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Abstract

We study inference in complete information games with discrete strategy spaces. Unlike
binary games, we allow for rich strategy spaces and we only assume that they are ordinal in na-
ture. We derive observable implications of equilibrium play under mild shape restrictions on
payoff functions, and we characterize sharp identified sets for model parameters. We propose
a novel inference method based on a test statistic that embeds conditional moment inequali-
ties implied by equilibrium behavior. Our statistic has asymptotically pivotal properties that
depend on the measure of contact sets, to which our statistic adapts automatically. In the case
of two players and strategic substitutes we show that certain payoff parameters are point iden-
tified under mild conditions. We embed conventional point estimates for these parameters in
our conditional moment inequality test statistic in order to perform inference on the remain-
ing (partially identified) parameters. We apply our method to model the number of stores
operated by Lowe’s and Home Depot in geographic markets and perform inference on several
quantities of economic interest.
Keywords: Discrete games, ordered response, partial identification, conditional moment in-
equalities.
JEL classification: C01, C31, C35.

1 Introduction

Econometric models of static complete information discrete games are well studied, and have

been commonly used to model firm entry decisions. Most research has focused on either binary
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games or games with a very limited action space. This paper aims to contribute to the literature

by tackling the problem of inference in games where the action space is discrete but rich and

potentially unbounded. Our only assumption regarding the action space is that it is ordinal in

nature. This enables the extension of firm entry models to incorporate not just firm presence, but

the intensity of market presence, for instance as measured by the number of stores.

Without further restrictions, a game with a rich action space can pose serious challenges for

inference due to multiple equilibria and the potential complexity of equilibrium configurations.

We solve this by imposing mild shape restrictions on payoff functions which greatly simplify the

necessary conditions that must be satisfied in equilibrium. Under these shape restrictions, equi-

librium behavior can be described as a simultaneous move ordered-response game. From here,

necessary conditions for a pre-specified action profile y to be an equilibrium can be described in

a way that does not require the econometrician to find all equilibria, but instead only requires

payoff comparisons across adjacent actions. This greatly simplifies the analysis and allows us to

deal with cases where the action space is unbounded.

Classical single-agent ordered response models such as the ordered probit and logit have the

property that, conditional on covariates, the observed outcome is weakly increasing in an unob-

servable payoff-shifter. Our model employs shape restrictions on payoff functions that deliver an

analogous property for each agent. These restrictions facilitate straightforward characterization

of regions of unobservable payoff shifters over which observed model outcomes are feasible. This

in turn enables the transparent development of a system of conditional moment equalities and

inequalities that characterize the identified set of agents’ payoff functions.

When the number of actions and/or players is sufficiently large, characterization of the iden-

tified set can comprise a computationally overwhelming number of moment inequalities. While

ideally one would wish to exploit all of these moment restrictions in order to produce the sharpest

possible set estimates, this may in some cases be infeasible. We thus also characterize outer sets

that embed a subset of the full set of moment inequalities. Use of these outer sets can be com-

putationally much easier for estimation and, as shown in our application, can sometimes achieve

economically meaningful inference.

We propose a novel inference method that embeds the conditional moment inequalities (CMI)

implied by our model. Our statistic has two main attractive properties. First, it automatically

adapts to the measure of so-called “contact sets” (the set of realizations of the conditioning vari-

ables where the inequalities are binding at a given parameter value). Second, this feature confers

it asymptotically pivotal properties, which allows us to use critical values that do not have to be

approximated for each parameter value evaluated, thus facilitating its application to models with

many parameters and many conditioning variables. Adapting to the measure of the contact sets

also means that our statistic is not conservative, in the sense that it is not based on least favorable

configurations in which contact sets have the largest possible measure for each parameter value.
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Our inferential method shares some conceptual similarities to other CMI criterion function

based approaches such as those of Andrews and Shi (2013), Lee, Song, and Whang (2013), Lee,

Song, and Whang (2018), Armstrong (2015), Armstrong (2014), Chetverikov (2017), Armstrong

and Chan (2016) and Armstrong (2018), but with two important differences. The first difference

regards the scaling of moment inequality violations. The procedures cited above use statistics that

measure empirical violations of CMIs scaled by their standard errors. The statistic here instead

first aggregates these violations, and then scales the aggregate violation.1 This approach is what

allows our procedure to adapt asymptotically to the measure of the contact sets. Regularizing

the estimator for the asymptotic variance of our statistic allows us to standardize it in a way that

produces asymptotically pivotal properties.

In the case of two players and strategic substitutes we show that a subset of parameters are

point identified under mild conditions. Our proposal is to consistently estimate the point identi-

fied parameters in a first step by maximum likelihood, and then incorporate these point estimates

in our moment inequality statistic to perform inference on the remaining partially identified pa-

rameters. Our statistic is particularly well-suited to this case because of its asymptotic properties,

in particular the fact that it has a linear representation.2 Ultimately we construct a Wald-type

statistic incorporating the joint asymptotic distribution of the first-step estimator and our mo-

ment inequality statistic.

We apply a parametric version of our model to study market presence, as measured by the

number of stores, and competition in geographic markets by Lowe’s and Home Depot. In addi-

tion to presenting point estimates for the point identified parameters and confidence sets for the

partially identified ones, we also illustrate how our model can allow us to perform inference on

a number of quantities of economic interest, such as the likelihood that particular action profiles

are equilibria, and the propensity of the underlying equilibrium selection mechanism to choose

any particular outcome among multiple equilibria. Our results reveal several substantive findings

that illuminate the nature of the strategic interaction between these firms in our model, as well as

some features of the underlying equilibrium selection mechanism.

The paper proceeds as follows. In Section 1.1 we discuss the related literature on economet-

ric models of discrete games. In Section 2 we define the structure of the underlying complete

1The scale factor employs a truncation sequence to ensure that it is bounded away from zero, similar to that used
by Armstrong (2014) when scaling individual moment inequality violations. Armstrong (2014) shows that for a test
based on a Kolmogorov-Smirnov statistic this can lead to improvements in estimation rates and local asymptotic power
relative to using bounded weights. For the statistic considered here, which is based on aggregate moment inequality
violations, truncation by a decreasing sequence ensures that the violation is asymptotically weighted by its inverse
standard error, which is used to establish the asymptotic validity of fixed chi-square critical values.

2Other recent papers that feature set identification with a point-identified component but with different approaches
include Kaido and White (2014), Kline and Tamer (2016), Romano, Shaikh, and Wolf (2014), and Shi and Shum (2015).
The first of these focuses primarily on consistent set estimation, with subsampling suggested for inference. The other
three papers provide useful and widely applicable approaches for inference based on unconditional moment inequal-
ities, but do not cover inference based on conditional moment inequalities with continuous conditioning variables, as
encountered here.
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information game and shape restrictions on payoff functions. In Section 3 we derive observable

implications, including characterization of the identified set and computationally simpler outer

sets. In Section 4 we provide specialized results for a parametric model of a two player game with

strategic substitutes, including point identification of a subset of model parameters. In Section 5

we then introduce our approach for inference on elements of the identified set. In Section 6 we

briefly summarize findings from Monte Carlo experiments, the full details of which are provided

in an additional Empirical Supplement.3 In Section 7 we apply our method to model capac-

ity (number of stores) decisions by Lowe’s and Home Depot. Some additional results from the

empirical application excluded here for brevity are additionally provided in the aforementioned

Empirical Supplement. Section 8 concludes. All proofs of our econometric results can be found

in an accompanying Econometric Supplement.4

1.1 Related Literature and the Contribution of this Paper

Econometric models of discrete action games of complete information fall in the class of simul-

taneous discrete choice models, which have been studied in several papers, going back at least

to Heckman (1978). A foundational paper that explicitly analyzed econometric inference in a

discrete game is Bjorn and Vuong (1984), later followed by the seminal work of Bresnahan and

Reiss (1990), Bresnahan and Reiss (1991b), and Berry (1992). These models can produce multiple

equilibria for certain realizations of payoff shifters, and they may alternatively fail to produce

any (pure strategy) equilibria for others. Multiplicity and non-existence of equilibria result in

incompleteness and incoherence, respectively (see Tamer (2003) and Berry and Reiss (2006)). While

an incoherent game-theoretic model may require a different approach, incomplete models can be

“completed” by introducing an equilibrium selection theory. For a more thorough treatment of

these issues and the related literature, we refer to Chesher and Rosen (2020). A review of the

econometric analysis of static games can be found in Aradillas-López (2020).

The idea of relying only on equilibrium conditions without completing a model through a pos-

sibly ad-hoc equilibrium selection theory is a common feature of the recent literature. A partial

list of examples includes Tamer (2003), Ishii (2005), Ciliberto and Tamer (2009), Andrews and

Jia-Barwick (2010), and Pakes, Porter, Ho, and Ishii (2015). Aradillas-López and Tamer (2008)

show how weaker restrictions than Nash Equilibrium, in particular rationalizability and iterated

deletion of dominated strategies, can be used to set identify the parameters of discrete games. The

econometric challenges presented by games with multiple equilibria have helped produce signifi-

cant contributions to the general problem of inference in partially identifying models. Beresteanu,

Molchanov, and Molinari (2011) use techniques from random set theory to elegantly characterize

the identified set of model parameters in a class of models including entry games. Galichon and

3Available at http://www.personal.psu.edu/aza12/ordered-game-empirical-supplement.pdf
4Available at http://www.personal.psu.edu/aza12/ordered-game-econometric-supplement.pdf.
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Henry (2011) use optimal transportation theory to likewise achieve a characterization of the iden-

tified set applicable to discrete games. Chesher and Rosen (2020) build on concepts in both of

these papers as well as Chesher and Rosen (2017) to compare identified sets obtained from al-

ternative approaches to deal with incompleteness and in particular incoherence in simultaneous

discrete outcome models.

Most existing work has focused on either binary-choice games, or games with a very limited

action space. As a consequence, a number of interesting real-world applications fall outside the

scope of prior analyses. Our paper aims to contribute to the literature by considering games where

the action space is rich and potentially unbounded (or treated as unbounded by the researcher)

but ordinal in nature. We describe mild shape restrictions for payoff functions that effectively turn

the game into a simultaneous ordered-response model where necessary equilibrium conditions

involve only comparisons across adjacent actions and thus do not necessitate looking at (or even

knowing) the entire action space.

Under these shape restrictions, equilibrium conditions comprise conditional moment inequal-

ities (CMIs) involving payoff comparisons across adjacent actions only. Our paper additionally

contributes to the literature on inference methods with CMIs by proposing a novel approach based

on a test statistic that embeds all the information of the CMIs, and which adapts asymptotically

to the measure of the “contact set” of values of the conditioning variables at which the CMIs

bind. This allows us to bypass the need to pretest for the slackness of CMIs while also avoiding

the conservative features of tests that use critical values based on a least favorable configuration

in which all CMIs are binding. Our approach is also applicable when a subset of parameters

are point-identified and can be estimated with a root-n consistent estimator, as illustrated in our

application.

Also related to our multiple-entry empirical application are a recent strand of papers on net-

work economies faced by chain stores when setting their store location profiles, including Jia

(2008), Holmes (2011), Ellickson, Houghton, and Timmins (2013), and Nishida (2015). These

papers study models that allow for the measurement of payoff externalities from store location

choices across different markets, which, like most of the aforementioned literature, our model

does not incorporate. On the other hand, our model incorporates aspects that these do not, by

both not imposing an equilibrium selection rule and by allowing for firm-specific unobserved

heterogeneity.5

Some other existing papers specifically consider alternative models of ordered response with

5Of the papers in this literature, only Ellickson, Houghton, and Timmins (2013) and Nishida (2015) also allow an
ordered but non-binary within-market action space. Nishida (2015), in similar manner to Jia (2008), employs an equi-
librium selection rule to circumvent the identification problems posed by multiple equilibria. We explicitly allow for
multiple equilibria, without imposing restrictions on equilibrium selection. Ellickson, Houghton, and Timmins (2013)
allow for multiple equilibria and partial identification, but employ a very different payoff structure. In particular, they
model unobserved heterogeneity in market-level payoffs through a single scalar unobservable shared by all firms. In
our model, within each market each firm has its own unobservable.
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endogeneity. Davis (2006) considers a simultaneous equations model with a game-theoretic foun-

dation, employing enough additional structure on equilibrium selection so as to complete the

model and achieve point-identification. Ishii (2005) studies ATM networks, using a structural

model of a multi-stage game that enables estimation of banks’ revenue functions via GMM. These

estimates are then used to estimate bounds for a single parameter that measures the cost of

ATMs in equilibrium. Chesher and Smolinski (2012) provide set identification results for a sin-

gle equation ordered response model with endogenous regressors and instrumental variables.

Chesher, Rosen, and Siddique (2019) use such models to perform inference on counterfactuals and

marginal effects of continuous endogenous variables, in comparison to results obtained by com-

plete triangular models. Here we exploit the structure provided by the simultaneous (rather than

single equation) model. Aradillas-López (2011) and Aradillas-López and Gandhi (2016) also con-

sider simultaneous models of ordered response. In contrast to this paper, Aradillas-López (2011)

focuses on nonparametric estimation of bounds on Nash outcome probabilities, and Aradillas-

López and Gandhi (2016) on a model with incomplete information. The parametric structure im-

posed here allows us to conduct inference on economic quantities of interest and perform coun-

terfactual experiments that are beyond the scope of those papers.

2 The Model

Our model consists of J players J = {1, ..., J} who each simultaneously choose an action Yj from

the ordered action space Yj =
{
s0j , s

1
j , . . . , s

Mj

j

}
, where s`j < s

`+1
j ∀ `. The action space Yj can be

unbounded (above and/or below) and we only require that it be ordinal in nature.6 Each set Yj
is discrete but everything that follows can be extended to cases where it is continuous. We will

denote a generic element of Yj as yj and we define

y−j =

 s`−1
j if yj = s`j with ` > 0

s0j − 1 if yj = s0j
y+
j =

 s`+1
j if yj = s`j with ` < Mj

s
Mj

j + 1 if yj = s
Mj

j

(1)

That is, y−j and y+
j are the adjacent actions to yj .7 We define Y −j and Y +

j exactly as in (1) for

the actions chosen by j. We denote Y ≡
(
Y1, ...,YJ

)′
as the action profile chosen by all J players,

and for any player j ∈ J we adopt the common convention that Y−j denotes the vector of actions

chosen by j’s rivals, Y−j ≡
(
Y1, ...,Yj−1,Yj+1, ...,YJ

)′
. As shorthand we sometimes write

(
Yj ,Y−j

)
to

denote an action profile Y with jth component Yj and all other components given by Y−j . We use

6While the actions may be of cardinal significance in some applications, we will only exploit their ordinal nature.
7Note that we have decreed y−j = s0j − 1 and y+

j = s
Mj

j + 1 for the lower and upper bounds of Yj , respectively. Thus,
these “adjacent” actions fall outside of Yj . This is done without loss of generality since (as we will see below), players’
payoffs are assumed to be −∞ for any action outside of Yj .
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Y ≡ Y1 × · · · ×YJ to denote the space of feasible action profiles, and for any player j, Y−j≡ Y1 × · · · ×
Yj−1 ×Yj+1 × · · · ×YJ to denote the space of feasible rival action profiles.

The actions of each agent are observed across a large number n of separate environments,

e.g. markets, networks, or neighborhoods. The payoff of action Yj for each agent j is affected

by observable and unobservable payoff shifters Xj ∈ Xj ⊆ R
kj and Uj ∈ R, respectively, as well as

their rivals’ actions Y−j . We assume throughout that (Y ,X,U ) are realized on a probability space

(Ω,F ,P0), where X denotes the composite vector of observable payoff shifters Xj , j ∈ J , without

repetition of any common components. We use P to denote the corresponding distribution of

observables (Y ,X), and PU to denote the marginal distribution of unobserved heterogeneity U =

(U1, ...,UJ )′, so that PU (U ) denotes the probability that U is realized on the set U . We assume

throughout thatU is continuously distributed with respect to Lebesgue measure with everywhere

positive density on R
J . The data comprise a random sample of observations {(yi ,xi) : i = 1, ...,n} of

(Y ,X) with distribution P . The random sampling assumption guarantees identification of P .8

For each player j ∈ J there is a payoff function πj
(
y,xj ,uj

)
mapping action profile y ∈ Y and

payoff shifters
(
xj ,uj

)
∈ Xj ×R to payoffs satisfying the following restrictions.

