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We propose a multivariate normality test against skew normal distributions using higher-order log-

likelihood derivatives which is asymptotically equivalent to the likelihood ratio but only requires

estimation under the null. Numerically, it is the supremum of the univariate skewness coefficient

test over all linear combinations of the variables. We can simulate its exact finite sample

distribution for any multivariate dimension and sample size. Our Monte Carlo exercises confirm its

power advantages over alternative approaches. Finally, we apply it to the joint distribution of US

city sizes in two consecutive censuses finding that non-normality is very clearly seen in their growth

rates.
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1 Introduction

The skew-normal distribution is a generalization of the normal distribution introduced by

Azzalini (1985) in the univariate case and Azzalini and Dalla Valle (1996) in the multivariate

one, which allows for asymmetry and positive excess kurtosis but retains a fair amount of ana-

lytical tractability with only one additional parameters for each element of the random vector

(see Azzalini and Capitanio (2014) for a thorough study of this and other closely related distrib-

utions). Among its many empirical applications across a wide range of disciplines, in economics

this distribution is increasingly popular in �nance and insurance, and also for stochastic frontier

models (see Adcock et al (2014) and Amsler et al (2016), respectively).

However, testing normality against skew normality has been hampered by the fact that the

information matrix of the unrestricted model is singular under the null of normality despite the

skew normal model parameters being locally identi�ed (see Ley and Paindaveine (2010) and

Hallin and Ley (2012)). This violates one of the crucial regularity conditions that guarantees

an asymptotic chi-square distribution for the Likelihood ratio (LR), Wald and score/Lagrange

Multiplier (LM) tests under the null.

In the univariate case, one can overcome this problem by using the �extremum test� of

Lee and Chesher (1986), which exploits the restrictions that the null imposes on higher-order

optimality conditions, but which is asymptotically equivalent to the LR tests under the null

and sequences of local alternatives in unrestricted contexts. Using earlier results by Cox and

Hinkley (1974), Lee and Chesher (1986) explain that this equivalence intuitively follows from

the fact that their extremum tests can often be re-interpreted as standard LM tests of a suitable

transformation of the parameter whose �rst derivative is 0 on average such that the new score

is no longer so. In contrast, Wald tests are extremely sensitive to reparametrization under these

circumstances.1

In the multivariate case, though, the information matrix of the skew normal is repeatedly

singular, in the sense that its nullity coincides with the dimension of random vector K. In addi-

tion, there are K linear combinations involving the elements of the score vector and the Hessian

matrix which are also 0 under the null, which means that it is necessary to look at third-order

derivatives. Unfortunately, the number of such derivatives exceeds the number of parameters

e¤ectively a¤ected by the singularity by two orders of magnitude, so there is no natural repara-

metrization leading to a regular information matrix. In particular, transforming each of the

parameters individually along the lines suggested by Lee and Chesher (1986) does not give rise

to a test asymptotically equivalent to the LR. On the contrary, di¤erent reparametrizations will

typically give rise to di¤erent test statistics.

The purpose of our paper is to derive a test of multivariate normality against skew normal

1Rotnitzky el al (2000) rigorously study the asymptotic distribution of the maximum likelihood (ML) estimators
when there is a single singularity, while Bottai (2003) looks at the validity of con�dence intervals obtained by
inverting the three classical test statistics in the same setup.
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distributions which is asymptotically equivalent to the LR test, but which only requires esti-

mation under the null. To do so, we rely on the generalized extremum tests we proposed in a

companion paper (see Amengual, Bei and Sentana (2021)). As we show below, the resulting

test statistic has a very simple interpretation in terms of moment tests. Speci�cally, it numer-

ically coincides with the supremum of the tests for univariate asymmetry based on the sample

skewness coe¢ cient over all possible linear combinations of the observed variables.

Importantly, we explicitly address the widespread and often justi�ed concern that tests

based on higher-order derivatives are unreliable in �nite samples by explaining how to simulate

its exact, parameter-free, �nite sample distribution to any desired degree of accuracy for any

dimension of the random vector and sample size. In this respect, we prove the numerical

invariance of the test statistic to a¢ ne transformations of the observed variables, which allows

us to quickly simulate draws from a spherical normal distribution.

We conduct extensive Monte Carlo exercises that study the �nite sample size and power

properties of our proposal and compare it to other multivariate skewness tests. We �nd that our

suggested parametric bootstrap procedure yields very reliable sizes. In addition, we con�rm the

power superiority of our test over the alternatives. We also con�rm its computational superiority

over the LR test, which is due to the fact that it does not require the estimation of any additional

shape parameters using a log-likelihood function which is incredibly �at under the null.

Finally, we illustrate our test by looking at the joint distribution of city sizes in the 2000

and 2010 US censuses. The starting point of our empirical analysis is Eeckhout (2004), who

forcefully argued that if one looked at the entire non-truncated sample of cities and places in

the 2000 US census, their size distribution was approximately log-normal, in marked contrast to

earlier studies. Subsequent studies have analyzed the same issue for other datasets for the US

and other countries (see e.g. Gónzalez-Val (2019) and the references therein), but they have not

typically looked at the joint distribution of city sizes in two periods. An important advantage

of looking at two censuses is that we can immediately study the joint distribution of city sizes

and their rates of growth. In this regard, a useful shared property of multivariate normality

and multivariate skew normality is that they are both closed under a¢ ne transformations of the

original variables (see Azzalini and Capitanio (2014)). Importantly, we �nd that skewness is a

common feature that is much more clearly seen in the growth rate of cities than in their (log)

sizes.

