for all values

of (y2, z) and that U is continuously distributed given Z with conditional density g̃U |Z(·|z).

Then

I2(FY |Z ,RZ , A) =
{

(m,GU |Z) ∈MA : ∀t ∈ R, g̃U |Z(t|z) ≥ b(z, t,m) a.e. z ∈ RZ

}
, (10)

where b(z, t,m) ≡ ∇tB(z, t,m) is the partial derivative of B(z, t,m) with respect to t.

3.3 Upper and lower bounds and moment equalities

The containment inequality (5) used to produce Proposition 1 provides a lower bound on the

distribution of U . It is shown in CR17 that applying the inequality in (5) to the complement
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Sc of a set S delivers the following inequality satisfied by all structures in the identified set
for all z ∈ RZ and all closed sets S on the support of U .8

GU |Z(S|z) ≤ P[U(Y, Z,m) ∩ S 6= ∅|Z = z] (11)

So, for all structures in the identified set I(FY |Z ,RZ , A) the inequalities

P[U(Y, Z,m) ∩ S 6= ∅|Z = z] ≥ GU |Z(S|z) ≥ P[U(Y, Z,m) ⊆ S|Z = z] (12)

hold for all z ∈ RZ and all intervals, S, on the real line.
There are moment equalities in the characterization of the identified set of structures

when there are z and S such that the probabilities on the left and right hand sides above
are equal. In a suffi ciently restrictive model and for particular collections of distributions

FY |Z and support RZ , there is the possibility that these moment inequalities deliver point

identification.

In the IV Tobit model the upper bounding probability P[U(Y, Z,m)∩S 6= ∅|Z = z] is as

follows.

P[U(Y, Z,m) ∩ [t1, t2] 6= ∅|Z = z] = P[(Y1 = 0) ∧ (0 ≥ m(Y2, Z, t1))|Z = z]

+ P[(Y1 > 0) ∧ (m(Y2, Z, t1) ≤ Y1 ≤ m(Y2, Z, t2))|Z = z]. (13)

Considering (6), (7), and (13), bounding probabilities in (12) are equal for semi-infinite

intervals (−∞, t] when z and m are such that

P [Y1 = 0|Z = z] = P [Y1 = 0 ∧ 0 ≤ m(Y2, Z, t)|Z = z]

and for finite intervals [t1, t] when z and m are such that

P [Y1 = 0 ∧ 0 ≥ m(Y2, Z, t)|Z = z] = 0.

Both conditions are satisfied when m(Y2, Z, t) > 0 almost surely conditional on Z = z. A

leading case in which this can occur is when the endogenous explanatory variable Y2 has

bounded support and the function m is unbounded above as t becomes large.

Conditions such that the inequalities (12) reduce to equalities for some values of z, can

8Here ∅ denotes the empty set. The probability on the right hand side is known as a capacity functional
or the hitting probability of the random set.
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be the basis for establishing suffi cient conditions for point identification. For example, in

models for censored outcomes with a conditional median restriction (Hong and Tamer, 2003,

p. 908) provide support conditions under which certain resulting moment equalities can

establish point identification and a
√
n-consistent and asymptotically normal estimator of

model parameters when m is linear in parameters. Under the restriction that med (U |Z) = 0

and m(Y2, Z, 0) > 0 almost surely conditional on Z = z with m linear in parameters and

additive U there is in our notation

med (Y1 − Y2α + Zβ|Z = z) = 0,

which corresponds to the moment equality delivered by the inequalities (12) applied to the

set (−∞, t]. A condition requiring that the set of values of z ∈ RZ such that m(Y2, Z, 0) > 0

almost surely conditional on Z = z has positive measure, in conjunction with a condition

requiring suffi cient variation in included endogenous variables conditional on instruments, is

then used to establish suffi cient conditions for point identification in Lemma 2 of Hong and

Tamer (2003).

3.4 Restrictions on the influence of exogenous Z

So far no restrictions on the dependence between U and Z or on the influence of z on

the values taken by the function m(y2, z, u) have been considered. So far as the latter is

concerned consider the restriction requiring m to depend on z solely through the variation

in a function, w(z), that arises as z varies across the support of Z.

Restriction ZD: Restricted Z dependence

∃w(·) s.t. ∀(z, z′) ∈ RZ ×RZ ,∀(y2, u), w(z) = w(z′) =⇒ m(y2, z, u) = m(y2, z
′, u)

A case which commonly arises involves exclusion restrictions with z = (z1, z2) and w(z) = z1.

Index restrictions in which m only varies with z through variation in some parametric linear

functions of z are also commonly employed.

Define the set of values that w(z) can take as z varies across its support

W(RZ) ≡ {w(z) : z ∈ RZ}
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and for each element, w, of this set define the set of values of z such that w(z) = w:

Z(w,RZ) ≡ {z ∈ RZ : w(z) = w}.

When Z is excluded from the structural function define w(z) = z in which caseW(RZ) =

RZ and Z(w,RZ) = RZ .

In the case in which there is a stochastic independence condition so that GU |Z = {GU}
the sets I1(FY |Z ,RZ , A) and I2(FY |Z ,RZ , A) are then as follows, where G̃U(t) and g̃U(t) are

respectively the marginal distribution and density functions of U .

I1(FY |Z ,RZ , A) =

{
(m,GU |Z) : ∀w ∈ W(RZ), t ∈ R, G̃U(t) ≥ sup

z∈Z(w,RZ)
C(z, t,m)

}
,

I2(FY |Z ,RZ , A) =

{(
m,GU |Z

)
: ∀w ∈ W(RZ), t ∈ R, g̃U(t) ≥ sup

z∈Z(w,RZ)
b(z, t,m)

}
,

and the identified set of structures is

I(FY |Z ,RZ , A) = I1(FY |Z ,RZ , A) ∩ I2(FY |Z ,RZ , A).9

4 The impact of restrictions on the dependence be-

tween U and Z

In this section we consider the identifying power of a conditional mean independence restric-

tion, a conditional quantile independence restriction focussing on median independence, a

stochastic independence restriction with no parametric specification of the distribution GU

and stochastic independence restriction with U restricted to be Gaussian.

We present characterizations of identified sets for models in which Y1 = max(0,m(Y2, Z, U))

and illustrate for the case in which m(Y2, Z, U) = β + αY2 + U . In the illustrations proba-

bilities delivered by two specific structures are employed, as follows.10

9In order to deal with possibilities of zero measure sets and conditions required to hold almost everywhere,
here and througout the paper the sup and inf operators are to be understood to mean “essential supreumum”
and “essential infimum” when applied to functions of realizations of random variables. So for instance
sup
z∈Z

f (z) indicates the smallest value c such that f (Z) ≤ c with probability one given Z ∈ Z.
10In order to fully determine the conditional distributions of Y |Z = z for each z ∈ Rz it is necessary to

specify complete structures in which the process delivering Y2 is specified. However, the equation relating
Y2 to Z and a stochastic unobservable is not a restriction used by the single equation IV Tobit model, and
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• Structure 1

Y1 = max(0, b+ aY2 + U1)

Y2 = d0 + d1Z + U2

• Structure 2

Y1 = max(0, b+ aY2 + U1)

Y2 = g(Z,U2)

g(Z,U2) = k − e(−d0−d1Z−U2)

In both cases, for all Z ∈ RZ

U =

[
U1

U2

]
∼ N2

([
0

0

]
,

[
s11 s12

s12 s22

])

and in all the examples the support of scalar Z is

RZ = {−1,−0.9,−0.8, . . . , 0, . . . , 0.8, 0.9, 1},

It is important to understand that these are specifications of complete structures. The

incomplete models that we consider do not employ all the restrictions that are embodied in

the structures. In particular none of the models specify a structural equation for Y2 and in

only one of the models is U1 restricted to be Gaussian.

A crucial feature of Structure 2 is that Y2 is bounded above. Containment and other

probabilities are calculated to high accuracy using numerical integration procedures.

4.1 Mean independence

First consider models in which U is restricted to be mean independent of the instrumental

variables. Absent censoring such a model would be point identifying under a suitable rank

condition.

RESTRICTION MI - Mean Independence: Let GU |Z comprise all collections of condi-
tional distributions for U given Z, GU |Z , satisfying E[U |z] = 0, a.e. z ∈ RZ .

is thus not brought to bear in the identification analysis.
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Table 1: Parameter values employed in numerical illustrations using Structures 1 and 2

Structure 1 Structure 2
Parameter Case 1 Case 2 Case 3 Case 1
b 1.0 1.0 1.0 0.0
a 1.0 1.0 1.0 1.0
k − − − 1.0
d0 0.5 0.25 0.0 0.0
d1 1.0 0.5 0.25 1.0
s11 2.0 1.5 1.0 1.0
s12 0.5 0.375 0.25 0.5
s22 1.0 1.0 1.0 1.0

Manski and Tamer (2002) used mean independence restrictions conditional on included

exogenous variables in regressions with censored outcomes or covariates. Here we impose

an IV version of a conditional mean restriction, conditioning an included exogenous variable

and instruments. This is also Restriction MI in CR17 except that here, to simplify, the

value of the conditional expectation is restricted to be zero rather than a member of a

specified set of values. Modifying Theorem 5 of CR17 delivers the result that the identified

set for structural function m comprises those functions m such that zero is an element of the

Aumann expectation of U(Y, Z,m) conditional on Z = z a.e. z ∈ RZ .