Restriction SR (Shape Restrictions): Payoff functions
(
π1, ...,πJ

)
belong to a class of payoff func-

tions Π = Π1 × · · · ×ΠJ such that for each j ∈ J , πj (·, ·, ·) : Y ×Xj ×R→R satisfies:

(i) Payoffs are strictly concave in yj :

∀yj ∈ Yj , πj
(
(y+
j , y−j ),xj ,uj

)
−πj

(
(yj , y−j ),xj ,uj

)
< πj

(
(yj , y−j ),xj ,uj

)
−πj

(
(y−j , y−j ),xj ,uj

)
,

where πj((y−j , ·), · ) = −∞ if yj = s0j and πj((y
+
j , ·), · ) = −∞ if yj = s

Mj

j .

(ii) ∀
(
y−j ,xj

)
∈ Y−j × X , πj

((
yj , y−j

)
,xj ,uj

)
has strictly increasing differences in

(
yj ,uj

)
, that is if

u′j > uj and y′j > yj , then

πj
((
y′j , y−j

)
,xj ,uj

)
−πj

((
yj , y−j

)
,xj ,uj

)
< πj

((
y′j , y−j

)
,xj ,u

′
j

)
−πj

((
yj , y−j

)
,xj ,u

′
j

)
. �

Restriction SR(i) imposes that marginal payoffs are decreasing in each player’s own action yj . It

also implies that, for any fixed rival pure strategy profile y−j , agent j’s best response is unique

with probability one. Restriction SR(ii) plays a similar role to the monotonicity of latent utility

functions in unobservables in single agent decision problems, implying that the optimal choice of

yj is weakly increasing in unobservable uj , as in classical ordered choice models. This restriction

aids identification analysis by guaranteeing the existence of intervals for uj within which any yj
maximizes payoffs for any fixed

(
y−j ,xj

)
.

We study models in which the distribution of unobserved heterogeneity is restricted to be

8We impose random sampling for simplicity and expositional ease, but our results can be generalized to less restric-
tive sampling schemes. For instance our identification results require that P is identified, for which random sampling
is a sufficient, but not necessary, condition.
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independent of payoff shifters. This restriction can be relaxed, see e.g. Kline (2015), though at the

cost of weakening the identifying power of the model, or requiring stronger restrictions otherwise.

Restriction I (Independence): U and X are stochastically independent, with the distribution of

unobserved heterogeneity PU belonging to some class of distributions PU . �

A structure comprises a collection of payoff functions
(
π1, ...,πJ

)
∈Π satisfying Restrictions SR

and I, and a distribution of unobserved heterogeneity PU ∈ PU . Identification analysis aims to

deduce which structures (π,PU ) ∈Π×PU , and what relevant functionals of (π,PU ), are compatible

with P . The collections Π and PU may each be parametrically, semiparametrically, or nonpara-

metrically specified. If they are both parametrically specified, then Π and PU may be indexed

by a finite dimensional parameter vector, say θ. Then each θ in some given parameter space Θ

represents a unique structure (π,PU ), and identification analysis reduces to deducing which θ ∈Θ
have associated structures (π,PU ) compatible with P .

3 Equilibrium Behavior and Observable Implications

We assume that players have complete information and thus know the realizations of all pay-

off shifters (X,U ) when they choose their actions.9 We focus attention on Pure Strategy Nash

Equilibrium (PSNE) as our solution concept, although other solution concepts can be used with

our inference approach. For example, mixed-strategy Nash Equilibrium behavior can be read-

ily handled through conditional moment inequalities that follow as special cases of the results

in Aradillas-López (2011). In the working paper Aradillas-Lopez and Rosen (2014) we further

describe an alternative behavioral model that nests Nash equilibrium (in either pure or mixed

strategies) as a special case but that allows for incorrect beliefs, and we outline how our inference

approach can then be applied.10

We now formalize the restriction to PSNE behavior. Define each player j’s best response cor-

respondence as

y∗j
(
y−j ,xj ,uj

)
≡ argmax

yj∈Yj
πj

((
yj , y−j

)
,xj ,uj

)
, (2)

which delivers the set of payoff maximizing alternatives yj for player j as a function of
(
y−j ,xj ,uj

)
.

Restriction PSNE (Pure Strategy Nash Equilibrium): With probability one, for all j ∈ J ,

9For econometric analysis of incomplete information binary and ordered games see for example Aradillas-López
(2010), de Paula and Tang (2012), Aradillas-López and Gandhi (2016) and the references therein.

10One motivation for using alternative solution concepts is the possibility of non-existence of PSNE. However, in
games in which all actions are strategic complements, or in 2 player games where actions are either strategic substitutes
or complements, such as that used in our application, a PSNE always exists. This follows from observing that in these
cases the game is supermodular, or can be transformed into an equivalent representation as a supermodular game.
This was shown for the binary outcome game by Molinari and Rosen (2008), based on the reformulation used by Vives
(1999, Chapter 2.2.3) for Cournot duopoly. Tarski’s Fixed Point Theorem, see e.g. Theorem 2.2 of Vives (1999) or
Section 2.5 of Topkis (1998), then implies the existence of at least one PSNE.
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Yj ∈ y∗j
(
Y−j ,Xj ,Uj

)
.

Strict concavity of each player j’s payoff in her own action under Restriction SR(i) in fact

guarantees that y∗j
(
y−j ,Xj ,Uj

)
is unique with probability one for any y−j , though it does not imply

that the equilibrium is unique. We therefore adopt a minor abuse of notation and write Yj =

y∗j
(
Y−j ,Xj ,Uj

)
. Concavity also provides a further simplification of the conditions for PSNE.

Lemma 1 Suppose Restriction SR(i) holds. Then Restriction PSNE holds if and only if with probability
one, for all j ∈ J , πj

(
Y ,Xj ,Uj

)
≥ max

{
πj

((
Y +
j ,Y−j

)
,Xj ,Uj

)
,πj

((
Y −j ,Y−j

)
,Xj ,Uj

)}
, where, as before,

we define πj
((
Y −j ,Y−j

)
,Xj ,Uj

)
= −∞ if Yj = s0j and πj

((
Y +
j ,Y−j

)
,Xj ,Uj

)
= −∞ if Yj = s

Mj

j .

The proof of Lemma 1 is simple and thus omitted. That Restriction PSNE implies the inequal-

ity in the lemma is immediate. The other direction follows from noting that if the inequality in

Lemma 1 holds then violation of (2) would contradict strict concavity of πj
((
yj ,Y−j

)
,Xj ,Uj

)
in yj .

We now characterize the identified set of structures (π,PU ). Define

∆πj
(
Y ,X,Uj

)
≡ πj

(
Y ,Xj ,Uj

)
−πj

((
Y −j ,Y−j

)
,Xj ,Uj

)
,

as the incremental payoff of action Yj relative to Y −j for any
(
Y−j ,X,Uj

)
. From Restriction SR

(ii), ∆πj
(
Y ,X,Uj

)
is strictly increasing in Uj and thus invertible. Combining this with Lemma 1

allows us to deduce that for each player j there exists, for each
(
y−j ,x

)
, an increasing sequence

of non-overlapping thresholds,
{
u∗j

(
yj , y−j ,x

)
: yj = s0j , . . . , s

Mj

j , s
Mj

j + 1
}
, with u∗j (s

Mj

j + 1, y−j ,x) =

−u∗j
(
s0j , y−j ,x

)
=∞, such that11

y∗j
(
y−j ,xj ,uj

)
= yj ⇔ u∗j

(
yj , y−j ,x

)
< uj ≤ u∗j

(
y+
j , y−j ,x

)
. (3)

That is, given
(
y−j ,x

)
, each player j’s best response y∗j

(
y−j ,xj ,uj

)
is uniquely determined by within

which of the non-overlapping intervals
(
u∗j

(
yj , y−j ,x

)
,u∗j

(
y+
j , y−j ,x

)]
unobservable Uj falls. It fol-

lows that with probability one

U ∈ Rπ (Y ,X) ≡ ×
j∈J

(
u∗j

(
Yj ,Y−j ,X

)
,u∗j

(
Y +
j ,Y−j ,X

)]
. (4)

In other words, Y is an equilibrium precisely if U belongs to the rectangle Rπ (Y ,X).

The equilibrium implication (4) is the key implication that, when combined with previous

set identification results in the literature – e.g. those of Galichon and Henry (2011), Beresteanu,

Molchanov, and Molinari (2011), and Chesher and Rosen (2017) – delivers the identified set for

(π,PU ). Define for any set Ỹ ⊆ Y and all x ∈ X , Rπ
(
Ỹ ,x

)
≡ ∪

y∈Ỹ
Rπ (y,x), which is the union of all

11Recall from (1) that we have decreed y+
j = s

Mj

j + 1 if yj = s
Mj

j .
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rectangles Rπ (y,x) across y ∈ Ỹ , and

R∪ (x) ≡
{
U ⊆R

J : U =Rπ
(
Ỹ ,x

)
for some Ỹ ⊆ Y

}
,

to be the collection of all such unions for any x ∈ X .

Theorem 1 Let Restrictions SR, I, and PSNE hold. Then the identified set of structures is

S ∗ =
{
(π,PU ) ∈Π×PU : ∀U ∈ R∪ (x) , PU (U ) ≥ P (Rπ (Y ,X) ⊆ U|X = x) a.e. x ∈ X

}
, (5)

where, for any x ∈ X , R∪ (x) ⊆ R∪ (x) denotes the collection of sets

R∪ (x) ≡

U ⊆R
J :
U =Rπ

(
Ỹ ,x

)
for some Ỹ ⊆ Y such that ∀ nonempty Ỹ1, Ỹ2 ⊆ Y with

Ỹ1 ∪ Ỹ2 = Ỹ and Ỹ1 ∩ Ỹ2 = ∅, PU
(
Rπ

(
Ỹ1,x

)
∩Rπ

(
Ỹ2,x

))
> 0

 . (6)

Equivalently, the identified set of structures can be written

S ∗ =

 (π,PU ) ∈Π×PU :

∀C ∈ 2Y , PU (∃y ∈ C : y ∈ PSNE(π,X,U ) |X = x) ≥ P (Y ∈ C|X = x) a.e. x ∈ X

 , (7)

where PSNE(π,X,U ) denotes the set of PSNE when the payoff functions are π for the given (X,U ).

Characterization (5) follows from application of Chesher and Rosen (2017, Theorems 2-3),

while (7) can be obtained by application of either one of Galichon and Henry (2011, Theorem 1)

or Beresteanu, Molchanov, and Molinari (2011, Theorem D.2). The former expresses S ∗ as those

(π,PU ) such that PU (U ) ≥ P (Rπ (Y ,X) ⊆ U|X = x), a.e x ∈ X , over the collection of sets U ∈ R∪ (x).12

The collection R∪ (x) is a collection of core-determining sets, as defined by Galichon and Henry

(2011, Theorem 1), shown to be sufficient by Chesher and Rosen (2017, Theorem 3) to imply (5) for

all closed U ⊆ R
J , thus ensuring sharpness. Applying those results here, and in particular using

the implication that Y is a PSNE if and only if (4) holds, we see that the core-determining sets in

this model comprise unions of rectangles in R
2. The proof of Theorem 1 is omitted; equivalence

of the two representations follows from application of Chesher and Rosen (2017, Theorem 4).

The identified set S ∗ expressed in (5) may comprise a rather large number of conditional mo-

ment inequalities, namely as many as belong to R∪ (x), for each x. More inequalities will in general

produce smaller identified sets, but the use of a very large number of inequalities may pose a prac-

tical challenge, both with regard to the quality of finite sample approximations as well as compu-

tation. As stated in the following Corollary, consideration of those structures satisfying inequality

12Note that by definition the collection R∪ (x) contains all sets of the form Rπ (y,x) for some y ∈ Y , since the require-
ment regarding subsets Ỹ1, Ỹ2 ⊆ Y holds trivially when Ỹ = {y}.
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(5) applied to an arbitrary sub-collection of those in R∪ (x), or indeed any arbitrary collection of

sets in U , will produce an outer region that contains the identified set.

Corollary 1 Let U (x) : X → 2U . Then S ∗ (U) is an outer set for S ∗, in that S ∗ ⊆ S ∗ (U), where

S ∗ (U) = {(π,PU ) ∈Π×PU : ∀U ∈ U (x) , PU (U ) ≥ P (Rπ (Y ,X) ⊆ U|X = x) a.e. x ∈ X} . (8)

The Corollary follows directly from Theorem 1 because the inequality

PU (U ) ≥ P (Rπ (Y ,X) ⊆ U|X = x) (9)

for all U ∈ R∪ (x) and almost every x ∈ X implies that this must hold for all U ∈ R∪ (x), and fur-

ther for all U ∈ U (x). Furthermore, because S ∗ (U) contains the identified set, it can be used to

estimate valid, but potentially non-sharp bounds on functionals of (π,PU ). Although S ∗ (U) is a

larger set than S ∗, its reliance on fewer inequalities can lead to significant computational gains

for bound estimation and inference. Even in cases where the researcher wishes to estimate S ∗, it

may be faster to first base estimation on S ∗ (U). If estimation or inference based on this outer set

delivers sufficiently tight set estimates to address the empirical questions at hand, a researcher

may be happy to stop here. If it does not, the researcher could potentially refine set estimates or

confidence sets based on S ∗ (U) by then incorporating additional restrictions, either proceeding

to use S ∗ (U′) for some superset U′ of U, or by using S ∗ itself.13 Typically, checking the imposed

inequality restrictions involves searching over a multi-dimensional parameter space, so the com-

putational advantage can be substantial.

The difference between the size of the outer set S ∗ (U) and the identified set may or may not be

large. For a given collection of conditional moment inequalities defining S ∗ (U), this will depend

on the particular distribution of (Y ,X) at hand, and is thus an empirical question. In the two-

player parametric model studied in the following Section, and used in the application of Section 7,

we show that a particular U (·) is sufficient to point identify all but three of the model parameters.

4 A Two-Player Game of Strategic Substitutes

In this section we introduce a parametric specification satisfying Restriction SR for a two-player

game with J = {1,2}, which we use in our empirical application. We continue to maintain Restric-

tions I and PSNE. Existence of at least one PSNE a.e. (X,U), is guaranteed by e.g. Theorem 2.2 of

Vives (1999) or Section 2.5 of Topkis (1998), as noted in Section 3.

13This will be valid a valid procedure if the researcher can ensure that the confidence sets are constructed such that
that one based on the first outer set contains the one based on the second set incorporating further restrictions with
probability one.
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4.1 A Parametric Specification

For each j ∈ J we specify the action space Yj =
{
s0j , s

1
j , . . . , s

Mj

j

}
= {0,1, ...,Mj} and payoffs

πj
(
Y ,Xj ,Uj

)
= Yj ×

(
δ+Xjβ −∆jY−j − ηYj +Uj

)
, (10)

where we impose the restriction that η > 0, ensuring that Restrictions SR(i) and SR(ii) hold. In

this specification the parameters of the players’ payoff functions differ only in the interaction

parameters (∆1,∆2), both restricted to be nonnegative so that actions are strategic substitutes.