The rest of the paper is organized as follows. In Section 2, we derive our proposed test and

study its properties. This is followed by the simulation exercises in Section 3, and the empirical

application in Section 4. Finally, we present our conclusions in section 5. Proofs and auxiliary

results are gathered in appendices.
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2 Testing Gaussian vs Skew Normal

The probability density function (pdf) of a K-dimensional skew-normal random variable y

is given by

fSN (y;%) = 2fN (y;'M ;'V ) � �[#0dg�1=2('D)(y �'M )]; (1)

where fN (y;'M ;'V ) denotes the pdf of a K-variate Gaussian random vector with mean 'M
and covariance matrix �('V ), 'V = ('0D;'

0
L)
0, 'D = vecd[�('V )], 'L = vecl[�('V )], %

0 =

('0;#0) = ('0M ;'
0
V ;#

0), dg('D) a diagonal matrix with 'D along its main diagonal, and �(:)

the univariate standard normal cumulative distribution function (cdf). This joint distribution

simpli�es to the K-variate normal when the shape parameters # are equal to 0.

For expositional purposes, we use the bivariate case, which is the relevant one for our em-

pirical application. Nevertheless, our theoretical results apply to any K.

Let ' = ('M1
; 'M2

; 'D1 ; 'D2 ; 'L1)
0 and # = (#1; #2)

0 denote the vectors that contain the

two mean and three covariance parameters, and the two shape parameters, respectively, so that

fSN (y;';#)=2fN

��
y1
y2

�
;

�
'M1

'M2

�
;

�
'D1 'L1
'L1 'D2

��
��
"
#1

 
y1 � 'M1p

'D1

!
+#2

 
y2 � 'M2p

'D2

!#
:

As explained by Azzalini and Capitanio (2014), the information matrix of this model is

generally regular, so that the unrestricted Maximum Likelihood estimators (MLEs) of 'M , 'V
and # based on a random sample of y will have an asymptotic normal distribution. In addition,

the restricted MLEs of 'M and 'V under the null of multivariate normality will coincide with

the sample mean vector and covariance matrix of the observations (with denominator the sample

size n), which also have a well-known asymptotic normal distribution under the null.

Nevertheless, it is easy to prove that when evaluated at # = 0, the score of each element of

# is proportional to the score of the corresponding element 'M regardless of the sample size,

which con�rms the repeated singularity of the information matrix of the model under the null.

In addition, it is also easy to prove that K(K+1)=2 additional independent linear combinations

of the elements of the Hessian matrix and the score vector are also 0 when # = 0. As a result,

the joint asymptotic distribution of the unrestricted MLEs of 'M , 'V and # will not be normal

when the true distribution is normal, and the LR test will not have a chi-square distribution

either. In addition, obtaining the distribution of the LR test under the null by simulation is an

extremely challenging procedure from a computational point of view because for each simulated

sample it requires the maximization with respect to all the elements of 'M , 'V and # of a log-

likelihood function which is extremely �at along those directions of the parameter space whose

�rst and second derivatives are 0.

In this context, we can state our main result:

Proposition 1 The di¤erence between LR test of H0 : # = 0 in model (1) based on a random
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sample of n observations on y and the following test statistic

GETn = sup
�6=0

1

6n

"
nX
i=1

H3

�
�0eip
�0�

�#2
(2)

is Op(n�1=6), where H3(z) = z3 � 3z is the third-order Hermite polynomial of a standardized
variable z, � is a real vector of dimension K and e denotes an a¢ ne transformation of the
observed variables whose sample mean vector and covariance matrix are 0 and IK , respectively.

In simple terms, our test statistics numerically coincides with the supremum of the moment

tests for univariate skewness based on the third Hermite polynomial over all possible linear

combinations of the observed variables that have 0 mean and unit variance in the sample. In

fact, the standardization is unnecessary because the moment test for univariate skewness is

numerically invariant to a¢ ne transformations of the observations, which in turn con�rms that

the test statistic (2) is homogeneous of degree 0 in �. Thus, when K = 1 our proposed test

reduces to the well known moment test for univariate skewness based on the third Hermite

polynomial of the standardized observations. This test of normality versus skew normality,

which Carota (2010) derived using a divergence-based Bayesian method, can be obtained as

a straightforward application of the Lee and Chesher (1986) extremum test by replacing the

skewness coe¢ cient # by its cubic root.

As we shall formally show in Proposition 2 below, the particular transformation that ortho-

normalizes the variables in the sample is irrelevant. For example, in the bivariate case, we could

de�ne e1 as the standardized value y1 and e2 as the standardized value of the residual in the

OLS regression of y2 on a constant and y1. But we could also de�ne them the other way round.

The bivariate case provides some further insight. Given that the sample means and variances

of e1 and e2 are 0 and 1, respectively, we can write the test statistic as

GETn = sup
k�k=1

1

6n

�
�31
Pn
i=1H3(e1i) + 3�

2
1�2

Pn
i=1H2(e1i)H1(e2i)

+3�1�
2
2

Pn
i=1H1(e1i)H2(e2i) + �

3
2

Pn
i=1H3(e2i)

�2
where H1(z) = z and H2(z) = z2 � 1 are the �rst- and second-order Hermite polynomials of
the standardized variable z. Therefore, the �rst and last of the four terms of the test statistic

e¤ectively check the asymmetry of the marginal distributions of e1 and e2 by looking at their

third-order Hermite polynomials H3(e1) and H3(e2), respectively, while the two middle ones

check the co-asymmetries between those two random variables by focusing on H2(e1)H1(e2) and

H1(e1)H2(e2).

Consider now the following full-rank a¢ ne transformation y� = a + By with jBj 6= 0. A

convenient property of the skew normal distribution that it shares with its Gaussian special case

is that it is closed under a¢ ne transformations (see Azzalini and Capitanio (2014)). Thus, y�

will be normal if and only if y is normal, but it will be skew normal otherwise. Our next result

shows that the test statistic in Proposition 1 is numerically invariant to the values of a and B:
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Proposition 2 The generalized extremum test statistic of model (1) numerically coincides with
the analogous test statistic for y�.

