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REVEALED PRICE PREFERENCE: THEORY AND EMPIRICAL ANALYSIS

RAHUL DEBY, YUICHI KITAMURA', JOHN K.-H. QUAH?, AND JORG STOYE*
APRIL 22, 2021

ABSTRACT. To determine the welfare implications of price changes in demand data, we
introduce a revealed preference relation over prices. We show that the absence of cycles in
this relation characterizes a consumer who trades off the utility of consumption against the
disutility of expenditure. Our model can be applied whenever a consumer’s demand over
a strict subset of all available goods is being analyzed; it can also be extended to settings
with discrete goods and nonlinear prices. To illustrate its use, we apply our model to a
single-agent data set and to a data set with repeated cross-sections. We develop a novel
test of linear hypotheses on partially identified parameters to estimate the proportion of
the population who are revealed better off due to a price change in the latter application.
This new technique can be used for nonparametric counterfactual analysis more broadly.

1. INTRODUCTION

A central question in economic analysis is the determination of the welfare effect of
price changes. As an example, suppose we observe a consumer’s purchases of two goods,
gasoline and food, from two separate trips to a grocery store with an on site gasoline
retailer. In the first instance ¢, the prices are p' = (2,2) of gasoline and food respectively
and she buys a bundle x! = (6,3). In her second trip #/, the prices are p!’ = (3,1) and she
purchases x!' = (5,4). The most basic welfare question one can ask here is whether the
consumer is better off at the prices prevailing at ¢ or at ¢’ (keeping fixed the prices of all
other goods she consumes)? In this paper, we introduce a theoretical framework based
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2 DEB, KITAMURA, QUAH, AND STOYE

on revealed preference, along with a nonparametric econometric technique, that would
allow us to answer questions of this type.

A typical approach to this problem is to model the consumer as having a quasilinear
utility function U(x) — p - x since, in particular, this allows for simple “sufficient statis-
tics” analysis of welfare gains or losses using a Harberger formula (see Chetty (2009) and
most recently Kleven (2021) for an overview of this approach). Of course, the second
term (—p - x) in the quasilinear utility function captures the fact that the goods being an-
alyzed (food and gasoline in our simple example) do not constitute the universe of the
consumer’s consumption; expenditure lowers utility because it reduces the consumption
of an outside (numeraire) good.

The point of departure of our analysis is the following simple observation. Without
having to model the consumer’s preference as quasilinear (or taking any other specific
functional form) we can still conclude that she is better off at t compared to #'. This is
because p - x!' = 19 whereas p' - x!' = 18. In other words, if the prices prevailing at
were p' instead of p , the consumer would be better off since purchasing the same bundle
x! would cost less, leaving the consumer with more money to buy other goods (outside
the set of goods analyzed).! More generally, the consumer has a preference over prices that
an analyst could at least partially discern from the data: if at observations t and t/, we
find that p! - x' < (<)p - x*, then

the consumer has revealed that she (strictly) prefers the price p* to the price p*.
Welfare comparisons made in this way will only be consistent if the revealed preference
relation over prices is free of cycles, a property we call the generalized axiom of price prefer-
ence (GAPP). This leads inevitably to the following question: precisely what does GAPP

mean for consumer behavior?

Augmented Utility Functions: To answer this question, we assume that the analyst col-
lects a data set D = {p!,x'}I_; from a consumer; each observation t consists of the prices
pt € RL, of L goods (representing some but not all the goods she consumes) and the
consumer’s demand x! € IKLF at those prices. We show that GAPP (on D) is both neces-
sary and sufficient for the existence of a strictly increasing function U : Rf x R_ — R
that rationalizes D in the following sense:

x' € argmax U(x, —p' - x) forallt =1,2,.., T.
xelRﬁ_
The function U should be interpreted as an expenditure-augmented utility function, where
U(x, —e) is the consumer’s utility when she acquires x at the cost of e. It recognizes

1 Another way of seeing this is the following. Suppose ' is a supermarket where the prices are pt/ and we

observe the bundle x'' being bought by a consumer. If at supermarket ¢, the prices are p’, then we know
that the consumer would prefer this supermarket, since the same purchases at ' would cost less at ¢.
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that the consumer’s expenditure on the observed goods is endogenous and dependent
on prices: she could in principle spend more than what she actually spent (note that she
optimizes over x € RL) but the trade-off is the dis-utility of greater expenditure. Note
that the quasilinear utility function U(x, —p - x) = U(x) — p - x is a special case of an
augmented utility function.

The augmented utility model has a number of features that makes it widely applicable
and easy to use. We highlight a few of them.

(1) Being more general than the quasilinear model, it does not have some of its overly
strong implications on the structure of consumer demand (see Section 2.3). In particular,
it is broad enough to accommodate phenomena emphasized in the behavioral economics
literature, such as reference dependence, mental budgeting and inattention to prices. We
briefly describe the first of these here, a more detailed discussion can be found in Section
2.4. Készegi and Rabin (2006) and Heidhues and K&szegi (2008) argue that consumption
decisions can depend not just on the actual prices but also on the prices the consumer
expected to pay. Specifically, the disutility from spending is greater if the expected price
was lower than the sticker price and vice versa. A simple way they propose of capturing
this phenomenon is the following function

U(x, —px) = U(x) —p-x—F(p-x—p-x).

The first two terms capture standard quasilinear preferences whereas the third term cap-
tures a general form of reference dependence.” In Koszegi and Rabin’s terminology, the
consumer gets “gain-loss utility” by comparing the expenditure p - x she incurs on a bun-

dle x against the expenditure i - x she expected to incur, where f are her reference prices.?

(2) In this model, a consumer’s utility at prices p is given by maXx, gL U(x,—p - x),
which obviously leads to a ranking or preference on prices. Going further, it is possible to
develop notions analogous to compensating and equivalent variations, which gives us a
quantitative sense of how much one set of prices is ranked above another and could form
the basis for interpersonal comparisons (see Section 3.3).

(3) Readers familiar with Afriat’s Theorem (Afriat, 1967) will no doubt have already
noticed that we are working in a similar framework. That theorem characterizes a data
set D = {p',x'}]_; that could be rationalized in the following sense: there is u : RL —
R such that U(x*) > U(x) for all x € RL that satisfy p'-x < p'-x!. The notion of
rationalization in our model is distinct from that in Afriat’s Theorem (even the utility

%For a related model of reference prices leading to a similar functional form, see Sakovics (2011).

3A common choice for Fis F(p - x — p - x) = max{k(p - x — p-x),0} + min{k(p - x — p - x),0} where it is
typically assumed that k > k > 0 or that the consumer feels losses relative to the reference point more
severely than commensurate gains.
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functions have different domains) and there are data sets that could be rationalized in

one sense but not the other. We explain these differences in Sections 2.2 and 3.1.
Empirical researchers who apply Afriat’s Theorem must contend with cases where a

data set is not exactly rationalizable. They have developed an easily interpretable way of
measuring how close a data set is to being rationalized known as the critical cost efficiency
index. In Section 3.4 we develop a similarly intuitive index that should facilitate empirical

applications of the augmented utility model.
(4) Our notion of revealed preference over prices is not simply applicable to a Euclidean

consumption space. It applies even when goods can only be consumed in discrete quan-
tities (as is often the case in empirical IO models) or when they are represented by char-
acteristics. Furthermore, when prices are nonlinear, it is still possible to compare price
systems by asking if an agent could replicate the purchases under one system in another
price system. Requiring non-cycling comparisons in this case leads to a natural extension
of GAPP and the augmented utility model, which we explain in Section 4.

Random Augmented Utility Model (RAUM): In the second part of the paper, we de-
velop the random version of the augmented utility model, in order to study the demand
distribution of a population of consumers drawn from repeated cross-sectional data. We
tirst devise a test to check if the data are consistent with the RAUM. We then develop a
procedure to estimate the proportion of consumers who are made better or worse off by
a given change in prices; welfare analysis of this kind under general preference hetero-
geneity is a challenging empirical issue, and has attracted considerable recent research

(see, for example, Hausman and Newey (2016) and its references).
Unlike the case of data collected from a single individual, it is worth noting that, in this

case, both model testing and welfare analysis are statistical since we need to account for
sampling error inherent in repeated cross sectional data. Our RAUM test uses existing
(though recently developed) econometric methods. On the other hand, to carry out the
welfare analysis, we develop new theoretical econometric results; it is worth stressing

that this is a stand alone contribution that has applications beyond this paper.
For reasons we shall now explain, testing the RAUM on actual repeated cross-sectional

data (such as household survey data) turns out to be a lot more straightforward than
testing the random version of the standard budget-constrained utility model where the
population is required to be rational in the sense of Afriat’s Theorem (defined earlier). We
refer to the latter model as RUM (random utility model) for short. The test for RUM is
broadly set out in McFadden and Richter (1991), but two challenges must first be over-
come. First, McFadden and Richter (1991) do not account for finite sample issues as they
assume that the econometrician observes the population distributions of demand; this
hurdle was recently overcome by Kitamura and Stoye (2018) who develop a testing pro-
cedure which incorporates sampling error. Second, the test suggested by McFadden and
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Richter (1991) requires the observation of large samples of consumers who face not only
the same prices but also make identical total expenditures. This feature is not true of any
real observational data where a consumer’s demand (and thus total expenditure) on a
set of observed goods will typically be price dependent. Thus to implement their test,
Kitamura and Stoye (2018) need to first estimate demand distributions at a fixed level of
(median) expenditure, which requires the use an instrumental variable technique (with all
its attendant assumptions) to adjust for the endogeneity of observed total expenditure.

In contrast, the RAUM can be tested directly on household survey data, even when the
demand distribution at a given price vector implies heterogenous levels of total expenditure
across consumers.* This allows us to estimate the demand distribution by simply using
sample frequencies and we can avoid the above-mentioned additional layer of demand
estimation needed for testing RUM.

The reason for this remarkable simplification is somewhat ironic: we show that a data
set is consistent with the RAUM if, and only if, a converted version of the data set (which
results in identical expenditures at each price) of the type envisaged by McFadden and
Richter (1991) passes the RUM test suggested by them. In other words, we apply the
test suggested by McFadden and Richter (1991), but not for the model they have in mind.
This trick also means that we can use, and in a more straightforward way, the econometric
techniques in Kitamura and Stoye (2018).

Assuming that a data set is consistent with our model, we can then evaluate the welfare
impact of an observed change in prices. Indeed, if we observe the true distribution of
demand at each price, it is possible to impose bounds (based on theory) on the proportion
of the population who are revealed better off or worse off following an observed change in
prices. Of course, when samples are finite, these bounds instead have to be estimated. To
do so, we develop new econometric techniques that allow us to form confidence intervals
on the proportion of consumers who are better or worse off; these techniques build on the
econometric theory in Kitamura and Stoye (2018) but are distinct from it.

We emphasize that these new econometric techniques can be more generally applied to
linear hypothesis testing of parameter vectors that are partially identified, even in models
that are unrelated to demand theory (see, for example, Lazzati, Quah, and Shirai (2018)).
They provide a new method for estimation and inference in nonparametric counterfactual
analysis and, since the evaluation of counterfactuals is an important goal of empirical
research, they are potentially very useful to practitioners.

Empirical Applications: We use separate data sets to demonstrate how welfare analysis
can be done using both the deterministic and random versions of our model. First, we

4A bit more formally, it is possible for two demand bundles x and x’ in the support of the demand distri-
bution when prices are p' to satisfy p' - x # p' - x'.
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use the deterministic augmented utility model to analyze panel data from the Mexican
conditional cash transfer program Progresa. Recently, Attanasio and Pastorino (2020)
showed that sellers responded to these transfers by altering the nonlinear prices they
charge for staples. We focus our analysis on the untreated households that did not receive
cash transfers; we show, via revealed preference over the nonlinear price systems, that
these households have tended to benefit from the price changes that occurred during the
observation period. This is consistent with the finding in Attanasio and Pastorino (2020)
that the change in the wealth distribution induced by Progresa led to larger quantity
discounts (which favored the untreated households because they are usually better-off
and consumed more).

Finally, we show how the RAUM can be used to estimate the welfare impact of the
changes in observed prices in repeated cross-sectional data. Specifically, we take the
model to two separate national household expenditure data sets from Canada and the
UK. and show that we can meaningfully estimate bounds on the percentage of house-
holds who are better and worse off. Even though these bounds are typically only partially
identified, the estimated bounds are almost always narrower than ten percentage points
and often substantially narrower than that. This demonstrates how to operationalize our
novel econometric methodology to conduct inference for counterfactuals.

2. THE DETERMINISTIC MODEL

We consider an econometrician who is studying a consumer’s demand for L goods. We
assume an idealized environment suitable for partial equilibrium analysis, where the con-
sumer’s demand for these goods at different prices are observed, while the consumer’s
wealth and the prices of other goods are held fixed.’

Specifically, the econometrician collects a data set with a finite number of observations;
each observation t can be represented as (p!, x!), where p' € RL | are the prices of the L
goods and x* € RL is the bundle of those goods purchased by the consumer.® We denote
the data set by D := {(p',x")}L,. (We shall slightly abuse notation and use T to refer
both to the (finite) number of observations and to the set {1,...,T}; similarly, L could
denote both the number, and the set, of commodities.)

We begin with a basic question: given D, can the econometrician sign the welfare im-
pact of a price change from p' to p!'? Perhaps the most intuitive welfare comparison that
can be made in this setting is as follows: if at prices p!', the econometrician finds that
pt
compared to pt. This is because, at the price pt/ the consumer can, if she wishes, buy

".xt < p'- x! then he may conclude that the agent is better off at the price vector p'

SUnder fairly standard (but strong) assumptions, changes to the external environment can be precisely
justified by deflating the prices of the L goods (see Section 3.5).

oWe postpone the discussion of discrete consumption spaces and nonlinear pricing to Section 4.
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the bundle bought at p' and she would still have money left over to buy other things, so
she must be strictly better off at p!. This ranking is eminently sensible, but can it lead to
inconsistencies?

Example 1. Consider a two observation data set
pt=(2,1), x' = (4,0) and p" = (1,2), x' = (0,1).

Since p!' - x! < p'- x!, it seems that the consumer is better off at prices p! than at p';
however, it is also true that p - x > p' - x', which gives the opposite conclusion.

This example shows that for an econometrician to be able to consistently compare the
consumer’s welfare at different prices, some restriction has to be imposed on the data set.
To be precise, define the binary relations >, and >, on P := {p'},cr, that is, the set of
price vectors observed in D, in the following manner:

Pl (mp)ptif et < (<)p' Al

We say that price p' is directly (strictly) revealed preferred to pt if p' =, (=,)p', that is,
whenever the bundle x! is (strictly) cheaper at prices p!’ than at prices p!. We denote the
transitive closure of =, by =, that is, for ptl and p' in P, we have pt/ = p! if there
are t1, ts,...,ty in T such that pf/ =p p't, plt =y p2,., pIN-1 =, p'N, and p'N =, pfin
this case we say that p!" is revealed preferred to p'. If anywhere along this sequence, it is
possible to replace =, with >, then we say that p is revealed strictly preferred to p* and
denote that relation by p' 7 pt.” The following restriction, which excludes circularity in
the econometrician’s assessment of the consumer’s wellbeing at different prices, is a bare
minimum condition to impose on D.

Definition 2.1. The data set D = {(p', x')}L_, satisfies the Generalized Axiom of Price Pref-
erence or GAPP if there are no observations t, ¢’ € T such that p* = p* and p' > p"".

This in turn leads naturally to the following question: if a consumer’s observed de-
mand behavior obeys GAPP, what could we say about her decision making procedure?

2.1. The Expenditure-Augmented Utility Model

An expenditure-augmented utility function (or simply, an augmented utility function) is a
function U : RL x R_ — R, where U(x, —e) is the consumer’s utility when she spends
e to purchase the bundle x. We require that U(x, —e) is strictly increasing in the last
argument (in other words, utility is strictly decreasing in expenditure), which captures the
Notice that it makes sense to write p =p p' evenif p is not in P, since the demand at p is not needed in

the definition revealed preference. Similarly, it is possible to define p -, p' and the transitive extensions
P p'and p =7 p'. This observation is useful later on, in Sections 3.3 and 5.3. .
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tradeoff the consumer faces between consuming x and consuming other goods (outside
the set L).