Given (10), each player j’s best response function takes the form (3), where

u∗j
(
0, y−j ,xj

)
= −∞, u∗j

(
ỹj , y−j ,xj

)
= η

(
2ỹj − 1

)
+∆jy−j − δ − xjβ, ỹj = 1, ...,Mj . (11)

In addition we restrict the distribution of bivariate unobserved heterogeneity U to the Farlie-

Gumbel-Morgenstern (FGM) copula indexed by parameter λ ∈ [−1,1].14 Specifically U1 and U2

each have the logistic marginal CDF G(uj ) = exp(uj )/(1 + exp(uj )), and their joint CDF is

F (u1,u2;λ) = G (u1) ·G (u2) · [1 +λ (1−G (u1)) (1−G (u2))] . (12)

The parameter λ measures the degree of dependence between U1 and U2 with correlation coeffi-

cient given by ρ = 3λ/π2. This copula restricts the correlation to the interval [−0.304,0.304]. This

is clearly a limitation, but one which appears to be reasonable in our application in Section 7. Note

that ρ captures the correlation remaining after controlling for X. Thus with a sufficiently rich set

of payoff shifters included in X a low residual correlation may be reasonable. Naturally, we could

use alternative specifications, such as bivariate normal, but the closed form of F (u1,u2;λ) is easy

to work with and provides computational advantages. Compared to settings with a single agent

ordered choice model, our framework offers a generalization of the ordered logit model, whereas

multivariate normal U generalizes the ordered probit model.

For notational convenience we define α ≡ η − δ and collect parameters into a composite pa-

rameter vector θ ≡
(
θ′1,θ

′
2

)′
where θ1 ≡ (α,β′ ,λ)′ and θ2 = (η,∆1,∆2)′. We show in the following

Section that under fairly mild conditions θ1 is point identified.15

14See Farlie (1960), Gumbel (1960), and Morgenstern (1956).
15Results from Kline (2015) establish sufficient conditions for point identification of (α,β) under alternative distri-

butions of unobserved heterogeneity, e.g. multivariate normal.
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4.2 Observable Implications of Pure Strategy Nash Equilibrium

Given the parametric specification, we express the sets Rπ (Y ,X) described in (4) as Rθ (Y ,X). It

follows from (11) that observed (Y ,X) correspond to a PSNE if and only if U ∈ Rθ (Y ,X) where

Rθ(Y ,X) ≡R1
θ ×R

2
θ, (13)

Rjθ (Y ,X) = {uj : −∞ < u1 ≤ η +∆jY−j − δ −Xjβ} if Yj = 0, (14)

Rjθ (Y ,X) = {uj : η
(
2Yj − 1

)
+∆jY−j − δ −Xjβ < uj ≤ η

(
2Yj + 1

)
+∆jY−j − δ −Xjβ} if Yj > 0. (15)

From Theorem 1 we have the inequality

PU (U ) ≥ P (Rθ (Y ,X) ⊆ U|X = x) (16)

for each U ∈ R∪ (x), a.e. x ∈ X (see the definition of R∪ (x) in (6)). However, it is straightforward to

see that Y = (0,0) is a PSNE if and only if

U ∈ (−∞,α −X1β)× (−∞,α −X2β) . (17)

and that when this holds, Y = (0,0) is the unique PSNE. This follows by the same reasoning as

in the simultaneous binary outcome model, see for example Bresnahan and Reiss (1991a) and

Tamer (2003). This implies that the conditional moment inequality (16) using U = (−∞,α −X1β)×
(−∞,α −X2β) in fact holds with equality.16 Therefore with β̃ ≡ (α,β′)′, and Zj ≡

(
1,−Xj

)
,

P (Y = (0,0) |X) = F
(
Z1β̃,Z2β̃;λ

)
, (18)

with F (·, ·;λ) defined in (12). Henceforth, we will group W ≡ (Y ,X). The log-likelihood for the

event Y = (0,0) and its complement is then

L (θ1) =
n∑
i=1

` (θ1;wi) , (19)

where ` (θ1;w) ≡ 1[y = (0,0)] ·logF
(
z1β̃, z2β̃;λ

)
+1[y , (0,0)] ·log

(
1−F

(
z1β̃, z2β̃;λ

))
. The following

theorem establishes that under suitable conditions E [` (θ1,W )] is uniquely maximized at the pop-

ulation value for θ1, which we denote θ∗1. Thus θ∗1 is point identified and consistently estimated

by θ̂1, the maximizer of (19), at the parametric rate.

Theorem 2 For each player j ∈ {1,2} let payoffs take the form (10) with β̃ ≡ (α,β′)′ belonging to a

16Indeed, this equality is implied by the set of inequalities that define the identified set S∗ stated in Theorem 1
because those inequalities imply that (16) holds for bothRθ ((0,0),x) and its complement. Since these two sets partition
R
J , each side of the inequalities (16) applied to them sum to one, and thus both inequalities must hold with equality.
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known compact set B ⊆ R
r−1 and U ‖ X. Let Restriction PSNE hold and assume (i) ∀j ∈ {1,2} there

exists no proper linear subspace of the support of Zj ≡
(
1,−Xj

)
that contains Zj wp1, and (ii) for all

conformable column vectors c , 0, either P {Z2c ≤ 0|Z1c < 0} > 0 or P {Z2c ≥ 0|Z1c > 0} > 0. Then:

1. IfU has known CDF F, then β̃∗ is identified. If the CDF ofU is only known to belong to some class
of distribution functions {Fλ : λ ∈ Γ }, then the identified set for θ1 takes the form {(b (λ) ,λ) : λ ∈ Γ ′}
for some function b (·) : Γ → B and some Γ ′ ⊆ Γ .

2. If the CDF of U is restricted to the parametric family F (·, ·;λ) given in (12) for some λ ∈ (−1,1),
then θ∗1 is point identified and uniquely maximizes E [` (θ1,W )]. Moreover,

√
n
(
θ̂1 −θ∗1

) d→N
(
0,H−1

0

)
, where H0 = E

∂`
(
θ∗1;W

)
∂θ1

∂`
(
θ∗1;W

)
∂θ1

′ . (20)

Theorem 2 makes use of two conditions on the variation in X. The first condition is standard,

requiring that for each j, Zj ≡
(
1,−Xj

)
is contained in no proper linear subspace with probability

one. This rules out the possibility that X contains a constant component. The second condition

restricts the joint distribution of Z1 and Z2, requiring that conditional on Zjc < 0 (> 0), Z−jc is

nonpositive (nonnegative) with positive probability. This condition guarantees that for any b , β̃∗

there exists a positive measure set of values for Z such that the indices z1b and z2b are either both
larger than or both smaller than each of z1β̃∗ and z2β̃∗, with at least one of the comparisons holding

strictly. Thus, either F(z1β̃∗, z2β̃∗;λ) > F(z1b,z2b;λ) or F(z1β̃∗, z2β̃∗;λ) < F(z1b,z2b;λ). Condition (ii)

is automatically satisfied under well-known semiparametric large support restrictions, for exam-

ple that Xj has a component Xjk that, conditional on all other components of Xj , has everywhere

positive density on R, with β1k , 0. However, it is a less stringent restriction and does not require

large support. It can accommodate bounded and even discrete covariates.

The theorem establishes point identification of θ1 if the distribution of unobserved hetero-

geneity is known. If instead the model restricts the distribution of unobserved heterogeneity to

a parametric family {Fλ : λ ∈ Γ }, there is for each λ ∈ Γ a unique β = b (λ) that maximizes the

expected log-likelihood for each λ ∈ Γ . Thus, the identified set for θ1 belongs to the set of pairs

(b (λ) ,λ) such that λ ∈ Γ . This can simplify characterization and estimation of the identified set,

since for each λ ∈ Γ there is only one value of β to consider as a member of the identified set.

Thus, for estimation, one need only scan over λ ∈ Γ and compute the corresponding maximum

likelihood estimator for each such value, rather than search over all values of β ∈ B. When Fλ is

restricted to the FGM family, there is in fact point identification of λ∗ and hence also of θ1, which

can be consistently estimated via maximum likelihood using the coarsened outcome 1[Y = (0,0)].

The parameter vector θ2 = (η,∆1,∆2)′ remains in general partially identified.
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5 Inference on the Full Parameter Vector

In order to perform inference on the full parameter vector θ we combine the results of Theorem 2

with conditional moment inequalities of the form (16). Let FY and FX denote the distributions of

Y andX, with supports Y and X , and typical realizations y and x, respectively. LetW ≡ (Y ,X) ∼ P ,

with support W and typical realization denoted w. We assume throughout that each element of

X has either a discrete or absolutely continuous distribution with respect to Lebesgue measure,

and we write X =
(
Xd ,Xc

)
, where Xd denotes the discretely distributed components and Xc the

continuously distributed components. We denote z ≡ dim(Xc).

Our approach will use moment functions mk (Y ,y,x;θ) consisting of indicators over classes of

sets, indexed by y, x and θ:

mk (Y ,y,x;θ) ≡ 1[Rθ (Y ,x) ⊆ Uk (x,y;θ)]− PU (Uk (x,y;θ) ;θ) , (21)

where Rθ(Y ,x) is the rectangle defined in (13). For values of (y,x) we will use those values (yi ,xi)

that are observed in the data. Test sets Uk (xi , yi ;θ) – and hence the corresponding moment in-

equalities – are additionally indexed by both k = 1, ...,K and θ.17 These sets are chosen by the

econometrician. For x ∈ X let ϕk(y,x;θ) ≡ E [mk (Y ,y,x;θ) |X = x]. Our procedure is based on the

implication of our model that ϕk(Y ,X;θ) ≤ 0 almost surely. Since our approach replaces ϕk with

a nonparametric estimator, we construct a statistic that tests whether this inequality is satisfied

over a subset of X where our nonparametric estimators have desirable properties uniformly. We

describe this next.

5.1 Specifying an inference range

Let X ∗ be a pre-specified set such that the projection of X ∗ onto X c (the support of Xc) is contained

in the interior of the projection of X onto X c. The set X ∗ will be our “inference range”. It will

ensure that our nonparametric estimators have the necessary uniform asymptotic properties. In

principle we could allow X ∗ to depend on n and approach X at an appropriate rate as n→∞. For

the sake of brevity, rather than formalize this argument, we presume fixed X ∗.

5.2 A statistic to test our model’s inequalities

Let ω : X →R+ be a “trimming function”, chosen by the econometrician, which is strictly positive

over X ∗ and zero everywhere else. The trimming function is bounded above by some constant

ω <∞. For a given w ≡ (y,x), define Tk (w;θ) ≡ ϕk(y,x;θ) ·ω(x) · fX (x), where fX (·) is the density

17The number of inequalities used can also be allowed to vary with (yi ,xi ). In this case we could write K (yi ,xi ) for
the number of conditional moment inequalities for (yi ,xi ) and set mk (Y ,yi ,xi ;θ) = 0 for each i,k with K (yi ,xi ) < k ≤
K ≡maxi K (yi ,xi ).
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of x. LetW ∗ be the restriction ofW (the joint support of (Y ,X)) such that Xc ∈ X ∗. Note that, by

design, for a.e w ∈W ∗, Tk(w;θ) ≤ 0 if and only if ϕk(y,x;θ) ≤ 0. Our population statistic is

R (θ) ≡ E

ω(X) ·
K∑
k=1

(Tk (W ;θ))+

 , (22)

where (·)+ ≡max {·,0}, and the expectation is taken with respect to the distribution ofW . The func-

tion R (θ) is nonnegative, and positive only for θ that violate the conditional moment inequality

ϕk(y,x;θ) ≤ 0 with positive probability over our inference range for some k = 1, ...,K .

We employ an estimator for R (θ) that uses a kernel estimator for each Tk (W ;θ), k = 1, ...,K ,

denoted T̂k (w;θ). For kernel-weighting we define

K (xi − x;hn) ≡Kc

(
xci − x

c

hn

)
· 1

[
xdi = xd

]
,

where Kc : Rz→R and hn↘ 0 are a kernel function and bandwidth sequence that obey Restriction

I2 below. The estimators T̂k (wi ;θ) are then defined by

T̂k (w;θ) ≡ 1
nhzn

n∑
i=1

mk (yi , y,x;θ) ·ω(xi) ·K (xi − x;hn) . (23)

An advantage of using density-weighted conditional moments is that it enables the use of sample

averages without having to use density estimators in the denominator. The trimming function ω

and the properties of the inference range X ∗ help us to avoid “boundary bias” issues for Xc.18 To

establish desirable properties for these estimators we impose in Restriction I1 that the functional

Tk (w;θ) be sufficiently smooth in the continuous components of x. Restriction I2 contains our

formal requirements for the kernel function and bandwidth sequences.

Restriction I1 (Smoothness): For some M ≥ 2z + 1, ω(x), fX (x), and ϕk(y,x;θ) are almost surely

M-times continuously differentiable with respect to xc, with bounded derivatives, uniformly in

(y,x,θ) ∈ Y ×X ∗ ×Θ, and fX is bounded above by some constant f <∞. �

Our test statistic replaces the function (ψ)+ ≡ ψ · 1[ψ ≥ 0] with ψ · 1[ψ ≥ −bn] for an appropri-

ately chosen sequence bn↘ 0. The estimator is thus of the form

R̂ (θ) ≡ 1
n

n∑
i=1

ω(xi) ·

 K∑
k=1

T̂k (wi ;θ) · 1
[
T̂k (wi ;θ) ≥ −bn

] .

We next describe the conditions imposed on the kernel function and tuning parameters.

Restriction I2 (Kernels and bandwidths): Kc is a bias-reducing kernel of order M that is symmet-

18Alternatively we could employ boundary kernels. For simplicity we focus on the use of a fixed inference range
assumed to be bounded away from the boundary of the support of Xc.
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ric around zero, with bounded support, exhibits bounded variation, and satisfies supv∈Rz |K (v)| ≤
K < ∞. For some ε > 0, the positive bandwidth sequences bn and hn satisfy n1/2−εhznbn → ∞,

h−zn bnn
ε→ 0, and n1/2+εb2

n→ 0, where M is large enough such that n1/2+εhMn → 0, as n→∞. �

Consider bandwidths of the form hn = Ca · n−αa and bn = Cb · n−αb . If αa = 4z+1
8z·(2z+1) and αb =

8z+5
16·(2z+1) , Restriction I2 is satisfied forM = 2z+1 and any ε < 1/(8·(2z+1)). Alternative methods for

bias reduction, such as the type of bandwidth-jacknife procedure studied in Honoré and Powell

(2005, Section 3.3), could potentially be employed instead of higher order kernels, but we focus

on the latter approach here.

5.2.1 Asymptotic properties of R̂(θ)R̂(θ)R̂(θ)

The limiting distribution of our statistic, like others in the literature, is driven by values of ob-

servable variables for which moment inequalities are satisfied with equality, i.e. the contact set

{w ∈ W ∗ : ∃k ∈ {1, ...,K} s.t. Tk (w;θ) = 0}. Several papers have proposed methods to explicitly de-

tect the set of inequalities that are close to binding for the purpose of calibrating critical values.

These include generalized moment selection as developed by Andrews and Soares (2010) and An-

drews and Shi (2013), adaptive inequality selection as in Chernozhukov, Lee, and Rosen (2013),

the refined moment selection procedure developed by Chetverikov (2017), and the use of contact

set estimators proposed by Lee, Song, and Whang (2018). All of these procedures use tuning pa-

rameters. In this paper the sequence bn is used to ensure that the sample criterion R̂ (θ) adapts

automatically to the contact set, bypassing the need to estimate it explicitly or employ moment

selection for computing critical values. To this end we introduce the following restriction.

Restriction I3 (VC classes of sets): The following are VC classes of sets (see Pakes and Pol-

lard (1989, Definition (2.2)), Kosorok (2008, Section 9.1.1)) for each k = 1, . . . ,K : D1,k ≡ {y ∈
Y : Rθ(y,x) ⊆ Uk(x,v;θ) for some (v,x) ∈ W , θ ∈ Θ}, D2,k ≡ {Uk(x,y;θ) for some (y,x) ∈ W , θ ∈ Θ},
and D3,k ≡ {w ∈W : Tk(w;θ) < c for some θ ∈Θ, c ∈R}. �
There are several known criteria that suffice for a class of sets to have the VC property (see, e.g,

Pollard (1984, Section II.4), Dudley (1984, Section 9), Kosorok (2008, Section 9.1.1)). In particular,

the class of sets of the form Uk(x,y;θ) that comprise D2,k is a collection of rectangles in Euclidean

space, which is shown to be a VC class of sets in Pollard (1984, Section II.4). The previously

described core-determining sets are unions of such sets. The class of sets D3,k involves functionals

of the conditional distribution of Y given X as well as the marginal distribution of X. The VC

property described in Restriction I3 should be viewed as a restriction on the family of distributions

in addition to the smoothness conditions described in Restriction I1.