This numerical invariance is not only a very desirable property of any multivariate normality

test, as forcefully argued by Henze (2002), but it also implies that the sample mean vector

and covariance matrix of the observations do not a¤ect the null distribution of our proposed

test in �nite samples. As a result, it is possible to simulate its exact, parameter-free, �nite

sample distribution to any desired degree of accuracy for any dimension of the random vector

and sample size. In particular, it su¢ ces to simulate R times a random sample of size n of a

spherical Gaussian random vector of dimension K to obtain R independent draws of the test

statistic for multivariate normality against a skew normal. This can be regarded as a parametric

bootstrap procedure that provides the exact p-value of the test statistic obtained in a real sample

as the number of bootstrap replications R grows without bound. But the fact that the only

characteristics of the original sample that matter are the values of n and K implies that a

researcher could obtain tables with exact critical values before observing the data.

It is worth emphasizing that the maximization required to compute (2) is over K�1 dimen-
sions only, as opposed to the maximization required for the computation of the LR test, which is

e¤ectively over 2K parameters because 'V can be concentrated out (see Azzalini and Capitanio

(2014, sec. 5.2.1)). For example, in the bivariate case, if we express �1 = cos! and �2 = sin!,

it simply requires �nding the optimal angle ! over (0; �); which can be done very accurately in

very little time.

3 Simulation evidence

In this section, we study the �nite sample size and power properties of the test we have

introduced in Proposition 1 by means of some extensive Monte Carlo exercises, comparing it to

other skewness tests. Speci�cally, for each of the distributional assumptions we describe below,

we generate 10,000 samples of size n = 400 and n = 1; 600 and in each of them we compute (2)

together with the following three alternative testing procedures:

1) A joint test that simultaneously looks at the moment conditions EfH3['�1=2D;k (yk�'M;k)]g =
0 for k = 1; : : : ;K, where yk is the kth element of y.

2) A joint test that simultaneously looks at the moment conditions E[Hklm(y;'M ;'V )] = 0

for all the K(K+1)(K+2)=6 di¤erent third-order multivariate Hermite polynomials of the form

Hklm(y;'M ;'V )=�e
1
2
(y�'M )0��1('V )(y�'M ) @3

@yk@yl@ym

h
e�

1
2
(y�'M )0��1('V )(y�'M )

i
; (3)

with k; l;m = 1; : : : ;K.

3) A joint test that simultaneously looks at the moment conditions E[Hkkk(y;'M'V )] = 0

for k = 1; : : : ;K.

The �rst test, which is simply looking at the marginal skewness of the observed variables,

ignores all the K(K � 1)(K +4)=6 co-skewness terms. As a result, the value of the test statistic
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changes when we consider a¢ ne transformations of the observations. More importantly, its

power will crucially depend on the marginal skewness of the transformed variables, so it cannot

be asymptotically equivalent to the LR test, which is numerically and therefore asymptotically

invariant to a¢ ne transformations because both normal and skew normal distributions are closed

under such transformations.

Similarly, the third test, which we derive in Appendix B by applying the Lee and Chesher

(1986) approach to each of the shape parameters of the central parametrization proposed by

Arellano-Valle and Azzalini (2008), is not numerically invariant to a¢ ne transformations either

because those shape parameters also capture the marginal skewness of the transformed variables.

For that reason, this test cannot be asymptotically equivalent to the LR test.2

In contrast, the second test, which coincides with the skewness component of Mardia�s (1970)

test for multivariate normality, is numerically invariant to a¢ ne transformations of the obser-

vations. Unfortunately, this test fails to exploit that for multivariate skew normal distributions

skewness is a common feature (see Engle and Kozicki (1993)). Speci�cally, Theorem 5.12 in

Azzalini and Capitanio (2014) states that there is always a linear �canonical� transformation

of the observed variables in which one marginal distribution is univariate skew normal but the

other N�1 variables are Gaussian and stochastically independent. Given that all the remaining
third and fourth multivariate cumulants are 0, this representation implies that the only e¤ect

of increasing K is to add more independent Gaussian components, which in turn add more 0

(co-)skewness and (co-)kurtosis terms. As a result, the non-centrality parameter of the second

test remains the same as K grows, while the number of degrees of freedom increases, which

results in a loss of power.

The main advantage of these three tests is that their asymptotic distribution under the null

hypothesis is chi-square with as many degrees of freedom as moments involved. In contrast, the

test in Proposition 1 has a non-standard asymptotic distribution, which it shares with the LR

test. In principle, we could bound this asymptotic distribution from below by the univariate

skewness test of any linear combination of the observed series, including the margins, which

converges to a �21 for �xed �. Similarly, we could bound it from above by the skewness component

of Mardia�s (1970) multivariate normality test, which converges to a �2K(K+1)(K+2)=6. However,

those bounds become increasingly loose as K increases. As we explained in the previous section,

though, in practice we can easily compute by simulation very good approximations to the exact

critical values under the null for any n and K.

As alternative hypotheses, we keep 'M = 0 and �('V ) = IN but consider

#0 =

 p
3

2
;

p
3

2

!
(Ha1) and #0 =

 r
3

10
; 2

r
3

10

!
(Ha2)

2We can prove that Hkkk(y;'M ;'V ) / H3(z
�
k), where z

�
k is the residual in the theoretical regression of yk on

a constant and the remaining elements of y divided by the standard error from that regression, so that the tests
in 1) and 3) will only be asymptotically equivalent under the null when the original variables are orthogonal to
each other, as in our simulations.
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in the bivariate case, and

#0 =

 p
2

2
;

p
2

2
;

p
2

2

!
(Ha1) and #0 =

�
1p
6
;
2p
6
;
2p
6

�
(Ha2)

in the trivariate one. All these distributions are such that the skewness coe¢ cient of the linear

combination of the observed variables that absorbs all the skewness in the canonical represen-

tation is
p
3=2. Consequently, the power of our proposed test should be the same for each

combination of n and K regardless of the value of #. The same is true of Mardia�s (1970) test

but not of the other two.