Proposition 3 Under Restriction MI the identified set for the function m is

{m : 0 ≤ E[m−1(Y2, Z, Y1)|Z = z] a.e. z ∈ RZ}.

In the case in which m(y2, z, u) is linear and equal to αy2 + βz + u there is

m−1(y2, z, y
∗
1) = y∗1 − αy2 − βz.

Define W(β), the set of values that βz can take as z varies across its support11

W(β) ≡ {βz : z ∈ RZ}
11The set W(β) depends upon RZ but this is not shown in the notation.
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and for each element, w, of this set define the set of values of z such that βz = w:

Z(w, β) = {z ∈ RZ : βz = w}.

The identified set for (α, β) is as follows.{
(α, β) : ∀w ∈ W(β), 0 ≤ inf

z∈Z(w,β)
(E[Y1|z]− αE[Y2|z]− βz)

}
This is an intersection of linear half spaces and is therefore a convex set.

In the case in which there are no included exogenous variables in the structural equation

for the censored outcome, so βz is simply a scalar intercept term denoted β, the identified

set is as follows. {
(α, β) : 0 ≤ inf

z∈RZ
(E[Y1|z]− αE[Y2|z]− β)

}
. (14)

Figure 1 shows an example of this set for Structure 1 with the parameter values shown in

the column headed Case 1 in Table 1.

The identified set comprises the region below all of the blue drawn straight lines. The

projection of the set onto the space of α is the entire real line. The projection of the

set onto the space of β is the entire real line unless there exist z and z′ in RZ such that

E[Y2|z] ≤ 0 ≤ E[Y2|z′] (a condition which holds with strong inequalities in the case pictured)
in which case the projection is a semi-infinite interval with finite upper limit. The value of α

and β in the structure that generates the probabilities used in the calculations is the green

plotted point.

The identified sets under mean independence are similar under the other cases of Struc-

ture 1 and in Structure 2 as will be shown shortly.

Clearly a conditional expectation restriction does not lead to particularly informative

identified sets. We now turn to consider the identifying power of conditional quantile restric-

tions. These can be much more informative.

4.2 Quantile independence

We now study the power of the following quantile independence restriction.

RESTRICTION QI - Quantile Independence: Let GU |Z comprise all collections of
conditional distributions of U given Z satisfying P[U ≤ qj|z] = λj, a.e. z ∈ RZ for all

j ∈ J ≡ {1, ..., J} where Λ ≡ {λ1, ..., λJ} is a collection of specified known values, and some
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collection of values {q1, ..., qJ} ∈ Q with λj and qj both increasing in j and Q a specified set
of possible values of {q1, ..., qJ}.

Restriction QI restricts the J conditional quantiles of U given Z = z specified by Λ to

be invariant with respect to z. Q is a known set of possible values for these conditional

quantiles. For example, a conditional median restriction corresponds to Λ = {0.5} and the
usual normalization that this conditional median is zero is then captured by settingQ = {0}.
In this case J = 1. However, Restriction QI allows one to restrict the conditional distributions

of U to be invariant at multiple quantiles. For instance, specifying Λ = {0.25, 0.5, 0.75}
and Q = {{q1, q2, q3} ∈ R3 : q2 = 0} constitutes a conditional quantile restriction at J = 3

quantiles, with the 0.5 quantile set to zero a typical location normalization. In many cases

all but one (normalized) value qj will be unrestricted in which case they can either be added

to the list of unknown model parameters or treated as nuisance parameters.

Sharp characterization of the identified set of structures will require consideration of all

test sets comprising intervals of the form (−∞, qj] for all j = 1, ..., J and [qj, qj+1] for all

j = 0, ..., J where q0 = −∞ and qJ+1 ≡ ∞.

Proposition 4 Let Restriction QI hold. Then the identified set of structral functions deliv-
ered by the IV Tobit Model is the set of functions m ∈M such that for some {q1, ..., qJ} ∈ Q:
(1) ∀j ∈ J C (z, qj,m) ≤ λj, and (2) ∀j ∈ {0, 1, ..., J} ∆ (z, qj, qj+1,m) ≤ λj+1 − λj.

Note that if G̃(t|z;m) and B(z, t,m) are differentiable with respect to t then the final

condition here is equivalent to

g̃(t|z,m) ≥ b(z, t,m)

holding for all t and z where

g̃(t|z;m) ≡ ∇tG̃(t|z;m)

b(z, t,m) ≡ ∇tB(z, t,m).

In the application to tobacco expenditure shares in Section 5.2 multiple quantile restric-

tions are considered as a means of relaxing the restriction that U have a Gaussian distribution

independent of Z.

In numerical illustrations considered now Restriction QI is imposed encompassing a single

median independence restriction such that J = 1 and λ1 = 0.5 with the normalization q1 = 0.

Thus Q ={0} and

Q = {(−∞, 0), (0,∞))} ,
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and for all z ∈ RZ

GU |Z((−∞, 0]|z) = 0.5,

GU |Z([0,∞)|z) = 0.5,

leading respectively to the inequality from (6)

P[Y1 = 0 ∧ 0 ≤ m(Y2, Z, 0)|Z = z] + P[Y1 > 0 ∧ Y1 ≤ m(Y2, Z, 0)|Z = z] ≤ 0.5,

and the inequality from (8)

P[Y1 = 0|z] + P[0 < Y1 ≤ m(Y2, Z, 0)|Z = z] ≥ 0.5

which together deliver the identified set of structural functions, m, under the median inde-

pendence restriction, as follows.

{m : P[Y1 = 0 ∧ 0 ≤ m(Y2, Z, 0)|Z = z] + P[Y1 > 0 ∧ Y1 ≤ m(Y2, Z, 0)|Z = z]

≤ 0.5 ≤
P[Y1 = 0|z] + P[0 < Y1 ≤ m(Y2, Z, 0)|Z = z] a.e. z ∈ RZ}.

In the case in which m(y2, z, u) is linear and equal to αy2 + β + u the identified set of values

of α and β is as follows.

{(α, β) : P[Y1 = 0 ∧ 0 ≤ αY2 + β|Z = z] + P[Y1 > 0 ∧ Y1 ≤ αY2 + β|Z = z]

≤ 0.5 ≤
P[Y1 = 0|z] + P[0 < Y1 ≤ αY2 + β|Z = z] a.e. z ∈ RZ}.

Identified sets of values of α and β under a zero median independence restriction QI are

calculated and displayed for each of the lists of parameter values shown in the columns of

Table 1 relating to Structure 1.

In each case the identified set obtained under a zero conditional mean independence

restriction is shown as the region below all the blue drawn lines and the value of α and β in

the structure generating the probabilities is the green plotted point.

Figure 2 shows the results using the parameter values in the column Case 1. These are

the parameter values that deliver the results on the mean independence restriction shown in
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Figure 1. The identified set obtained in this Case under the median independence restriction

is the extremely small pink filled region. At the parameter values of Case 1 the median

independence restriction is very powerful.

Figure 3 shows the results using the parameter values in the column Case 2 of Table 1. In

this case the instrumental variable has lower predictive power for endogenous Y2 because d1
is closer to zero. The pink filled region is the identified set under the median independence

restriction, much larger than in Case 1 but still very informative compared with the set

obtained under the conditional mean independence restriction. In Case 3, shown in Figure

4 the identified set under the median independence restriction is larger still, containing

unboundedly large positive values of α and unboundedly large negative values of β, but it

remains informative relative to the identified set obtained under the mean independence

restriction.

Figure 5 shows identified sets under mean independence and quantile independence re-

strictions using probabilities delivered by Structure 2 with the parameter values shown in

the final column of Table 1. Also shown in Figure 5 is the projection onto the space of (α, β)

of the identified set for (α, β, σ) obtained under a parametric Gaussian specification of the

distribution of U in which the variance parameter is σ2. This is a bounded set unlike the

sets obtained at these parameter values under mean or quantile independence restrictions.

The median independence restriction delivers substantially smaller identified sets than

the mean independence restriction in the cases studied and the identified sets it delivers can

be very small indeed.