Using properties of VC classes of sets (e.g, Pakes and Pollard (1989, Lemma 2.5)), the following

are also VC classes of sets by Restriction I3, D4,k ≡ {w ∈ W : Tk(w;θ) ≥ c for some θ ∈Θ, c ∈R},
D5,k ≡ {w ∈ W : c1 ≤ Tk(w;θ) < c2 for some θ ∈Θ, c1 < c2 in R}. Restriction I3 provides sufficient

conditions for the classes of functions that produce the relevant empirical process in our problem
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to be Euclidean (as defined in Nolan and Pollard (1987, Definition 8) and Pakes and Pollard (1989,

Definition 2.7)). The Euclidean property will suffice for these empirical processes to be manageable
(as defined in Pollard (1990, Definition 7.9)) and will allow us to use the maximal inequality

results in Sherman (1994) in our analysis of the asymptotic properties of R̂(θ). Let

R̃ (θ) ≡ 1
n

n∑
i=1

ω(xi)

 K∑
k=1

T̂k (wi ;θ) · 1 {Tk (wi ;θ) ≥ 0}

 , (24)

which is equivalent to R̂ (θ) but for the replacement of 1
[
T̂k (wi ;θ) ≥ −bn

]
with 1[Tk (wi ,θ) ≥ 0].

Next, let ξk,n(θ) = 1
n

∑n
i=1ω(xi) ·

∣∣∣T̂k (wi ;θ)
∣∣∣ · ∣∣∣1[T̂k (wi ;θ) ≥ −bn]− 1[Tk (wi ;θ) ≥ 0]

∣∣∣, and note that∣∣∣R̃ (θ)− R̂ (θ)
∣∣∣ ≤ ∣∣∣ξk,n(θ)

∣∣∣. Using maximal inequality results in Sherman (1994), in the Econometric

Supplement we first show that under Restrictions I1-I3,

ξk,n(θ) ≤
(
2bn +Op

(
1

n1/2 · hzn

))
× 1
n

n∑
i=1

ω(xi) · 1
[
−2bn ≤ Tk (wi ;θ) < 0

]
+ op(n−1/2−∆) ∀ ∆ > 0,

As we can see, the probability of the event −2bn ≤ Tk (W ;θ) < 0 plays a key role. This probability

should go to zero as bn↘ 0. The following condition determines this.

Restriction I4 (Behavior of Tk (W ;θ) at zero from below): There are constants b > 0 and A < ∞
such that, for all 0 < b ≤ b and each k = 1, ...,K :

sup
θ∈Θ

E
[
ω(X) · 1[−b ≤ Tk (W ;θ) < 0]

]
≤ bA. �

Restriction I4 is a mild requirement. It suffices for example that, for each θ ∈ Θ and conditional

onW ∈W ∗, the density of Tk (W,θ) be bounded by some finite A in the range 0 > Tk (W ;θ) ≥ −b for

some fixed but arbitrarily small b > 0. This allows for P (Tk (W ;θ) = 0) > 0, and for the distribution

of Tk (W ;θ) to have other mass points. Figure 1 provides three illustrations to further clarify which

types of discontinuities in the distribution of Tk (W,θ) are permitted. From here, using Sherman

(1994, Main Corollary), we show in the Econometric Supplement that Restrictions I1-I4 yield

supθ
∣∣∣1
n

∑n
i=1 1 {−2bn ≤ Tk (wi ,θ) < 0}

∣∣∣ = Op(bn), and consequently that sup
θ

∣∣∣ξk,n(θ)
∣∣∣ = op(n−1/2−ε),

where ε > 0 is as described in Restriction I2. From here we obtain the following Lemma.

Lemma 2 Let Restrictions I1-I4 hold. Then, supθ∈Θ
∣∣∣R̃ (θ)− R̂ (θ)

∣∣∣ = op(n−1/2−ε), where ε > 0 is as
described in Restriction I2.

The proof of Lemma 2 and all the auxiliary results can be found in the Econometric Supplement.
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5.2.2 An asymptotic linear representation result for R̂(θ)R̂(θ)R̂(θ)

Let

vk (w`,wi ;θ,h) ≡ω(xi) ·ω(x`) ·mk (y`, yi ,xi ;θ) ·K (xi − x`;h) · 1[Tk (wi ,θ) ≥ 0] . (25)

From Lemma 2 and equation (23), we have

R̂(θ) =
1

n2 · hzn

n∑
i=1

n∑
`=1

vk (w`,wi ;θ,hn) +ϑn(θ), (26)

where sup
θ∈Θ
|ϑn(θ)| = op(n−1/2−ε). The first term in (26) is a U-process of order 2. Under Restric-

tions I1-I4 a linear representation for R̂ (θ) − R (θ) follows from (26) if we employ a Hoeffding

projection (see Serfling (1980, pages 177-178) or Sherman (1994, equations (6)-(7))) and the re-

sults from Sherman (1994). The expressions for the Hoeffding projection and the resulting linear

representation can be simplified if we add the following smoothness condition.

Restriction I5 For all w ∈ W ∗ and θ ∈ Θ let λ2k(w;θ) ≡ E [mk(Y ,y,x;θ) · 1[Tk(W ;θ) ≥ 0] |X = x] be

M-times continuously differentiable with respect to xc almost surely, with bounded derivatives,

where M is as described in Restriction I1. �

Theorem 3 Let
gk(wi ;θ) ≡ω(xi) · (Tk(wi ;θ))+ +ω(xi)

2 ·λ2k(wi ;θ) · fX(xi),

ψR (wi ;θ) ≡
K∑
k=1

(
gk(wi ;θ)−E [gk(W ;θ)]

)
Let Restrictions I1-I5 hold. Then,

R̂ (θ) = R (θ) +
1
n

n∑
i=1

ψR (wi ;θ) + εn (θ) , where sup
θ∈Θ

|εn (θ)| = op
(
n−1/2−ε

)
,

where ε > 0 is described in Restriction I2.

The proof of Theorem 3 can be found in the Econometric Supplement. It follows from the Ho-

effding projection of the U-process in (26), results from Sherman (1994), and the smoothness

conditions in Restriction I5.

5.2.3 Contact sets and the asymptotic properties of R̂ (θ)R̂ (θ)R̂ (θ)

Let ΘI denote the set of parameter values that satisfy our inequalities w.p.1 over our inference

range:

ΘI ≡
{
θ ∈Θ : P [Tk(W ;θ) ≤ 0] = 1 for k = 1, . . . ,K

}
.
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For any θ ∈ Θ we define here the contact set as {w ∈W ∗: Tk(w;θ) ≥ 0 for some k = 1, . . . ,K}. Note

that if θ ∈ ΘI , the contact set is {w ∈W ∗: Tk(w;θ) = 0 for some k = 1, . . . ,K}. Partition ΘI into two

subsets depending on the (probability) measure of the contact sets. Let

Θ
I ≡

{
θ ∈ΘI : P (Tk(W ;θ) = 0) > 0 for some k = 1, . . . ,K

}
,

ΘI
0 ≡

{
θ ∈ΘI : P [Tk(W ;θ) < 0] = 1 for each k = 1, . . . ,K

}
.

(27)

The set Θ
I

contains all elements of ΘI whose contact sets have positive measure, while ΘI
0 contains

those for which the contact set has measure zero. By construction, ΘI = Θ
I ∪ΘI

0. Consider the

influence function ψR defined in Theorem 3 and let σ2
R(θ) ≡ V ar (ψR(W ;θ)). Inspection of ψR(·;θ)

shows (i) ∀θ ∈ Θ: E [ψR(W ;θ)] = 0, (ii) ∀θ ∈ ΘI
0: ψR(W ;θ) = 0 wp1 and therefore σ2

R(θ) = 0 , and

(iii) ∀θ <ΘI
0: σ2

R(θ) > 0. Thus, from Theorem 3,

(A) θ <ΘI =⇒ R(θ) > 0, σ2
R(θ) > 0 =⇒ n1/2 · R̂(θ)

p
−→ +∞,

(B) θ ∈ΘI
=⇒ R(θ) = 0, σ2

R(θ) > 0 =⇒ n1/2 · R̂(θ)
d−→N

(
0,σ2

R(θ)
)
,

(C) θ ∈ΘI
0 =⇒ R(θ) = 0, σ2

R(θ) = 0 =⇒ n1/2 · R̂(θ)
p
−→ 0 .

(28)

The asymptotic behavior of R̂(θ) automatically adapts to the measure of the contact sets.

5.2.4 The role played by the tuning parameter bnbnbn

Our use of bn leads to Lemma 2 and (26). To illustrate this, suppose we drop bn and use instead

R̈ (θ) ≡ 1
n

n∑
i=1

ω(xi) ·

 K∑
k=1

T̂k (wi ;θ) · 1
[
T̂k (wi ,θ) ≥ 0

] =
1
n

n∑
i=1

ω(xi) ·
K∑
k=1

(
T̂k (wi ,θ)

)
+

This estimator for R(θ) directly replaces (Tk (wi ,θ))+ with (T̂k (wi ,θ))+. Note that,

1[T̂k (wi ,θ) ≥ 0] , 1[Tk (wi ,θ) ≥ 0] ⇐⇒

(A) T̂k (wi ,θ) ≥ 0 and Tk (wi ,θ) < 0, or

(B) T̂k (wi ,θ) < 0 and Tk (wi ,θ) ≥ 0

With the use of the sequence bn, the relevant event is 1[T̂k (wi ,θ) ≥ −bn] , 1[Tk (wi ,θ) ≥ 0], and

1[T̂k (wi ,θ) ≥ −bn] , 1[Tk (wi ,θ) ≥ 0] ⇐⇒

(C) T̂k (wi ,θ) ≥ −bn and Tk (wi ,θ) < 0, or

(D) T̂k (wi ,θ) < −bn and Tk (wi ,θ) ≥ 0

Under the assumptions leading to Lemma 2, the probabilities of the events (C) and (D) vanish at

the appropriate rate. The same type of assumptions would also take care of the probability of the
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event (A). However, since Tk (wi ,θ) is allowed to have a point-mass at zero, the probability of the
event (B) does not necessarily vanish. Consequently, the analogous result to (26) is:

R̈(θ) =
1
n

n∑
i=1

ω(xi) · T̂k (wi ;θ) · 1
[
Tk (wi ,θ) ≥ 0, T̂k (wi ,θ) ≥ 0

]
+ ςn(θ),

where sup
θ∈Θ
|ςn(θ)| = op(n−1/2) . Thus, if we employ R̈(θ) we must study the asymptotic properties

of 1[Tk (wi ,θ) ≥ 0, T̂k (wi ,θ) ≥ 0]. This is a more complicated problem that generally requires

direct estimation of contact sets (see Lee, Song, and Whang (2018)) in a first step, which also

requires the use of tuning parameters. Our statistic uses bn directly in its construction in order to

asymptotically adapt to the measure of the contact set for each θ without an explicit first step.

5.3 Constructing an inferential statistic for θθθ

We combine the linear representation for R̂ (θ) given by Theorem 3 with the linear representation

of the ML estimator described in Theorem 2 for θ1. Recall from the parametric assumptions in

Section 4.2 that F(u1,u2;λ) ≡ G(u1) ·G(u2) · [1 +λ(1−G(u1))(1−G(u2))] is the assumed joint CDF

of (U1,U2), with G(u) ≡ exp(u)/(1 + exp(u)). There, we denoted α ≡ η − δ, β̃ ≡ (α,β′)′, θ1 ≡ (β̃′ ,λ)′

and Zj ≡ (1,−Xj ) for j = 1,2. Denote r ≡ dim(θ1).

In (18) we showed that under the PSNE restriction, P (Y = (0,0) |X) = F
(
Z1β̃,Z2β̃;λ

)
. Denote

Θ∗ ≡
{
θ ∈Θ: θ ∈ΘI ∧ P (Y = (0,0) |X) = F

(
Z1β̃,Z2β̃;λ

)}
. (29)

as the set of parameter values satisfying the likelihood equation for the event Y = (0,0) together

with the conditional moment inequalities that define ΘI . Our goal is to perform inference on

values of θ ∈ Θ∗. Recall from Theorem 2 that θ∗1, is point-identified and uniquely maximizes

E [`(θ1;W )].19 We proposed to consistently estimate θ∗1 by the ML estimator θ̂1 ≡ (̂β̃
′
, λ̂)′, whose

asymptotic properties were described in Theorem 2. Let

ψM(wi) ≡ −
(
E

[
∂2`(θ∗1,W )
∂θ1∂θ

′
1

])−1

×
∂`(θ∗1,wi)
∂θ1

.

From Theorem 2, we have E [ψM(W )] = 0, V ar [ψM(W )] = E
[
∂`(θ∗1,W )
∂θ1

· ∂`(θ
∗
1,W )

∂θ1

′]−1
≡ H−1

0 and θ̂1 =

θ∗1 + 1
n

∑n
i=1ψM(wi) + εMn , where ‖εMn ‖ = op

(
n−1/2

)
. We estimate the influence function ψM with

ψ̂M(wi) ≡ Ĥ−1
0 ·

∂`(θ̂1,wi )
∂θ1

, where Ĥ0 ≡ −1
n

∑n
i=1

(
∂2`(θ̂1,wi )
∂θ1∂θ

′
1

)
. Our first step will be to impose restrictions

that produce precise asymptotic properties for ψ̂M . DenoteH(t1, t2;λ) ≡ F(t1, t2;λ) ·(1−F(t1, t2;λ)),

19The remaining parameter subvector in θ is θ2 ≡ (η,∆1,∆2), which is restricted only by the conditional moment
inequalities described previously.
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and let φ1(t1, t2;λ) ≡ ∂F(t1,t2;λ)
∂t1

·H(t1, t2;λ)−1, φ2(t1, t2;λ) ≡ ∂F(t1,t2;λ)
∂t2

·H(t1, t2;λ)−1, and φ3(t1, t2;λ) ≡
∂F(t1,t2;λ)

∂λ ·H(t1, t2;λ)−1. We have

∂`(θ1;w)
∂θ1

=


(
z1 ·φ1(z1β̃, z2β̃;λ) + z2 ·φ2(z1β̃, z2β̃;λ)

)
·
(
1[y = (0,0)]−F(z1β̃, z2β̃;λ)

)
φ3(z1β̃, z2β̃;λ) ·

(
1[y = (0,0)]−F(z1β̃, z2β̃;λ)

) 
Restriction I6 There exists a D(w) ≥ 0 such that E [‖Z1‖q · ‖Z2‖r ·D(W )] < ∞ for all q,r ∈ N ∪
{0} : 0 ≤ q+ r ≤ 3, and a neighborhoodN that contains θ∗1 such that the following conditions hold.

(i) There exists a d > 0 such that,
∣∣∣∣∣det

(
E
[
∂2`(θ1,W )
∂θ1∂θ

′
1

])∣∣∣∣∣ ≥ d for all θ1 ∈ N .

(ii) Let δ`,m(y, t1, t2;λ) ≡ ∂φ`(t1,t2;λ)
∂tm

·
(
1[y = (0,0)] − F(t1, t2;λ)

)
−φ`(t1, t2;λ)∂F(t1,t2;λ)

∂tm
. For (`,m) ∈

{1,2} × {1,2} and j = 1,2, we have
∥∥∥δ`,m(Y ,Z1β̃,Z2β̃;λ)

∥∥∥ ≤ D(W ),
∥∥∥∥∥∂δ`,m(Y ,Z1β̃,Z2β̃;λ)

∂tj

∥∥∥∥∥ ≤ D(W )

and
∥∥∥∥∥∂δ`,m(Y ,Z1β̃,Z2β̃;λ)

∂λ

∥∥∥∥∥ ≤D(W ) for all θ1 ∈ N . Every element of
[
(Z`Z ′m) · δ`,m(Y ,Z1β̃

∗,Z2β̃
∗;λ)

]
has finite variance.