At a given price p, the consumer chooses a bundle x to maximize U(x, —p - x). We
denote the indirect utility at price p by

V(p) := sup,cpe U(x, —p - x). (1)

If the consumer’s augmented utility maximization problem has a solution at every price
vector p € IR_% ., then Vis also defined at those prices and this induces a reflexive, transi-
tive, and complete preference over prices in RE | .

A data set D = {(p', x")} L, is rationalized by an augmented utility function if there exists
such a function U : Rl x R_ — R with

xt e argmax, .. U(x, —p"-x) forallt € T. (2)

It is straightforward to see that GAPP is necessary for a data set to be rationalized by
an augmented utility function. First, notice that if pt/ >, p', then pt/ ~xb < p'-xl, and so

V(p') > U, —p' -2 > U, —pt - xt) = V(ph).

Furthermore, U (x!, —p' - x') > U(x!, —p' - x*) if p"" =, p', and in that case V (p') > V(p').
Suppose GAPP were not satisfied and there were two observations ¢, € T such that
pt/ it pt and p! = pt/. Then there would exist t1, 5, ..., tn € T such that

V(') 2 V(ph) = 2 V() 2 V(ph) > V(Y
which is impossible.

Our main theoretical result, which we state next, also establishes the sufficiency of
GAPP for rationalization. Moreover, the result states that whenever D can be rational-
ized, it can be rationalized by an augmented utility function U with a list of properties
that make it convenient for analysis.

Theorem 1. Given a data set D = {(p', x')}L_,, the following are equivalent:

(1) D is rationalized by an augmented utility function.

(2) D satisfies GAPP.

(3) D is rationalized by an augmented utility function U that is strictly increasing, continu-
ous, and concave. Moreover, U is such that maX,c gL U(x, —p - x) has a solution for all

peERL,.
2.2. Afriat’s Theorem and Proof of Theorem 1

Before presenting the proof of Theorem 1, it is worth providing a short description of
the standard theory of revealed preference and, Afriat’s Theorem, its central result. This
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will be useful not just because we will invoke the result several times but also since it will
serve as an important point of contrast for our axiom and results.

The standard theory due to Afriat (1967) is built formally on the same primitives as
our model: a finite data set of prices and corresponding consumption bundles. Unlike
our model however, it is assumed that the observed goods correspond to the universe of
the consumer’s consumption. Formally, a data set D is said to be rationalized by a utility
function if there exists a locally nonsatiated® utility function U : RE — R such that

= AUGMAX [ (R ptr<ptxt} U(x) forallt € T. (3)

In words, this criterion asks whether there is a utility function defined over the L observed
goods such that the consumer is utility maximizing at every observation t over the fixed
budget p' - x' corresponding to the observed expenditure.

Of course, data sets (outside of laboratory data) almost never contain the universe of
consumed goods and the consumer’s true budget set is not observed, especially when one
takes into account the possibility of borrowing and saving. Given this, when checking if
a data set D can be rationalized in the sense of (3), we are effectively testing whether the
consumer is maximizing a sub-utility function U : R — R defined specifically on those
L goods (or equivalently, has weakly separable preferences).

It should be clear that rationalization in the sense of (3) is distinct from rationalization
by an augmented utility function. The augmented utility model specifically takes into
account the impact of the prices of these L goods on the consumption of other goods; it
is necessarily a partial equilibrium model, and designed for partial equilibrium welfare
analysis of the type carried out in empirical industrial organization or public economics.
An example is the study of the welfare impact of a sales tax levied on a subset of goods.

It is possible that a data set D can be rationalized in both senses, but that does not
hold in general. The precise conditions needed for rationalization by a utility function are
given by Afriat’s Theorem, which we now describe.

Revealed preference in Afriat’s setting is captured by two binary relations, >, and >
which are defined on the set of chosen bundles observed in D, that is, the set X' :=
{x'};eT, as follows:

e () 2t pt x> () P x
We say that the bundle x*' is directly revealed (strictly) preferred to x* if x!' =, () x!, that
is, whenever the bundle x! is (strictly) cheaper at prices p! than the bundle x*. This ter-
minology is intuitive: if the agent is maximizing some locally nonsatiated utility function
U:R: — R, then x!’ =, xf (x =y xf) must imply that U(x!) > (>) U(xt).

8This means that at any bundle x and open neighborhood of x, there is a bundle x’ in the neighborhood
with strictly higher utility.
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We denote the transitive closure of =, by =7, that is, for xt and x! in X , we have
xt" =% xt if there are t, fy,...,ty in T such that x!' =, x!1, xft = xf2, . xIN-1 = xIN = xf,
and x'V >, x; in this case, we say that x' is revealed preferred to x'. If anywhere along
this sequence, it is possible to replace =, with >, then we say that xt" is revealed strictly
preferred to x! and denote that relation by x* >=* x!. Clearly, if D is rationalizable by some
locally nonsatiated utility function U, then x!" =% (=*) x! implies that U (x!) > (>) U(x").
This observation in turn implies that a necessary condition for rationalization by a utility
function is that the revealed preference relation has no cycles.

Definition 2.2. A data set D = {(p’,x")} L, satisfies the Generalized Axiom of Revealed
Preference or GARP if there are no observations £, € T such that x* >* x and x! ~* x*"

The main insight of Afriat’s Theorem is to show that this condition is also sufficient (the
formal statement can be found in the online Appendix A.1.1).

Having described Afriat’s Theorem, we are now in a position to prove Theorem 1.

PROOF OF THEOREM 1. We will show that (2) = (3). We have already argued that
(1) = (2)and (3) == (1) by definition.

Choose anumber M > max; p' - ' and define the augmented dataset D = {(p!,1), (x!, M —
p!-x')}L,. This data set augments D since we have introduced an L + 1% good, which we
have priced at 1 across all observations, with the demand for this good equal to M — p' - x'.

The crucial observation to make here is that

(p', 1) (xt, M — pt-x) > (p', 1) (", M — p" - x') ifand only if p' - ' > p' - x¥,
which means that
(x', M —pt-xt) = (x¥,M — p* - x") if and only if p' =, p".
Similarly,
(p',1)(xt, M —pt-x) > (p', 1) (", M — p" - &) ifand only if p' - ' > p! - x¥,

and so

(x', M —p' - x') = (x',M — p" - x"") if and only if p' =, p"".
Consequently, D satisfies GAPP if and only if D satisfies GARP. Applying Afriat’s Theo-
rem when D satisfies GARP, there is U : RET! — R (notice that U is defined on RET! and
not just ]lerl ; see Remark 3 in Appendix A.1.1) such that

(xt, M—p'-xt) € argmax , ;) eRL xR : ptx+m<M)} U(x,m) forallt € T. 4)

The function U can be chosen to be strictly increasing, continuous, and concave, and the
lower envelope of a finite set of affine functions. Clearly, the augmented utility function



REVEALED PRICE PREFERENCE 11

U : RY x R- — R defined by U(x, —¢) := U(x, M — e) is strictly increasing in (x, —e),
continuous, concave and rationalizes D.
Define U : RY x R_ — R by

U(x, —e) := U(x, —e) — h(max{0,e — M}), (5)

where h : Ry — R is a differentiable function satisfying h(0) = 0, h’(k) > 0, h” (k) > 0 for
k € Ry, and limy_,o, 1’ (k) = oo. (For example, i(k) = k°.) Like U, the function Uis strictly
increasing in (x, —e), continuous and concave and x solves Max, gL U(x, —p'x) (because
U(x, —e) < U(x, —e) for all (x, —e), and U(x!, —p* - xt) = U(x!, —p' - x')). Furthermore,
for every p € RY,, argmax_ .y U(x, —p - x) is nonempty.” ]

We end this section by noting that GARP imposes testable restriction distinct from
GAPP. This is immediate from Example 1 and can be seen from Figure 1 which plots
not just the observed consumption bundles but also the corresponding budget sets (de-
rived from the observed prices and expenditures). As we argued, GAPP does not hold

FIGURE 1. Choices that do not allow for consistent welfare predictions but
satisfy GARP.

in this example but, since the budget sets do not even cross, it is immediate to conclude
that GARP does. We defer the description of the exact relation between the two criteria
to Section 3.1.

9Choose a sequence x" € R% such that U(x", —p - x") tends to SUP, gL U(x, —p - x) (which we allow to be
infinity). It is impossible for p - x™ — co because the piecewise linearity of U(x, —e) in x and the assumption
that limy_,, 1/ (k) — oo implies that U(x", —p - x*) — —o0. So the sequence p - x" is bounded, which in turn
means that there is a subsequence of x" that converges to x* € RL. By the continuity of U, we obtain
U(x*, —p-x*) = SUP.eRL U(x,—p-x).
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From this point onwards, when we refer to ‘rationalization” without additional quali-
fiers, we shall mean rationalization by an augmented utility function, that is, in the sense
given by (2) rather than in the sense given by (3).

Up to now, we have motivated our model by showing that it is the utility representation
of a basic axiom requiring consistent price comparisons. In the next two subsections,
we provide direct motivation for the augmented utility function itself by arguing that it
contains, as special cases, several distinct (standard and behavioral) preference-modeling
approaches.

2.3. 'Standard’ consumer theory and the augmented utility function

Perhaps the clearest motivation for our model is to think of it as a generalization of the
quasilinear utility model, in which the consumer derives utility U(x) from the bundle x
and maximizes utility net of expenditure, that is, she chooses x to maximize

U(x,—e) :=U(x) —e, (6)

where e = p - x. There is a familiar textbook way of justifying this objective function by
fitting it within the constrained optimization model of standard consumer theory. This
is to think of the consumer as having a utility function U defined over L + 1 goods, with
the last ‘outside” good entering additively and linearly into the utility function, so that
U(x,z) = U(x) 4 z. Assuming that the consumer has a total wealth of W, the utility of
purchasing a bundle x € R} is then

Ux,W—p-x)=U(x)—p-x+W.

Ignoring boundary issues, the consumer is effectively maximizing (6).

Even though the quasilinear model is widely used in partial equilibrium analysis, it is
well known that the complete absence of income effects makes it unsuitable for certain
empirical applications. For this reason, it is also common to remove the linear structure
on U while retaining the assumption that all outside consumption opportunities can be
represented by a single outside good; this is true, for example, in the literature on model-
ing the demand for differentiated goods.!’ In this case, the utility of purchasing a bundle
X € lREr is U(x, W — p - x); notice that, provided W is fixed, we can think of the consumer

as maximizing an augmented utility function: simply let U(x, —e) = U(x, W —e).

0oy example, in Berry, Levinsohn, and Pakes (1995) and in Nevo (2000), U is additively separable between
the L goods and the outside good; in the former, the utility of consuming y units of the outside good is a Iny,
for some a > 0, whereas in the latter it is ay (in other words, U is quasilinear). In Bhattacharya (2015), U is
allowed to be a general function defined on L 4 1 goods. In models of differentiated goods, the consumption
space is typically assumed to be discrete rather than R’ , but the augmented utility model is still applicable
in that context (see Section 4).
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Obviously, a consumer’s outside consumption opportunities would in reality involve
more than one good, and the prices of those outside goods could change as well. Within
the familiar constrained-optimal model of consumer theory, there are known conditions
that justify the representation of those consumption opportunities by a representative
good (with its corresponding price index). This is explained in detail in Section 3.5.

Finally, it is worth mentioning that the augmented utility function could also capture,
as a special case, quasilinear utility maximization subject to certain constraints. One such
example is consumption with a subsistence constraint, which we describe in more detail
in the empirical application in Section 7.1. Loosely speaking, we can capture constraints
on (x, —e) with an augmented utility U (x, —e) that assigns very low values at (x, —e) that
violate the constraint.

2.4. Behavioral preferences captured by the augmented-utility model

The central feature of the augmented utility model is that consumers experience disu-
tility from expenditure. As we explained in the previous subsection, this disutility could
be interpreted in a purely opportunity cost sense — more expenditure on the consumed
goods imply less money available for other goods. In this understanding, the augmented
utility function is a reduced form of a broader "true’ utility function defined on all goods.

However, it is also reasonable to think of the augmented utility function in another
way: that the consumer has — directly — a preference over bundles of the observed L goods
and their associated expenditure, which she has developed as a way of guiding her pur-
chasing decisions. Thus it is the basic object of analysis and not the reduced form of
something more fundamental. This understanding of choice behavior is exploited in the
behavioral economics literature and the following quote from Prelec and Loewenstein
(1998) is effectively a description of the augmented utility function:

each time a consumer engages in an episode of consumption, we assume
she asks herself: “How much is this pleasure costing me?” The answer
to this question is the imputed cost of consumption. This imputed cost is
“real” in the sense that it actually detracts from consumption pleasure.

In this understanding, the disutility of expenditure is still related to opportunity cost, but
the relationship is more flexible than what is permitted in a classical framework."!

In the Introduction, we described one example of behavioral preferences (reference-
dependent preferences) that could be captured by an augmented utility function. In the
remainder of this section, we describe how our model relates to two other prominent
themes in the behavioral literature.

H Another paper that spells out remarkably clearly this approach to modelling consumer decisions is ?,
though the authors primarily have in mind the quasilinear utility model.



14 DEB, KITAMURA, QUAH, AND STOYE

Inattention to Prices and Expenditure

The public economics literature following Chetty, Looney, and Kroft (2009) has ob-
served that consumers often misperceive prices: in their context, shoppers at grocery
stores do not internalize the price effect of taxes. This literature is summarized in a recent
survey by Gabaix (2019) who argues that many behavioral biases often take the form of
inattention. Our model naturally captures a version of the inattention to prices discussed
in Bordalo, Gennaioli, and Shleifer (2013) and Gabaix (2014). Here a consumer faced with
a price p perceives the expenditure associated with a bundle x as f(x, p - x), where f is
increasing in the true expenditure p - x and could potentially depend on x. With this
misperception, and assuming that the consumer has a quasilinear preference, she then
chooses x € Rk to maximize

U(x,—p-x) = U(x) = f(x,p-x) 7)
A special case of this model is where a consumer has a default price p? and misperceives
the actual price p to be ap + (1 — a)p? where a € [0,1] is the “attention parameter.” The
perceived expenditure is then f(x, p-x) = ap-x + (1 —a)p? - x. More generally, the model

accommodates f(x,p-x) = a(x)p-x + (1 —a(x))p*

- x, where the attention parameter
a(x) € [0,1] varies across bundles.'? This is a natural extension since, among other things,
it allows a consumer to be more attentive to her actual expenditure if she is purchasing
large bundles compared to small ones (so that a(x) tends to 1 when x is large). Yet another
possibility is that the consumer is not completely sensitive to every dollar increase in
expenditure but pays more attention only when certain thresholds are crossed; this would
correspond to the case where f depends only on the expenditure ¢ = p - x and has the
shape of a step function of expenditure.

Clearly, inattention as modeled by (7) is an instance where the agent has an augmented
utility function, even though it will typically not be quasilinear (in actual expenditure).

It is also worth mentioning that using an augmented utility function (such as (7)) to
capture price inattention is particularly apt because, as Gabaix (2014) notes, the numeraire
serves as “the shock absorber that adjusts to the budget constraint.” The alternative is to
model the consumer as having both price misperception over a given set of goods and a
budget on those goods that must be satisfied, which inevitably leads to the added com-
plication of modelling how the agent adjusts her intended demand when she realizes it

violates (because prices are misperceived) the budget constraint at the true prices."

12This formulation of perceived expenditure is more general than Gabaix (2014) in that it allows the atten-
tion parameter a to depend on x but is less general in that the parameter does not vary across goods.