4.3 Stochastic independence

Now consider a restriction requiring U and Z to be independently distributed but with no

parametric specification of the distribution of U .

RESTRICTION NPSI - Nonparametric Stochastic Independence: The random
variables U and Z are independently distributed and GU |Z is the singleton set {GU}.

Recall the characterization of identified sets using singly infinite collections of inequalities

given in (3) and (10), repeated here for convenience with the restriction NPSI imposed. The

identified set of structures, I(FY |Z ,RZ , A), is the intersection of these two sets.

I(FY |Z ,RZ , A) = I1(FY |Z ,RZ , A) ∩ I2(FY |Z ,RZ , A) (15)
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I1(FY |Z ,RZ , A) =

{
(h,GU |Z) ∈MA : ∀t ∈ <, G̃U(t) ≥ sup

z∈RZ
C(z, t,m)

}
(16)

I2(FY |Z ,RZ , A) =

{
(h,GU |Z) ∈MA : ∀t ∈ <, g̃U(t) ≥ sup

z∈RZ
b(z, t,m)

}
(17)

Here g̃U(t) is the probability density function of U , the first derivative of the distribution

function G̃U(t) ≡ GU([−∞, t]), and b(z, t,m) = ∇tB(z, t,m) where

B(z, t,m) ≡ P[Y1 > 0 ∧ Y1 ≤ m(Y2, Z, t)|z]

and

C(z, t,m) = P[Y1 = 0 ∧ 0 ≤ m(Y2, Z, t)|z] + P[Y1 > 0 ∧ Y1 ≤ m(Y2, Z, t)|z].

In the linear case used in the illustrations in which there is no exogenous variable in the

structural equation, these functions are as follows.

B(z, t, θ) ≡ P[Y1 > 0 ∧ Y1 ≤ αY2 + β + t|z]

C(z, t, θ) ≡ P[Y1 = 0 ∧ 0 ≤ αY2 + β + t|z] + P[Y1 > 0 ∧ Y1 ≤ αY2 + β + t|z].

Rather than m we use θ = (α, β) as an argument of these functions in this linear case.

Absent additional restrictions on the distribution of U the distribution of observable variables

contains no information about the value of the constant term, β, so, in determining the

identified set of values of α, β can be set equal to an arbitrary value. It is set to zero in the

numerical illustrations.

We now develop a method for calculating an outer set for the identified set of structures

onto the space of structural functions under the NPSI restriction. For this purpose partition

the support of U into N intervals: (−∞, t1], (t1, t2], . . . , (tN−1,∞) where N is large. For

each n = 1, ..., N define

pn ≡ GU ((tn−1, tn]) , (18)

where it is understood that (t0, t1] means (−∞, t1] and (tN−1, tN ] means (tN−1,∞).

It follows from Proposition 1 that for any structural function m for which there exists

a distribution GU such that (m, gU) is in the identified set, there must exist probabilities
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p1, . . . , pN each nonnegative and summing to one such that

∀n = 1, ..., N :

n∑
i=1

pi ≥ C(z, tn,m), (19)

∀n = 1, ..., N : pn ≥ B(z, tn,m)−B(z, tn−1,m), (20)

for almost every z ∈ RZ . Let IM
(
FY |Z ,RZ , A, T

)
denote the set of admissible m that sat-

isfy these inequalities applied to T ≡{t0, t1, ..., tN}. Inequalities of the form (19) correspond
to those defining I1(FY |Z ,RZ , A) in the statement of Proposition 1 with t = tn. Inequalities

of the form (20) are those characterizing I1(FY |Z ,RZ , A) with tn−1 and tn in place of t1
and t2, respectively.12 Indeed, Proposition 1 implies that the identified set for m are those

admissible structural functions that satisfy these inequalities for all tn and tn−1 for some pos-

sible distribution GU , with GU ((tn−1, tn]) replacing pn, almost surely. Indeed, it is precisely

the use of only a finite set of intervals (tn−1, tn] that makes the resulting characterization

nonsharp.

For any such sequence of N intervals the conditions determining when structural function

m is in IM
(
FY |Z ,RZ , A, T

)
can be checked by solving a linear program. We set out how

this can be done using the method developed in Theorem 4 of Chesher and Rosen (2020a)

in the study of interdependent determination of discrete outcomes. Define the following

quantities.13

A
1×N
≡ [1, 1, . . . , 1]︸ ︷︷ ︸

N times

x
N×1
≡ [p1, . . . , pN ]′ b = 1 (21)

B
R(2N−1)×N

=


B∗

...

B∗

 c(m)
R(2N−1)×1

=


c(z1,m)

...

c(zR,m)

 R = ](RZ) (22)

12These are equivalently conditional containment probabilities applied to intervals of the form (−∞, tn]
and (tn−1, tn], respectively.
13This is set out in the notation in Chesher and Rosen (2020a) which employs matrix B, here denoted B,

not to be confused with the function B(z, t,m).
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B∗
(2N−1)×N

= −



1 0 · · · 0 0

0 1 · · · 0 0
...

. . .
...
...

· · · . . .

0 0 · · · · · · 1 0

0 0 · · · · · · 0 1

1 0 0 · · · 0 0

1 1 0 · · · 0 0
...

...
...
...

1 1 1 · · · 0 0

1 1 1 · · · 1 0



c(z,m)
(2N−1)×1

=



B(z, t0,m)−B(z, t1,m)

B(z, t1,m)−B(z, t2,m)
...
...

B(z, tN−2,m)−B(z, tN−1,m)

B(z, tN−1,m)−B(z, tN ,m)

−C(z, t1,m)

−C(z, t2,m)
...

−C(z, tN−2,m)

−C(z, tN−1,m)


(23)

Application of Theorem 4 of Chesher and Rosen (2020a) to the characterization of IM
(
FY |Z ,RZ , T

)
given by (19) and (20) then yields the following result.

Proposition 5 Let T ≡{t0, t1, ..., tN} be an increasing sequence of scalars with tN = −t0 =

∞. In an IV Tobit Model A restricting structural function m to the setM0
A and in which

Restriction NPSI holds, the set

IM
(
FY |Z ,RZ , A, T

)
=
{
m ∈M0

A : v∗ (m) ≥ 0
}

comprises bounds on m, where v∗ (m) is the value attained by the linear program

min
s,t,v

v (24)

subject to the constraints

sA+ tB ≥ 0, (25)

t ≥ 0 (26)

and

s+ t · c(m) ≤ v, (27)

where s ∈ R1, t ∈ RK, v ∈ R, and K = R(2N − 1).14

14The proof of this proposition given in Chesher and Rosen (2020a) makes use of a version of Farkas’
Alternative. Again we stay with the notation in Chesher and Rosen (2020a) which employs a decision
variable t in R2, not to be confused with tn used to signify boundaries of intervals that partition the support
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The linear program of Proposition 5 is easy to check for any given structural function m

given a choice of points T defining a partition of the real line. The outer set approximation
to the identified set of structural functions can be made closer to the identified set by finer

choice of T . A large number of points t1, ..., tN can be used because linear programs can be
solved very quickly on modern computers. The outer set further has the interpretation of the

sharp identified set under an additional restriction that the distribution G has a piecewise

constant density on each of the N intervals defined by successive points in T .
This procedure has been implemented using probabilities generated by the Gaussian

triangular structures 1 and 2 in which the structural function m is parametrically specified

and indexed by parameter θ.15 The results obtained using Structures 1 and 2 are shown in

respectively Table 2 and Table 3. In all cases the value of β is normalized to zero16 since

the location of GU is unrestricted. The tables show parameter values of structures used to

generate probabilities in these calculations, N , the number of intervals on the support of U ,

and the projection of the identified set onto the space of α which is an interval [α, α]. The

set is an outer region because we approximate the distribution of U using a finite number

of intervals. In addition the minimum and maximum conditional censoring probabilities

p0(z) ≡ P [Y = 0|Z = z] with respect to z ∈ RZ are provided, as well as the marginal

probability p0 ≡ P [Y = 0] when Z is distributed with equal mass on each point of RZ .

These projections are, to the accuracy obtained in the calculations, population values of

[α, α], not estimates. This is so because the calculations employ probabilities delivered by

the structures, not estimates of the probabilities. When applying this method to data, not

done here, it will be necessary to account for sampling variation to perform inference. This

is the topic of research in progress.