(iii) Let η`(y, t1, t2;λ) ≡ ∂φ`(t1,t2;λ)
∂λ ·

(
1[y = (0,0)]−F(t1, t2;λ)

)
−φ`(t1, t2;λ)∂F(t1,t2;λ)

∂λ . For ` ∈ {1,2} and

j = 1,2, we have
∥∥∥η`(Y ,Z1β̃,Z2β̃;λ)

∥∥∥ ≤D(W ),
∥∥∥∥∂η`(Y ,Z1β̃,Z2β̃;λ)

∂tj

∥∥∥∥ ≤D(W ) and
∥∥∥∥∂η`(Y ,Z1β̃,Z2β̃;λ)

∂λ

∥∥∥∥ ≤
D(W ) for all θ1 ∈ N . Every element of

[
Z` · η`(Y ,Z1β̃

∗,Z2β̃
∗;λ)

]
has finite variance.

(iv) Let Υ (y, t1, t2;λ) ≡ ∂φ3(t1,t2;λ)
∂λ ·

(
1[y = (0,0)]−F(t1, t2;λ)

)
−φ3(t1, t2;λ)∂F(t1,t2;λ)

∂λ . For j ∈ {1,2}, we

have
∣∣∣Υ (Y ,Z1β̃,Z2β̃;λ)

∣∣∣ ≤ D(W ),
∥∥∥∥∂Υ (Y ,Z1β̃,Z2β̃;λ)

∂tj

∥∥∥∥ ≤ D(W ) and
∥∥∥∥∂Υ (Y ,Z1β̃,Z2β̃;λ)

∂λ

∥∥∥∥ ≤ D(W ) for

all θ1 ∈ N . Every element of
[
Z` ·Υ (Y ,Z1β̃

∗,Z2β̃
∗;λ)

]
has finite variance . �

Assuming that X is bounded would suffice for all the conditions in Restriction I6 to hold for a

constant envelope D, but it is not necessary. Combined with Theorem 2, Restriction I6 yields the

result, θ̂1 = θ∗1 + 1
n

∑n
i=1ψM(wi) + εMn , where

∥∥∥εMn ∥∥∥ =Op
(

1
n

)
.

Thus, Restriction I6 refines the linear representation from Theorem 2 by establishing that∥∥∥εMn ∥∥∥ = Op
(

1
n

)
. Restriction I6 also ensures

∥∥∥Ĥ−1
0 −H

−1
0

∥∥∥ = Op(n−1/2) and yields precise asymptotic

properties for ψ̂M which will be relevant below. Combining the asymptotic linear representation

of θ̂1 with Theorem 3, we have that for any θ ∈Θ,

V̂ (θ)︸︷︷︸
(r+1)×1

≡ n1/2

θ̂1 −θ1

R̂ (θ)

 = n1/2

θ∗1 −θ1

R (θ)

+

 1√
n

∑n
i=1ψM (wi)

1√
n

∑n
i=1ψR (wi ;θ)

+

 ξMn
ξRn (θ)

 ,

where
∥∥∥ξMn ∥∥∥ =Op(n−1/2), and sup

θ∈Θ

∣∣∣ξRn (θ)
∣∣∣ = op(n−ε),

(30)
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where ε > 0 is as described in Restriction I2. Let ΣMR(θ) ≡ E [ψM(W )ψR(W ;θ)]. We have

V ar

 ψM(W )

ψR(W ;θ)

 =

 H−1
0 ΣMR(θ)

ΣMR(θ)′ σ2
R(θ)

 ≡ Σ(θ).

Our estimator for influence function ψR defined in Theorem 3 is

ψ̂R(wi ;θ) ≡
K∑
k=1

(
ĝk(wi ;θ)− Ê[gk(W ;θ)]

)
,

where for any w ∈W :

ĝk(w;θ) =
1
n

n∑
j=1

ṽk(w,wj ;θ,hn)

hzn
, and Ê[gk(W ;θ)] =

(
n
2

)−1 ∑
i<j

ṽk(wi ,wj ;θ,hn)

hzn
,

with ṽk(w1,w2;θ,h) ≡ vk (w1,w2;θ,h) + vk (w2,w1;θ,h), with vk as defined in (25). We estimate

Σ̂MR (θ) ≡ 1
n

∑n
i=1 ψ̂M (wi) ψ̂R (wi ;θ) and σ̂2

R(θ) ≡ 1
n

∑n
i=1 ψ̂R(wi ;θ)2. In Section 3.1 of the Economet-

ric Supplement we show that under the conditions of Theorems 2 and 3, and Restriction I6:

sup
θ∈Θ

∥∥∥Σ̂MR(θ)−ΣMR(θ)
∥∥∥ =Op

(
1

n1/2 · hzn

)
, sup

θ∈Θ

∣∣∣σ̂2
R(θ)− σ2

R(θ)
∣∣∣ =Op

(
1

n1/2 · hzn

)
. (31)

Now partition Θ∗ into two subsets, Θ
∗ ≡ Θ∗ ∪ Θ

I
and Θ∗0 ≡ Θ∗ ∪ ΘI

0. The set Θ
∗

contains all

the elements in Θ∗ for which the contact sets have positive measure, while Θ∗0 contains those

for which the contact sets have measure zero. Note that ψR(W ;θ) = 0 w.p.1 for all θ ∈ Θ∗0,

and therefore ΣMR(θ) = 0 and σ2
R(θ) = 0 for all θ ∈ Θ∗0. Thus, using V̂ (θ) to construct a Wald-

type statistic with pivotal asymptotic properties requires some form of regularization for our

estimator of Σ(θ). The fact that R̂(θ) is a scalar facilitates this. Our proposal is to replace

σ̂2
R(θ) with Σ̂R (θ) ≡ max

{
σ̂2
R(θ), κn

}
, where κn ↘ 0 is a decreasing sequence of nonnegative con-

stants satisfying Restriction I7 below. Note from (31) that, under the conditions in Theorem 3,

sup
θ∈Θ

∣∣∣Σ̂R (θ)− σ2
R(θ)

∣∣∣ = op(1). Our proposal is to do inference on θ based on the statistic

Q̂(θ) ≡ V̂ (θ)′Σ̂(θ)−1V̂ (θ), where Σ̂(θ) =

 Ĥ−1
0 Σ̂MR(θ)

Σ̂MR(θ)′ Σ̂R (θ)

 (32)

We construct a confidence set (CS) for θ based on the properties of Q̂ under the conditions in

Theorems 2 and 3 as well as the following additional restriction.

Restriction I7
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(i) The sequence κn↘ 0 satisfies n1/2 ·hzn ·κn −→∞ and n2ε ·κn −→∞ as n −→∞, where ε > 0 is

as described in Restriction I2.

(ii) E[‖ψM(W )‖3] <∞ and σR(θ) ≥ σ > 0 for all θ ∈Θ\ΘI
0. For each θ ∈Θ\ΘI

0 defineψMR(W ;θ) ≡
−ΣMR(θ)′H0ψM(W ) +ψR(W ;θ), and let σ2

MR(θ) ≡ V ar (ψMR(W ;θ)). Note that

σ2
MR(θ) = σ2

R(θ)−ΣMR(θ)′H0ΣMR(θ) = σ2
R(θ)×

(
1−

(
ΣMR(θ)
σR(θ)

)′
H0

(
ΣMR(θ)
σR(θ)

))

We assume that
(
ΣMR(θ)
σR(θ)

)′
H0

(
ΣMR(θ)
σR(θ)

)
≤ d < 1 for all θ ∈ Θ \ΘI

0. Note that this implies that

σ2
MR(θ) ≥ σ2(1 − d) > 0 for all θ ∈ Θ \ΘI

0. Finally, we assume that σR(θ) and ΣMR(θ) are

continuous everywhere on Θ \ΘI
0. �

The conditions in Restriction I7(ii) are aimed at satisfying multivariate Berry-Esseen bounds

(see, e.g, Götze (1991) or Raic̆ (2019)). Suppose U1, . . . ,Un are i.i.d random vectors in R` such

that E[Ui] = 0 and V ar(Ui) = I` (the ` × ` identity matrix) Suppose E
[
‖Ui‖3

]
< ∞, and let Wn ≡

1√
n

∑n
i=1Ui . Note that V ar(Wn) = I`. Let Φ` denote the standard Gaussian distribution in R` and

for any measurable set A ⊆ R`, let Φ`(A) ≡ P (Z ∈ A), where Z ∼ Φ`. Theorem 1.1 in Raic̆ (2019)

states that, for all measurable convex sets A ⊆ R`, we have
∣∣∣P (Wn ∈ A) −Φ`(A)

∣∣∣ ≤ (
42 · `1/4 + 16

)
·

1√
n
·E

[
‖Ui‖3

]
. Note that the bound does not depend on A. For any c > 0 let Ac ≡ {z: z′z ≤ c}. Note

that Ac is convex and that Φ`(Ac) = Fχ2
`
(c), where Fχ2

`
is the χ2

` cdf. It follows that
∣∣∣P (W ′nWn ≤ c)−

Fχ2
`
(c)

∣∣∣ ≤ (
42 · `1/4 + 16

)
· 1√

n
·E

[
‖Ui‖3

]
∀ c > 0, and therefore, sup

c>0

∣∣∣∣P (W ′nWn ≤ c)−Fχ2
`
(c)

∣∣∣∣→ 0.

Berry-Esseen bounds will be relevant in our case for two processes. Let M be an invertible

matrix such that H−1
0 = MM ′. Since H−1

0 is a positive-definite variance matrix, such M exists, see

e.g, in Lehmann (1999, page 306) or Ruud (2000, Lemma 7.6). Let ψM(W ) ≡ M−1ψM(W ) and

note that E[ψ(W )] = 0 and V ar(ψ(W )) = Ir . The first process is described as follows. Let Sn ≡
1√
n

∑n
i=1ψM(wi) and note that E[Sn] = 0 and V ar(Sn) = Ir . Restriction I7 implies E[‖ψM(W )‖3] <∞.

From here, the multivariate Berry-Esseen bounds in Raic̆ (2019, Theorem 1.1) yields

∀ c > 0
∣∣∣P (S ′nSn ≤ c)−Fχ2

r
(c)

∣∣∣ ≤ (
42 · r1/4 + 16

)
· 1
√
n
·E

[∥∥∥ψM(W )
∥∥∥3

]
. (33)

The second relevant process is the following. For each θ ∈Θ \ΘI
0, let ψMR(W ;θ) and σ2

MR(θ) be as

described in Restriction I7 and let ψMR(W ;θ) ≡ ψMR(W ;θ)
σMR(θ) and ψ(W ;θ) ≡

(
ψM(W )′ ψMR(W ;θ)

)′
,

and let Tn(θ) ≡ 1√
n

∑n
i=1ψM(wi). Note that E[Tn(θ)] = 0 and V ar(Tn(θ)) = Ir+1 for all θ ∈ Θ \ΘI

0.

Furthermore, we have

Tn(θ)′Tn(θ) =

 1√
n

∑n
i=1ψM (wi)

1√
n

∑n
i=1ψR (wi ;θ)


′

Σ−1(θ)

 1√
n

∑n
i=1ψM (wi)

1√
n

∑n
i=1ψR (wi ;θ)
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for each θ ∈ Θ \ΘI
0. By Restriction I7, there exists a D3 < ∞ such that E[

∥∥∥ψ(W ;θ)
∥∥∥3

] ≤ D3 for

all θ ∈ Θ \ΘI
0. Thus the the conditions for the multivariate Berry-Esseen bounds in Raic̆ (2019,

Theorem 1.1) apply and we obtain

∀ θ ∈Θ \ΘI
0, c > 0

∣∣∣∣P (Tn(θ)′Tn(θ) ≤ c)−Fχ2
r+1

(c)
∣∣∣∣ ≤ (

42(r + 1)1/4 + 16
)
· 1
√
n
·D3. (34)

Let σ̂2
MR(θ) ≡ Σ̂R(θ)− Σ̂MR(θ)′Ĥ0Σ̂MR(θ). Using partitioned-matrix inverse properties, we have

Σ̂(θ)−1 =

Ĥ0 + Ĥ0Σ̂MR(θ)Σ̂MR(θ)′Ĥ0

σ̂2
MR(θ)

−Ĥ0Σ̂MR(θ)
σ̂2
MR(θ)

−Σ̂MR(θ)′Ĥ0

σ̂2
MR(θ)

1
σ̂2
MR(θ)


5.3.1 Asymptotic properties of Q̂(θ)Q̂(θ)Q̂(θ) over Θ∗0Θ∗0Θ∗0

The set Θ∗0 includes all parameter values in Θ∗ for which the contact sets have measure zero. This

is where our regularization becomes relevant. Recall that ΣMR(θ) = 0 for all θ ∈ΘI
0, and therefore

sup
θ∈ΘI

0

∥∥∥Σ̂MR(θ)
∥∥∥ =Op

(
1

n1/2·hzn

)
from (31). Next, note that Σ̂R(θ) ≥ κn for all θ. Therefore,

sup
θ∈ΘI

0

∥∥∥∥∥∥ Σ̂MR(θ)

Σ̂R(θ)

∥∥∥∥∥∥ =Op

(
1

n1/2 · hzn ·κn

)
and sup

θ∈ΘI
0

∣∣∣∣∣∣∣
∥∥∥Σ̂MR(θ)

∥∥∥ · ∥∥∥Σ̂MR(θ)
∥∥∥

Σ̂R(θ)

∣∣∣∣∣∣∣ =Op

(
1

n · h2z
n ·κn

)
.

Note that n1/2 ·hzn ·κn→∞ and n ·h2z
n ·κn→∞ by Restrictions I2 and I7. Therefore, for any θ ∈ΘI

0,

Σ̂(θ)−1 =

H0 + ξ11
n (θ) ξ12

n (θ)

ξ12
n (θ)′ ξ22

n (θ),

 , where

sup
θ∈ΘI

0

∥∥∥ξ11
n (θ)

∥∥∥ =Op

(
1

nh2z
n κn

)
, sup

θ∈ΘI
0

∥∥∥ξ12
n (θ)

∥∥∥ =Op

(
1

n1/2hznκn

)
, sup

θ∈ΘI
0

∣∣∣ξ22
n (θ)

∣∣∣ =Op

(
1
κn

) (35)

Next, note from (30), V̂ (θ) =
(

1√
n
ψM(wi)′ + ξMn

′
ξRn (θ)

)′
∀ θ ∈ Θ∗0, where

∥∥∥ξMn ∥∥∥ = Op(n−1/2), and

sup
θ∈Θ

∣∣∣ξRn (θ)
∣∣∣ = op(n−ε), where ε > 0 is as described in Restriction I2. Since Θ∗0 ⊆ ΘI

0, our previous

results combined with (35) yield

∀ θ ∈Θ∗0 Q̂(θ) = S ′nSn + %Qn (θ) , where sup
θ∈Θ∗0

∣∣∣∣%Qn (θ)
∣∣∣∣ = op

(
1

n1/2 · hzn ·κn

)
+ op

(
1

n2ε ·κn

)
= op(1),

(36)

From here, (33) yields sup
θ∈Θ∗0

∣∣∣∣P (
Q̂(θ) ≤ c

)
−Fχ2

r
(c)

∣∣∣∣→ 0.
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Asymptotic properties of Q̂(θ)Q̂(θ)Q̂(θ) over Θ
∗

Θ
∗

Θ
∗

The set Θ
∗

includes all parameter values in Θ∗ for which the contact sets have positive measure.