13Gabaix (2014) proposes one way to deal with this issue.
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Budgeting and Mental Budgeting

As we discussed in Section 2.3, a common approach to partial equilibrium analysis is to
add a numeraire as an additional good and assume that the agent has a (standard) utility
function and budget set defined on the L + 1 goods, with price and income information
used to determine the level of the numeraire consumed. Of course such an approach
could only work when income information is available and that is not always the case.'*
Even when this information is available, it is strictly speaking not the right value to use
as the global budget if the consumer can save and borrow to a significant degree (as
acknowledged, for example, in Hausman and Newey (2016)). More generally, figuring
out what really constitutes ‘the budget’ is not always straightforward, even in a classical
setting.

Regularities highlighted by behavioral economists add a further wrinkle to the concept
of a budget. It has been widely observed that households do not always treat money
as fungible and instead create separate accounts for various categories of goods (Thaler,
1999). This is not only true for consumption decisions (see, for instance, Hastings and
Shapiro (2013, 2018)) but also for savings decisions, which is why consumers often save
more when they have access to commitment savings options (important theoretical and
empirical contributions are Amador, Werning, and Angeletos (2006) and Feldman (2010),

Dupas and Robinson (2013) respectively).
Now consider a researcher who is trying to model the demand for a set of L goods

which form a subset of all the goods consumed by an agent. If mental accounting effects
are important, the researcher will have to allow for the fact that he cannot observe how
goods are categorized by the agent, nor does he know what really constitutes the mental
budget from which the agent is drawing her expenditure (on the L observed goods and
their perceived alternatives). In this situation, the augmented utility framework provides
a natural way to model the demand for those L goods: it is consistent with constrained
utility maximization incorporating an outside good (see Section 2.3) but does not require
the researcher to take a stand on the (unobserved, mental) budget from which the agent

is drawing her expenditure.'®

3. PROPERTIES OF THE AUGMENTED UTILITY MODEL

In this section, we explore various aspects of the augmented utility model, beginning
with a discussion of the relationship between GAPP and GARP. We then go on to discuss

l45everal widely used data sets, such as supermarket scanner panel data, that contain rich information
on purchases, do not have accurate measures of income. Here, income information is typically the cate-
gory (income ranges) that households self report when applying for loyalty cards (and so the information
becomes out of date).

15Here we are assuming that the data D = {(p!, x') };eT are collected over a period where the mental budget
for the L observed goods and their alternatives is stable. Changing mental budgets would manifest itself as
violations of GAPP (see Example 3).
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welfare analysis in the augmented utility framework. Since one would not expect data
sets to be completely consistent with the augmented utility model, we discuss how de-
partures from GAPP could be measured. Lastly, we discuss how prices could be deflated
in this model to account for general changes in the price level.

3.1. Comparing GAPP and GARP

Recall that Example 1 in Section 2 is an example of a data set that obeys GARP but fails
GAPP. We now present an example of a data set that satisties GAPP but fails GARP.

Example 2. Consider the data set consisting of the following two choices:

pt=(2,1), x' =(2,1) and p' = (1,4), x' = (0,2).

FIGURE 2. Choices that satisfy GAPP but not GARP

These choices, as shown in Figure 2, violate GARP as p! - xf =5 > 2 = pt - x!' (x! =, x)
and p!' -x!' =8 > 6 = p!' - xf (x!' =, x'). However, these choices satisfy GAPP as
ploat =8>2=p"a' (p =y p)butp' ¥ =526 =p" X' (b £, p).

While GAPP and GARP are not in general the same conditions, they coincide in any
data set where p' - x' = 1forall t € T. This is because x! >, (>,)x! if and only if
p' =, (=p)p" since both conditions are equivalent to 1 > (>) p' - x*. Given a data set
D = {(p,x")}[,, we define the iso-expenditure version of D as another data set D :=
{(p', x") }thl, such that ¥ = x!/(p' - x!). This new data set has the feature that p' - ¥' =1
forall t € T. Notice that the revealed price preference relations >~ p, > p TEmMain unchanged
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when consumption bundles are scaled. Thus a data set obeys GAPP if and only if its iso-
expenditure version obeys GAPP, which in this case is equivalent to GARP.!® The next
proposition gives a more detailed statement of these observations.

Proposition 1. Let D = {(p',x")}L, be a data set and let D = {(p', ') }s1er, where X =
xt/(p' - x). Then the revealed preference relations =7 and =5 on P = {p'}[_, and the revealed
preference relations =% and =% on X = {x'}L_| are related in the following manner:

(1) p' =3 p' ifand only if ¥ =% &
(2) p' =3 p! if and only if ¥ =% &'
As a consequence, D obeys GAPP if and only if its iso-expenditure version, D, obeys GARP.

Proof. Notice that

t t
t X t X

t ot
.Pt-thp.

t
— p x Zp-x.

P pt - xt

The left side of the equivalence says that ¥' =, ¥ while the right side says that p! =, p'".
This implies (1) since t;‘, and =7 are the transitive closures of =, and = respectively.
Similarly, it follows from
P pooxt . -
p-m>p-w = p X >p-x

that ¥ =, %' if and only if p' >, p*, which leads to (2). The claims (1) and (2) together
guarantee that there is a sequence of observations in D that lead to a GAPP violation if
and only if the analogous sequence in D lead to a GARP violation. n

As an illustration, compare the data sets in Figure 1 and Figure 2 to the iso-expenditure
data sets in Figure 3a and Figure 3b. It can be clearly observed that the iso-expenditure
data in Figure 3a contains a GARP violation (which implies it does not satisfy GAPP)
whereas the data in Figure 3b does not violate GARP (and, hence, satisfies GAPP).

A consequence of Proposition 1 is that the augmented utility model can be tested in
two ways: we can either test GAPP directly or we can test GARP on its iso-expenditure

16There is an analogous ‘GARP-version’ of Proposition 1 and that this observation (or some close variation
of it) has been exploited before in the literature (see, for example, Sakai (1977)). Suppose D = {(p!, x') thl
obeys GARP. Then GARP holds even if each observed price vector p' is arbitrarily scaled. In particu-
lar, D obeys GARP if and only if D = {(p’, x")}scr, where pt = p'/(p' - x!), obeys GARP (equivalently,
GAPP) since p! - x' = 1 forall t € T. The latter perspective is useful because it highlights the possibil-
ity of applying Afriat’s Theorem on D, in the space of prices (in other words, with the roles of prices and
bundles reversed). This immediately gives us a different, ‘dual’ rationalization of D in terms of indirect
utility, that is, there is a continuous, strictly decreasing, and convex function V : RL. — R such that

p' € argmin (peRL , :pat>1) V(p). For an application of this observation, see Brown and Shannon (2000).
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(a) Example 1 (b) Example 2

FIGURE 3. Expenditure-Normalized Choices

version. If we are simply interested in testing GAPP on a single-agent data set D, normal-
ization brings no advantage: the test is computationally straightforward in either case and
involves the construction of their (respective) revealed preference relations and checking
for acyclicity. However, as we shall see in Section 5, iso-expenditure scaling plays an
important role in the test we develop (on repeated cross-sectional demand data) for the
random utility version of the augmented utility model.

While GARP and GAPP are distinct properties, they are not mutually exclusive and it is
possible for a data set to satisfy both. For example, if D = {(p’, x*)}L_, is collected from a
consumer who is maximizing a quasilinear augmented utility function, then it will satisfy
both GAPP and GARP.'” When both properties are satisfied, then an analyst could make
use of either property when making predictions of demand at an out-of-sample price;
the two properties will then typically lead to different set predictions. We discuss this in
greater detail in Section A.1 of the online appendix, which also contains more discussion
of the relationship between revealed preferences under GAPP and under GARP.

In light of Proposition 1 and the fact that the revealed price preference relation is not
affected by scaling consumption bundles, it is natural to wonder about the relationship
between the testable implications of the augmented-utility model and the constrained-
optimization model (as in (3)) restricted to homothetic preferences. A data set that can be
rationalized in the latter sense'® will have the feature that it must satisfy GARP for any

17When U has the form (6), x' maximizes U(x, —p' - x) only if x' maximizes U(x) in {x € RL : p' . x <
p' - x'}. Thus D must also obey GARP. A broader class of augmented utility functions that satisfy both
GAPP and GARP is given in Section A.1.2.

BFor the precise characterization, see Varian (1983).
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arbitrary scaling of consumption bundles and thus will satisfy GAPP. By contrast, a data
set that satisfies GAPP must only satisfy GARP for the particular scaling that equalizes
expenditure across observations. In other words, GAPP is a less stringent property; that it
is strictly less stringent is clear from Example 2, which satisfies GAPP but violates GARP
and therefore cannot be rationalized in Afriat’s sense (as given by (3)) for any locally
nonsatiated preference, let alone a homothetic preference."

3.2. Preference over Prices

We know from Theorem 1 that if D obeys GAPP then it can be rationalized by an aug-
mented utility function with an indirect utility that is defined at all price vectors in R ..
It is straightforward to check that any indirect utility function V as defined by (1) has the
following two properties:

(a) itis nonincreasing in p, in the sense that if p’ > p (element by element) then V (p’) <
V(p), and

(b) it is quasiconvex in p, in the sense that if V(p) = V(p’), then V(Bp + (1 — B)p’) <
V(p) for any B € [0,1].

Any rationalizable data set D could potentially be rationalized by many augmented
utility functions, with each one leading to a different indirect utility function. We denote
this set of indirect utility functions by V(D). We have already observed that if p' = (=3
) p!' then V(p!) > (>) V(p") for any V € V(D); in other words, the conclusion that the
consumer prefers the prices p' to p is nonparametric in the sense that it is independent of
the precise augmented utility function used to rationalize D. The next result (proved in
Appendix A.2) says that, without further information on the augmented utility function,
this is all the information on the consumer’s preference over prices in P that we can glean
from the data. Thus, in our nonparametric setting, the revealed price preference relation

contains the most detailed information for welfare comparisons.
Proposition 2. Suppose D = {(p',x")} L, is rationalizable by an augmented utility function.
Then for any p*, p!' in P:

1) pt =5 p! ifand only if V(p') > V(p") forall V € V(D).
2) p' - p! ifand only if V(p') > V(p") forall V € V(D).

YExample A.5 in the online appendix contrasts demand predictions using the augmented utility model and
the constrained-optimization model (both with and without imposing homotheticity on the preference).
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3.3. Compensation for a price change

In standard consumer theory, the compensating and equivalent variations are two ways
of quantifying the welfare impact of a price change (see Mas-Colell, Whinston, and Green
(1995), Chapter 3.I). We now argue that analogues exist for the augmented utility model

and that bounds for them can be recovered from the data.
Let U be the consumer’s augmented utility function. Suppose that the initial price is

p't and it changes to p™2, leading to a change in consumption from x'! to x’2. Then we can
tind y. such that

max,cgr U(x, —p' - x —pic) = V(p"). 8)
Note that y is unique since U is strictly increasing in the last argument. We could think
of y. as the lump sum transferred from the consumer (if it is positive) or fo the consumer
(if it is negative) after the price change that will make her just indifferent between the

situation before and after the change.

Suppose we interpret U as arising from an overall utility function U(x, z) (that depends
on the observed goods x and the level z of an outside good), given the consumer’s wealth

of M, so that U(x, —e) = U(x, M — e). Since pi solves (8), it will also satisfy
max{xe]Rﬁ: pt2x<M—pc} fl(x, (M — ‘uc) — pfz . x) — ljl(xtl,M _ Ptl ) xtl)_

In other words, y. is the reduction in total wealth that will leave the consumer’s overall
utility at p’2 the same as it was at p't. Thus, with this particular interpretation of the
augmented utility function, y, coincides with what is called the compensating variation in
standard consumer theory. For this reason, we shall also refer to j., defined by (8), as the

compensating variation.
Pushing the analogy further, it is possible to use the compensating variation in our

model in the same way it is typically used. For example, the price change from p'! to
p'2 may benefit some consumers while hurting others. The Kaldor criterion would deem
this change an overall improvement if the sum of the compensating variations across all
consumers is positive since it guarantees that those who benefit from the price change

could, in principle, compensate the losers and still be better off.
In a similar way, we can define the equivalent variation as the value y, that solves

max,egr U(x, —p't - x +pie) = V(p) )

If U(x, —e) = U(x, M — e) then y, also solves
MaX( gt o cnt ) UK (M4 pe) = p't-x) = U(x"2, M= p'2 - 1),
In other words, y, coincides with the equivalent variation as it is usually defined.

Now suppose a data set D obeys GAPP and contains the observation (p'1, x'1). What
can we say about the compensating variation of a price change from pt to p’2 (where
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the latter may or may not be a price observed in D)? There will typically be a range of
these values since there is more than one augmented utility function that rationalizes D.
Nonetheless, it is possible to obtain a tight lower bound for the set of possible compensat-
ing variation values. Formally, this is given by

inf{y. : pc solves (8) for some augmented utility function U that rationalizes D}.

Abusing terminology somewhat, we shall denote this term simply by inf(y.).

We now describe how to compute this bound.”® Let S C T be the set of observations
such that s € Sif p* = p'l. This set is nonempty since it contains p'! itself. For each
s € S, there is m such that

pl2 X +md = px°, (10)
We claim that for any U that rationalizes D, the compensating variation y, > mg. This is
because if m < mg, then m # y. for any utility function rationalizing D. Indeed,

max gt U(x, —pl2ox—m) > U, —p" - x* —m) > UK, —p?-x° —md)
UG, —p ) = U, —pht - x) = V(ph),
Thus inf(u.) > mS for all s € S. In fact, it is possible to obtain a stronger conclusion:
inf(pc) = max{m; : m satisfies (10) for some s € S}. (11)

Since the right side of this equation can be easily computed from the data, we have found
a practical way of calculating inf(j.).

Notice that if p' is revealed preferred to p't (equivalently, that there is s’ € S such that
mﬁl > 0),%! then inf(u.) > 0; in other words, at p = p'2, a lump sum tax of inf(u.) will
leave the agent no worse off than at t; and potentially better off. On the other hand, if p'
is not revealed preferred to ptl, that is, for every s € S, we have m} < 0, then inf(y.) < 0;
in other words, at p = p'2, a lump sum transfer of inf(i.) to the agent will leave the agent
no worse off than at t; and potentially better off.

We provide a fuller discussion on the compensating variation, including a proof of (11),
in Appendix A.5.

3.4. Measuring departures from rationality

Empirical studies that apply Afriat’'s Theorem frequently find GARP violations. A
common way of measuring the extent of such violations is to compute the critical cost
efficiency index (Afriat, 1973). This refers to the largest e € (0, 1] such that D can be ratio-
nalized in the following sense: there is a locally-nonsatiated utility function U such that

20We leave the reader to carry out the analogous exercise for the equivalent variation.
2IRecall that p'2 e p't makes sense even if p’2 is not observed in the data set; see footnote 7.
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U(x*) > U(x) for all x in the ‘shrunken’ budget set B! = {x € Rl : p'-x <ep' x'}. Ra-
tionality is imperfect if ¢ < 1 since the consumer behaves as though she ignores bundles
x' that satisfy ep’ - x! < p'- ¥’ < p' - x! and, there could be some observation f and bundle
x" in this range for which U(x’) > U(xh). Importantly, the calculation of the critical cost
efficiency index is straightforward and is facilitated by a modified version of GARP.

There is a similar way of measuring the extent to which a data set D fails to be ratio-
nalized by an augmented utility function. For a given ¢ € (0, 1], there is a weaker version
of the GAPP test that allows us to determine whether there is an expenditure-augmented
utility U : IKLF x IR_ — IR such that, at each observation ¢,

U(x!, —p'-x") > U(x, 0 1p' - x) forall x € RE.

If there is, we say that D is ¢-rationalized by an augmented utility function. Notice that
if D can be d-rationalized then it can be #'-rationalized for any ¢’ < 8, since U is strictly
decreasing in expenditure. The consumer who is ¢-rational (for ¢ < 1) may have only
limited or bounded rationality in the sense that there could be a bundle x" and an obser-
vation f such that

U(Xff—pf x> U(xf,—pf . x‘?) > U(x’,—ﬁ—lpf - x').