4.3.1 Structure 1

First consider the results shown in Table 2 using probabilities generated by Structure 1

which is a triangular Gaussian structure with Y2 a linear function of Z and U2 and so

unbounded below and above. The support of Z is bounded and the model employed imposes

the restriction that U and Z are stochastically independent.

of U .
15Linear programs are solved using R’s (R Core Team (2020)) package lpSolveAPI (Konis and

Schwendinger (2020)). Projections onto the space of α are calculated using R’s uniroot function. Some
of the programs are large. In Case 6 (see Table 2) there are 21× (2×1000−1)+2 = 41977 decision variables
and 1001 constraints. No calculation takes longer than a few minutes to run on an iMac with a 4.2GHz Intel
Core i7 processor and 32 GB memory.
16This is a normalization - any value of β can be used.
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Table 2: Projections of the identified set onto the space of α under a stochastic inde-
pendence restriction and a nonparametric specification of the distribution of U with the
number of intervals N = 100. Structure 1. Censoring probabilities p`0, p0, and p

u
0 denote

min
z∈RZ

P [Y = 0|Z = z], P [Y = 0], and max
z∈RZ

P [Y = 0|Z = z], respectively.

Structure 1 parameter values Censoring Probabilities Interval for α
Case b a d0 d1 s11 s12 s22 p`0 p0 pu0 α α

4 0.0 1 0 1 1 0.5 1 0.28 0.50 0.72 0.93 1.01
5 2.0 1 0 1 1 0.5 1 0.04 0.14 0.28 0.99 1.00
6 −1.0 1 0 1 1 0.5 1 0.50 0.71 0.88 0.84 ∞
7 −1.0 1 0 2 1 0.5 1 0.28 0.68 0.96 0.97 1.00
8 −1.0 1 0 1.5 1 0.5 1 0.39 0.69 0.93 0.91 1.02
9 −1.5 1 0 1.5 1 0.5 1 0.50 0.78 0.96 0.86 ∞

Table 3: Projections of the identified set onto the space of α under a stochastic inde-
pendence restriction and a nonparametric specification of the distribution of U with the
number of intervals N = 50. Structure 2. Censoring probabilities p`0, p0, and p

u
0 denote

min
z∈RZ

P [Y = 0|Z = z], P [Y = 0], and max
z∈RZ

P [Y = 0|Z = z], respectively.

Structure 2 parameter values Censoring Probabilities Interval for α
Case b a k d0 d1 s11 s12 s22 p`0 p0 pu0 α α

1 0 1 1 0 1 1 0.5 1 0.34 0.54 0.76 0.38 1.77
2 10 1 1 0 1 1 0.5 1 0.00 0.02 0.09 0.98 1.00
3 0 1 10 0 1 1 0.5 1 0.00 0.03 0.11 0.98 1.00
4 0 1 1 0 5 1 0.5 1 0.16 0.57 1.00 1.00 1.00
5 0 1 1 0 1 1 0.0 0.1 0.27 0.55 0.92 1.00 1.00
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In Case 4 the interval for α is short. Increasing N to 1000 reduces the interval but only

slightly to [0.96, 1.00]. Case 5 has a large intercept (b = 2) in the structural equation for Y1
so the marginal probability of censoring is small (0.14). For some values of Z the conditional

censoring probability p0(z) is indeed quite small, with a minimum of 0.04. For values of Z for

which the conditional censoring probability is very small, the distribution of Y given Z = z

will be close to that produced by a linear IV model which is point identifying under a rank

condition. Thus, while the identified set for α depends on the entire collection of conditional

distributions FY |Z , values of Z that produce small conditional censoring probabilities should
be helpful in achieving narrow intervals for α. We see that in Case 5 the identified interval

for α is indeed extremely short. By contrast in Case 6 the low value of the intercept (b = −1)

causes the probability of censoring to be high (0.71). The high intercept similarly induces

higher conditional censoring probabilities than for Case 5, ranging from 0.50 to 0.88, and we

observe that the identified interval is unbounded above.

In Case 7 the intercept is held at the Case 6 value but the effect of the instrument on

endogenous Y2 is much larger (d1 = 2). In this case the conditional censoring probability

P [Y1 = 0|Z = z] ranges from 0.28 to 0.96. Even though the marginal probability of censoring

remains high (0.68), the identified interval is very short. In Case 8 the coeffi cient on the

instrument in the equation for Y2 is reduced from 2.0 to 1.5 and the identified interval

lengthens slightly, but when the intercept is further reduced to −1.5 (Case 9) causing the

probability of censoring to rise to 0.78 the identified interval for α becomes unbounded above.

4.3.2 Structure 2

Now consider the results obtained using probabilities generated by Structure 2 which is a

triangular Gaussian structure with Y2 a nonlinear function of Z and U2, unbounded below

and bounded above at the value of the parameter k.

The parameter values in Case 1 are the values delivering the identified sets of values

of (α, β) drawn in Figure 5 for mean and quantile independence restrictions and for sto-

chastic independence with U restricted Gaussian. The identified interval for α is [0.38, 1.77],

which is bounded unlike the sets obtained under mean and median independence restrictions.

Increasing the number of intervals to N = 100 has no effect on the interval.

The intercept is increased in Case 2, from b = 0 to b = 10, reducing the conditional

censoring probabilities to all lie between 0.00 and 0.09. This causes the length of the identified

interval to become close to zero. The result is similar on returning the intercept to b = 0

and increasing the value of k to 10 as in Case 3. In Cases 4 and 5 it remains that b = 0
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and we observe the effects of (i) increasing the coeffi cient on Z in the equation for Y2 to

d1 = 5, and (ii) reducing the variance of the unobserved variable in the equation for Y2 from

s22 = 1 to s22 = 0.1, respectively. In these last two cases the marginal censoring probability

is relatively high 0.54, but the instrument has great predictive power for Y2. In these cases

the minimum censoring probabilities p`0 are small and indeed the identified interval is very

short, nearly a point.

4.4 Parametric restrictions - the Gaussian IV Tobit model

Finally, before coming to our empirical application, we consider models in which a stochastic

independence restriction is imposed and, additionally, the distribution of U is restricted to

belong to a parametric family of distributions. In the examples here a Gaussian distribution

is employed as in the classic Tobit model.

RESTRICTION GaussSI - Stochastic Independence - Gaussian U: The random
variables U and Z are independently distributed and GU |Z is the singleton set {GU} where
GU is the N(0, σ2) distribution.

In these illustrations we use the characterization given in (3), (10) and (15) with G̃U(·)
and g̃U(·) respectively the distribution and density function of a N(0, σ2) random variable.

For Structures 1 and 2 at selected values of the parameters θ = (α, β, σ) we calculate the

value of the derivative b(z, t, θ) and the probability C(z, t, θ) and examine the inequalities

over a long sequence of values of t pronouncing the value of θ in the identified set if none of

the inequalities are violated. The sequences of values of t are

{ν + ξΦ−1(ε) : ε ∈ {1/n, . . . , (n− 1)/n}} (28)

where Φ−1 is the standard normal quantile function. In the illustrations we set ν = 0, ξ = 2

and n = 500.17

For the parameter values in Case 4 of Structure 1 shown in Table 2 the stochastic inde-

pendence model is not point identifying but the Gaussian model is. We determine this by

randomly sampling18 points uniformly distributed on a sphere with small radius r centered

at the probability generating value of θ, namely (0, 1, 1). When the radius of the sphere is

as small as 0.001 we find no points on the sphere that lie inside the identified set, which we

17Smaller values of n are used to determine the rough location and extent of an identified set and then
results are refined using n = 500.
18We use the function runif_on_sphere available in the R package uniformly, Laurant (2018).
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take to indicate point identification bearing in mind the slight inaccuracies arising because

we are conducting finite precision arithmetic and in particular calculating some probabilities

using numerical integration routines. The situation is the same if the value of the intercept,

b, in Structure 1 is reduced to −0.5. However when bis reduced further to −1 (Case 6 in

Table 2) there is no longer point identification under the Gaussian restriction.

Figure 6 shows projections of the identified set for (α, β, σ) onto the space of each pair

of parameters in turn for Structure 2 in which Y2 is bounded above. The solid filled regions

are convex hulls of points found lying in the projections.19 Parameter values for this case

are those in Case 1 of Table 3.20

Figure 5 shows identified sets for (α, β) under mean and median independence restrictions

at these parameter values and additionally the projection onto the space of (α, β) of the

identified set for (α, β, σ) obtained under the Gaussian stochastic independence restriction

(filled in magenta).21 The identified interval for α under stochastic independence absent

the Gaussian restriction, maintaining the stochastic independence condition is [0.38, 1.77] -

see Row 1 of Table 3. On additionally imposing the Gaussian restriction this is reduced to

[0.47, 1.42] as shown in Figure 5.

Calculations with both structures show that the IV Tobit model can be effectively point

identifying and that when it is not the model can still be highly informative about the values

of structural parameters. We now turn to an application involving real data and consider

issues of estimation and inference.

5 Implementation

This section finishes with an application to a Tobit model of tobacco expenditure using UK

survey data from the period 2000-2009. First we set out the method employed to calculate

confidence regions on projections of the identified sets and we explain how implementation

is done when, as in the application, exogenous variables have rich support.