Panels A and B of Table 1 report the results for bivariate and trivariate models, respectively.

The �rst three columns contain rejection rates under the null at the 1%, 5% and 10% levels,

con�rming that our simulated critical values work remarkably well for both sample sizes.3

In turn, the last six columns present the rejection rates at the 1%, 5% and 10% levels for

the alternatives we consider. The �rst thing we observe is that the powers of both GET and

Mardia�s (1970) tests are e¤ectively identical for Ha1 and Ha2 for each combination of n and K,

unlike what happens to the other two tests.

More importantly, our proposed test is more powerful than the third test above for all

alternatives. It also beats by far the test based on the skewness coe¢ cients of the margins.

Interestingly, the skewness component of Mardia�s (1970) test has similar power to ours in the

bivariate case, but it losses power in the trivariate case, as expected from our previous discussion.

Finally, Figure 1a visually con�rms that the Gaussian rank correlation coe¢ cients4 between

the GET and LR test statistics across Monte Carlo samples of size n = 400 and 1,600 generated

under the null are .97 and .98, respectively. The same pattern is also present in the trivariate

case depicted in Figure 1b, which is in line with the asymptotic equivalence result in Proposition

1. Our results also indicate that the LR takes between 12 and 75 times as much CPU time to

compute as GET does. More importantly, we often �nd that the log-likelihood function has

many �at areas under the alternative, which leads the numerical optimization algorithm to stop

at a value below the maximum. In this respect, we �nd that using as starting value for the

skewness direction the � that maximizes GETn helps.

4 The distribution US city sizes and their growth rates

As we mentioned in the introduction, Eeckhout (2004) forcefully argued that if one looked at

the entire untruncated sample of cities and places in the 2000 US census, their size distribution

was approximately log-normal, in marked contrast to earlier studies. Subsequent papers have

3With 10,000 Monte Carlo replications, the 95% asymptotic con�dence intervals for the Monte Carlo rejection
probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1, 5 and 10% levels.

4The Gaussian rank correlation coe¢ cient between two variables is the usual Pearson correlation coe¢ cient
between the Gaussian scores of those variables, which are obtained by applying the inverse Gaussian cdf transform
to the ranks of the observations on each variable divided by n+1 (see Amengual, Sentana and Tian (2020)). Like
the Spearman correlation coe¢ cient, it is is less sensitive to outliers than the Pearson one.
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analyzed the same issue for other datasets from the US and other countries (see e.g. González-Val

(2019) and the references therein), but they have not typically looked at the joint distribution of

city sizes at two di¤erent points in time. An important advantage of looking at two censuses is

that we can simultaneously study the joint distribution of initial (log) city size and its (geometric)

rate of growth, whose independence is at the core of Gibrat�s law.

We follow the extant literature and treat Alaska, Hawaii and the remaining o¤-shore insular

territories like Puerto Rico separately from the remaining contiguous 48 states in the North

American continent. Changes in boundaries and city names, as well as the creation of new

entities and the dissolution of others, imply that there is no one-to-one relationship between the

entity names and codes in the 2000 and 2010 censuses �les. In practice, though, the di¤erences

are small. Speci�cally, in the 2010 census we can match 24,023 of the 24,670 places that appeared

in the 2000 census. For that reason, we follow Eeckhout (2004) and look at the joint distribution

of the 24,009 matched cities with a population of at least one in both years.

Figures 2a and 2b contain kernel density estimates of the marginal distributions of (log) city

sizes for the contiguous states in 2000 and 2010, together with the best normal approximations

to them, which share their sample means and standard deviations. Although both estimated

densities di¤er from their normal approximations, at �rst sight there is not much evidence of

kurtosis and only some evidence of asymmetries around the mode of the distributions rather than

at the tails. Standard normality tests for univariate distributions con�rm both these impressions.

Speci�cally, the kurtosis of the marginal distributions in the two periods is 3.03 and 2.98, which

are not statistically signi�cantly di¤erent from 3. As acknowledged by Eeckhout (2004) for

the 2000 data, though, the skewness coe¢ cients are positive ( 0.25 and 0.21, respectively) and

statistically signi�cant in view of the large number of observations.

Our main interest, though, is the bivariate distribution. Figure 3 contains a scatter plot of

(log) city sizes for the contiguous states in 2000 and 2010, together with level curves for the

corresponding bivariate kernel density estimate. Clearly, the joint distribution seems far more

non-normal than any of the margins. This is con�rmed by our GET test, which is equal to

1,772,758 with a negligible exact p-value.

Interestingly, we can reverse engineer the fact that our test statistic is the supremum of

the moment tests for skewness of all possible linear combinations of the two log-sizes to �nd

out which linear combination is the most non-normal. Somewhat surprisingly, we �nd that the

transformation of the original variables that maximizes the statistic in the sample has weights

(proportional to) (�1:04; 1), which means that skewness is a feature that is much more clearly
seen in the growth rate of cities than in their (log) sizes.

We con�rm this �nding by looking at the distribution of growth rates between 2000 and

2010 in Figure 4, which is not only far more peaked (kurtosis = 45.09) but also substantially

more asymmetric (skewness = 0.32). We can obtain a complementary perspective on the joint

distribution by looking at the joint distribution of (log) city sizes in 2000 and (geometric)
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growth rates between 2000 and 2010. Although the scatter plot in Figure 5 is a simple linear

transformation of the one in Figure 3 in which the previous 45o degree line has become the new

vertical axis, it arguably makes the non-normality of the joint distribution far more evident.