In other words, the consumer fails to recognize that bundle x' is superior to xatt =F
because she has inflated (by 9~!) the expenditure of purchasing x’. Any data set can be
¥-rationalized for some ¢ € (0,1] and the supremum & over these values provides a
natural measure of rationality which we shall refer to as the rationality index.

The following proposition establishes a connection of our rationality index with the
critical cost efficiency index.

Proposition 3. Let D = {(p!,x!)}]_, be a data set and let D = {(p', &) }scr, where ¥ =
xt/ (p" - x'), be its iso-expenditure version. Then §* is the rationality index for D if and only if it
is the critical cost efficiency index for D.

A consequence of this result is that the rationality index inherits the ease of compu-
tation of the critical cost efficiency index. In Appendix A.4.2, we provide instructions
on this computation including in more general environments with nonlinear prices. The
proof of Proposition 3 can be found in Appendix A.4.3.

3.5. Deflating prices

When the data set D = {(p’, x*)} L, is collected over an extended period, it is possible
that there are changes in the prices of all goods, including goods outside the ones ob-
served. Thus the nominal value of expenditure may no longer be an accurate measure of
the opportunity cost of expenditure. A simple way of taking this into account is to deflate
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the prices of the L goods with a general price index. In other words, one could check if
D = {(p'/K', ")}, obeys GAPP, where k! € R, ; is an index of the general price level.
If it does, it would mean that there is an augmented utility function U that rationalizes
the data after deflation; in other words,

t
x! € argmax U (x, —pk;x) forallt € T.
xeRL

This simple way of accounting for general price changes could be precisely justified
when the augmented utility function is the reduced form of a larger constrained opti-
mization problem. Indeed, suppose that the consumer is maximizing an overall utility
U(x,y) that depends both on the observed bundle x and on a bundle y of other goods,
subject to a global budget of M. Formally, the consumer maximizes U(x,y) subject to
p-x+q-y < M, where q are the prices of goods y. Keeping g and M fixed, U(x, —e) is
defined as the greatest overall utility the consumer can achieve by choosing y optimally,
subject to expenditure M — e and conditional on consuming x, that is,

U(x, —e) = max{U(x,y):y > 0andg-y < M —e}. (12)

At the prices p' for the observed goods and g for the outside goods, the consumer chooses
a bundle (x,y') to maximize U subject to p* - x + g -y < M. Then D = {(p',x)} L, will
obey GAPP, since x’ maximizes U(x, —p' - x), with U as defined by (12).

Now suppose that the prices of the other goods are changing. Consider the simplest
case where these prices move up or down proportionately, so they are k'q at observation
t, for some scalar k' > 0. Furthermore, assume that the agent’s global budget at t also
increases by a factor k!, which means that the consumer’s nominal wealth is keeping pace
with price inflation. Then at observation t, the consumer maximizes U(x,y) subject to
(x,y) obeying

p-x+ kg -y <kM.
Dividing this inequality by k, we see that the consumer’s choice is identical to the case
where the price of the observed goods is p'/k!, with external prices and total wealth
constant at g and M respectively. Therefore, the data set with deflated prices, D =
{(p'/K',x")}L| obeys GAPP.

In the case where the relative prices of the outside goods change, it is still possible to
derive a price index which ensures that GAPP holds after deflating p!, but this requires

stronger assumptions on U. We discuss this in detail in Appendix A.3.

4. GENERAL CONSUMPTION SPACES AND NONLINEAR PRICING

So far we have assumed that the consumption space is R} and that prices are linear,
but in fact neither feature is crucial to our main result. In this section, we assume that
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the space from which the consumer chooses her consumption is X C RL. We define a
price system as a map P : X — Ry, where (x) is the cost of purchasing x € X. Of
course, a special case of a price system is (x) = p - x but the more general formulation
with ¥ allows for quantity discounts, bundle pricing and other pricing features that can
be important in certain contexts (such as our empirical application in Section 7.1).

We assume that both the price system and the bundle chosen by the consumer are ob-
served. Formally, a data set is a collection D = {(¢!, x")}L ;. This data set is rationalized
by an augmented utility function U : X x R_ — R if

x' € argmax U(x, —¢'(x)) forallt € T. (13)
xeX

The notion of revealed preference over prices can be extended to a revealed preference
over price systems. We say that @' is directly revealed preferred (directly revealed strictly
preferred) to ' if ¥ (x') < (<)gt(x"); we denote this by ¢ =, (=,)¢!. We denote the
transitive closure of =, by =7, that is, gbt/ = ¢! if there are t1, tp,...,ty in T such that
P! =, g, pht =, gt Nt = g and Y =, ¢f; in this case we say that ¢ is
revealed preferred to ¢'. If anywhere along this sequence, it is possible to replace >, with
>, then we denote that relation by 9" =5 ¢' and say that ! is strictly revealed preferred
to ' It is straightforward to check that if, D can be rationalized by an augmented utility
function, then it obeys the following generalization of GAPP to price systems:

. . / /
there do not exist observations t,t' € T such that ¢ =7 ¢" and ' =7 ¢*.

The following theorem asserts that the converse is also true and that, under further
conditions, we can guarantee that the data can be rationalized by an augmented utility
function with additional properties. The proof of this result (in fact of a more general
result allowing for errors) is in Appendix A.4.1.

Theorem 2. A data set D = {(y', x')}]_, can be rationalized by an augmented utility function
if and only if satisfies GAPP.

Furthermore, suppose that D satisfies GAPP, X is closed and that, for all t € T, the price
systems have the following properties: (i) ' is a continuous function; (ii) for any number M,
{x € X : ¢9t(x) < M} is a compact set; and (iii) (' is strictly increasing in xy for some K C L.
Then, for any closed set Y C R containing X, there is a continuous augmented utility function
U:Y x R_ — R that rationalizes D, with U(x, —e) strictly increasing in x.

Remarks: (1) Note that condition (ii) is a weak assumption requiring that there be no
arbitrarily large bundles with a bounded price. (2) By definition, an augmented utility
function is strictly decreasing in expenditure, but in certain cases it may be natural to
require U to be strictly increasing in xg for some set K (which can be empty). The theorem

22This means that if x',xe X, x' #x,x=x)forall £ ¢ K,and x, > x, for all £ € K, then i (x") > Pi(x).
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says that this is possible, so long as the price systems are also strictly increasing in xg. (3)
Lastly, the theorem guarantees that the domain of the augmented utility function can be
larger than X. For reasons which will be clear later in this section, this is natural in certain
applications. However when we say that U rationalizes the data, we mean that (13) holds
and, in particular, xt need not be optimalin Y.

The literature on mental accounting has emphasized the possibility of actors in the
economy manipulating the mental budgets of agents. The following example shows how
a nonlinear GAPP test can be used to detect such phenomena.

Example 3. A store initially prices two goods at p' = (1,2) and a shopper purchases
x' = (10,20) from the store. The store introduces a scheme where regular customers (such
as this shopper) receives a voucher of 12 dollars to be used for the purchase of the store’s
products; prices are changed to p!' = (2,3/2) and the shopper buys x! = (20,20).2> What
is the impact of the gift voucher?

Since the value of the voucher is small in terms of total income, the shopper could
spread this reward widely across all purchases (including purchases from other stores)
and this should result in no (or at least a very small) impact on demand for the store’s
products. On the other hand, she may have a mental budget for purchases at that store,
and the voucher represents an appreciable increase in that mental budget by 12 dollars.

A revealed preference analysis supports the latter hypothesis. Indeed, if we ignore
the voucher, the data are not compatible with the maximization of an augmented utility
function since p! - x! = 50 = p! - x* and p!' - x* =70 > 60 = p' - x*', which violates GAPP.
On the other hand, at observation t/, we could model the shopper as mentally discounting
12 dollars from her expenditure at the shop. In formal terms, the price system at ¢’ is a
function ¢! (x) = max{p! - x — 12,0}, so ¢ (x!) = 58. In this case, we have p -y
(where ¢(x) = p'x), but it is no longer the case that ¢' > ¥t since pf(x!) = 60 >
P! (x') = 58. So the data is now compatible with GAPP, but with a nonlinear pricing
system based on the shopper’s mental accounting.®*

4.1. Discrete consumption spaces
Below are four instances where Theorem 2 could be applied.

(1) Suppose that the consumption space consists of L goods of which the first K can only
be consumed in discrete quantities (as in the model of Polisson and Quah (2013), for
example). The consumption space is then X = INX x IR%[K, where NN is the set of natural

2yf good 1 is cheap to procure, this scheme is advantageous to the store, since in the first instance, the
shopper spends 50 dollars while in the second, she spends 58 (net of the voucher).

24Notice (in connection with our discussion of mental accounting in Section 2.4) that the total mental budget
of the shopper remains unknown, though the researcher observes an event that has altered that budget.
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numbers. Theorem 2 is applicable whether or not prices are linear. Suppose that each
good has a price p; > 0. Since X is closed and the price system y!(x) = p’ - x is strictly
increasing in x, Theorem 2 guarantees that, if GAPP holds, then there is a continuous
augmented utility function that is strictly increasing in x € X and rationalizes D.

(2) Another natural choice environment is one where the consumer is deciding on buying
a subset of objects from a set with L items. Then each subset could be represented as an
element of X = {0,1}F. For x € X, the (" entry x, equals 1 if and only if the £t object
is chosen. If only certain subsets are permissible, as in the case of discrete choice, then
X would be a strict subset of {0,1}F. The price system ¢ gives the price of different

gth

bundles of goods. Let e, denote the vector with 1 in the /™ entry and zero everywhere

else. Then (ey) is the price of purchasing good ¢ alone. The price system is nonlinear if
P(x) # Xk xpp(ey) for some x € X.

(3) In empirical models of demand for differentiated goods, it is common to model each
good as embodying a set of characteristics (see Nevo (2000)). For example, if each good
is a type of breakfast cereal, then the characteristics could be the calories, fiber content
etc. Suppose that there are L characteristics and let Y, C IR be the set of values that
characteristic ¢ can take. Then, the characteristics space is Y = x,%zlYg.% There are |
goods, with good i having characteristics xX' € Y. Assuming (as is common in these
models) that a consumer purchases only one good, the consumption space is X = {x'}!_,
and a price system ¢ : X — R} is just a list of prices for the different goods.

In this context, it is natural to model the consumer with an augmented utility function
defined on characteristics and expenditures Y x IR_, even though the products available
to her are only those in X. Furthermore, among the characteristics, there could be those
where higher values are unambiguously better, in which case the researcher could be
interested in guaranteeing that utility is strictly increasing in those characteristics. Theo-
rem 2 allows for these considerations. If D obeys GAPP then it can be rationalized by a
continuous augmented utility function U : Y x R_ — R. Additionally, for a set of char-
acteristics K C L, one could guarantee that U(y, —e) is strictly increasing in yg so long as
! (x) is strictly increasing in x, for all ¢.

In models of differentiated goods, it is also common to allow for the introduction of new
goods and for changes to a product’s characteristics.”® Obviously, changes to a product’s
characteristics could potentially lead to a change in the product’s utility which, unless
taken into account by the test, could lead to a spurious rejection of augmented utility-
maximization. In formal terms, these changes can be captured by allowing the set of

251f characteristic 1 naturally takes on continuous values (such as calories) then we let Yy = R. Character-
istic 2 could be the brand. Suppose there are two brands, then Y, = {1,2}, and so on.

26These changes could be substantive (for example, a change to a breakfast cereal formula) or it could be a
change in advertising expenditure that serves as a proxy for a change in a product’s public profile.
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alternatives to depend on t; in Section A.4.4, we explain how it is possible to modify the
GAPP test in Theorem 2 to account for changes of this type.

4.2. Characteristics models with continuous consumption spaces

We assume that the space of characteristics is Y = RL, with each product i represented
by a vector of characteristics x' € Y. We allow these goods to be bought in bundles, so
the consumption space is the convex cone X generated by {x’ {:1.27 We assume that the
vectors {x'}!_, are linearly independent; this guarantees that for each £ € X, there is a
unique bundle of goods, & = (&;)!_; € R. such that Y_/_; &;x' = £. We denote & by a(%£).

Let p' € RL , be the prices of the I goods at observation ¢. To obtain the bundle x € X,
the consumer needs to spend ! (x) = p' - a(x).

At observation t, the researcher observes p! and the consumer’s purchases a' € R%. We
assume the researcher knows {x'}!_; and so he can work out the consumption in charac-
teristics space, x! = Y_, alx', as well as the price system ¢'. Theorem 2 guarantees that if
D = {(¢', x") }1er satisfies GAPP then it can be rationalized by a continuous augmented
utility function U : RY x R_ — R. So long as ¢f(x) is strictly increasing in x € X for
each t, we can also ensure that U(y, —e) is increasing in the characteristics y.

5. THE RANDOM AUGMENTED UTILITY MODEL

In this section, we develop the random version of the expenditure-augmented utility
model. We first describe our test procedure for this model via a simple example.

5.1. An Illustrative Example

Example 4. Suppose we have repeated cross-sectional data consisting of the demand of a
population of ten consumers at two price vectors. This is illustrated in Figure 4 where the
collection of points in the left and right panels indicate the demand bundles at p' = (2,1)
and pt/ = (1,2) respectively. The lines in Figure 4 indicate relative prices.

Since we assume this is a cross-sectional data set, the econometrician cannot match
consumption bundles across the two panels by consumer identity. The question we wish
to address is whether this data set can be rationalized, by which we mean the following.

Can we match the choices at + with those at #/, forming ten distinct pairs,
such that each pair can be rationalized by an augmented utility function
(or, equivalently, satisfies GAPP)?

27For a GARP-based test of a model of this type, see Blow, Browning, and Crawford (2008).
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. . BY
X1 X1
(a) Choices under prices p (b) Choices under prices pt'

FIGURE 4. The Data Set

This exercise illustrates the problem we address in this section: given the empirical de-
mand distributions in different periods, is there a time-invariant distribution over con-
sumer types that could explain these empirical distributions, subject to the restriction
that each type is an augmented utility function maximizer.

An obvious way of answering the above question would be to consider all possible
partitions into pairs and test GAPP on each pair.?® This approach, however, is not prac-
tical when the population at each observation is large and when there are more than two
periods. Fortunately, there is a different procedure that works in general, which we now
explain.

Proposition 3 tells us that a pair D = {(p',x), (p"’,x')} created by choosing bundle x
from observation t and x’ from observation ' obeys GAPP if and only if its iso-expenditure
analog, D = {(p, %), (p",¥')} obeys GARP, where ¥ = x/p-x and ¥ = x'/p - ' are
scaled versions of x and x’ that satisfy p' - ¥ = ptl - X = 1. This scaling is demonstrated in
Figures 5a and 5b. Figure 5c shows the scaled bundles from both observations superim-
posed onto a single picture. This figure also labels different partitions of the budget lines
and we use this notation in what follows.

Now recall that, if D satisfies GARP, then it is not possible for ¥ to lie on B2t and for ¥/
to lie on B!’ (see Figure 5(c)). Instead D must belong to one of the following three types:
% lies on B and ¥’ lies on B2!: # lies on B and &' lies on B*’; or # lies on B%! and &'
lies on B%!'. These cases are graphically depicted in Figure 6a, Figure 6b and Figure 6¢
respectively.