19There is no evidence to suggest the projections are not convex. The parameter values whose membership
of the identified set was evaluated were obtained in a trail and error process by randomly sampling points in
spheres of varying radii centred on points lying centrally in the identified set. The function runif_in_sphere
in R’s uniformly package was employed.
20Also shown in the final column of Table 1.
21This is the projection shown in the (β, α) and (α, β) panes of Figure 6
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5.1 Inference

We employ a procedure proposed in Belloni et al. (2018) (BBC18) to calculate 95% confi-

dence regions for individual parameter components of partially identified parameter vectors.

We use a self-normalized critical value, shown to be asymptotically valid in Chernozhukov

et al. (2019) (CCK19). Belloni et al. (2018) additionally provide theoretical justification for

alternative critical values using a bootstrap procedure that can further refine these confidence

sets. We employ the self-normalized critical value for its computational simplicity.

In applications there will typically be many exogenous variables, Z, and some of these

may be continuous. In this circumstance it is hard to make progress using conditional

moment inequalities in which conditioning is on Z taking singleton values.22 Instead we

conduct inference on outer regions obtained from moment inequalities in which conditioning

is on Z taking a value in a set of values, Z.
In the models that we employ the moment inequalities arising when an interval [t1, t2] is

considered are

w(t1, t2, θ, z) ≤ p(t1, t2, θ, z). (29)

Here, employing (9),

w(t1, t2, θ, z) ≡ 1[t1 = −∞]× P[Y1 = 0 ∧ 0 ≤ αY2 + βZ + t2)|Z = z]+

P[Y1 > 0 ∧ αY2 + βZ + t1 ≤ Y1 ≤ αY2 + βZ + t2|Z = z]

and

p(t1, t2, θ, z) ≡ GU |Z([t1, t2]|z]

is the probability mass placed on the interval [t1, t2] by the distribution of U given Z = z

admitted by the model. This may depend on the value of the parameter θ.

We estimate using the GaussSI model for which

p(t1, t2, θ, z) = Φ

(
t2
σ

)
− Φ

(
t1
σ

)
and we also estimate using two models in which the Gaussian restriction is dropped and

quantile independence is imposed at 3, 5 or 7 quantiles associated with selected probabili-

22When Z has rich support it will be diffi cult to obtain accurate estimates of conditional probabilities. Ker-
nel or sieve estimation would lead to estimated moment functions that are not simple means of contributions
which is required when the BBC18 procedure is used.
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ties. In these two cases, as set out at the start of Section 4.2, t1 and t2 are unknown values

of quantiles at the selected specified probabilities and p(t1, t2, θ, z) is the difference between

those probabilities, independent of z. In these two cases the unknown values of the quan-

tiles are elements of the parameter vector θ. In all the cases considered in the application

p(t1, t2, θ, z) does not depend on z which we make explicit now by writing the probability as

p(t1, t2, θ).

Let the distribution function of Z be FZ(z). If for some value of θ, t1 and t2 the moment

conditions (29) hold for all z there is, for all sets Z ⊆ RZ∫
Z
w(t1, t2, θ, z)dFZ(z) ≤ p(t1, t2, θ)

∫
Z
dFZ(z)

and thus the moment conditions imply that, with

w̃(t1, t2, θ,Z) ≡ 1[t1 = −∞]× P[Y1 = 0 ∧ 0 ≤ αY2 + βZ + t2) ∧ Z ∈ Z]+

P[Y1 > 0 ∧ αY2 + βZ + t1 ≤ Y1 ≤ αY2 + βZ + t2 ∧ Z ∈ Z]

the inequality

w̃(t1, t2, θ,Z) ≤ p(t1, t2, θ)P[Z ∈ Z]

holds for that θ and and the interval [t1, t2] and for all sets Z ⊆ RZ .

Introducing the notation employed in BBC18, let the functions of moments required to

be nonpositive at a parameter value θ in an identified set be denoted mj(θ), j ∈ J .
The test set employed in constructing mj(θ) is the interval [t

k(j)
1 , t

k(j)
2 ] where {k(j) : j ∈

J } is a list of indexes identifying the endpoints of intervals and a set of values of Z, Z l(j),
is employed where {l(j) : j ∈ J .} is a list of indexes identifying sets Z l(j) ⊆ RZ .23

A moment function mj(θ) therefore has the following form.

mj(θ) = E
[
1[t

k(j)
1 = −∞]× 1[Y1 = 0 ∧ 0 ≤ αY2 + βZ + t

k(j)
2 ) ∧ Z ∈ Zl(j)]+

1[Y1 > 0 ∧ αY2 + βZ + t
k(j)
1 ≤ Y1 ≤ αY2 + βZ + t

k(j)
2 ∧ Z ∈ Zl(j)]
−p(t1, t2, θ)1[Z ∈ Zl(j)]

]
23When selected quantile independence is imposed the unique unknown elements in {tk(j)}Jj=1 are para-

meters, elements of θ.
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With data {(Y1i, Y2i, Zi) : i ∈ {1, . . . , N}} define the estimator

m̂j(θ) ≡ N−1
N∑
i=1

mji(θ)

where the contributions, mji(θ), are obtained by replacing Y1, Y2, and Z in the expression

whose expectation appears in mj(θ) by realized values, respectively Y1i, Y2i, and Zi Define

an estimator of the variance of N1/2m̂j(θ)

σ̂2j(θ) ≡ N−1
N∑
i=1

(mij(θ)− m̂j(θ))
2 .

Using the self-normalization-based critical value given in BBC18 and CCK19 the 100(1−
γ)% confidence region for the projection of the identified set onto the space of an element

θk of θ is

CI(θk, γ) ≡ {r : Tn,k(r) ≤ cN(J, γ)} (30)

where

Tn,k(r) ≡ inf
{θ:θk=r}

max
j∈{1,...J}

(
N1/2 m̂j(θ)

σ̂j(θ)

)
, (31)

and where cN(J, γ) is the critical value:

cN(J, γ) ≡ Φ−1(1− γ/J)√
1− Φ−1(1− γ/J)2/N

.

with Φ denoting the standard Gaussian cumulative distribution function.

In implementation we obtain sets Z by specifying intervals for each exogenous variable
and the connected unions of those intervals. The sets Z that we employ are the across-

variable intersections of these connected unions. An example is given in the next section.

In the models that restrict quantile independence at specified quantile probabilities the

test sets comprise all intervals with endpoints selected from the set of (unknown) values of

the quantiles augmented with plus and minus infinity.

In models that impose the GaussSI restriction a collection of test sets (intervals) is ob-

tained by choosing a large positive integer n and defining a sequence of n values:

W(n, ν, ξ) ≡ {ν + ξΦ−1(ε) : ε ∈ {0, 1/ (n− 1) , . . . , (n− 2)/ (n− 1) , 1}}
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where Φ−1 is the standard normal quantile function. The values of (n, ν, ξ) are chosen to

deliver good coverage of the main part of the support of U .24 The collection of test sets is

{[t1, t2] : t1 < t2 ∧ t1 ∈ W(n, ν, ξ) ∧ t2 ∈ W(n, ν, ξ)}. (32)

5.2 Application: tobacco expenditure share

In this section, inspired by Adams et al. (2019) (ABBC), we present confidence regions and

estimates of parameters of models for the share of household nondurable expenditure spent

on tobacco.

ABBC estimate a Tobit model for tobacco expenditures as a share of total nondurable

expenditure with explanatory variables log total expenditure on nondurables (potentially

endogenous), an OECD equivalence scale25, with log household disposable income as an

excluded instrumental variable.

The data used in ABBC come from the UK Family Expenditure Survey (FES) 1980-2000

and are a sample of households with head of household aged 25-35 years in 1980. We do

not aim to reproduce their analysis, and while we use the same explanatory variables and

data source, aiming for reasonably large samples we focus on households in the FES and its

successor surveys26 in 2000-09 with head of household aged 25-60 at the time of observation.27

We conduct separate analysis of the periods 2000-04 and 2005-09 in which respectively 68%

and 74% of households record zero tobacco expenditures.

ABBC take what is described as a quantile control function approach which employs a

model in which nondurable expenditure is exogenous when there is conditioning on a control

function which depends on nondurable expenditures, log household disposable income and

the equivalence scale.28 This control function restriction can arise in a complete triangu-

lar model in which there is a structural equation for log nondurable expenditure with, as

explanatory variables, log disposable household income and the equivalence scale, and an

unobserved variable which along with the unobserved variable in the structural equation for

the tobacco expenditure share is jointly independent of the exogenous variables.