Our test statistic, though, is invariant to this transformation.

5 Conclusions

In this paper, we have developed a multivariate normality test against skew normal distrib-

utions which is asymptotically equivalent to the LR but only requires estimation under the null.

It overcomes the singularities of the elements of the score vector and Hessian matrix associated

to the shape parameters by working with third-order derivatives. Importantly, we prove that

it coincides with the supremum of the univariate skewness coe¢ cient test over all linear com-

binations of the variables. We also explain how to simulate its exact �nite sample distribution

for any dimension of the random vector and sample size. Our Monte Carlo exercises con�rm its

power advantages over alternative approaches and its computational advantages over the LR.

When we apply it to the joint distribution of US city sizes in two consecutive censuses, we �nd

that non-normality is very clearly seen in their growth rates.

From the theoretical point of view, the development of tests of multivariate normality against

multivariate skewed t distributions provides an interesting avenue for additional research. A

more thorough study of the potential dependence of the distribution of growth rates and initial

city size also deserves further investigation. Similarly, we could study the possibility of using

the test in Proposition 1 to obtain uniform con�dence intervals, as in Bottai (2003).
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Appendices

A Proofs

A.1 Proof of Proposition 1

Given the density of a multivariate skew normal random vector in (1), the contribution of
y to the log-likelihood function is

l(y;%) = const+ T1(y;%) + T2(y;%) + T3(y;%); (A1)

where % = ('0M ;'
0
V ;#

0)0,

T1(y;%) = �
1

2
logfdet[�('V )]g; (A2)

T2(y;%) = �
1

2
(y �'M )0��1 ('V ) (y �'M ); (A3)

T3(y;%) = logf�[#0dg�
1
2 ('D) (y �'M )]g: (A4)

Since the information matrix is repeatedly singular, the �rst thing we do is to express the
model in terms of an alternative set of parameters � = (�0M ;�

0
V ;�

0)0 such that:

'M = �M �
r
2

�

(�V )dg

� 1
2 (�D)�

�('V ) = 
(�V ) +
2

�

(�V )dg

� 1
2 (�D)��

0dg�
1
2 (�D)
(�V )

# = �

where 
(�V ) is a K�K symmetric matrix such that vecd[
(�V )] = �D and vecl[
(�V )] = �L,
with �V = (�

0
D;�

0
L)
0. This one-to-one reparametrization simply concentrates the singularity of

the information matrix on the new skewness parameters so that all the elements of the score
vector and Hessian matrix corresponding to � are zero at once.

We skip the veri�cation of the regularity conditions in Assumption 1 in Amengual, Bei and
Sentana (2021) because they are straightforward. To check that their Assumption 2 holds for
�, in what follows we avoid the complex notation necessary for higher-order matrix derivatives
by letting � = �� for a �xed arbitrary vector � 2 RK , � 6= 0, so that we can simply take higher
order derivatives with respect to the scalar �. Intuitively, the reason is that

�
r0
@rl

(@�)
r
=
drl
d�r

;

where �
r = �
 r: : :
 �| {z } denotes the kth Kronecker power of the vector �, and
@kl

(@�)
k
= vec

(
@

@�

�
@k�1l

@�
(k�1)

�0)
:

In this notation, Assumption 2.1 in Amengual, Bei and Sentana (2021) is equivalent to

�0
@l

@�
= 0; �
20

@2l

(@�)
2
= 0 8�; (A5)

while Assumption 2.2 is equivalent to the matrix�
@l

@'M
;
@l

@'V
;�
03

@l

(@�)
3

�
(A6)
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having full rank 8� 6= 0.
The �rst derivative of (A2) with respect to � is

dT1(y;%)
d�

= �1
2
tr
�
��1('V )

d�('V )
d�

�
= � 2

�
tr[��1('V )
(�V )dg

� 1
2 (�D)��

0dg�
1
2 (�D)
(�V )]�: (A7)

Thus, we have that
dT1(y;%0)

d�
= 0 (A8)

because (A7) is linear in �, where by df(%0)=d� we mean the partial derivative of the function
f(%) with respect to � evaluated at % = %0.

If we derive (A7) with respect to � again, we obtain

d2T1(y;%)
(d�)2

=� 2

�
tr[��1('V )
(�V )dg

� 1
2 (�D)��

0dg�
1
2 (�D)
(�V )]

� 2

�

d tr[��1('V )
(�V )dg
� 1
2 (�D)��

0dg�
1
2 (�D)
(�V )]

d�
�: (A9)

Letting
	(�V ) = dg

� 1
2 (�D)
(�V )dg

� 1
2 (�D); (A10)

we have that

d2T1(y;%0)
(d�)2

= � 2
�
tr[dg�

1
2 (�D)��

0dg�
1
2 (�D)
(�V )] = �

2

�
�0	(�V )�; (A11)

where in the �rst equality we have used the fact that ��1('V )
(�V ) = IK under the Gaussian
null, while the second equality follows from the invariance of the trace of a matrix product to
cyclic permutations of the factors.