ZNote that when we formally define our test in the next subsection, the choice distribution will be assumed
to be atomless. The simple finite matching analogy in this section, while inexact, is meant to provide the
intuition our methodology.
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(a) Period ¢ (b) Period t'

X1
(c) Patches generated by budget intersections

FIGURE 5. Observed and Rescaled Choices

Denoting the fraction of each of these GAPP-consistent consumer types in the popula-
tion by v1, 12 and v3 respectively, together they must generate the observed proportion of
choices on the segments B, B>, Bt and B2!. Figure 7a demonstrates the proportion
of choices in terms of the vs, while Figure 7b displays the empirical proportion of choices
on each segment (after scaling), which we denote by

) NV 211
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X1 X1
(a) Proportion of this Rational Type: 1, (b) Proportion of this Rational Type: 1,

Bl,t

X1

(c) Proportion of this Rational Type: v3

FIGURE 6. Set of Rational Types

1,t

(For instance, 71" = % because six of the ten rescaled demand bundles lie on B!*.) There-

fore, a necessary condition for rationalizing the data is that there are vs that solve

1,t

/ /
v +1p =AY, v+ =A%, vy =AY, vy = A (15)

Two observations should be immediate from this process. The first is that there could
be data where the system (15) has no solution; this occurs when 7' — ALt # A2t — p2t
The second is that when the values of 7 are given by (14), the solution to (15) is

11 2)
P — / f— JE— —_— —_—

V= (V1/V2/V3) - (101 5’ 5) . (16)
To confirm that the data in this example can indeed be rationalized, it remains for us

to pair up the demand bundles at the two observations. To do this, arbitrarily choose
1(= v1 x 10) pair of choices that lie on B and B%’; any 5 (= v, x 10) pairs that lie on B!
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and B'’; and the remaining 4 (= v3 x 10) pairs on B2 and B%'. Clearly each pair satisfies
GARP and thus the original (un-scaled) pair satisfies GAPP.

(a) Resulting Distribution of Choices (b) The Scaled Empirical Choice Probabilities 7

FIGURE 7. Choice Distribution and Empirical Frequency

5.2. Rationalization by Random Augmented Utility

The starting point of our analysis is a repeated cross-sectional data set, 7 := {(p', ')},
where each observation consists of the prevailing price p' and the distribution of demand
in the population at that price, represented by a probability measure 7t' on R: . An exam-
ple of Z is the data set depicted in Figure 4 where the probability measure corresponds
to the empirical distribution of demand bundles. The following definition generalizes the
notion of rationalization considered in that example.

Definition 5.1. The repeated cross-sectional data set 2 = {(p, ")}, is rationalized by
the random augmented utility model (RAUM) if there exists a probability space (Q), F, u)
and a random variable x : Q — (RL)T such that, almost surely, {(p!, x!(w)) }+er can be
rationalized by an augmented utility function (equivalently, obeys GAPP) and

(YY) = u({w € Q: x'(w) € Y}) for any measurable Y C RE. (17)

In this definition, one could interpret () as the population of consumers and x/(w) as
the demand of consumer type w at observation t (when the prevailing price is p’); all con-
sumer types in the support of yu are required to be consistent with the augmented utility
model and the observed distribution of demand at each observation ¢, given by 7!, must
coincide with that induced by the distribution y over consumer types. Alternatively, the
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model can also be interpreted as one where each individual’s augmented utility changes
over time but in such a way that the population distribution is stationary.

In Example 4, the repeated cross-sectional data set has two observations, where the
probability distributions are simply uniform distributions on finite support. A RAUM-
rationalization involves matching observations in t with those in #/, so that each pair obeys
GAPP. In the general case with T observations, the function x solves a T-fold matching
problem, where each group {x’(w) }scr (along with the associated prices) satisfies GAPP
and agrees with the observations (that is, (17) is satisfied).?’

We shall now explain the general procedure for deciding if a given repeated cross-
sectional data set 2 can be RAUM-rationalized. This procedure mimics our solution to
Example 4. For ease of exposition, we impose the following assumption on the data.

Assumption 1. Let B := {x € R: : p'-x = 1} be the budget plane at prices p’ and
expenditure 1. For all t,# € T with B! # B,
< Bf’}) 0.
p-x

This assumption states that the probability of a bundle lying, after re-scaling, at the

ﬁt({xeRi:tLEBt and
pr-x

intersection of two budget planes is zero. The assumption is not required for any of our
results but it is convenient because it simplifies the exposition.’® It is always satisfied if
7t! is absolutely continuous with respect to the Lebesgue measure and is unlikely to be
violated in any application with a continuous consumption space and linear prices.

Let {B,..., B!*} denote the collection of subsets, or patches, of B! where each subset
has as its boundaries the intersection of B! with other budget sets and/or the bound-
ary planes of the positive orthant. These are the higher-dimensional and multi-period
analogs to the line segments in Figure 5c. Formally, for all t € T and i; # i}, each set in
{B, ..., B} is closed and convex and satisfies the following conditions:

(i) Uy<i <1, B = B,
(i) int(B*!) N B! = ¢ for all ' # t that satisfy B! # B! (where int(B*!) denotes the
relative interior of Bit),
(ili) B* N Bt # ¢ implies that B! N Biv! ¢ B for some ' # t that satisfies B! # B .

Oltis straightforward to check that, with two observations, finding a rationalization is equivalent to finding
a zero-cost solution to the transportation problem (see Galichon and Henry (2011)) where the cost of a pair
of bundles is 0 if it obeys GAPP and 1 otherwise.

301f we allow for mass at budget intersections, then we would have to include them in our definition of
patches. This is notationally cumbersome but once included our arguments (and Theorem 3) remain correct.
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For the patch Bit, we let

it . o L. X it
nlff._nf<{xelR+.pt_xeBlff}). (18)

In words, 7' is the probability that a bundle lies in B after re-scaling. Note that, even

though there may be i, i} for which Bivf N Bitt is nonempty, Assumption 1 guarantees
that 2}::1 it = 1. We denote by 7t* the vector ( nif't)fttzl and by 7t the column vector
2

(i}, 2, ...,tT)". We refer to 7t as the vector of observed patch probabilities.

Consider a single-agent data set of the form D = {(p’,x")} ;. Given D, we can define
its iso-expenditure version, which is D = {(p!, ¥)}_,, where & = x!/p' - x! (so p! - ¥ =1
for all ). Suppose that % does not lie on the intersection of budget planes, that is, there
is it such that ¥ € int(B"!). We make two important observations. First, Proposition 1
tells us that D satisfies GAPP if and only if D satisfies GARP. Second, if D satisfies GAPP
then so does D’ = {(p', y") }+er if y' has the property that its re-scaled version /' satisfies
7 e int(Bit't) ; this is because the revealed preference relations (over the bundles i) are
determined only by where i/ lies on the budget set relative to its intersection with another
budget.

It follows from these observations that we may classify all single-agent data sets that
obey GAPP according to the patch occupied by the scaled bundle ¥’ at each B'. In formal
terms, each D that obeys GAPP is associated with an iso-expenditure D that obeys GARP,

gl |

which is in turn associated with a vector a = ( ..,alT) where

. (19)
0 otherwise.

it _ { 1 if¥ e B,
Thus, for the observed prices, we have partitioned the collection of all deterministic data
sets obeying GAPP (of which there could be infinitely many) into a finite number of dis-
tinct classes or types, based on its associated vector a. We denote this set of vectors by
A. We use A to denote the matrix whose columns consist of every a € A, arranged in an

arbitrary order; we refer to A as the matrix of GARP-consistent types.

In Example 4, all the deterministic data sets that obey GAPP must correspond to one of
three types (as depicted in Figure 6) and

1
0
1 (20)

_ o O =
S = O

0

—_

(Each column in A describes the types in Figure 6: from left to right the columns capture
the types in Figures 6a, 6b and 6c respectively.)
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Given a repeated cross-sectional data set 2, we can construct A and the matrix of
GARP-consistent types A. Suppose that this data set can be rationalized by some dis-
tribution u. Let v, denote the mass of consumers of type a in the population, that is

Vg = | ({w cQ): —txt(id) € Bt ifgivt =1, forall t € T}) .
proxt(w)

At a given observation t, let A" = {a : a'** = 1}; this is the subset of GARP-consistent

types that have their re-scaled demands in the patch B’ at observation t. The proportion

of the population whose types belong to A’ is

V({weﬂ:%esw}) = Y w= Zvaﬂit’t.

ac Aitt acA

Since Z is rationalized by y, setting Y = {x € R : x/(p' - x) € B**} in (17), we obtain

it = Y vpaltt (21)
ac A

where 7! is defined by (18). In other words, the observed probability of choices that
land on B! after scaling must equal to the mass of GARP-consistent types implied by
yt. This condition must hold for all patches B, so (21) can be more succinctly written as
Av = 71, where v is the column vector (v;),c4. (Recall that 7t is the vector of observed
patch probabilities.) In Example 4, A is given by (20), 7t is given by (14) and the solution
v by (16).

To recap, given a data set 7, we calculate the matrix of GARP-consistent types A and
the vector of patch probabilities 71. A necessary condition for & to be rationalized by
RAUM is that there is v € A= that solves Av = 7. It turns out that this condition
is also sufficient: if v exists, then we can find a RAUM-rationalization of 2 where the
proportion of the population with type a is precisely v,. The details of this final step are
in the Appendix A.6. The next result summarizes this discussion.

Theorem 3. Let 2 = {(p', t")} L, be a repeated cross-sectional data set obeying Assumption 1.
Then 9 can be RAUM-rationalized if and only if there exists a v € A=Y such that Av = .

We end this section by contrasting the RAUM test with that of the classic random utility
model (or RUM for short). The typical data environment for the latter is one where each
observation consists of a distribution of choices on a given constraint set (which varies
across observations). In that environment, McFadden and Richter (1991) and McFadden
(2005) observe that the problem of testing RUM can be discretized. KS operationalize
this insight in the case where constraint sets are linear budget sets. In that context, re-
quiring choices from the same constraint set simply means that 2 = {(p!, t")}L | is iso-
expenditure, in the sense that if x is in the support of 7' then p' - x = 1. KS demonstrates
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that an iso-expenditure data set Z can be RUM-rationalized if and only if Av = 7 for
some v € 1R|f| (where A is the matrix of GARP-consistent types and 7 is the vector of
patch probabilities).

Notice that Theorem 3 recovers the result of KS as a corollary. RAUM-rationalization
guarantees the existence of a distribution over types that is consistent with the obser-
vations (that is, (17) holds), with {(p!, x!(w)) }+eT satisfying GAPP almost surely. With
the iso-expenditure condition, GAPP and GARP are equivalent properties, which means
(by Afriat’s Theorem) that there is is a strictly increasing utility function U, : Rt — R
with Uy, (x!(w)) > U,(x) for all x € BY; this is precisely what is needed for a RUM-
rationalization. Of course, it is also clear from our proof of Theorem 3 that we are building
on KS, since our proof strategy involves (in effect) the following three steps: (i) converting
2 into an iso-expenditure data set 2 (obtained from 2 simply by scaling demands); (ii)
noticing that 2 can be RAUM-rationalized if and only if & can be RUM-rationalized; and
(iii) then relying on the characterization of RUM-rationalization in KS.

Since a population of heterogenous consumers typically do not have identical expen-
ditures, an actual data set would not typically be iso-expenditure. In order to test RUM,
KS found it necessary to estimate an iso-expenditure data set 2 from the true data set
2, which in turn requires an additional econometric procedure with all its attendant as-
sumptions. In contrast, as we have established in Theorem 3, the RAUM has the impor-
tant empirical feature that it can be directly tested on data sets that are not iso-expenditure.

5.3. Welfare Comparisons

Since the test for rationalizability involves finding a distribution v over different types,
it is possible to use this distribution for welfare analysis. To be specific, suppose that
a government is contemplating a change in sales tax that could lead to prices changing
from its current value p' to p. Relevant to the government’s re-election prospects is the
proportion of consumers who will be better off as a result of this price change.! Our
methods allow us to obtain information on this proportion.

To be specific, suppose the analyst has access to a data set Z that contains among its
observations (pt/, #!"), ie., the prevailing prices and the demand distribution. To deter-
mine the welfare effect of a price change from p' to p, let ]lﬁt;;pf' denote the row vector
with its length equal to the number of rational types (|.A|), such that the j" element is 1 if
Py p! for the rational type corresponding to column j of A and 0 otherwise.>? In words,

]lﬁ>*pf’ enumerates the set of rational types for which p is revealed preferred to ptl. For a
—Pp

31We would like to thank an anonymous referee for suggesting this motivation.
32Even though p is not among the observed prices, one could still define p =, pt/; see footnote 7.
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rationalizable data set &, Theorem 3 guarantees that

A min, llﬁ>* vV,

Ny (22)

subjectto Av =T,
is the lower bound on the proportion of consumers who are revealed better off at prices
p compared to p!, while the upper bound is

_ maxy 1, . »v,

N. — P=pp (23)
p=pp" subject to Av = 7t

Since (22) and (23) are both linear programming problems (which have solutions if,
and only if, Z is rationalizable), they are easy to implement and computationally efficient.
Suppose that the solutions are v and 7 respectively; then forany g € [0,1], v+ (1 — B)Vis
also a solution to Av = 7 and, in this case, the proportion of consumers who are revealed
better off at p compared to p!is exactly BN prspt +(1-p) Nﬁt;;pf" In other words, the
proportion of consumers who are revealed better off can take any value in the interval
N Nﬁtzpf/]'

Proposition 2 tells us that the revealed preference relations are tight, in the sense that
if, for some consumer, p is not revealed preferred to pt/ then there exists an augmented
utility function which rationalizes her consumption choices and for which she strictly

prefers p! to p. Given this, we know that, amongst all rationalizations of 2, A, is

>-*pt/
also the infimum on the proportion of consumers who are better off at p compared to p" .

The following proposition summarizes these observations.

Proposition 4. Let 2 = {(p',7t")}]_, be a repeated cross-sectional data set that satisfies As-

sumption 1 and is rationalized by the RAUM. Then, for every 1 € [N pspt 7 N p !
=P =P

a rationalization of & for which 1 is the proportion of consumers who are revealed better off at p

|, there is

compared to p".
Furthermore, N pm is the infimum of the proportion of consumers who are better off at p
4

compared to pt/, among all the rationalizations of 9.

It may be helpful to consider how Proposition 4 applies in Example 4. In that case,
there are three GAPP-consistent types with a unique v that solves Av = 7 (see (16)). Of
the three types, p' = p! holds only for type 2 (see Figure 6) and thus the proportion of
consumers who are revealed better off at p' compared to p is v = 1/2. Formally, we
have 1 prespt = (0,1,0),1 v =1/2,and Mpft;;pf' =N =172

p'zpp pizpp
330f the other two types in the population, type 3 (with v3 = 2/5) are revealed better off at p!’ compared

to p!, while type 1 consumers could be either better or worse at p! compared to pt/. Therefore, across all
rationalizations of that data set, the proportion of consumers who are better off (but not necessarily revealed

better off) at p' compared to p can be as low as 1/2 and as high as 1 —2/5 = 3/5.



REVEALED PRICE PREFERENCE 37

6. STATISTICAL TEST OF RAUM, AND INFERENCE FOR COUNTERFACTUALS

This section outlines our econometric methodologies. First, Section 6.1 provides a sta-
tistical test of the RAUM (presented in Section 5). Second, and more importantly, Section
6.2 develops a new methodology for obtaining asymptotically uniformly valid confidence
intervals for counterfactual objects. This result applies to a general class of random utility
models, including the RAUM. It can be used for statistical analyses of welfare compar-
isons and we use it for that purpose in our empirical study in Section 7.2.

6.1. Testing the Random Augmented Ultility Model

Recall from Theorem 3 that, given a set of prices and corresponding demand distribu-
tions 2 = {(p',7t')}_, and an implied vector 7 of choice probabilities on rescaled and
discretized budgets, a test of the random augmented utility model is a test of

Hy: dve AAI=T such that Av = 7

<  min [1 - Av)'Qr — Av] =0, (24)
veRA
+
where () is a positive definite matrix and where the equivalence was noted and exploited
in KS.%
In practice, we estimate 7 by its sample analog 7 = (#!,..., A7) obtained by rescaling
N;
Tlttzl
in the data in period t. This gives rise to test statistic

the empirical distribution of choices {x!, } where N is the number of observed choices

Jy := N min [ — Av]'Q[A — Av], (25)

ver A

+
where N = YL | N; denotes the total number of observations. Computing appropri-
ate critical values for this test is delicate because the limiting distribution of [y depends

discontinuously on nuisance parameters. We use the modified bootstrap procedure pro-
posed by KS.