24In the application U is specified N(0, 1) so this is easily done.
25The OECD equivalence scale is 1+0.7×the number of adults in excess of one + 0.5*×the number of

children.
26These are, from 2001, the Expenditure and Food Survey and from 2008, the Living Costs and Food

Survey.
27We exclude households comprising more than one tax unit, all of which have one or two adult members,

and households with disposable weekly income recorded as £ 20 or less.
28Expenditures and income are recorded in UK pounds per week.

31



Here we employ the incomplete, single equation, IV model introduced in this paper. The

model has the structural equation, as in ABBC,

Y1 = max(0, β0 + αY2 + β1Z1 + σU1)

where Y1 denotes tobacco expenditure share, Y2 denotes log nondurable expenditure and

there are exogenous variables Z1 (the OECD equivalence scale), and Z2 (log household dis-

posable income), the latter excluded from the structural equation for the tobacco expenditure

share. The model places no restriction on the process delivering Y2. The partial correlation

between log nondurable expenditure and log disposable household income given the OECD

equivalence scale, rY2Z2.Z1 , is 0.64 in 2000-04 and 0.62 in 2005-09.

We calculate confidence regions for the value of α using the method set out in Section

5.1.29 We first consider a model requiring U1 to have a Gaussian distribution independent of

Z = (Z1, Z2) and then drop the Gaussian restriction and turn to models imposing conditional

quantile independence restrictions.

We compare with estimates of α obtained using a classical Tobit model making no al-

lowance for endogeneity and with estimates of α obtained using a complete, point identifying,

triangular model in which there is the additional structural equation

Y2 = γ0 + γ1Z1 + γ2Z2 + U2

and the restriction that (U1, U2) have a Gaussian distribution independent of Z1 and Z2.

In the calculations using the IV model, sets of values of the exogenous variables are

obtained as follows. Lists of intervals of values of exogenous variables are constructed: for

Z1, the OECD equivalence scale,  1.0 1.0

1.5 2.7

3.0 5.7


29Notice that in the equation for Y1 the parameter σ multiplies U1 which is restricted to be N(0, 1) when

the GaussSI restriction is imposed. By this device we are able to define intervals [t1, t2] that span the effective
range of U1 at all values of the parameters.
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and for Z2, log disposable household income,

Q(0) Q(0.125)

Q(0.125) Q(0.250)
...

...

Q(0.750) Q(0.875)

Q(0.875) Q(1)


where Q(p) is the sample p-quantile in the data under consideration. For each of Z1 and Z2
in turn a list of sets (denoted respectively Z1 and Z2) containing all connected unions of the

intervals is constructed. The sets employed in the calculations are the sets in the collection

{{Z : Z1 ∈ Z1 ∧ Z2 ∈ Z2} : Z1 ∈ Z1,Z2 ∈ Z2}.

In the calculations reported here there are 216 such sets.

In analysis using the Gaussian model the test sets (intervals) employed comprise all

intervals with endpoints chosen from the list: (−∞,−1.35, 0, 1.35,∞), excluding the interval

(−∞,∞). There are 9 such intervals and combining test sets and Z sets leads to 1, 944

moment inequalities.

For each of the samples from the periods 2000-04 and 2005-09, respectively, there is no

value of α found that satisfies all 1944 sample moment inequalities. Equivalently, there is

no value of α such that Tn(α) = 0.30 Given statistical uncertainty due to sampling variation

and the large number of moment inequalities, this is unsurprising. We thus report both half-

median-unbiased set estimates and 95% confidence intervals for α using the inference method

described in Section 5.1. The half-median-unbiased set estimates employ a conservative

median-bias correction such that the upper (lower) endpoint of the interval is lower than

(greater than) the upper (lower) bound of the population bounds for α with probability no

greater than 1/2 asymptotically. These correspond to 50% confidence intervals, as advocated

by Chernozhukov et al. (2013).

Results using the GaussSI restriction are shown in Table 4. For comparison results using

two point identifying models are also provided. These are (1) maximum likelihood (ML)

estimates of α and estimated standard errors obtained using a simple Gaussian Tobit model,

30Relative to equation (31) the second subscript k indexing the parameter component in Tn,k(·) has been
dropped in a slight abuse of notation. The parameter component under consideration is to be understood
to be α throughout.
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Table 4: Estimates and confidence intervals for the coeffi cient on log total expenditure α in
determination of tobacco expenditure share. IV estimates are half-median-unbiased interval
estimates. Triangular and Tobit results obtained by maximum likelihood.

Years N %0 - IV model GaussSI Triangular model Tobit model

2000-04 18473 68
estimate
std err
95% CI

[−0.199,−0.117]
−

[−0.211,−0.114]

−0.130
(0.0043)

[−0.139,−0.122]

−0.048
(0.0027)

[−0.053,−0.043]

2005-09 15885 74
estimate
std err
95% CI

[−0.299,−0.103]
−

[−0.339,−0.096]

−0.121
(0.0046)

[−0.130,−0.112]

−0.043
(0.0028)

[−0.048,−0.038]

which makes no allowance for endogeneity of nondurable expenditure, and (2) ML estimates

of α obtained using the complete two equation triangular model with estimated standard

errors and 95% confidence intervals.31

The Tobit estimates of α obtained without accounting for endogeneity are slightly less

than one third of the magnitude of the estimates obtained using the complete triangular

model. The hypothesis of exogeneity of log nondurable expenditure is soundly rejected with

tests delivering p-values less than 0.0001.

The incomplete IV model delivers somewhat wider confidence regions than the complete

triangular model. This is to be expected as the IV model uses only a subset of the restrictions

used in the triangular model. The IV model estimates are robust to failure of the additional

restrictions embodied in the complete triangular model and the IV model delivers encourag-

ingly informative confidence regions. In both periods the 95% confidence regions delivered

by the complete triangular model are subsets of the 95% confidence regions produced using

the IV model.

Dropping the Gaussian restriction we imposed conditional quantile independence re-

strictions, in three distinct cases restricting quantiles of U1 at three quantile probabilities

(0.25, 0.5, 0.75), five quantile probabilities (0.167, 0.333, 0.5, 0.666, 0.833), and at seven quan-

tile probabilities (0.125, 0.25, 0.375, 0.5, 0.635, 0.75, 0.875), to be independent of the values of

the exogenous variables, Z, in all cases normalizing the median by setting it equal to zero.

As explained in Section 4.2 this is done by including as unknown parameters the unknown

values of the quantiles at the nominated probabilities.

Restricting quantile independence at J quantile probabilities, p1, . . . , pJ , denote the values

31These estimates are calculated using the Stata 16 commands tobit and ivtobit, StataCorp (2019). The
triangular two equation model estimated using the ivtobit command restricts the unobservable variables
in the two structural equations to be jointly Gaussian, independent of Z1 and Z2.
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Table 5: Half-median-unbiased interval estimates and 95% confidence intervals for the coef-
ficient on log total expenditure α in determination of tobacco expenditure share under the
GaussSI restriction and with quantile independence restrictions at 3, 5 and 7 quantiles.

Years - GaussSI Quantile independence restricting:
3 quantiles 5 quantiles 7 quantiles

2000-04
estimate
95% CI

[−0.199,−0.177]
[−0.211,−0.114]

[−0.448,−0.078]
[−0.641,−0.070]

[−0.227,−0.093]
[−0.258,−0.091]

[−0.198,−0.108]
[−0.229,−0.103]

2005-09
estimate
95% CI

[−0.299,−0.103]
[−0.339,−0.096]

(−∞,−0.052]
(−∞,−0.045]

(−∞,−0.075]
(−∞,−0.072]

[−0.492,−0.088]
(−∞,−0.085]

of the quantiles at these probabilities by q1, . . . , qJ . As set out in Proposition 4, the core

determining collection of test sets comprises the collection of intervals:

{(−∞, qj], j ∈ {1, . . . , J}}

together with the collection of intervals

{[qj, qj+1] : j ∈ {1, . . . , J − 1}} .

In the estimations reported here all connected unions of these intervals were employed as

test sets. We include additional test sets because it is possible that the functions of moments

appearing in the inequalities delivered by some of the unions of core determining sets are

more accurately estimated than the moment functions arising if only core determining test

sets are employed. There is no great computational cost unless J is large and there is likely

improved finite sample performance.

Placing conditional independence restrictions on 3, 5 and 7 quantiles leads to identi-

fied sets defined by respectively 1944, 4320 and 7560 moment inequalities. The parame-

ters in the model employing quantile independence restrictions at J quantile probabili-

ties are
(
β0, β1, α, q1, . . . , q(J+1)/2−1, q(J+1)/2+1, . . . , qJ

)
the value of q(J+1)/2 associated with

p(J+1)/2+1 = 0.5 being normalized, set equal to zero.

The half-median-unbiased interval estimates and 95% confidence intervals obtained under

the conditional quantile independence restrictions are shown in Table 5 which, for compar-

ison, also includes the confidence regions obtained under the Gaussian stochastic indepen-

dence restriction.