We can also show that the derivative of (A9) with respect to � evaluated under the Gaussian
null will be

d3T1(y;%0)
(d�)3

= 0: (A12)

Let
�(%;�;�;y) = �0dg�

1
2 (�D)
 (�V )� ('V )

�1 (y �'M ):
We can easily prove that the �rst derivative of (A3) with respect to � is

dT2(y;%)
d�

=
d'0M
d�

� ('V )
�1 (y �'M )�

1

2
(y �'M )0

d� ('V )
�1

d�
(y �'M )

=�
r
2

�
�(%;�;�;y) +

2

�
�0(%;�;�;y)�(%;�;�;y)�; (A13)

where the second line follows from the fact that

d'0M
d�

= �
r
2

�
�0dg�

1
2 (�D)
 (�V )

and

d��1 ('V )
d�

= ���1 ('V )
d� ('V )
d�

��1 ('V )

= � 4
�
��1 ('V )
 (�V ) dg

� 1
2 (�D)��

0dg�
1
2 (�D)
 (�V )�

�1 ('V ) �:
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Under the Gaussian null, 
 (�V )�
�1 ('V ) = IK and the linear term in � vanishes, so that

dT2(y;%0)
d�

= �
r
2

�
[�0	 (�V )�]

1
2Z~�; (A14)

where

Z~� � [�0	(�V )�]
� 1
2 ~�

0
Z; (A15)

~� = 	
1
2 (�V )�

and
Z = 	� 1

2 (�V )dg
� 1
2 (�D)(y �'M )

in view of (A10). Importantly, the choice of square root matrix 	
1
2 (�V ) is irrelevant.

The derivative of (A13) with respect to � yields

d2T2(y;%)
(d�)2

=�
r
2

�
�0dg�

1
2 (�D)
 (�V )

d
�
��1 ('V ) (y �'M )

�
d�

+
4

�
�0(%;�;�;y)�0dg�

1
2 (�D)
 (�V )

d
�
��1 ('V ) (y �'M )

�
d�

�

+
2

�
�0(%;�;�;y)�(%;�;�;y): (A16)

Since the linear term in � vanishes under the Gaussian null, using (A10) and (A15) we obtain

d2T2(y;%0)
(d�)2

= � 2
�
�0	 (�V )�+

2

�
�0	 (�V )�Z

2
~�
: (A17)

If we then derive (A16) with respect to � and evaluate under the Gaussian null once again,
we can show that

d3T2(y;%0)
(d�)3

=
12

�

r
2

�
[�0	 (�V )�]

3
2Z~�: (A18)

To deal with (A4), let

h(y;%) = �0dg�1=2 ('D) (y �'M ) �;

so that T3(y;%) =log[�(h)]. A straightforward application of the chain rule implies that

dT3(y;%)
d�

=
�(h)

�(h)

dh
d�
; (A19)

d2T3(y;%)
(d�)2

=

�
�(h)

�(h)

�0�dh
d�

�2
+
�(h)

�(h)

d2h
(d�)2

(A20)

and
d3T3(y;%)
(d�)3

=

�
�(h)

�(h)

�00�dh
d�

�3
+ 3

�
�(h)

�(h)

�0 dh
d�

d2h
(d�)2

+
�(h)

�(h)

d3h
(d�)3

; (A21)

where we have omitted the dependence of h on y and % to simplify the notation.
As a consequence, we need to consider the �rst three derivatives of h evaluated under the

Gaussian null. The �rst one is given by

dh(y;%)
d�

= �0
d dg�

1
2 ('D)

d�
(y �'M ) �

+

r
2

�
�0dg�

1
2 ('D)
 (�V ) dg

� 1
2 (�D)�� + �

0dg�
1
2 ('D) (y �'M ) ; (A22)
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which evaluated under the null yields

dh(y;%0)
d�

=
q
�0	 (�V )�Z~�; (A23)

where we have used (A10) and (A15), as well as the fact that � = 0.
Similarly, the derivative of (A22) with respect to � is

d2h(y;%)
(d�)2

= �0
d2dg�

1
2 ('D)

(d�)2
(y �'M ) � � �0

d dg�
1
2 ('D)

d�
d'M
d�

� + �0
d dg�

1
2 ('D)

d�
(y �'M )

+

r
2

�
�0
d dg�

1
2 ('D)

d�

 (�V ) dg

� 1
2 (�D)�� +

r
2

�
�0dg�

1
2 ('D)
 (�V ) dg

� 1
2 (�D)�

+ �0
d dg�

1
2 ('D)

d�
(y �'M ) +

r
2

�
�0dg�

1
2 ('D)
 (�V ) dg

� 1
2 (�D)�; (A24)

which, evaluated at the null simpli�es to

d2h(y;%0)
(d�)2

= 2

r
2

�
�0	 (�V )�: (A25)

Similarly, the derivative of (A24) with respect to � evaluated under the Gaussian null is

d3h(y;%0)
(d�)3

= 3�0
d2dg�

1
2 ('D)

d�2
(y �'M ) : (A26)

Finally, we can use the fact that

�(h)

�(h)
=

r
2

�
,
�
�(h)

�(h)

�0
= � 2

�
and

�
�(h)

�(h)

�00
=

p
2(4� �)
�3=2

;

together with (A10) and (A15), to show that (A19) and (A23) imply that

dT3(y;%0)
d�

=

r
2

�

q
�0	 (�V )�Z~�: (A27)

In turn, (A20), (A23) and (A25) yield

d2T3(y;%0)
(d�)2

= � 2
�
�0	 (�V )�Z

2
~�
+
4

�
�0	 (�V )�: (A28)

Finally,

d3T3(y;%0)
(d�)3

=
4� �
�

r
2

�
[�0	 (�V )�]

3
2Z3~� �

12

�

r
2

�
[�0	 (�V )�]

3
2Z~�

+ 3

r
2

�
�0
d2dg�

1
2 ('D)

(d�)2
(y �'M ) (A29)

where we have used (A21), (A23), (A25) and (A26).
Given (A1), its �rst order condition with respect to � will be

dl(y;%0)
d�

=
dT1(y;%0)

d�
+
dT2(y;%0)

d�
+
dT3(y;%0)

d�
= 0

by virtue of (A8), (A14) and (A27).
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Similarly,
d2l(y;%0)
(d�)2

=
d2T1(y;%0)
(d�)2

+
d2T2(y;%0)
(d�)2

+
d2T3(y;%0)
(d�)2

= 0

because of (A11), (A17) and (A28). Therefore, we have veri�ed condition (A5), which guarantees
Assumption 2.1 in Amengual, Bei and Sentana (2021).