6.2. Inference for Counterfactuals in a General Class of Random Utility Models

A counterfactual quantity in a random utility model can be generally regarded as a
function of the underlying distribution v of individual preferences. This section focuses
on the case where this mapping is linear, so that we are concerned with statistical infer-
ence for § = p - v, where p € R is a known vector which varies with the counterfactual
of interest. Our analysis of welfare comparisons in Section 5.3 falls into this framework,

34The strategy to configure Hy as a quadratic program also appears in De Paula, Richards-Shubik, and
Tamer (2018), albeit for a different program and in a different context.
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by letting 6 be the proportion of consumers who are revealed better off at prices p com-
pared to pt', with p = ﬂﬁt;‘,pf" It is worth emphasizing that the methodology developed
in this section has broad applicability: it can be used to study other random utility mod-
els (such as the model in Kitamura and Stoye (2019)) and to investigate other objects of
interest in random utility models; for example, Lazzati, Quah, and Shirai (2018) applies

our technique to estimate the proportion of non-strategic players in a game.
Note that 6 is partially identified as follows:

6 € ® where Op:={p-v|lv>0Av=r}.
Our confidence interval inverts a test of
7€ S(0) where S(0):= {Av lo-v=0,ve A'AH} (26)

or equivalently,

min  [7— Av)Q[r — Av] = 0.
veAAI-L g=p.v

The test statistic is a scaled sample analog
Jn(B) = N min [A-— Av]/Q[A — AV]
veAAI=1 g=pv

— N min [# —5]'Q[# — 7). 27
qg&[" nl'Qlf — 1] (27)

Once again, the naive bootstrap fails to deliver valid critical values for (27), since its as-
ymptotic distribution changes discontinuously, depending on the location of 7t relative to
the polytope S(8). This is akin to the nonstandard nature of the inference in (25), though
a simple application of the modified bootstrap algorithm in KS does not work, as their
method relies on, among other things, the polytope { Av : v > 0} being a cone. This is not
necessarily the case for counterfactual analysis, and we need to deal with S(0) without
relying on conical properties. In this section we develop a new algorithm that guarantees
asymptotic validity for inference concerning general counterfactuals.

That said, as in KS, we do gain an insight from Weyl-Minkowski duality. In Appendix
A.7, we show that there exist nonstochastic matrices B, B and a nonstochastic vector-
valued function d(6) such that 7w € S(0) if, and only if,

Bt <0, Br=d(0) and 1- 7 =1, (28)

where 1 is the I-vector of ones where I = Y[ | I; is the total number of patches. Thus,
in principle this is a linear (in)equality testing problem. There is a rich literature on such
problems. However, we cannot directly invoke that literature because we cannot compute

(B, B) in practice for a problem with a relevant scale.
While we therefore need to work with representation (26), representation (28) is use-
ful. It illustrates that the inference problem is non-standard; in particular, the limiting
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distribution of the test statistic depends on how close to binding each of the constraints
encoded in (B, B,d(0)) is. From analogy to the moment inequalities literature, it also
pretty much implies that the constraints’ slackness cannot be pre-estimated with suffi-
cient accuracy; the reason being that it enters the test’s asymptotic representation scaled
by v/N. However, we also know that certain existing procedures which shrink the esti-
mated slack of all inequalities to zero before computing the distribution of Jn will work.
Our proposal is inspired by these but must implement the idea with the computation-
ally feasible representation (26) instead of (28), which is only theoretically available. This
means that we cannot calculate the empirical slack, which is explicit in (the empirical ver-
sion of) representation (28) but not in (26), the very reason why a new method is called
for.

Intuitively, we contract (or “tighten”) the polytope S(6) toward a point in its relative
interior, thereby effectively (but non-obviously) reducing the empirical slack in any in-
equality constraint. This forces all the constraints with small slacks to be binding after
“tightening”. Note that, unlike in KS, we face substantial added complications because
(i) we need to deal with a non-conical S(), and (ii) the appropriate way to tighten the
polytope S(0) varies with the value of 6 through the dependence of S(6) on 6. This leads
to a restriction-dependent tightening approach which we now describe in broad strokes.

Choose a sequence Ty such that Ty | 0 and v/ Nty 1 oo (we make a specific proposal in
the appendix) and define

Soy(0) ={Av|p-v=0,v €V (0)},

where Vy,, () is obtained by appropriately constricting Al4!~1; in particular, some compo-
nents of v are forced to be boundedly above 0. Note that S, (6) depends on 6 through the
equation p - v = 6 but also because, as the notation suggests, the construction of Vr, (6)
will change with 6, a key feature of our algorithm. The definition of V, (6) for general p
is rather involved and thus deferred to Appendix A.7, but it considerably simplifies for
binary p as in our application.

The set Sy, (0) replaces S(0) in the bootstrap population. The precise algorithm pro-
ceeds as follows. For each 6 € ©:

(i) Compute the Ty-tightened restricted estimator of the empirical choice distribution

A

fizy := argmin N[ — 5]’ Q[ — 1]
77 ESTN (9)
(ii) Define the ty-tightened recentered bootstrap estimators

A= A0 A4, r=1,..,R,
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where 77*(") is a bootstrap analog of 7 and R is the number of bootstrap samples.
For instance, in our application, 7#*(") is generated by the simple nonparametric
bootstrap of choice frequencies.

(iii) Foreachr =1, ..., R, compute

*(r) ) — . N A*(r)_ '0 A*(r)_
]N,TN( ) UEIE;\IH(G) [HTN 17] [T[TN 77]

(iv) Use the empirical distribution of | ;,(?N (0) to obtain the critical value for Jy(0).

A confidence interval for 6 collects values of 6 that are not rejected.
Theorem 4 below establishes asymptotic validity of the above procedure. Let
F={(0n) |6€dnecSOIUP}
where P denote the set of all 7t that satisfy Condition 1 in Appendix A.7.

Theorem 4. Choose Ty so that Ty | 0 and /Nty 1 oo. Also, let Q be diagonal. Then under
Assumptions 2 and 3 stated in Appendix A.7,

liminf inf P 0) <é_n}=1—g¢,
W ey TN S ek =1

where 0 < a < % and €1, is the 1 — o quantile of J, .. -
The proof of Theorem 4 is in Appendix A.7.

7. EMPIRICAL APPLICATIONS

In this section, we present two separate applications meant to demonstrate how both
the deterministic and random versions of our model can be tested and employed for
welfare analysis.

7.1. Augmented utility model: testing and welfare analysis on Progresa data

We apply the deterministic model to the Progresa-Oportunidades data set, a workhorse
of the treatment evaluation literature. Progresa was a conditional cash transfer program
aimed at poor communities in Mexico. The program was remarkable in that it was rolled
out in random order so the causal effect of the cash transfers could be studied. For brevity,
we do not describe the program in detail; information on the program is widely available
including in the paper we discuss next.

Our application builds on recent work of Attanasio and Pastorino (2020) (henceforth
AP) who analyze whether the program led to changes in the market prices for basic sta-
ples: rice, kidney beans, and sugar. This is an important question because the welfare
effect of these transfers would clearly depend in part on their impact on prices. While the
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previous literature had documented that average prices were not affected by the program
(Hoddinott, Skoufias, and Washburn, 2000), AP argue that sellers charge nonlinear prices
and that these nonlinear price schedules had changed.

Because treatment was randomized across villages but means-tested at the household
level, some households faced a changing price schedule but no shock to their own in-
come. In our study, we focus our attention on these households because we can be more
confident that their augmented utility functions are unchanged across the observation
periods. Our objectives are, firstly, to test the augmented utility model and, secondly,
to evaluate the welfare impact of price changes using that model. This data set is well
suited for analysis using our deterministic model because its panel structure means that
we can study each household separately. Following AP, we consider nonlinear prices,
which allows us to implement the results in Section 4.

The theoretical part of AP derives the optimal (nonlinear) pricing schedule under the
assumption that there is a heterogenous population of households, with each household
maximizing a quasilinear utility function, subject to a subsistence constraint. This con-
straint stipulates that a household needs a certain minimum number of calories, which
can be obtained from either the observed bundle x or the numeraire; given x, the mini-
mum amount of the numeraire good needed to meet the calorie threshold is denoted by
z(x). Thus the household can only choose among those bundles x such that ¢(x) + z(x) <
M, where 1 is the price system and M is household wealth. It is worth noting that the
augmented utility framework is sufficiently flexible to accommodate this behavior. In-
deed, the household could be thought of as maximizing an augmented utility function of
the modified-quasilinear form

U(x,—e) = U(x) — K(e+z(x) — M)e,

where K(w) = 1if w < 0 and K(w) is a very large positive number if w > 0. In this
way, any (x, —e) (a bundle and its associated expenditure) that leads to a violation of the
subsistence constraint incurs a very large disutility and so will never be chosen.

We work with AP’s data and refer to them for a detailed explanation. Compared to their
analysis, we restrict ourselves to the narrower definition of village (“locality”) because the
larger units of analysis (“municipality”) may not be contained in either the treatment or
the control group. Also, because we are interested in intertemporal within-village price
variation, we estimate separate price schedules for the same village in different waves
as opposed to one price schedule (estimated across waves) per village. This necessitates
being slightly more permissive about data needs, and we estimate prices for all village-
good-wave triples that have 20 or more (as opposed to 75 or more) observations. We
follow AP in rejecting data for villages where prices strictly increase with quantity sold
and where there is insufficient variation in quantities purchased.
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10/98 03/99 11/99 11/00 2003

10/98 035 .024 .006 0

03/99 913 198 .052  .015
11/99 936 .686 105 .034
11/00 981 914 847 .240

2003 1 980 927 520

TABLE 1. Fraction of GAPP rationalizable consumers revealed preferring
the row wave to the column wave.

We estimate the price schedule for good i in village v at wave t by applying Ordinary
Least Squares to
10g(¢vti(‘]vtih)) = bytio + borin log(xvt,-h) + Eutin- (29)
Here h indexes households and {44 (Gotin) = E|[Poti(Xprin) | Xotin] Xotin, Where pusi(xpin) is
the unit price corresponding to quantity x,, € is measurement error, and the expected
value is taken over the empirical distribution of reported unit prices corresponding to the
same quantity purchased of good i in village-wave (v, t). This is exactly Equation (15) in
AP except for being estimated at a less aggregated level.

We test GAPP on households that:

e were not eligible for Progresa transfers,*

e were observed for more than one wave in treated villages for which we estimate
price schedules for each of rice, kidney beans, and sugar,
e purchased at least one of these goods.

In our final sample, this leaves us with 2488 households in 177 villages.*

We emphasize that GAPP is not vacuously satisfied on these data. Recall that GAPP
cannot be violated when two price systems ¥, ¢’ are ranked, in the sense that {(x) >
¥'(x) for all x € RL. Of the 20556 possible combinations of pairs of waves encountered
by households in the data, about 4% have this feature, and only 20 out of 2488 households
exclusively face such price pairs and therefore satisfty GAPP vacuously. Nonetheless,
83% of households pass the GAPP test. Most violations were small in the sense of the
rationality index ¢ (defined in Section 3.4) being close to 1: fewer than 1% of households
were below .9, and fewer than 4% were below .95.

355pecifically, we include households that were not eligible for Progresa in any of the survey waves and
households that were eligible in 2003 only; for the latter, we exclude their 2003 observations from the test.
Eligibility increased dramatically in the 2003 wave, so totally excluding those households would lead to
many fewer observations.

36For 554 of these households we have two observations, for 840 households we have three, for 934 house-
holds we have four, and for 160 households we have five. There are so few with five observations because
many households were enrolled into the program in the final wave and thus removed from our sample.
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03/99 11/99 11/00

75th percentile 536 726 11.65
Median 327 4.66 6.98
25th percentile 158 244 412

TABLE 2. Lower bound of the compensating variation, with 10/98 as the
base

We carried out some illustrative welfare analysis, the results of which are displayed in
Tables 1 and 2. Table 1 displays the fractions of GAPP-compliant households that reveal
prefer a given wave to another wave. Specifically, each cell in the table corresponds to the
fraction of GAPP-rationalizable consumers who reveal prefer (directly or indirectly) the
price system in the row wave to the price system in the corresponding column wave.*”
Notice that the data indicates a strong tendency to prefer price systems in later waves. For
example, 91.3% of households reveal prefer prices in 03/99 to those in 10/98; the same is
true even more strongly when 10/98 is compared against later waves.

To have a sense of the scale of this welfare improvement over time, we calculate, for
each household, the lower bound on the compensating variation, with the price system
faced by the household at 10/98 as the base.” These values are then ranked. The results
are displayed in Table 2. Since more than 90% of households reveal prefer (price systems
at) subsequent waves to 10/98, the lower bound of the compensating variation must be
positive for more than 90% of households. For example, between 03/99 and 10/98, the
median compensating variation is 3.27; thus, based on its observed behavior, one could
remove 3.27 from this household in 03/99 and still leave it as well off in 03/99 as in
10/98. Note that the values in this table are not small, given that the household median
expenditure in 10/98 on the items considered is 27.48.

These results are consistent with AP’s finding that the change in the income distribution
induced by Progresa caused a change in sellers’ intensity of price discrimination. As a
result, poorer households faced higher average prices and wealthier households faced
lower ones; since Progresa was means-tested, untreated households fall into the latter
category. Thus, the general equilibrium effects of the program could be the reason for the
welfare improvements observed in untreated households.

7.2. RAUM: Testing and welfare analysis on household expenditure data

We test the RAUM and conduct welfare analyses on two repeated cross-sectional data
sets: the U.K. Family Expenditure Survey (FES) and the Canadian Surveys of Household
37Note that the (indirect) revealed preference relation t;; uses demand information at all waves in each

binary comparison; see the definition of =}, in Section 4.
3BThe formula for the lower bound when prices are nonlinear is in Section A.5.
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Spending (SHS). Our aim is to show that the data supports the model and to demonstrate
that the estimated welfare bounds are informatively tight.

We first present the analysis for the FES, which is widely used in the nonparametric de-
mand estimation literature (for instance, by Blundell, Browning, and Crawford (2008), KS,
Hoderlein and Stoye (2014), Adams (2020), and Kawaguchi (2017)). In the FES, about 7000
households are interviewed each year and they report their consumption expenditures in
different commodity groups. Following Blundell, Browning, and Crawford (2008) we de-
rive the real consumption level for each commodity group by deflating it with a price
index for that group (which is taken from the annual Retail Prices index). Again follow-
ing Blundell, Browning, and Crawford (2008), we restrict attention to households with
cars and children, leaving us with roughly 25% of the original data. We implement tests
for 3, 4, and 5 composite goods. The coarsest partition of 3 goods—food, services, and
nondurables—is precisely what is examined by Blundell, Browning, and Crawford (2008)
(and we use their replication files). As in KS, we introduce more commodities by first
separating out clothing and then alcoholic beverages from the nondurables.

The data set we have is the sample analog of 2 = {(p', ')} L, as defined in Section 5.2.
It is worth reiterating the point that we made at the end of Section 5.2: even though this
data set is not iso-expenditure, we can directly test the RAUM on this data; this contrasts
with testing the RUM on this data, which cannot be done directly and must involve a
further procedure to estimate an iso-expenditure data set.

We implement the test in blocks of 6 years, i.e., we set T = 6. We avoid covering
a longer period partly due to the computational demands of calculating A (the matrix
of GARP-consistent types; see (19)),* but also because a time-invariant distribution of
augmented utility functions is only plausible over shorter time horizons, for example
because of long term first-order changes to the U.K. income distribution (Jenkins, 2016).

Table 3 displays our results, with columns correspond to different blocks of 6 years
and rows contain the values of the test statistic and the corresponding p-values. The
test statistic [y is defined by (25), with the identity matrix serving as (). Notice that for
the year block 90-95, the test statistic is zero; this means that the sample distribution 7
satisfies the rationality condition in Theorem 3 exactly. That is, there is a distribution v on
GARP-consistent types such that &7 = Av. Apart from this case, the sample distribution
does not exactly satisfy the rationality condition and so the test statistic is strictly positive;
nonetheless it is very clear from the p-values that, overall, our model is not rejected by
the FES data.