For the period 2000-04 the 95% confidence regions and the median-bias-corrected set

estimates under conditional independence restrictions on 7 quantiles are only slightly longer
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then the regions obtained under the GaussSI restriction. Reducing the strength of the

conditional quantile independence restriction, restricting just 5 quantiles leads to only a

moderate increase in the length of the confidence regions, and even when independence

restrictions are placed on just 3 quantiles the confidence regions remain informative. It

seems that, in the 2000-04 period, restricting the distribution of U1 to be Gaussian does not

buy much over and above independence restrictions.

For the period 2005-09 the Gaussian restriction contributes much more. Absent the

Gaussian restriction all but one of the confidence regions is unbounded below, but the upper

bounds are all negative, so the value of α is effectively signed. In this period there are more

zero tobacco expenditures and the GaussSI confidence regions are nearly twice as long as in

2000-04. There is more censoring, and there seems to be more noise in the process in 2005-09

and possibly some drift in the values of parameters.

6 Concluding remarks

When working with censored data and endogenous explanatory variables the easy way to

obtain estimates of structural parameters is to employ a complete triangular model like the

Gaussian model underlying STATA’s ivtobit command32 or to assume directly that a valid

identifiable control function exists. When there is no economic rationale for such restric-

tions the IV model developed here provides a route to robust estimation. Even when more

restrictive models are thought to be appropriate the IV model can deliver useful informa-

tion regarding the force of additional restrictions. The IV model can signal misspecification

of more restrictive models. It can deliver results when the complete model attack is not

available, for example when endogenous variables are discrete or are determined by multiple

sources of heterogeneity.

The IV model can be partially or point identifying and it may not be possible to deter-

mine identification status in particular applications. So it is important to use methods for

estimation and inference that deliver results regardless of whether there is point or partial

identification, as has been done in the application presented here.

There is rarely a good economic argument for particular parametric restrictions on the

distribution of the unobserved variable U in the structural equation for a censored outcome.

Nevertheless such restrictions are frequently imposed. We have shown how estimation and

inference can be done using an IV Tobit model, dispensing with the commonly used Gaussian

32StataCorp (2019).
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restriction, using multiple quantile independence restrictions, requiring the p-quantiles of U

given instrumental variables, Z, to be independent of Z at selected quantile probabilities.

The values of quantiles at the selected probabilities become parameters with unknown values

and we calculate confidence regions on projections of the identified set of values of the

augmented parameter vector onto the spaces of particular parameters of interest. In the

application the procedure reveals the varying power of the Gaussian restriction.

We have shown how to calculate outer regions for identified sets of structural parame-

ter values and their projections onto the space of individual parameters under a restriction

requiring U and Z to be stochastically independent with no further restriction on the dis-

tribution of U . A parameter value lies in the identified set if and only if the solution to a

linear program is nonnegative. Although the program can involve a very large number of

inequalities the solution is quick to calculate. Conducting inference using this method is

a research challenge not addressed here, and there remain other challenges. For example,

we have proposed and applied a procedure for conducting inference on a partially identified

parameter capturing the marginal effect of an endogenous variable on an outcome of inter-

est when instrumental variables are continuously distributed, in which one calculates joint

probabilities of events defined by sets of values of endogenous variables and sets of values

of instrumental variables. Finite sample performance will of course depend on the sets that

are chosen and future research to help guide these choices is warranted.
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Appendix: Proofs and Figures

Proof of Proposition 1. Applying Theorem 1, Corollary 1 of CR17 gives the following

characterization of the identified set of structures delivered by a model, A, a collection of

conditional distributions of Y given Z and the support of Z:

I(FY |Z ,RZ , A) =
{

(m,GU |Z) ∈MA :

∀S ∈ F (RU) , GU |Z(S|z) ≥ P[U(Y, Z,m) ⊆ S|Z = z] a.e. z ∈ RZ

}
, (33)

where F (RU) denotes the collection of closed subsets of RU . By Lemma 1 of CR17 it fol-

lows that the requirement that the inequality holds for all closed sets S can be replaced by
the requirement that it holds for all S that are unions of sets on the support of U(Y, Z,m)

conditional on Z = z. Each such set can be be written as a union of sets of the form (−∞, t]
and [t1, t2], where if t1 = t2 = t, the set [t1, t2] is simply the point {t}. All such unions are
themselves either of the form S = (−∞, t] or S = [t1, t2]. The collections I1(FY |Z ,RZ , A)

and I2(FY |Z ,RZ , A) comprise those structures satisfying GU |Z(S|z) ≥ P[U(Y, Z,m) for each

of these two types of sets S, respectively, completing the proof. �

Proof of Proposition 2. Existence of b(z, t,m) ≡ ∇tB(z, t,m) follows from differentiability

of m(y2, z, t) with respect to t and the existence of the density g̃U |Z(·|z). The inequality

G̃U |Z(t2|z)− G̃U |Z(t1|z) ≥ B(z, t2,m)−B(z, t1,m).

can then be expressed as ∫ t2

t1

(g̃U |Z(t|z)− b(z, t,m))dt ≥ 0,

which for any z holds for all [t1, t2] ⊆ R if and only if for all t, g̃U |Z(t|z) ≥ b(z, t,m). �
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Proof of Proposition 3. Theorem 5 of CR17 implies that identified set for structural func-
tion m comprises those functions m such that zero is an element of the Aumann expectation

of U(Y, Z,m) conditional on Z = z a.e. z ∈ RZ . Recall that the residual set in the model

under study is

U(y, z,m) =

{
(−∞,m−1(y2, z, 0)] , y1 = 0

{m−1(y2, z, y1)} , y1 > 0

and let E[A|z] denote the Aumann expectation of random set A conditional on Z = z.33

There is

E[U(Y, Z,m)|z] = E[U(Y, Z,m)|z, Y1 = 0]P [Y1 = 0|z] + E[U(Y, Z,m)|z, Y1 > 0]P [Y1 > 0|z]

where the sum is a Minkowski sum.34 Considering each term in turn there is35

E[U(Y, Z,m)|z, Y1 = 0] = (−∞, E[m−1(Y2, Z, 0)|z, Y1 = 0]]

which is a semi-infinite interval and there is36

E[U(Y, Z,m)|z, Y1 > 0] = {E[m−1(Y2, Z, Y1)|z, Y1 > 0]}

which is a singleton. The Minkowski sum of a semi-infinite interval and a singleton set is a

semi-infinite interval. The result is that the conditional (on Z) Aumann expectation of the

residual set is the semi-infinite interval

E[U(Y, Z,m)|z] = (−∞, E[m−1(Y2, Z, Y1)|z]]

which leads directly to the result of the Proposition. �

33The Aumann expectation of a random set A is the set of expected values of all random variables A with
finite expected values having the property that with probability one A ∈ A.
34The Minkowski sum of sets A and B is the set of values obtained by adding each element of A to each

element of B.
A+B = {a+ b : a ∈ A, b ∈ B}

35See Example 3.14 in Molchanov and Molinari (2018).
36See Example 3.12 in Molchanov and Molinari (2018).
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Proof of Proposition 4. From Proposition 1 the identified set for
(
m,GU |Z

)
is

I(FY |Z ,RZ , A) = I1(FY |Z ,RZ , A) ∩ I2(FY |Z ,RZ , A).

It will be shown that under Restriction QI the identified set for structural function m, which

is the projection of I(FY |Z ,RZ , A) onto M, here denoted M∗, is equivalent to the set of

functions m ∈M that satisfy conditions (1) and (2) in the statement of the Proposition.

Suppose first that m ∈M∗ such that for some GU |Z satisfying Restriction QI
(
m,GU |Z

)
∈

I(FY |Z ,RZ , A). Conditions (1) and (2) then hold because these are implied by the inequal-

ities that define the sets I1(FY |Z ,RZ , A) and I2(FY |Z ,RZ , A), respectively.

Now suppose that m satisifies conditions (1) and (2) for some {q1, ..., qJ} ∈ Q. To show
that m ∈ M∗ it will be shown by construction that there exists a collection of conditional

distributions GU |Z(·|z;m) with cumulative distribution functions G̃(·|z;m) = G̃U |Z(·|z;m)

for each z ∈ RZ satisfying Restriction QI such that
(
m,GU |Z(·|z;m)

)
∈ I(FY |Z ,RZ , A).

The inclusion of m in the notation GU |Z(·|z;m) signifies that the associated collection of

conditional distributions GU |Z(·|z) = GU |Z(·|z;m) in the construction will in general vary

with m.