In this case, the results in Theorems 2 and 3, and Restriction I7 yield

Q̂(θ) = Tn(θ)′Tn(θ) + ξQn (θ) ∀ θ ∈Θ∗, where sup
θ∈Θ\ΘI

0

∣∣∣∣ξQn (θ)
∣∣∣∣ = op(1) (37)

(note that Θ
∗ ⊆Θ \ΘI

0). From here, (34) yields sup
θ∈Θ∗

∣∣∣∣P (
Q̂(θ) ≤ c

)
−Fχ2

r+1
(c)

∣∣∣∣→ 0.

Asymptotic properties of Q̂(θ)Q̂(θ)Q̂(θ) when θ <Θ∗θ <Θ∗θ <Θ∗

There are two relevant cases when θ < Θ∗: (a) θ ∈ ΘI
0 and (b) θ ∈ Θ \ΘI

0. Case (a) corresponds to

all parameter values θ ∈ΘI
0: θ1 , θ

∗
1. In this case (36) is modified to,

Q̂(θ) = n (θ∗1 −θ1)′
(
H0 + ξ11

n (θ)
)
(θ∗1 −θ1) + S ′nSn + %Qn (θ),

where sup
θ∈ΘI

0

∣∣∣ξ11
n (θ)

∣∣∣ = op(1), sup
θ∈ΘI

0

∣∣∣∣%Qn (θ)
∣∣∣∣ = op(1). (38)

Since sup
θ∈ΘI

0

∣∣∣ξ11
n (θ)

∣∣∣ = op(1), we have that wp→ 1, H0 + ξ11
n (θ) is positive definite uniformly over

ΘI
0. Thus, ∀ d , 0, inf

θ∈ΘI
0

d′
(
H0 + ξ11

n (θ)
)
d > 0 wp→ 1. Therefore P

(
Q̂(θ) < c

)
→ 0. Next, take

any sequence θn ∈ ΘI
0 such that n(θn,1 − θ∗1)′H0(θn,1 − θ∗1)→ a > 0. Then limn→∞ P

(
Q̂(θn) < c

)
=

Fχ2
r

(c − a).
Now consider case (b) in which θ ∈ Θ \ΘI

0. This includes all parameter values θ ≡ (θ′1,θ
′
2)′

such that σ2
R(θ) > 0 and either θ1 , θ

∗
1 or R(θ) , 0 (or both). In this case (37) is modified to,

Q̂(θ) = nµ(θ)′
(
Σ(θ)−1 +ϑn(θ)

)
µ(θ) + Tn(θ)′Tn(θ) + ξQn (θ), where µ(θ) ≡

(
(θ1 −θ∗1)′ R(θ)

)′
,

sup
θ∈Θ\ΘI

0

|ϑn(θ)| = op(1), and sup
θ∈Θ\ΘI

0

∣∣∣∣ξQn (θ)
∣∣∣∣ = op(1)

(39)

Since sup
θ∈Θ\ΘI

0

|ϑn(θ)| = op(1), wp→ 1, Σ(θ)−1 + ϑn(θ) is positive-definite uniformly over Θ \ ΘI
0.

Thus, wp→ 1, inf
θ∈Θ\ΘI

0

d′
(
Σ(θ)−1 +ϑn(θ)

)
d > 0 ∀ d , 0, and therefore, for any θ ∈Θ \ΘI

0: µ(θ) , 0,

nµ(θ)′
(
Σ(θ)−1 +ϑn(θ)

)
µ(θ)→∞w.p.1. Thus, for any c > 0, P

(
Q̂(θ) < c

)
→ 0 ∀ θ ∈Θ\ΘI

0: µ(θ) , 0.

Our previous results combined imply, P
(
Q̂(θ) < c

)
→ 0 ∀ θ < Θ∗ for any c > 0. Next, take any

sequence θn and let µ(θn) ≡
((
θn,1 −θ∗1

)′
R(θn)

)′
. If θn is such that

∥∥∥µ(θn)
∥∥∥ ≥ δnn−1/2D for some

fixed D > 0 and some sequence of positive constants δn → ∞, we have P
(
Q̂(θn) < c

)
→ 0. Next,
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take any θn ∈ Θ \ΘI
0 such that n1/2 · µ(θn)′Σ(θn)−1µ(θn) → b > 0. Then, limn→∞ P

(
Q̂(θn) < c

)
=

Fχ2
r+1

(c − b).

5.4 A confidence set (CS) for θθθ

The asymptotic properties of Q̂(θ) facilitate construction of a CS for θ. Let χ2
` (τ) denote the τ th

quantile of the Fχ2
`

distribution. We propose a CS with asymptotic target coverage probability

1−α as

CS1−α =
{
θ ∈Θ: Q̂(θ) < χ2

r+1(1−α)
}
, (40)

The following theorem summarizes the asymptotic properties of our CS, including the power

properties of the associated test for θ < Θ∗. Following the terminology of Lee, Song, and Whang

(2018, Definition 3) we say that the associated test has nontrivial power for a sequence of local

alternatives θna <Θ∗ if limn→∞ P (θna ∈ CS1−α) < 1−α.

Theorem 4 Let Restrictions I1 - I7 hold. Then CS1−α has the following asymptotic properties.

(i) Uniform asymptotic coverage: limn→∞ infθ∈Θ∗ P (θ ∈ CS1−α) ≥ 1−α.

(ii) Consistency of the associated test for θ ∈ Θ∗: ∀ θ < Θ∗ limn→∞ P (θ ∈ CS1−α) = 0. Moreover, let
θna < Θ∗ be a sequence of local alternatives and let µ(θna) ≡

((
θna,1 −θ∗1

)′
R(θna)

)′
. For any

θna such that
∥∥∥µ(θna)

∥∥∥ ≥ δnn−1/2D for some fixed D > 0 and some sequence of positive constants
δn→∞, we have limn→∞ P (θna ∈ CS1−α) = 0.

(iii) Nontrivial local power of the associated test for θ ∈ Θ∗: For any θna < Θ∗ such that θna ∈ Θ \ΘI
0

and n1/2 · µ(θna)′Σ(θna)−1µ(θna)→ b > 0, we have limn→∞ P (θna ∈ CS1−α) < 1−α. For any θna
such that θna ∈ ΘI

0 and n(θna,1 −θ∗1)′H0(θna,1 −θ∗1)→ a > 0, we have limn→∞ P (θna ∈ CS1−α) <

1−α if χ2
r+1(1−α)− a < χ2

r (1−α).

The results in the Theorem follow directly from the asymptotic analysis of Q̂ described previously.

A key result is (31), which is proven in the Econometric Supplement. The Theorem establishes that

the confidence set CS1−α provides correct (≥ 1−α) asymptotic coverage for fixed P uniformly over

θ ∈Θ∗.20 Moreover, the associated test for θ ∈Θ∗ is consistent against all fixed alternatives as well

as all local alternatives θna < Θ∗ for which n1/2‖µ(θna)‖ → ∞. Importantly, it also has nontrivial

power for local alternatives in Θ \ΘI
0 as well as certain local alternatives in ΘI

0. This last result

20It is worth noting that our CS1−α can attain good pointwise asymptotic properties, i.e.

inf
θ∈Θ∗

lim
n→∞

P (θ ∈ CS1−α) ≥ 1−α,

under weaker regularity conditions than those stated here. In particular, with Restrictions I1, I2, I3 maintained we
could replace the remaining restrictions leading to Theorem 3 with any alternative set of assumptions that can produce
the asymptotic linear representation result for R̂(θ) obtained in Theorem 3.
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is important since the asymptotic coverage of CS1−α exceeds 1 − α over ΘI
0. As is the case with

other methods for inference based on conditional moment inequalities. The class of alternatives

covered generally depends on both the set of values for which the conditional moment inequalities

are violated and the properties of µ(θna) and Σ(θna) under the sequence of local alternatives θna.

The adaptive properties of our statistic R̂(θ) to the contact sets helps us avoid the conservative

features of tests based on the least favorable null dgp, which assume that the CMIs are binding

with probability one.

5.4.1 Allowing the measure of the contact sets to become arbitrarily close to zero over Θ \ΘI
0Θ \ΘI
0Θ \ΘI
0

Restriction I7 assumes that σ2
R(θ) (and therefore, the measure of the contact sets) is bounded away

from zero over Θ \ΘI
0.21 We present now a modified version of our procedure that allows for this.

We modify Restriction I7 as follows.

Restriction I7’

(i) Replace the sequence κn↘ 0 with an arbitrarily small but strictly positive constant κ > 0.

(ii) E[‖ψM(W )‖3] <∞. For each θ ∈ Θ \ΘI
0 let ψMR(W ;θ) ≡ −ΣMR(θ)′H0ψM(W ) +ψR(W ;θ) and

let σ2
MR(θ) ≡ V ar (ψMR(W ;θ)). There exists a D3 <∞ such that

E

[∣∣∣∣∣ψMR(W ;θ)
σMR(θ)

∣∣∣∣∣3] ≤D3 ∀ θ ∈Θ \ΘI
0.

Note that σ2
MR(θ) = σ2

R(θ)−ΣMR(θ)′H0ΣMR(θ) = σ2
R(θ)×

(
1−

(
ΣMR(θ)
σR(θ)

)′
H0

(
ΣMR(θ)
σR(θ)

))
. We assume

that
(
ΣMR(θ)
σR(θ)

)′
H0

(
ΣMR(θ)
σR(θ)

)
≤ d < 1 for all θ ∈Θ \ΘI

0. Finally, σR(θ) and ΣMR(θ) are continuous

everywhere over Θ \ΘI
0. �

Restriction I7’ allows σ2
R(θ) (and therefore the measure of the contact sets) to become arbitrarily

close to zero over Θ \ΘI
0 as long as the integrability condition (existence of third moment) de-

scribed in part (ii) is satisfied. This will allow us to invoke the multivariate Berry-Esseen bounds

we used under Restriction I7. We have also replaced the sequence κn↘ 0 with a strictly positive

(arbitrarily small) pre-specified constant κ > 0.

The asymptotic properties of Q̂(θ) over Θ∗0 remain the same as uder Restriction I7. To study

its properties over Θ
∗

we begin by noting that the integrability condition in Restriction I7’ di-

rectly satisfies the conditions needed for (34) and therefore that result is preserved. Next, de-

fine σ2
MR,κ(θ) ≡ max{σ2

R(θ), κ} − ΣMR(θ)′H0ΣMR(θ) = σ2
MR(θ) +

(
max{σ2

R(θ), κ} − σ2
R(θ)

)
. For each

21Recall that, for parameters outside of ΘI , our definition of contact sets includes the range of values of w for which
the CMIs are violated.
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θ ∈Θ \ΘI
0, let

Σκ(θ) ≡
 H−1

0 ΣMR(θ)

ΣMR(θ)′ max{σ2
R(θ) , κ}

 =⇒ Σκ(θ)−1 =

H0 + H0ΣMR(θ)ΣMR(θ)′H0

σ2
MR,κ(θ)

−H0ΣMR(θ)
σ2
MR,κ(θ)

−ΣMR(θ)′H0

σ2
MR,κ(θ)

1
σ2
MR,κ(θ)


From Restriction I7’, we have σ2

MR,κ(θ) ≥ κ · (1 − d) ∀ θ ∈ Θ \ΘI
0,. The conditions in Theorems 2

and 3 and Restriction I7’ yield the following modified version of the asymptotic result in (41),

Q̂(θ) =

 1
√
n

n∑
i=1

ψ(wi ;θ)

′
I 0

0
(
σ2
MR(θ)

σ2
MR,κ(θ)

)
 1
√
n

n∑
i=1

ψ(wi ;θ)

+ ξQκn (θ) ∀ θ ∈Θ \ΘI
0,

where sup
θ∈Θ\ΘI

0

∣∣∣∣ξQκn (θ)
∣∣∣∣ = op(1).

(41)

The integrability condition in Restriction I7 and the multivariate Berry-Esseen bounds in Raic̆

(2019, Theorem 1.1) imply that, ∃M <∞ such that, for all c > 0, and for all θ ∈Θ \ΘI
0,∣∣∣∣∣∣∣∣P


 1
√
n

n∑
i=1

ψ(wi ;θ)

′
I 0

0
(
σ2
MR(θ)

σ2
MR,κ(θ)

)
 1
√
n

n∑
i=1

ψ(wi ;θ)

 ≤ c
− P

Z ′
I 0

0
(
σ2
MR(θ)

σ2
MR,κ(θ)

)Z ≤ c

∣∣∣∣∣∣∣∣ ≤ M
√
n

(42)

where Z ∼ Φr+1. Note that the limiting distribution is P
(
X1 +

(
σ2
MR(θ)

σ2
MR,κ(θ)

)
·X2 ≤ c

)
, where X1 ∼ χ2

r ,

X2 ∼ χ2
1 and X1⊥X2. The general distribution of linear combinations of independent, cen-

tral chi-square random variables has been obtained, e.g, in Moschopoulos and Canada (1984),

as an infinite gamma series whose properties depend on the weights of the linear combination.

However, note that
(
σ2
MR(θ)

σ2
MR,κ(θ)

)
= 1 for each θ ∈ Θ \ΘI

0: σ2
R(θ) ≥ κ and 0 <

(
σ2
MR(θ)

σ2
MR,κ(θ)

)
< 1 for each

θ ∈Θ \ΘI
0: σ2

R(θ) < κ. Thus, in our case, for all c > 0:

sup
θ∈Θ∗:
σ2
R(θ)≥κ

∣∣∣∣P (
Q̂(θ) ≤ c

)
−Fχ2

r+1
(c)

∣∣∣∣→ 0, and inf
θ∈Θ∗:
σ2
R(θ)<κ

P
(
Q̂(θ) ≤ c

)
≥ Fχ2

r+1
(c)

And therefore, inf
θ∈Θ∗

P
(
Q̂(θ) ≤ c

)
≥ Fχ2

r+1
(c).

In order to analyze the power properties of our procedure under Restriction I7’, consider the

asymptotic properties of Q̂(θ) when θ < Θ∗. First, for any θ ∈ ΘI
0 we obtain the same asymptotic
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features as those we described under Restriction I7. Next, for Θ \ΘI
0 we have

Q̂(θ) = nµ(θ)′
(
Σκ(θ)−1 +ϑκn (θ)

)
µ(θ) +

 1
√
n

n∑
i=1

ψ(wi ;θ)

′
I 0

0
(
σ2
MR(θ)

σ2
MR,κ(θ)

)
 1
√
n

n∑
i=1

ψ(wi ;θ)

+ ξQκn (θ),

where µ(θ) ≡
(
(θ1 −θ∗1)′ R(θ)

)′
, sup

θ∈Θ\ΘI
0

|ϑκn (θ)| = op(1), and sup
θ∈Θ\ΘI

0

∣∣∣∣ξQκn (θ)
∣∣∣∣ = op(1)

(43)

Thus, for all θ ∈Θ \ΘI
0: µ(θ) , 0, we have nµ(θ)′

(
Σκ(θ)−1 +ϑκn (θ)

)
µ(θ)→∞ w.p.1., and therefore

P
(
Q̂(θ) < c

)
→ 0. Our previous results combined yield P

(
Q̂(θ) < c

)
→ 0 for all θ < Θ∗ and any c >

0. Now take any θn and let µ(θn) ≡
((
θn,1 −θ∗1

)′
R(θn)

)′
. If θn is such that

∥∥∥µ(θn)
∥∥∥ ≥ δnn−1/2D for

some fixed D > 0 and some sequence of positive constants δn→∞, then P
(
Q̂(θn) < c

)
→ 0 for all

c > 0. Now consider θn ∈Θ \ΘI
0 such that n1/2 ·µ(θna)′Σ(θna)−1µ(θna)→ b > 0 and σ2

R(θna) ≥ κ ∀ n.