We also estimated the bounds [N pipt prt;pf’] (as defined by (22) and (23)) on the

proportion of households that are revealed better off at prices p' than at prices p!'. For

3That said, new techniques developed in (Smeulders, Cherchye, and de Rock, 2021) have significantly
reduced the computational demands of the problem.
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Year Blocks
75-80 \ 76-81 \ 77-82 \ 78-83 \ 79-84 \ 80-85 \ 81-86 \ 82-87 \ 83-88 \ 84-89
3 Goods Test Statistic (Jy) 0.337 | 0.917 | 0.899 | 0.522 | 0.018 | 0.082 | 0.088 | 0.095 | 0.481 | 0.556
p-value 004 | 034 | 055 | 059 | 099 | 0.67 | 0.81 | 091 | 0.61 | 0.48
4 Goods Test Statistic (Jy) 0.4 | 0.698 | 0.651 | 0.236 | 0.056 | 0.036 | 0.037 | 0.043 | 0.043 | 0.232
p-value 025 | 058 | 0.63 | 091 | 096 | 099 | 096 | 095 | 0.99 | 0.68
5 Goods Test Statistic (Jy) 0.4 | 0.687 | 0.705 | 0.329 | 0.003 | 0.082 | 0.088 | 0.104 | 0.103 | 0.144
p-value 0.3 0.66 | 0.68 | 0.88 | 0999 | 096 | 0.79 | 0.85 0.9 0.83

Year Blocks
85-90 \ 86-91 \ 87-92 \ 88-93 \ 89-94 \ 90-95 \ 91-96 \ 92-97 \ 93-98 \ 94-99
3 Goods Test Statistic (Jy) 0.027 | 1.42 | 294 | 1.51 1.72 0 0313 | 0.7 |0.676 | 0.26
p-value 0.69 0.3 0.18 | 0.24 | 0.21 1 0.59 | 0.48 0.6 | 0.83
4 Goods Test Statistic (Jiy) 0.227 | 0.025 | 0.157 | 0.154 | 0.004 | 1.01 | 0.802 | 0.872 | 0.904 | 0.604
00 p-value 048 | 096 | 0.8 0.73 | 097 | 0.21 | 031 | 0.57 | 0.65 | 0.74
5 Goods Test Statistic (Jy) 0.031 | 0.019 | 0.018 | 0.019 | 0.023 | 0.734 | 0.612 | 0.643 | 0.634 | 0.488
p-value 085 | 098 | 097 | 091 | 0.83 | 0.22 04 0.72 | 0.78 | 0.79

TABLE 3. Test Statistics and p-values for sequences of 6 budgets of the FES.
Bootstrap size is R = 1000.

Comparison Estimated Bounds Confidence Interval

plo76 st p1o77 150, .155] [.13,.183]
p1977 >Z p1976 {.803} [.784,.831]
p1979 - p1980 [.517,.530] [.487, .56]
p1980 - p1979 {463} [.436,.497]

TABLE 4. Estimated bounds and confidence intervals for the proportion of
consumers who reveal prefer one price to another one in the FES data. Data
used are for 1975-1980. Bootstrap size is R = 1000.

brevity, we present a few representative estimates using data for the years 1975-1980 in
Table 4. The column “Estimated Bounds’ are the bounds obtained by calculating ]lpft;pf’ v
from the (not necessarily unique) values of v that minimize the test statistic (25). In two
cases this estimate is unique while it is not in the other two cases. Applying the proce-
dure set out for calculating confidence intervals in Section 6.2, we obtain the intervals
displayed (which must necessarily contain the estimated bounds). It is worth noting that

the width of these intervals is less than .1 throughout, so they are quite informative.*’

40Note that, even if the true values of the proportion of the population satisfying p' =7 p! and p" 7 pt
are known, they will typically add up to strictly less than 1 because, for part of the population, there will
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Province Year Blocks

97-02 | 98-03 | 99-04 | 00-05 | 01-06 | 02-07 | 03-08 | 04-09

—_ e THRRHREE
Britsh Columbia (VRN 0 | & | o | o6 | s | o5 | o2 | o0
Manitoba 1€t fff,ﬁﬂg UN) (1) (1) (1) ? (1) (1) .(11 .(11
— T HHHEEF
Newfoundland 1= 2REe 0V 1 S o | s |
S T RREE
oo ety 5|0 0 |44
Quebec Test iﬁiﬁ?ﬁ; (Jn) flgflg (1) (1) (1J (1) 2; 24; 4612
Saskatchewan 1€t it?,t;iﬁg (UN) (1’ (1) (1) (1) (1) .(iz .(iz (1)

TABLE 5. Test Statistics and p-values for sequences of 6 budgets of the SHS.
Bootstrap size is R = 1000.

For our second empirical application using Canadian data, we use the replication kit of
Norris and Pendakur (2013, 2015). Like the FES, the SHS is a publicly available, annual
data set of household expenditures in a variety of different categories. We study annual
expenditure in 5 categories that constitute a large share of the overall expenditure on non-
durables: food purchased (at home and in restaurants), clothing and footwear, health and
personal care, recreation, and alcohol and tobacco. The SHS data is rich enough to allow
us to analyze the data separately for the nine most populous provinces: Alberta, British
Columbia, Manitoba, New Brunswick, Newfoundland, Nova Scotia, Ontario, Quebec,
and Saskatchewan. The number of households in each province-year range from 291
(Manitoba, 1997) to 2515 (Ontario, 1997). We use province-year prices indices (as con-
structed by Norris and Pendakur (2015)) and deflate them using province-year CPI data
from Statistics Canada to get real price indices.

be no revealed preference relation between p' and pt’. For example, type 1 consumers in Example 4 have
no revealed preference relation between p't and p’2.
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Comparison Estimated Bounds Confidence Interval

p1998 - p2001 {.099} [.073, .125]
2001 - 1998 {901} [.875,.927]
p1999 - 2002 (299, .341] [.272,.385]
2002 - p1999 [.624, .701] [.594, .728]

TABLE 6. Estimated bounds and confidence intervals for the proportion of
consumers who reveal prefer one price to another one in the SHS data. Data
used are for 1997-2002 in British Columbia. Bootstrap size is R = 1000.

Table 6 displays the test statistics and associated p-value for each province and every
6 year block. Compared to the FES data, there are two notable differences. The first is
that many more test statistics are exactly zero; that is, the observed choice frequencies
are rationalized by the random augmented utility model. The second is that, for a small
proportion of year blocks, there are statistically significant positive test statistics (in par-
ticular, the last three columns for British Columbia). Nonetheless, the p-values taken
together do not reject the model if multiple testing is taken into account; for example,
step-down procedures would terminate at the first step (that is, Bonferroni adjustment).
Finally, we can also estimate the proportion of the population with a revealed preference
for one year’s prices over another. We provide an illustration in Table 6; notice that the
confidence intervals are informative, with a width no greater than 0.15.

8. CONCLUSION

We propose a revealed price preference relation that generates a nonparametric rank-
ing of price vectors; a consistency (no-cycles) condition in this relation characterizes an
augmented utility model in which consumers get utility from consumption and disutility
from expenditure. This model is a natural generalization of quasilinearity and, further-
more, captures some prominent behavioral models of consumption. The model is also
flexible enough to accommodate nonlinear prices, discrete choice and other consumption
environments. We develop the theoretical basis for welfare analysis in our model.

We generalize our model to a random utility context which is suitable for welfare analy-
sis using repeated cross-sectional (as opposed to single-agent) data and show how to sta-
tistically test this random augmented utility model. A strength of this model is that it can
be directly taken to household expenditure data in contrast to the standard random utility
model which requires an additional round of estimation to account for the endogeneity of
expenditure. We develop novel econometric theory to determine the proportion of con-
sumers who are made better or worse off by a price change. This theory—which derives
bounds on linear transforms of partially identified vectors—is a standalone contribution
which has broader applications beyond those in this paper.
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Finally, we operationalize both the deterministic and random versions of our model in
separate applications to single-agent and repeated cross-sectional data. We confirm that
our model is supported by data and can be used for meaningful welfare analysis.
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APPENDIX A.1. GAPP AND GARP

In this section, we first state and explain Afriat’s Theorem. After that we cover a num-
ber of topics on GAPP and GARP and their relationship: augmented utility functions that
lead to both properties holding in a data set (Section A.1.2); demand predictions at out-of-
sample prices under GAPP and under GARP (Section A.1.3); and on reconciling differing
revealed preference relations under GAPP and GARP (Section A.1.4).

A.1.1. Afriat’s Theorem

Recall that, given a data set D = {(p!, x*)}I_,, a utility function U : RL — IR is said to
rationalize D if, forall t € T, we have U(x!) > U(x) forall x € {xeRL: p'-x<ph-at};
in other words, x' is the bundle that maximizes U among all bundles that cost p' - x! or
less. Afriat’s Theorem characterizes those data sets that can be rationalized in this sense.
Below is the formal statement of Afriat’s Theorem along with some remarks that relate
this theorem to results in the paper.

Afriat’s Theorem (Afriat (1967)). Given a data set D = {(p', x")}L_,, the following are equiv-
alent:

(1) D can be rationalized by a locally nonsatiated utility function.

(2) D satisfies GARP.

(3) D can be rationalized by a strictly increasing, continuous, and concave utility function.

REMARK 1. That (1) implies (2) is clear, given the definition of GARP (see Section 2.2 in
the main paper). The substantive part of Afriat’s Theorem is the claim that (2) implies (3).
Standard proofs (see, for instance, Fostel, Scarf, and Todd (2004) or Quah (2014)) work by
showing that a consequence of GARP is that there exist numbers ¢' and A! > 0 (for all
t € T) that solve the so-called Afriat inequalities

¢ <ot +Afpt (xf —x) forall ¥ # t. (A1)
Once this is established, it is straightforward to show that

U(x) = min {¢'+A"p" - (x =)} (A.2)

rationalizes D, with the utility of the observed consumption bundles satisfying U(x!) =
¢'. The function U is the lower envelope of a finite number of strictly increasing affine

functions, and so it is strictly increasing, continuous, and concave. A remarkable feature
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of this theorem is that while GARP follows simply from local nonsatiation of the utility
function, it is nonetheless sufficient to guarantee that D is rationalized by a utility function
with significantly stronger properties. Our results Theorem 1 and Theorem 2 share this
feature.

REMARK 2. To be precise, GARP guarantees that there is preference 7 (i.e., a complete,
reflexive, and transitive binary relation) on X" that extends the (potentially incomplete)
revealed preference relations =} and >} in the following sense: if Xt =% xt, then xt >~
x' and if x' =% x! then x!' >~ x!. One could then proceed to show that, for any such
preference -, there is in turn a utility function U that rationalizes D and extends > (from
X to RL) in the sense that U(x!) > (>)U(x!) if x'' == (=)x! (see Quah (2014)). This has
implications on the inferences one could draw from the data. If x #* x! (or if x!' >*
x! but x' #£% x) then it is always possible to find a preference extending the revealed
preference relations such that x* > x* (or x* ~ x! respectively).*! Therefore, x* =% (=*)x!
if and only if every locally nonsatiated utility function rationalizing D has the property
that U(x") > (>)U(xh).

Similarly, we show in Proposition 2 that the revealed price preference relation contains

the most detailed information for welfare comparisons in our model.

REMARK 3. A feature of Afriat’s Theorem that is less often remarked upon is that in fact
U, as given by (A.2), is well-defined, strictly increasing, continuous, and concave on the
domain IRL, rather than just the positive orthant R . Furthermore,

xt e argmax U(x) forallt € T. (A.3)
{xE]RL: pt-xgpt-xt}

In other words, U can be extended beyond the positive orthant and x! remains optimal

under U in the set {x € R : p!-x < p'-x'}. (Compare (A.3) with (3).) We utilize this
feature when we apply Afriat’s Theorem in our proof of Theorem 1.

A.1.2. Models that satisfy both GAPP and GARP

Suppose that a data D = {(p, x') }tTJr1 is collected from a consumer who is maximizing
an augmented utility function of the form

U(x,—e) = h(U(x), —e), (A4)

where  is strictly increasing (in both its arguments) and U : RL — R is strictly increas-
ing. In this case, obviously the data set obeys GAPP, but it must also obey GARP, because
if x* maximizes U then x* also maximizes U in the set {x € RL : p*-x < p'-x'}. Thus

/ ! !
4lwe use x*' ~ x! to mean that x>~ x! and xf > x'.
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GAPP and GARP are not mutually exclusive properties and to say that a data set satis-
fies one is not to say that it violates the other; depending on the issue being studied, the
analyst could exploit GAPP, or GARP, or perhaps even both in conjunction.

An interesting question worth investigating is the characterization of those data sets D
generated by consumers who maximize an augmented utility function of the form (A.4).
Such a characterization must involve a property stronger than both GAPP and GARP;
indeed, related work that characterizes rationalization by weakly separable preferences
in the context of the constrained-maximization model (see Quah (2014)) suggests that ra-
tionalization by an augmented utility function of the form (A.4) will involve a property
strictly stronger than the combination of GAPP and GARP. A special case of (A.4) is, of
course, the quasilinear form, where U(x, —e) = U(x) — e. In this case, a full characteriza-
tion is known and the rationalizing property is sometimes referred to as the strong law of
demand (see Brown and Calsamiglia (2007)); obviously the strong law of demand implies
both GAPP and GARP.

In our analysis of the Progresa data reported in Section 7.1, we find that 2061 out of 2488
houesholds pass GAPP (83%), 2375 households pass GARP (95%), and 35 households (a
bit more than 1%) fail both tests. Interestingly, 1983 households (80%) pass both GAPP
and GARP, which is suggestive (but not conclusive) evidence that a very large propor-
tion of households from the Progresa data could be rationalized by an augmented utility
function of the form (A.4).

A.1.3. Comparing demand predictions under GAPP and GARP

Suppose a data set D = {(p', x')}I_; obeys GARP. Then we know from Afriat’s Theo-
rem that there is a utility function U : RY — R for which x* is constrained optimal, for
all . What could this model tell us about the demand at some price p that is not among
the observed prices? In this model, the predicted demand also depends on the level of
total expenditure on the observed goods. Suppose the expenditure is required to be some
w > 0; then the predicted demand will be those bundles x with p - x = w that are com-
patible with the model when combined with D. By Afriat’s Theorem, this is means that x
is a predicted demand if and only if the following conditions are satisfied: p - x = w and
the data set D U {(p, x) } obeys GARP.

Now suppose that D = {(p’,x")}_; also obeys GAPP. Then we know it is also com-
patible with the augmented utility model and we could ask what the augmented utility
model would say about demand at the price p. This is equivalent to identifying bun-
dles x such that D U {(p, x) } obeys GAPP. Since D U {(p, x) } obeys GAPP if and only if
DU{(p,Ax)} obeys GAPP for any A > 0 (see Section 3.1), we know that the set of predicted
demands at p forms a cone.
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Not surprisingly, these two models will typically have different predictions, even at the
same expenditure level w > 0. To illustrate this, consider the following example.

Example A.5. Suppose D consists of the single observation p! = (1,1) and x! = (1,1).
What is the predicted demand at p = (1/4,3/2)? We study the predictions under the
constrained-optimization model, with and without imposing homotheticity on the utility
function, and the augmented utility model.

Consider first the constrained-optimization model. (a) Suppose thatw < p-x! =7/4;
the line of points/bundles incurring this level of expenditure is depicted by B’ in Figure
A.la. In this case, any bundle with p - x = w will not be revealed preferred to x! and
so x can be any bundle in gray shaded area without violating GARP. (b) Now suppose
w > p-(0,2) = 3; the bundles with p - x = w is depicted as B" in Figure A.la. Then
if x - p = w, we have x - p! > 2. In other words, x! will never be revealed preferred
to x. Once again, x can be any bundle in the red shaded area (that extends indefinitely
towards the north east) without GARP being violated. (c) Lastly, we turn to the case
where w € [7/4,3); a line with bundles satisfying this property is B”. Then any bundle
satisfying p - x = w will be revealed preferred to x!. So GARP requires that x! is not
revealed preferred to x, that is, p! - x > p! - x! = 2 and therefore, all bundles in the blue

shaded area will not violate GARP.
The shaded area in Figure A.la gives the predicted demands at p using GARP.