Specifically, it needs to be shown that for almost every z ∈ RZ there exists a cumulative

distribution function G̃(·|z;m) such that the following three conditions (34)—(36) hold. For

all j ∈ J :
G̃(qj|z;m) = λj. (34)

For all t ∈ R:
G̃(t|z;m) ≥ C(z, t,m). (35)

For all s ≤ t, each in R:

G̃(t|z;m)− G̃(s|z;m) ≥ ∆(z, s, t,m). (36)

Condition (34) ensures that Restriction QI holds and conditions (35) and (36) are the condi-

tions defining the identified set for (m,GU |Z), as shown in Proposition 1. Note that for (36)

it is equivalent to show that

G̃(t|z;m)−B(z, t,m) (37)

is weakly increasing in t.

Construction of G̃(t|z;m) : R → [0, 1] for each z,m is as follows, divided into separate
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cases according to where argument t lies relative to q1, ..., qJ .

1. Case 1: t ∈ (−∞, q1]. Define

G̃(t|z;m) ≡ C(z, t,m) + (λ1 − C(z, q1,m)) exp (η(t− q1)) ,

where η > 0 is arbitrary.37 Since lim
t→−∞

C(z, t,m) = 0 and lim
t→−∞

exp (η(t− q1)) =

0 it follows that lim
t→−∞

G̃(t|z;m) = 0. There is also G̃(q1|z;m) = λ1. G̃(t|z;m) is

an increasing function of t because it is the sum of two increasing functions of t,

G̃(t|z;m) ≥ C(z, t,m) by definition and

G̃(t|z;m)−B(z, t,m) = D(z, t,m) + (λ2 − C(z, q2,m)) exp (η(t− q2))

is an increasing function of t because it is the sum of two increasing functions of t.

2. Case 2: t ∈ [qj, qj+1], each j = 1, ..., J − 1. Define

Lj(z, t,m) ≡ B(z, t,m) + λj −B(z, qj,m)

which is an increasing function of t with Lj(z, t,m)−B(z, t,m) constant and Lj(z, qj,m) =

λj. Condition (2) ensures

λj+1 −B(z, qj+1,m) ≥ λj −B(z, qj,m),

from which it follows that Lj(z, qj+1,m) ≤ λj+1. Define

Mj(z, t,m) ≡ C(z, t,m) + (λj+1 − C(z, qj+1,m))
(t− qj)

(qj+1 − qj)
.

This is an increasing function of t with Mj(z, t,m) ≥ C(z, t,m), Mj(z, qj,m) =

C(z, qj,m), and Mj(z, qj+1,m) = λj+1. Define

G̃(t|z;m) = max(Lj(z, t,m),Mj(z, t,m)).

There is

G̃(qj|z;m) = max(λj, C(z, qj,m)) = λj,

37Construction of G̃(t|z;m) employing functions other than the exponential function could also be used.
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and

G̃(qj+1|z;m) = max(Lj(z, qj+1,m), λj+1) = λj+1,

because as just shown, Lj(z, qj+1,m) ≤ λj+1. This is an increasing function of t in

the interval [qj, qj+1] because it is the maximum of two increasing functions of t, and

G̃(t|z;m) ≥ C(z, t,m) because G̃(t|z;m) is the maximum of two functions one of which

is at least equal to C(z, t,m) in the interval under consideration. Moreover,

G̃(t|z;m)−B(z, t,m) =

max

(
λj −B(z, qj,m), D(z, t,m) + (λj+1 − C(z, qj+1,m))

(t− qj)
(qj+1 − qj)

)
which is increasing in t because it is the maximum of two increasing functions of t,

verifying condition (37).

• Case 3: t ∈ [qJ ,∞). Define

G̃(t|z;m) ≡ max (C(z, t,m), B(z, t,m)−B(z, qJ ,m) + λJ) .

There is

G̃(qJ |z;m) = max(C(z, qJ ,m), λJ) = λJ ,

and then

lim
t→∞

G̃(t|z;m) = max(1, B(z,∞,m)−B(z, qJ ,m) + λJ) = 1

because from condition (2)

λJ −B(z, qJ ,m) ≤ λJ+1 −B(z, qJ+1,m)

which implies

B(z, qJ+1,m)−B(z, qJ ,m) + λJ ≤ λJ+1 = 1.

G̃(t|z;m) is an increasing function of t because it is the maximum of two increasing

functions of t. Finally

G̃(t|z;m)−B(z, t,m) = max (D(z, t,m),−B(z, qJ ,m) + λJ)
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which is an increasing function of t.

We have shown that for any z ∈ RZ and any function m satisfying the conditions of the

Proposition the piecewise function G̃(t|z,m) defined above can be constructed and we have

shown that it satisfies conditions (34), (35) and (36) Therefore any function m satisfying

the conditions of the Proposition is contained in the identified set of structural functions

delivered by the model. �

Proof of Proposition 5. Suppose that m is in the projection of the identified set of

structures
(
m,GU |Z

)
deliverd by the IV Tobit Model A under consideration. Then under

Restriction NPSI there exists a distribution G such that (m, {G}) ∈ I(FY |Z ,RZ , A) and as

explained in the text it follows from Proposition 1 that (19) and (20) hold with p1, ..., pN
as defined in (18) as a function of that distribution G. The existence of a vector of proper

probabilities p = (p1, ..., pN) such that (19) and (20) hold almost surely is equivalent to the

existence of p ∈ RN satisfying

Ap = b,

Bp ≤ c (m) ,

p ≥ 0,

a linear program in p. Then, applying the same steps as in Chesher and Rosen (2020a),

and in particular using the version of Farkas’s Alternative provided in Border (2020) —see

paragraph 12, Section 1.4 —such probabilities exist if and only if there is no solution for

(s, t), s ∈ R, t ∈ RK , v ∈ R, to the system

sA+ tB ≥ 0,

t ≥ 0,

s+ t · c(m) < 0,

which is equivalent there being a nonnegative value of the linear program (24) subject to

(25), (26), and (27). �
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Figure 1: Structure 1, Y2 linear in Z and U2. The identified set of values of α and β in
a linear IV Tobit model under a zero conditional expectation restriction, E[U |z] = 0 for
all z. The identified set comprises the region below all the drawn lines whose formula is
β = E[Y1|z] − αE[Y2|z] for z ∈ {−1,−0.9, . . . , 0.9, 1}. The value of a and b generating the
probabilities used to calculate the set is a = 1, b = 1, plotted in green. The parameter value
used to calculate the conditional expectations is Case 1 in Table 1.
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Figure 2: Structure 1, Y2 linear in Z and U2. The pink filled region is the identified set of
values of α and β in a linear IV Tobit model under a zero conditional median restriction.
The region below the blue drawn lines is the identified set under a zero conditional mean
restriction. The parameter values in the triangular Gaussian structure generating the prob-
abilities used in this calculation are shown in the column Case 1 in Table 1. The value of a
and b generating the probabilities used to calculate the set is a = 1, b = 1, plotted in green.

0.6 0.8 1.0 1.2 1.4 1.6

0.
6

0.
8

1.
0

1.
2

1.
4

α

β

47



Figure 3: Structure 1, Y2 linear in Z and U2. The pink filled region is the identified set of
values of α and β in a linear IV Tobit model under a zero conditional median restriction.
The region below the blue drawn lines is the identified set under a zero conditional mean
restriction. The parameter values in the triangular Gaussian structure generating the prob-
abilities used in this calculation are shown in the column Case 2 in Table 1. The value of a
and b generating the probabilities used to calculate the set is a = 1, b = 1, plotted in green.
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Figure 4: Structure 1, Y2 linear in Z and U2. The pink filled region is the identified set of
values of α and β in a linear IV Tobit model under a zero conditional median restriction.
The region below the blue drawn lines is the identified set under a zero conditional mean
restriction. The parameter values in the triangular Gaussian structure generating the prob-
abilities used in this calculation are shown in the column Case 3 in Table 1. The value of a
and b generating the probabilities used to calculate the set is a = 1, b = 1, plotted in green.
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Figure 5: Structure 2, Y2 bounded above. The pink filled region is the identified set of values
of α and β in a linear IV Tobit model under a zero conditional median restriction. The
magenta filled region is the projection of the identified set onto the space of (α, β) when U is
restricted to be Gaussian, independent of Z with mean 0 and unknown variance. The region
below the blue drawn lines is the identified set under a zero conditional mean restriction.
The parameter values in the triangular Gaussian structure generating the probabilities used
in this calculation are shown in the column Structure 2 Case 1 in Table 1. The value of a
and b generating the probabilities used to calculate the set is a = 1, b = 0, plotted in green.
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Figure 6: IV tobit model with U restricted Gaussian independent of Z, Structure 2 Case 1:
projections of the identified set onto the space of each pair of parameters in turn. Values of
the parameters generating probabilities are plotted in green. One dimensional projections
are drawn in pale blue. Red filled regions are convex hulls of points found to lie in the
projections.
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