As for the third derivative, if we combine (A12), (A18) and (A29), we can show that

d3l(y;%0)
(d�)3

=
d3T1(y;%0)
(d�)3

+
d3T2(y;%0)
(d�)3

+
d3T3(y;%0)
(d�)3

=

p
2(4� �)
�
3
2

[�0	 (�V )�]
3
2Z3~� + 3

r
2

�
�0
d2[dg�

1
2 ('D)]

(d�)2
	

1
2 (�V )dg

1
2 (�D)Z

� AZ3~� + B
0Z: (A30)

Therefore, we have also veri�ed condition (A6), so that Assumption 2.2 in Amengual, Bei and
Sentana (2021) holds too.

Finally, we must purge the third derivatives in (A30) of the sampling uncertainty in estimat-
ing the mean vector and covariance matrix under the null. We can do this by orthogonalizing
them with respect to the scores of the �rst and second moment parameters �.

Given that
@l(y;%0)

@'M
= ��1 ('V ) (y �'M ) � CZ

and
@l(y;%0)

@�('V )
=
1

2
��1('V )[Z

0�('V )Z��('V )]��1('V );

it is easy to see that the e¤ects of estimation uncertainty only come through 'M . As a conse-
quence, we will have that the adjusted variance of d3l(y;%0)=(d�)

3 will be given by

Vadj =V� � V��MV
�1
'M
V'M�

=V ar
�
AH3(Z~�) + B

0Z
�

� cov
�
AH3(Z~�) + B

0Z; CZ
�
V ar�1 (CZ) cov(CZ;AH3(Z~�) + B

0Z)

=A2V ar(Z3~�)
=6A2:

On this basis, Theorem 1 in Amengual, Bei and Sentana (2021) implies that

LRn =
1

6
sup~�6=0

"
nX
i=1

H3

 
~�
0p
~�
0~�
Zi

!#2
+Op(n

� 1
6 );

as desired. �

A.2 Proof of Proposition 2

Let e denote an a¢ ne transformation of the observed variables whose sample mean vector
and covariance matrix are 0 and IK , respectively. It is easy to see that e can also be written as
an a¢ ne transformation of y� = a+By. Hence, expression (2) implies that the tests based on
y and y� are numerically the same. �
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B Computational details of the simulations

We simulate n random draws from the multivariate skew normal distribution in (1) using
the following rejection sampling method. First, we simulate x � N ['M ;�('V )] together with
an independent scalar random variable u with a uniform distribution between 0 and 1. If

u � �
h
#0dg�1=2 ('D) (x�'M )

i
, then y = x, otherwise we discard it.

Arellano-Valle and Azzalini (2008) introduce an alternative parametrization of the multi-
variate skew normal distribution, which they call the central parametrization, such that the
parameters of interest coincide with the means, variance and covariances of the observed vari-
ables, as well as their marginal skewness coe¢ cients. They go from the original parametrization
('M ;'V ;#) to the central one in two steps. First, they consider an intermediate vector of
parameters such that

� = E(y) = 'M + � ;

�(�) = V (y) = �('V )� �� 0;

� =

r
2

�
dg1=2('D)�

where

� = [1 + #0	('V )#]
�1=2	('V )#;

	('V ) = dg�1=2('D)�('V )dg
�1=2('D)

and � = (�0D;�
0
L)
0, with �D = vecd[�(�)] and �L = vecl[�(�)]. This reparametrization is

a one-to-one mapping with a non-zero Jacobian determinant even at the Gaussian null. In
addition, it is easy to prove that the scores corresponding to � evaluated at � = 0 coincide
with the scores corresponding to 'M evaluated at # = 0, the same being true of the scores
for � and 'V . This is not entirely surprising in view of the fact that 'M and �('V ) directly
yield E(y) and V (y) under normality. In contrast, all the elements of the score vector and
Hessian matrix corresponding to � are 0 when evaluated at � = 0, thereby achieving the goal
of con�ning the singularities to those elements, as in the proof of Proposition 1. Nevertheless,
the third derivatives are no longer 0. Speci�cally,

@3l

@�3k

����
�=0

=
4� �
2

Hkkk[y;�;�(�)] +
12

(1�R2k)�D;k
s�k
��
�=0

; (B31)

where Hkkk[y;�;�(�)] is one of the K(K +1)(K +2)=6 third-order multivariate Hermite poly-
nomials in (3) and R2k is the coe¢ cient of determination in the regression of yk on a constant
and the remaining elements of y.

Next, Arellano-Valle and Azzalini (2008) replace each �k with the corresponding marginal
skewness coe¢ cient

k =
E(yk � �k)3

�
3=2
D;k

=
4� �
2

�
�kp
�D;k

�3
:

The problem with this reparametrization is that its �rst and second derivatives are 0 under
the Gaussian null, but this is precisely the trick that Lee and Chesher (1986) used to re-interpret
their extremum test as an LM test in the case of a single parameter. Speci�cally, after applying
L�Hopital�s rule twice, the score of k evaluated at  = (1; : : : ; K)

0 = 0 is

@l

@i

����
=0

=
�D;k
6
Hkkk[y;�;�(�)] +

4�D;k
(4� �)(1�R2k)

s�k
��
=0

; (B32)
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which is proportional to (B31). Once we purge these derivatives from the e¤ects of estimating
the sample mean vector and covariance matrix by regressing them on the scores with respect to
� and � and retaining the residuals, we end up with the moment test based on Hkkk[y;�;�(�)]
for k = 1; : : : ;K.