Then, limn→∞ P
(
Q̂(θn) < c

)
= Fχ2

r+1
(c−b). Take θn ∈Θ \ΘI

0 with n1/2 ·µ(θna)′Σ(θna)−1µ(θna)→ B > 0

and σ2
R(θna) < κ for a sufficiently large n. Suppose

(
σ2
MR(θn)

σ2
MR,κ(θn)

)
→ a ∈ (0,1). We have limn→∞ P

(
Q̂(θn) < c

)
=

P (X1 + a ·X2 < c − b), where X1 ∼ χ2
r , X2 ∼ χ2

1 and X1⊥X2. The following theorem summarizes

the asymptotic properties of our CS under Restriction I7’.

Theorem 5 Let Restrictions I1 - I6 and I7’ hold. Then CS1−α has the following asymptotic properties.

(i) Uniform asymptotic coverage: limn→∞ infθ∈Θ∗ P (θ ∈ CS1−α) ≥ 1−α.

(ii) Consistency of the associated test for θ ∈ Θ∗: limn→∞ P (θ ∈ CS1−α) = 0 ∀ θ < Θ∗. Next consider
sequences of local alternatives θna and let µ(θna) ≡

((
θna,1 −θ∗1

)
R(θna)

)
. For any θna such that∥∥∥µ(θna)

∥∥∥ ≥ δnn−1/2c for some fixed c > 0 and some sequence of positive constants δn → ∞, we
have limn→∞ P (θna ∈ CS1−α) = 0

(iii) Nontrivial local power of the associated test for θ ∈Θ∗: Consider any sequence of local alternatives
θna such that θna ∈ Θ \ΘI

0 and n1/2 · µ(θna)′Σ(θna)−1µ(θna)→ b > 0. If σ2
R(θna) ≥ κ ∀ n, then

limn→∞ P (θna ∈ CS1−α) < 1 − α. Suppose instead that σ2
R(θna) < κ for all n sufficiently large,

and
(
σ2
MR(θna)

σ2
MR,κ(θna)

)
→ a ∈ (0,1). Then limn→∞ P (θna ∈ CS1−α) = P

(
X1 + a ·X2 < χ

2
r+1(1−α)− b

)
,

where X1 ∼ χ2
r , X2 ∼ χ2

1 and X1⊥X2. Since P (X1 + a ·X2 < c) ≤ P
(
X1 <

c
2

)
+ P

(
a ·X2 <

c
2

)
, a

sufficient condition to have limn→∞ P (θna ∈ CS1−α) < 1−α would be if χ
2
r+1(1−α)−b

2 < χ2
r

(
1−α

2

)
and

χ2
r+1(1−α)−b

2·a < χ2
1

(
1−α

2

)
. Finally, for any θna ∈ ΘI

0 such that n(θna,1 − θ∗1)′H0(θna,1 − θ∗1)→ a > 0,
we will have limn→∞ P (θna ∈ CS1−α) < 1−α if χr+1(1−α)− a < χr(1−α)

One again, the results in the theorem follow directly from the asymptotic analysis of Q̂ described

previously. Our CS retains correct asymptotic coverage probability even though it is more con-

servative for certain parameter values compared to the results under Restriction I7. In that case

30



our CS had coverage probability greater than 1 − α only for parameters in ΘI
0. This will be true

with Restriction I7’ also for parameters in Θ \ΘI
0 for which σ2

R(θ) < κ. Importantly, the underlying

test retains the consistency properties of Theorem 4 and it also has nontrivial asymptotic power

against local alternatives θna < Θ∗, including some belonging in ΘI
0 as well as some in Θ \ΘI

0 for

which σ2
R(θna) < κ. This is an important result because the asymptotic coverage in those regions is

strictly greater than 1−α. Note crucially that our underlying test has nontrivial asymptotic power

against local alternatives where the CMIs are violated with probability approaching zero.22

5.4.2 Achieving uniformity over a class of distributions

Our results were illustrated for a fixed distribution P . Going over each of our restrictions as

well as the steps of our proofs in the Econometric Supplement shows what would be required to

obtain uniform results over a class of distributions P . We sketch the arguments here, leaving the

details for future work for the sake of brevity. The smoothness conditions in Restriction I1 would

have to hold uniformly over P (i.e, we would require a common upper bound over P for the

derivatives of the different functionals described there). Next, we would require a common upper

bound for P for the VC dimension of the classes of sets described in Restriction I3. The bound

in Restriction I4 would also have to hold for every P ∈ P . From here, the maximal inequality

results in Sherman (1994, Main Corollary) would hold uniformly over P , and so would Lemma

2. If the smoothness condition in Restriction I5 were also assumed to hold for each element in P ,

the linear representation in Theorem 3 would also hold uniformly over this class of distributions.

From here, if we assume that the integrability conditions described Restriction I6 hold uniformly

over P (i.e, for an envelope D(W ) whose second moment has a universal upper bound over P ),

the type of result shown in (35) would hold uniformly over P . From here, if we assume that

the third moments and the bounds σ , d and D3 described in Restrictions I7 and I7’ are valid for

all elements in P , we would obtain universal Berry-Esseen bounds for P , enabling extension of

results in Theorems 4 and 5 to hold uniformly over this class of distributions.

5.5 Comparison with other CMI inferential methods

Our test statistic transforms conditional moment inequalities to unconditional ones using an “in-

strument function” and then integrates over violations of these unconditional moment functions.

The use of instrument functions to move from conditional to unconditional moment inequalities

is conceptually similar to Andrews and Shi (2013), and integration over these violations is con-

ceptually similar to their Cramer von-Mises (CvM) statistic as well as the Lp-type functionals used

by Lee, Song, and Whang (2018). Instead of pre-specifying a space of instrument functions and

22Recall that our definition of contact sets for parameters outside of ΘI is {w ∈W ∗: Tk(w;θ) ≥ 0 for some k = 1, . . . ,K},
which includes values of w where the CMIs are violated.
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then aggregating over it (e.g, as Andrews and Shi (2013) and Armstrong (2018)), the sole instru-

ment function we focus on is simply 1[Tk(w;θ) ≥ 0], which captures directly whether the CMIs

are violated or not and would therefore be a sufficient instrument if the functional Tk(w;θ) were

known. However, Tk(w;θ) is unknown, and our contribution focuses on describing conditions un-

der which it can be replaced with a kernel-based estimator so that a result like that in Lemma 2 can

be obtained. Our assumptions rely on smoothness conditions that are entirely analogous to those

used in many existing semiparametric econometric models (e.g, Powell, Stock, and Stoker (1989),

Ichimura (1993), Ahn and Manski (1993), Ahn and Powell (1993), and many more).23 While re-

strictive, there is nothing in the nature of our problem that makes these smoothness assumptions

less credible than in those models. In return, we obtain a statistic with an asymptotically linear

representation and pivotal properties, ideally suited to be combined for inference with a root-n

consistent estimator for the point-identified parameters, as in our two-player application.

Our statistic also has contact set properties that distinguish it from existing statistics. First,

we showed that it adapts asymptotically to the contact sets in place of using generalized moment

selection or explicit contact set estimation. Second, its properties allowed us to construct a CS

that allows for contact sets to have measure arbitrarily close to zero (Restriction I7’). Like other

existing CvM statistics for CMIs, ours shares qualitatively similar local asymptotic power proper-

ties relative to sup-norm type tests such as those of Chernozhukov, Lee, and Rosen (2013) or the

Kolmogorov-Smirnov test of Armstrong (2015). Thus our test statistic should be expected to per-

form well from a power standpoint against relatively flat local alternatives, but less well against

relatively sharp-peaked alternatives where the violation of conditional moment inequalities oc-

curs on a set of shrinking measure under the sequence of local alternatives. We leave the details

of such a comparison for future work.

Finally, having an asymptotic linear representation, our statistic is uniquely suited to be used

in problems where a subset of parameters are point-identified and can be consistently estimated

with a regular estimator, for instance by maximum likelihood. Our results show how they can

be combined to construct a CS for the full parameter vector. Overall, our statistic contributes to

the CMI literature by combining all of the following features simultaneously: (i) having asymp-

totically pivotal properties, (ii) automatically adapting to contact sets, thus avoiding the need to

pretest for the slackness of the CMIs while also avoiding the conservative features of tests based

on the least favorable null DGP, (iii) being readily applied to models where a subset of parameters

can be point-identified and estimated through a root-n consistent estimator, (iv) allowing con-

tact sets to have arbitrarily small measure and having nontrivial asymptotic power against local

alternatives where the CMIs are violated with probability approaching zero.

23The regularity condition in Restriction I4 is the only one that is truly unique to our CMI analysis relative to existing
semiparametric models.

32



6 Monte Carlo experiments

The Empirical Supplement to this paper contains the details and results for several Monte Carlo

experiments. Generating data from ordered response games that satisfy our assumptions, our goal

is to study the empirical properties of our approach as well as the results from incorrectly assuming
that the game is binary. We find that our CS has coverage properties in line with our asymptotic

predictions for all the experimental designs, which vary according to payoff features such as the

degree of concavity, as well as the equilibrium selection rule used by players. Importantly, we find

that misspecifying a true ordered-response game as a binary game systematically underestimates

payoff functions. A binary game ignores the intensive-margin nature of strategic interaction.

With strategic substitutes, a true binary-choice game with the same non-strategic payoff function

component as an ordinal game would produce probabilities of entry that are much larger than the

ones produced by its ordinal counterpart.24 Consequently, our experiments find that incorrectly

specifying a true ordinal game as a binary one produces estimates for the non-strategic component

of payoffs that are systematically biased downwards. Ignoring the intensive margin nature of the

ordinal game also underestimates the strategic interaction effect.

7 Application to a Multiple Entry Game between Home Depot and

Lowe’s

We apply our model to the study of the home improvement industry in the United States. Accord-

ing to IBISWorld, this industry has two dominant firms: Home Depot and Lowe’s, whose market

shares in 2011 were 40.8% and 32.6%, respectively. We refer to Lowe´s as player 1 and Home De-

pot as player 2. We take the outcome of interest yi = (yi1, yi2) to be the number of stores operated

by each firm in geographic market i. We define a market as a core based statistical area (CBSA) in

the contiguous United States.25 Our sample consists of a cross section of n = 954 markets in April

2012. Table 1 summarizes features of the observed distribution of outcomes, distinguishing be-

tween small and large markets depending on whether market size (population) is above or below

the median in our data.

24In a binary game, the incentive to enter depends only on whether the opponent entered. In an ordered game like
ours, the incentive to enter is different if the opponent opens one store versus more (e.g. five) stores.

25The Office of Budget and Management defines a CBSA as an area that consists of one or more counties and includes
the counties containing the core urban area, as well as any adjacent counties that have a high degree of social and
economic integration (as measured by commute to work) with the urban core. Metropolitan CBSAs are those with a
population of 50,000 or more. Some metropolitan CBSAs with 2.5 million people or more are split into divisions. We
considered all such divisions as individual markets.
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Table 1: Summary of outcomes observed in the data.

All markets
Y1 Y2 Y1 vs. Y2

Average 1.68 1.97
Median 1 1 (%Y1 > Y2) : 33%

75th percentile 2 1 (%Y1 < Y2) : 25%
90th percentile 4 5 (%Y1 +Y2 > 0) : 74%
95th percentile 7 11 (%Y1 +Y2 > 0, Y1 = Y2) : 16%
99th percentile 17 25

Total 1,603 1,880 player 1: Lowe’s, player 2: Home Depot.

Markets with population below the median
Y1 Y2 Y1 vs. Y2

Average 0.33 0.23
Median 0 0 (%Y1 > Y2) : 28%

75th percentile 1 0 (%Y1 < Y2) : 18%
90th percentile 1 1 (%Y1 +Y2 > 0) : 51%
95th percentile 1 1 (%Y1 +Y2 > 0, Y1 = Y2) : 5%
99th percentile 1 1

Total 156 109 player 1: Lowe’s, player 2: Home Depot.

Markets with population above the median
Y1 Y2 Y1 vs. Y2

Average 3.03 3.71
Median 2 1 (%Y1 > Y2) : 38%

75th percentile 3 3 (%Y1 < Y2) : 31%
90th percentile 7 10 (%Y1 +Y2 > 0) : 97%
95th percentile 12 17 (%Y1 +Y2 > 0, Y1 = Y2) : 28%
99th percentile 21 38

Total 1,447 1,771 player 1: Lowe’s, player 2: Home Depot.

34



Roughly 75 percent of markets have at most 3 stores. However, more than 10 percent of

markets in the sample have 9 stores or more. Table 1 suggests that market size is an important

predictor of entry (97% of markets with population above the median have at least one store),

and that Lowe’s has a larger proportion of its stores (9.7%) in small markets than Home Depot

(5.8%). Lowe’s also tends to have more stores than Home Depot in small markets and vice versa.

These features are entirely compatible with the assumption that the direct effect of market size

on players’ payoffs (i.e, the coefficient of market size) is the same for both, as these features of the

data can be owed to the structural equilibrium features of the underlying game, which is why we

allow for players’ strategic interaction coefficients to differ from each other. Furthermore, even if

we assumed that payoff functions are exactly the same for both players, these patterns in the data

could be the result of the underlying, unknown equilibrium selection mechanism.

Naturally, entry decisions take place over time. Our justification for approximating this prob-

lem as a static game is the assumption that the outcome observed is the realization of a long-run

equilibrium.26 Because there is no natural upper bound for the number of stores each firm could

open in a market, we allowed ȳj to be arbitrarily large. We maintained the assumptions of mu-

tual strategic substitutes and pure-strategy Nash equilibrium behavior with the parametrization

described in Section 4.

7.1 Observable Payoff Shifters

For each market, the covariates included in Xj were: population, total payroll per capita, land

area, and distance to the nearest distribution center of player j for j = {1,2}. The first three of these

were obtained from Census data. Our covariates aim to control for basic socioeconomic indicators,

geographic size, and transportation costs for each firm.27 Note that X includes 5 covariates, 3

common to each player as well as the player-specific distances to their own distribution centers.

All covariates were treated as continuously distributed in our analysis.

Table 1 suggests a pattern where Home Depot operates more stores than Lowe’s in larger mar-

kets. In the data we found that median market size and payroll were 50% and 18% larger, re-

spectively, in markets where Home Depot had more stores than Lowe’s relative to markets where

the opposite held. Overall, Home Depot opened more stores than Lowe’s in markets that were

larger and that had higher earnings per capita. Our methodology allows us to investigate whether

this phenomenon is caused by inherent differences in firms’ payoff functions or by the strategic-

interaction component (including features of the underlying equilibrium selection mechanism).

26The relative maturity of the home improvement industry suggests that the assumption that the market is in a PSNE,
commonly used in the empirical entry literature, is arguably well-suited to this application.

27Payroll per capita is included both as a measure of income and as a labor market indicator in each CBSA. We
employed alternative economic indicators such as income per household, but they proved to have less explanatory
power as determinants of entry in our results.

35



7.2 Test sets for the construction of confidence sets

The class of test sets Uk(yi ,xi ;θ) we used is as follows. As before let Rθ be as defined in (13). Let

SIθ(xi) =
{
S ⊆R

2: S =Rθ(y,xi) such that y1 ≤ 2, y2 ≤ 2
}
,

SIIθ (xi) =
{
S ⊆R

2: S =Rθ(y,xi)∪Rθ(y′ ,xi) for some y , y′ such that y1 ≤ 2 and y2 ≤ 2
}
.

For test sets Uk(xi , yi ;θ) we use each element of the collections SIθ(xi) and SIIθ (xi) as well as the set

Rθ(yi ,xi). This yields K = 82 tests sets.

7.3 Kernels and tuning parameters

Our covariate vector X is comprised of five continuous random variables. We employed a mul-

tiplicative kernel K (ψ1, . . . ,ψ5) = k(ψ1)k(ψ2) · · ·k(ψ5), with k(u) =
∑10
`=1 c` · (1 − u

2)2` · 1{|u| ≤ 30},
where c1, . . . , c10 chosen such that k(·) is a bias-reducing Biweight-type kernel of order 20. This is

the same type of kernel used by Aradillas-López, Gandhi, and Quint (2013). Let z ≡ dim(Xc) = 5

and ε ≡ 9
10 ·

1
4z(2z+1) , αh ≡

1
4z − ε. For each element of X, the bandwidth used was of the form

hn = c · σ̂ (X) · n−αh . The order of the kernel and the bandwidth convergence rate were chosen to

satisfy Restriction I2. The constant c was set at 0.25.28 The bandwidth bn was set to be 0.001 at

our sample size (n = 954). The regularization sequence κn was set below machine precision. All

the results that follow were robust to moderate changes in our tuning parameters. The region X ∗

was set to include our entire sample, so there was no trimming used in our results.