Clearly, this procedure ignores all the other K(K � 1)(K + 4)=6 third cross-derivatives of �
and , which depend on the remaining third-order multivariate Hermite polynomials in (3).
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Table 1: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
multivariate Gaussian versus skew normal test

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Bivariate
n = 400

GET 1.0 4.9 10.2 9.9 24.2 35.3 10.1 25.0 35.8
LM-AA 0.9 5.0 9.9 5.5 16.4 26.2 8.8 22.4 33.3
GMM 1.0 4.9 9.7 9.4 23.7 35.0 9.4 24.5 35.6
Margins 1.1 4.9 10.2 2.1 8.0 15.4 5.3 14.6 23.9

n = 1; 600

GET 1.0 5.3 10.4 61.9 79.4 85.5 61.8 80.4 86.8
LM-AA 1.0 5.2 10.2 30.5 54.5 65.6 47.2 70.4 79.5
GMM 1.0 5.4 9.5 56.5 77.7 85.3 56.1 77.7 85.4
Margins 1.2 5.0 9.8 5.8 16.6 25.3 22.6 43.2 55.5

Panel B: Trivariate
n = 400

GET 0.7 4.5 9.5 6.2 18.5 28.7 5.8 18.2 28.3
LM-AA 1.1 5.2 10.0 3.1 10.5 18.2 3.7 12.6 20.6
GMM 1.1 4.7 9.4 5.6 17.0 26.0 5.5 16.3 25.5
Margins 1.2 5.0 10.0 1.8 6.3 11.4 1.6 6.2 12.1

n = 1; 600

GET 1.0 4.9 10.0 51.6 70.7 79.9 50.6 70.6 80.2
LM-AA 1.2 5.1 9.8 12.4 28.3 39.4 18.2 37.3 48.5
GMM 0.9 4.8 9.4 38.2 61.4 71.8 37.9 61.7 72.1
Margins 1.1 5.0 9.8 2.2 8.1 14.5 3.5 10.5 18.1

Notes: Results based on 10,000 samples. Panel A and B report rejection rates for bivariate and trivariate
models, respectively. The mean and variance parameters 'M and 'V are estimated under the null
using the sample mean and covariance matrix, respectively. LM-AA denotes the Lagrange multiplier
test based on the score of the skewness parameters under the parametrization proposed in Arellano-
Valle and Azzalini (2008). GMM refers to the J-test based on the in�uence functions underlying GET.
Margins denotes tests on marginal skewness �á là Jarque-Bera� for each of the components. Finite
sample critical values are computed by simulation. DGPs: the true mean and covariance matrix of the
generated data are set to 0 and Ik, respectively, under both the null and alternative hypotheses. As for

the alternative hypotheses, in the bivariate case Ha1 : #
0 =

�p
3
2 ;

p
3
2

�
and Ha2 : #

0 =
�q

3
10 ; 2

q
3
10

�
;

while Ha1 : #
0 =

�p
2
2 ;

p
2
2 ;

p
2
2

�
and Ha2 : #

0 =
�
1p
6
; 2p

6
; 2p

6

�
in the trivariate case.
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Figure 1: Alignment of GET and LR under the Gaussian null

Figure 1a: Bivariate case
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Figure 1a: Trivariate case
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Notes: Scatter plots of the GET and LR test statistics based on 10,000 samples. Upper and lower
panels display results for bivariate and trivariate models, respectively. The true mean and covariance
matrix of the simulated Gaussian data are set to 0 and Ik, while the mean and variance parameters 'M
and 'V are estimated under the null using the sample mean and covariance matrix, respectively.
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Figure 2: Marginal distribution of (log) city sizes for US contiguous states

Figure 2a: 2000 US census
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Figure 2b: 2010 US census
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Notes: Kernel density estimates of the marginal distributions of (log) city sizes for the contiguous US
states in 2000 and 2010, together with the best normal approximation to them, which share their sample
means and standard deviations. We follow Eeckhout (2004) in looking at matched cities in both censuses
with a population of at least one in both years and exclude Alaska, Hawaii and the remaining o¤-shore
insular territories like Puerto Rico.
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Figure 3: Bivariate distribution of (log) city sizes for the contiguous states in 2000 and 2010

0 2 4 6 8 10 12 14 16
2000

0

2

4

6

8

10

12

14

16

20
10

Notes: Scatter plot of (log) city sizes for the contiguous states in 2000 and 2010, together with level
curves for the corresponding bivariate kernel density estimate. We follow Eeckhout (2004) in looking
at matched cities in both censuses with a population of at least one in both years and exclude Alaska,
Hawaii and the remaining o¤-shore insular territories like Puerto Rico.
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Figure 4: Distribution of growth rates between 2000 and 2010
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Notes: Kernel density estimates of the marginal distributions of (log) city sizes for the contiguous US
states in 2000 and 2010, together with the best normal approximation to them, which share their sample
means and standard deviations. We follow Eeckhout (2004) in looking at matched cities in both censuses
with a population of at least one in both years and exclude Alaska, Hawaii and the remaining o¤-shore
insular territories like Puerto Rico.
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Figure 5: Joint distribution of (log) city sizes in 2000 and growth rates between 2000 and 2010.
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Notes: Scatter plot of (log) city sizes for the contiguous US states in 2000 and their (geometric) growth
rates between 2000 and 2010, together with level curves for the corresponding bivariate kernel density
estimate. We follow Eeckhout (2004) in looking at matched cities in both censuses with a population of
at least one in both years and exclude Alaska, Hawaii and the remaining o¤-shore insular territories like
Puerto Rico.
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