7.4 Results for payoff parameters

Table 2 presents the ML estimates for our point-identified parameters, along with confidence in-

tervals for each payoff parameter. The second column includes ML 95% CIs for our ML estimates

and the third column includes projections given by the smallest and largest values of each pa-

rameter in our 95% CS. Relative to the MLE CIs shown in column 2, our confidence intervals are

shifted slightly and in some cases larger while in other cases smaller. In classical models where

28c = 0.25 is approximately equal to the one that minimizes

AMISE = plim
{∫ ∞
−∞

E
[(
f̂ (x)− f (x)

)2
]
dx

}
,

if we employ Silverman’s “rule of thumb”, Silverman (1986), using the Normal distribution as the reference distribu-
tion. In this case the constant c simplifies to

c = 2 ·

 π1/2 (M!)3 ·Rk

(2M) · (2M)! ·
(
k2
M

) 
1

2M+1

, where Rk ≡
∫ 1

−1
k2(u)du, k

M
≡

∫ 1

−1
uMk(u)du.

Given our choice of kernel, the solution yields c ≈ 0.25, the value we used.
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there is point identification ML estimators are asymptotically efficient, and hence produce smaller

confidence intervals than those based on other estimators. The comparison here however is not so

straightforward. The MLE is based only on the event of no-entry, and not the ordinal value of the

outcome.

Population, land area and distance were the only payoff shifters with coefficient estimates

statistically significantly different from zero at the 5% level. The 95% CS for the correlation

coefficient ρ was wide and included zero. The payoff-concavity coefficient η was significantly

positive and well above the lower bound 0.001 of our parameter space, indicating decreasing

benefits for opening new stores in a market.

Table 2: Estimates and Confidence Intervals for each Parameter

MLE MLE Moment-
Estimate 95% CI inequalities

95% CI†

Population (100,000) 2.219 [0.869,3.568] [1.757,3.792]
Payroll per capita ($5 USD) 0.244 [−0.023,0.510] [−0.064,0.667]
Land Area (1,000 sq miles) 0.180 [0.027,0.333] [0.051,0.409]

Distance (100 miles) −0.544 [−0.929,−0.159] [−0.988,−0.410]
ρ (Corr(U1,U2)) −0.050 [−0.304,0.204] [−0.265,0.302]

δ − η (Intercept minus concavity coefficient) −1.309 [−2.084,−0.534] [−1.961,−0.656]
δ (Intercept) N/A N/A [−0.351,5.463]

η (Concavity coefficient) N/A N/A [1.076,6.533]
∆1 (Effect of Home Depot on Lowe’s) N/A N/A [0,2.741]
∆2 (Effect of Lowe’s on Home Depot ) N/A N/A [0.910,4.078]

(†) Denotes the individual “projection” from the joint 95% CS obtained as described in Theorem 4.

Figure 2 depicts the joint CS for the strategic interaction coefficients, ∆1 and ∆2. The parame-

ter space for these coefficients covered the two-dimensional rectangle [0,16]× [0,16]. Our results

suggest that the strategic effect of Lowes on Home Depot (measured by ∆2) is stronger than the

effect of Home Depot on Lowes (measured by ∆1). As we can see in the figure, our CS lies al-

most entirely above the 45-degree line. Our results conclusively excluded the point ∆1 = ∆2 = 0,

so we can reject the assertion that no strategic effect is present. The Empirical Supplement in-

cludes graphical inspections of joint CS for pairs of parameters and they did not reveal any holes;

however we are not sure about the robustness of this feature for our entire CS given its dimension.
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7.5 Inference on Other Quantities of Economic Interest: Likelihood of Equilibria
and Features of the Underlying Selection Mechanism

An exercise that is sometimes overlooked in empirical work on partially identified games is to

go beyond the basic payoff parameters and use the results to explore other features of the game.

These include, for example, the likelihood that a given outcome y is an equilibrium conditional

on observables, or the propensity of the underlying equilibrium selection mechanism to choose y

whenever it is an equilibrium. In many instances these features can be more interesting than the

payoff parameters themselves, and the results can be quite informative.

7.5.1 Overview

The functionals considered are functions of θ, say g (θ), that map from Θ to some set G ⊆ R.

In the cases we study, g is either a known function or it is of the form g (θ) ≡ Γ (E [λ (θ;X,Y )])

for some functions λ and Γ . In this case, ĝ (θ) can be estimated by replacing E [λ (θ;X,Y )] above

with its sample analog. By standard arguments a 1−α confidence interval for g (θ) is then given

by ĝ (θ) ± n−1/2Φ−1 (1−α/2) σ̂ (θ), where σ̂ (θ) consistently estimates the standard deviation of

n1/2 (ĝ (θ)− g (θ)). If θ0 were known it could be plugged into the expression above to obtain the

desired confidence interval for g (θ0). Since θ0 is unknown we use a Bonferroni bound together

with CS1−α to construct an asympotically valid 1− 2α confidence interval for g (θ0),

CI (g (θ0)) ≡
[

min
θ∈CS1−α

ĝ (θ)−n−1/2Φ−1 (1−α/2) σ̂ (θ) , max
θ∈CS1−α

ĝ (θ) +n−1/2Φ−1 (1−α/2) σ̂ (θ)
]

. (44)

In cases where g is known, we construct 1−α confidence intervals by simply taking projections of

CS1−α as CI (g (θ0)) ≡ {g (θ) : θ ∈ CS1−α}.

7.5.2 Likelihood of Equilibria

Let PE (y|x) denote the probability that y is an equilibrium outcome given X = x. From Lemma 1

and (3), we have PE (y|x) = PU (Rθ (y,x) ;θ). This relation plays a role in addressing the question:

given market characteristics x and the outcome y observed in a given market, what is the proba-

bility that some other action profile y′ was simultaneously an equilibrium, but not selected? We

define this as PE (y′ |y,x), which, using the rules of conditional probability, is given by

PE (y′ |y,x) =
PE (y′ , y|x)
PE (y|x)

=
PU (Rθ (y′ ,x)∩Rθ (y,x) ;θ)

PU (Rθ (y,x) ;θ)
,

when θ = θ0, where PE (y′ , y|x) denotes the conditional probability that both y′ and y are equilibria

given X = x. For the sake of illustration, Table 3 presents a 95% CI for PE (y′ |y,x) using the realized

outcome y = (2,2) and demographics x observed in CBSA 11100 (Amarillo, TX), a metropolitan
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market. Every outcome y excluded from Table 3 had zero probability of co-existing with (2,2) as

a PSNE. Note that the lower bound in our CI was zero in each case since it is impossible to reject

the likelihood that the outcome observed was the unique PSNE.

The aggregate probability that the outcome y is an equilibrium, denoted PE (y), is given by

PE (y) = E [PE (y|Y ,X)]. For θ = θ0, a consistent estimator for PE (y) is given by

P̂E (y,θ) ≡ 1
n

n∑
i=1

PE (y|yi ,xi ,θ) , PE (y|yi ,xi ,θ) ≡
PU (Rθ (y,xi)∩Rθ (yi ,xi) ;θ)

PU (Rθ (yi ,xi) ;θ)
.

Table 4 presents the 0.90 (α = 0.05) CI for PE(y) for the ten most frequently observed outcomes in

the data.

Table 3: Outcomes y that could have co-existed as equilibria with the observed outcome (2,2) in
CBSA 11100 (Amarillo, TX).

y 95% CI for PE(y|Yi ,Xi) y 95% CI for PE(y|Yi ,Xi)
(0, 4) [0, 0.9981] (3, 1) [0, 0.9510]
(6, 0) [0, 0.9976] (4, 0) [0, 0.9388]
(4, 1) [0, 0.9971] (3, 0) [0, 0.2666]
(0, 3) [0, 0.9856] (5, 1) [0, 0.1001]
(5, 0) [0, 0.9730] (0, 5) [0, 0.0524]
(1, 3) [0, 0.9622] (7, 0) [0, 0.0114]

Table 4: Outcomes y with the largest aggregate probability of being equilibria, PE(y)

Observed Observed
y 90% CI for PE(y) frequency y 90% CI for PE(y) frequency

(α = 0.05) for y (α = 0.05) for y
(0, 0) [0.2415, 0.2847] 0.2631 (2, 0) [0.0083, 0.1200] 0.0146
(1, 0) [0.1973, 0.3001] 0.2023 (3, 1) [0.0078, 0.0399] 0.0136
(1, 1) [0.1224, 0.1566] 0.1257 (2, 2) [0.0065, 0.0310] 0.0136
(0, 1) [0.1081, 0.2552] 0.1205 (3, 2) [0.0040, 0.0276] 0.0094
(2, 1) [0.0398, 0.0720] 0.0461 (2, 3) [0.0038, 0.0224] 0.0094
(1, 2) [0.0120, 0.0691] 0.0199 (3, 3) [0.0045, 0.0177] 0.0083

7.5.3 Propensity of Equilibrium Selection

Our model makes no assumptions as to how any particular market outcome is selected when

there are multiple equilibria. Nonetheless, a confidence set for θ can be used to ascertain some
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information on various measures regarding the underlying equilibrium selection mechanismM.

Consider for example the propensity that a given outcome y is selected when it is an equilibrium,

PM (y) ≡ P (Y=y)
PE (y) . Recall that (0,0) cannot coexist with any other PSNE and therefore PM(0,0) = 1. In

Table 5 we present a CI for the selection propensity PM (y) for all other outcomes listed in Table 4.

In all cases in Table 5 the upper bound of our CIs is 1, since it is always possible that the outcome

in question is the unique equilibrium. Thus, only the lower bounds of our CIs on the selection

probabilities are informative.

Table 5: Propensity PM(y) to select outcome y when it is a PSNE.
Observed Observed

y 90% CI for PM(y) frequency y 90% CI for PM(y) frequency
(α = 0.05) for y (α = 0.05) for y

(1, 1) [0.8884, 1] 0.1257 (2, 2) [0.4503, 1] 0.0136
(1, 0) [0.6896, 1] 0.2023 (3, 1) [0.2850, 1] 0.0136
(2, 1) [0.6350, 1] 0.0461 (3, 2) [0.2381, 1] 0.0094
(0, 1) [0.3932, 1] 0.1205 (2, 3) [0.2322, 1] 0.0094
(3, 3) [0.5772, 1] 0.0083 (1, 2) [0.1920, 1] 0.0199

We can also make direct comparisons between the propensity of equilibrium selection for specific

outcomes. The Empirical Supplement includes a number of such comparisons where we learn,

among other things, that comparing outcomes where only one store is opened, there is a higher

selection propensity for Lowe’s to have the only store than for Home Depot, and that the selection

propensity for equilibria in which both firms operate one store is higher than those in which only

one firm does.

7.5.4 Counterfactual equilibrium selection mechanisms

As we have shown, our framework allows us to study the likelihood that other outcomes could

have co-existed as equilibria along with the outcomes actually observed in each market. With this

information at hand we can do counterfactual analysis based on pre-specified equilibrium selec-

tion mechanisms. The goal would be to find out which of these hypothetical selection mechanisms

would produce outcomes that more closely resemble our data.

In the Empirical Supplement we explore this by looking at four hypothetical equilibrium se-

lection mechanisms. The first two favor each firm individually, the third one favors entry by both

firms, maximizing the total number of stores, while the fourth one favors symmetric outcomes.

Our results there find evidence in favor of an underlying selection mechanism that favors choos-

ing symmetric outcomes whenever they exist as equilibria.
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7.6 Estimation as a binary entry game

In the Empirical Supplement we also re-estimated the game as a binary entry/no-entry game

and our results showed the same patterns we uncovered in our Monte Carlo experiments when

a true ordinal game is misspecified as a binary choice game. First, our payoff-function estimates

shifted downwards relative to the ordered-response results. Second, our nonparametric estimates

for P r
(
di = 1|Yj ,X

)
, where di = 1[Yi ≥ 1], proved to be monotonically decreasing in Yj for both

players, which is the pattern we observed in our experiments when the true underlying game is

ordinal as opposed to binary. While not definitive and not grounded on a formal specification

test, these findings are consistent with the features of a true ordered-response game according to

the Monte Carlo results also included in the Empirical Supplement.

7.7 Other counterfactual exercises

The Empirical Supplement also includes other counterfactual experiments allowed by our method-

ology. For example, we compare the outcomes observed with a counterfactual scenario where

firms cooperate and maximize their combined payoffs. We find, for example, that the expected

number of total stores under cooperation would increase from 1 to more than 2 in at least 85

markets. We also conduct a counterfactual experiment where one of these competitors exits the

industry and we find that the number of markets without a store would increase from 251 in the

data to as many as 465 if Home Depot became a monopolist.

8 Conclusion

Econometric inference for discrete games with complete information has largely focused on games

with very limited action spaces, with the binary case being the most prominent. One reason be-

hind this is that a rich action space can significantly complicate equilibrium analysis if this re-

quires payoff comparisons across the entire action space. This paper contributes to the literature

by studying games with rich, possibly unbounded action spaces. Assuming that actions are or-

dinal in nature, we describe shape restrictions on payoff functions that turn the game effectively

into a simultaneous ordered response model. This, in turn, greatly simplifies the econometric

analysis as necessary conditions for Nash equilibria involve only adjacent actions and therefore

do not require finding all equilibria or analyzing (or even knowing) the entire action space.

Focusing on the case of a two-player game of strategic substitutes, we showed that assuming

pure strategy Nash equilibrium (PSNE) behavior can point-identify a subset of parameters, which

stands in contrast with two-player binary choice games where PSNE behavior can point-identify

all the parameters in the model. We developed a novel inference approach for all model pa-

rameters that combines the point identified parameters (estimated by MLE) with the conditional
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moment inequalities implied by PSNE behavior. Inference is based on a statistic with pivotal

asymptotic properties, which facilitates its use in games with a rich collection of parameters and

conditioning variables.

We applied our methodology to a multiple entry game between Lowe’s and Home Depot. Our

results revealed interesting features about the strategic interaction between these firms. Beyond

results pertaining to payoff parameters, we showed that our framework also allows inference on

other economic quantitites of interest, such as probability distributions of equilibrium outcomes,

the propensity of the underlying (and unspecified) selection mechanism to choose certain out-

comes, and other counterfactuals. Monte Carlo experiments and our empirical results also sug-

gest that misspecifying a true ordinal game as a binary game can lead to systematic bias of payoff
parameters as well as strategic interaction coefficients. This bias arises from ignoring the inten-

sive margin of competitive effects. This suggests the importance of developing nonparametric

specification tests that can help us know the true nature of the action space in these models.

References

Ahn, H. and C. Manski (1993). Distribution theory for the analysis of binary choice under

uncertainty with nonparametric estimation of expectations. Journal of Econometrics 56, 291–

321.

Ahn, H. and J. Powell (1993). Semiparametric estimation of censored selection models with a

nonparametric selection mechanism. Journal of Econometrics 58, 3–29.

Andrews, D. and P. Jia-Barwick (2010). Inference for parameters defined by moment inequali-

ties. Econometrica 80, 2805–2826.

Andrews, D. W. K. and X. Shi (2013). Inference for parameters defined by conditional moment

inequalities. Econometrica 81(2), 609–666.

Andrews, D. W. K. and G. Soares (2010). Inference for parameters defined by moment inequal-

ities using generalized moment selection. Econometrica 78(1), 119–157.
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A Figures

Figure 1: Illustration of Restriction I4
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Figure 2: Joint 95% confidence region for strategic interaction coefficients
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