What happens to the predictions of the constrained-maximization model when the util-
ity function is required to be homothetic? It is well known that homothetic utility func-
tions generate demand that is linear in cones. Therefore, for any x € R2, the data set
{(p',x"), (p,x)} can be rationalized (in the constrained-maximization sense) by a homo-
thetic utility function if and only if {(p', x!), (#, Ax)} can also be rationalized in this sense,
for any A > 0. In other words, as in the augmented utility model, the set of predicted de-

mands forms a cone.
The characterization of data sets that are constrained-optimal according to some ho-

mothetic preference is given in Varian (1983), where the precise condition is known as the
homothetic axiom of revealed preference or HARP, for short. In our simple case, to guarantee
that {(p!,x1), (p, Ax)} satisfies HARP, we set w = p - x! and consider the bundles with
p - x = w; the bundles at this expenditure level are depicted by B in Figure A.1b. At this
expenditure level, GARP requires that x satisfies p' - x > p! - x! and, for any such x, we
have {(p!,x!), (§, Ax)} satisfying HARP; in other words, the set of predicted demands is
the cone generated by these bundles of x. This cone is depicted by the shaded region in
Figure A.1b.

In the case of the augmented utility model, recall that if x satisfies p - x = p' - x! = 2,
then {(p!,x1), (p,x)} satisfies GAPP if and only if it satisfies GARP (see Proposition 1).
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(a) Counterfactuals using GARP
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(b) Counterfactuals using HARP (c) Counterfactuals using GAPP

FIGURE A.1. Counterfactuals with different consumption models

The budget line with the property that p - x = 2 is B in Figure A.lc and, in this case,
GARP (equivalently, GAPP) requires that p! - x > p! - x! = 2. The shaded area gives the
predicted demands at p. Notice that the cone in this case contains the cone in Figure A.1b,
which is consistent with the fact that HARP is a stronger property than GAPP. Further-
more, the predicted demands under GAPP is neither a subset nor a superset of that under
GARP, which is again unsurprising given that these two properties are not comparable.

A.1.4. Revealed preferences under GAPP and GARP

Both GARP and GAPP forbids the existences of strict cycles over revealed preference
relations: in the case of GARP, the revealed preference relation is defined over bundles
and in the case of GAPP it is defined over prices. It is entirely possible for these revealed
preference relations to disagree with each other; this occurrence should not be thought
of as strange, nor is it an indication that one model is better of worse compared to the
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other. The two conclusions apply to different objects and either, or both, of them could be
interesting to the analyst.

To be precise, suppose that a data D = {(p, x*)} L, is collected from a consumer who

is maximizing an augmented utility function of the form (A.4). Such a data set will obey
both GAPP and GARP. 1t is possible for the price p' to be strictly revealed preferred to p°
(whether directly or indirectly) and for the bundle x° to be revealed strictly preferred to
x!. If this occurs, is the agent better off in observation ¢ or in observation s? The fact that
p! is revealed strictly preferred to p® means that

U(x!, —p'-x") > U(x*, —p° - x°)
while the fact that x° is revealed strictly preferred to x! means that
U(xt) < U(x*).

In other words, the consumer’s augmented utility is higher in observation ¢ than in ob-
servation s, even though her sub-utility on the observed bundles is lower in observation
t; these two phenomena are not mutually exclusive.

Another observation worth making is that it is sometimes possible to conclude that an
out-of-sample price p is superior to some in-sample price p't observed in D, even though
one has no inkling what the demand will be at p. Indeed, p is revealed preferred to
p't whenever p - x't < ph - x!t (and, more generally, this relation between p and some
other in-sample price p' can be extended via transitive closure). It follows that at the
(unobserved) optimal bundle at p, which we denote by £, we must have

U(J?, _la . 33) > u(xtll _la . xtl) > U(xtll _ptl _xtl)_

This is true even though, as we know from Section A.1.3, the predicted demand at p
under the augmented utility model can be an arbitrarily small or large bundle. On the
other hand, without knowing the agent’s expenditure level at p, it is impossible to tell if
the sub-utility U(£) is greater or lower than U(x1). Put another way, while GAPP may
allow the observer to rank p with p'1, it is impossible to rank the subutility of the demand
bundle at these two observation using GARP, without some information or assumption
on the expenditure level at p.

Example A.6. Suppose D consists of two observations,
(p",x') = ((2,2),(2,2)) and
(p2,x2) = ((1,1),(1,1)).
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It is straightforward to check that this data set can be generated by a consumer maximiz-
ing

U(x, —e) = U(x) - f(e),
for strictly increasing functions U and f. Clearly, p®2 is revealed preferred to p't and x'
is revealed preferred to x"2. In this case, the consumer’s augmented utility is higher at ¢,
compared to t, even though her sub-utility on the observed goods is lower at t, compared
to 4.

Now suppose the data consists of just the observation (p't, x'1). Obviously, we can still
conclude that the consumer prefers p = (1,1) to p't and derives greater augmented util-
ity from p than from p"l. However, nothing can be said about the consumer’s subutility
without further information on expenditure. If the expenditure is lower than the expen-
diture at t1, which is 8, then the subutility achieved at p must be lower than the subutility
of x! and if the expenditure is higher than 8, then the sub-utility achieve must be lower
than that of x'1.

APPENDIX A.2. PROOF OF PROPOSITION 2

(1) We have already shown the ‘only if” part of this claim, so we need to show the ‘if’
part holds. From the proof of Theorem 1, we know that for a large M, it is the case that
p' =p p" if and only if (x', M — p' - x!) =, (x', M —p' - x") and hence p' = p' if and
only if (xf, M — pt-xt) =% (xf, M—pt - x"). If pt i pt', then (xf, M — pt-xt) % (x', M —
p!" - x!") and hence there is a utility function U : R — R rationalizing the augmented
data set D such that U(x!, M — p' - x') < U(x",M — p" - x!') (see Remark 2 in Section
A.1.1). This in turn implies that the augmented utility function U (as defined by (5)), has
the property that U(xf, —p - xt) < U(x!, —p! - x!') or, equivalently, V(p') < V(p").

(2) Given part (1), we need only show that if p" > p! but pt . p!', then there is some
augmented utility function U such that U(x!, —p* - x*) = U(x", —p" - x''). To see that this
holds, note that if p* >3, p! but p! e p!', then (xf, M — pt - xt) =% (2, M — p* - x'') but
(xf, M —pt-xt) % (¢, M —p" - x"'). In this case there is a utility function U : RA*! — R
rationalizing the augmented data set D such that U(x!, M — p' - x!) = U(x", M — p!" - x!").
This in turn implies that the augmented utility function U (as defined by (5)) satisfies
U(xt, —pt-xt) = U(x", —p! - x) and so V(p!) = V(p!). [ |

APPENDIX A.3. PRICE INDICES TO DEFLATE NOMINAL EXPENDITURE

In this section, we build on the discussion in Section 3.5. Suppose that, at observation
t, the consumer chooses (x!,y!) to maximize U(x,y), subject to p! - x' +g' - y* < M.
We are interested in the conditions under which there is an index k!, depending on the
prices of the outside goods, such that the deflated data {(p'/k, x!)}I_; obeys GAPP (and
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hence can be rationalized as maximizing an augmented utility function). In the main
paper, we explained that this holds if prices of the outside goods move up and down
proportionately (so there is no change to their prices relative to each other). When relative
prices are allowed to change, it is still possible to obtain a deflator k' guaranteeing that
{(p'/K',x")}I_, obeys GAPP, but stronger assumptions will have to be imposed on the
utility function U. We outline a set of sufficient conditions for this to hold.

Suppose that the outside goods are weakly separable from the observed goods, so the
overall utility function has the form U(x, 7i(y)), where i(y) is the sub-utility of the bun-
dle y of outside goods. Furthermore, we assume that i has an indirect utility @ of the
following form:

o(q,m) =h (% +b(9),81(q),82(9), - - -,gw(q))

where f, b, g1,...,¢n are all real-valued functions of the prices q of the outside goods,
and m is the expenditure devoted to those goods. This formulation covers a number
of standard functional forms used in empirical analysis. If 5(q,m) = m/ f(q) where f is
one-homogeneous then the preference it generates is homothetic; if (g, m) = (m/ f(q)) +
b(g), where b is zero-homogeneous, then we obtain the Gorman polar form (see Gorman
(1961)). Another example is the form

3 _J[Inm —Inf(q) 1 B
lnv(q/m) - { { gl(q) } +82(4)} (A5)

where g1 and g are zero-homogeneous functions. If go = 0, the form (A.5) generates the
Price Invariant Generalized Logarithmic (PIGLOG) demand system (Muellbauer, 1976);
if further functional form restrictions are imposed on f and g;, we obtain the Almost
Ideal Demand System (AIDS) of Deaton and Muellbauer (1980). The Quadratic Almost
Ideal Demand System (QUAIDS) is a generalization of AIDS that has greater flexibility to
model empirically relevant Engel curves (see Banks, Blundell, and Lewbel (1997)); it is a

special case of (A.5) with functional form restrictions on f, g1, and g».

We assume that the consumer’s total wealth M! varies with t in such a way that, should
the consumer devote all of this wealth to the unobserved goods, then her utility is con-
stant. This captures the idea that the consumer’s real wealth (as measured by the in-
direct utility function v) is unchanged across observations. While we permit prices of
the unobserved goods to change, we require that they change in such a way that g;(¢"),
22(q"),...,gn(g") remain constant at §1,$> . . ., gn (respectively) for all t. Given the form
of 7, this implies that (M'/ f(q")) + b(g") is constant for all ¢; let this constant be C. Thus
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we can think of the consumer as choosing (x, ¢) to maximize U(x, 3(c, §1, 32, - - -, §N)) sub-
jectto pt-x + (¢ —b(g"))f(g") < (C—b(g"))f(q"). This inequality can be written as

pt x

( N
It follows that the data set {(p'/f(q"), x")} L, will obey GAPP.

c <C.

\

APPENDIX A.4. NONLINEAR PRICING, THE RATIONALITY INDEX, AND RELATED TOPICS

In this section, we formulate and prove a rationalization result that allows for both
imperfect rationalization and nonlinear pricing. This result generalizes Theorem 2 and
Theorem 1 by allowing for imperfect rationality. We explain how this result is crucial in
helping us to calculate the rationality index (introduced in Section 3.4) and other varia-
tions on that index that provide a measure of departures from exact rationality. We also
use this result to show that the bounds on the compensating and equivalent variations
obtained in Section 3.3 are tight.

A.4.1. S-rationalization

We are in the setting of Section 4. The consumer chooses her consumption from the
space X C RL. A price system is amap ¢ : X — R, where () is the cost of purchasing
x € X. Letd = (8',9%,...,87) € (0,1]T. An augmented utility function U : X x Ry — R
provides a d-rationalization of a data set D = { (¢!, x!)}L_; if, at each observation ¢,

U(x!, —p!(xh) > U(x, — (8") "1y’ (x)) forall x € X.

Note that this definition of d-rationalization generalizes the notion introduced in Section
3.4, which can be thought of as the special case where o = o for all t,t € T. The
context here is also more general since we allow for nonlinear pricing (as introduced in
Section 4). Obviously, if a data set can be exactly rationalized then it is d-rationalized
with ¢ = (1,1,...,1); note also that if a data set can be O-rationalized then it can also be
®'-rationalized for 8 < . A consumer whose observations cannot be exactly rationalized
but can be §-rationalized for some ¢ < (1,1,...,1) exhibits limited rationality in the sense
discussed in Section 3.4.

The calculation of the rationality index hinges on our ability to ascertain whether a data
set D has a O-rationalization for a given 9. It is possible to characterize those data sets that
can be d-rationalized using a modified version of the GAPP test, as we now explain.

Let & € (0,1]. Define the relations = pp and - 5 in the following way:

pr =5 whif gt (xf) < 8"y (x) and g - 5yt if gt (xf) < 87! ().
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Denote the transitive closure of = 09 by i;@ Obviously these definitions generalize the
ones given for revealed preference relations over prices provided in Section 4.

The data set D obeys 8-GAPP if
there do not exist observations t,t' € T such that ' i Yrand ¢t - 59",

The next result states that 9-GAPP characterizes d-rationalization.

Theorem A.4.1. A data set D = {(y',x")}L_| can be O-rationalized by an augmented utility
function for some ¢ € (0,1]T if and only if it satisfies 3-GAPP.

REMARK 1. This theorem states, in particular, that D = {(y*, x')}_; can be rationalized
by an augmented utility function if and only if it satisfies GAPP, which corresponds to
the special case where ¢ = (1,1,...,1). So it covers the first claim in Theorem 2 (the part
before “Furthermore,...”) and also the equivalence of statements (1) and (2) in Theorem
1. For the proof of the second claim in Theorem 2 see the end of this subsection. Unlike
the proof we gave of Theorem 1 in the main body of the paper, our proof of Theorem
A.4.1 does not appeal to Afriat’s Theorem, though it is clearly inspired by it. In particular,
we show that 9-GAPP implies that there is a solution to a system of linear inequalities
(see Lemma A.1 below), analogous to the so-called Afriat inequalities usually derived
in the proof of Afriat’s Theorem and then use those inequalities to explicitly construct a
piecewise linear augmented utility function that rationalizes the data.

REMARK 2. Note that checking whether or not 3-GAPP holds for a given @ is compu-
tationally undemanding: the relations = pgand = 5 can be easily constructed; once this
has been obtained, we can apply Warshall’s algorithm to compute the transitive closure
of the revealed preference relations and then check for violations of 8-GAPP.

REMARK 3. Suppose we impose the mild restriction that every bundle that is an ob-
served choice has a strictly positive value under any of the other price observation, that
is, gbt/(xt) > 0 whenever 1pt/ # ¢'. Then we can choose sufficiently small ¥ > 0 so that
P! (xt) > Ot (x!) whenever ¢! # ¢!, If welet @ = (9,...,9), then D must obey 9-GAPP
simply because the relation -, is empty. Thus every data set is d-rationalizable for 9
sufficiently close to zero.

Proof of Theorem A.4.1. Suppose D can be 9-rationalized by an augmented utility func-
tion for some & € (0,1]7. In that case, if ¢"’ =,5 ¥ then P! (xf) < 8'¢!(x) and so

U, =" (")) = U, —(8") 19" () = U~y (")), (A.6)

where the first inequality follows from the (imperfect) optimality of x!" and the second
] . . . ot x t
from the property that U is strictly decreasing in expenditure. It follows that if ¢ tp,@ Y,
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then U(x", =" (x)) > U(x', —y'(x")). Similarly, if " = 5 ¢, then g (x') < 8"¢!(x")
and we obtain U(x!, —p! (x)) > U(x!, —y!(x!)) since the second inequality in (A.6)
will now be strict. It is then clear that we cannot simultaneously have Pt i; 3 ¢!, and
Y3 !, which establishes 8-GAPP.

Conversely, suppose that D obeys 3-GAPP. Then there is a complete preorder = defined
on the set {p' };c7 that extends = p,5 and - 5 in the sense that such ot = ytif ¢t i;’@ P!
and ¢ = ¢t if g’ >~ p5 ¥, where - is the asymmetric part of 7. We first prove the
following lemma.

Lemma A.1. Suppose D obeys 0-GAPP and let - be a complete preorder that extends = » and
= Then there are numbers ¢' and A' > 0 (for t = 1,2,...,T) with the following properties:

@ ¢ > 9" if - ¢

(0) ¢" = ¢' if y* ~ s and

(©) ¢ < o' + A (! () — 8'9t' (x")) forall £ # 1.
Proof. Let z// = ¢i(x/) — &'yJ(x/) for i, j € T. Note that, for i # j, z/ < 0 implies that
¢! = ¢/ and z/ < 0 implies that ' = /. We shall explicitly construct ¢! and A! > 0
that satisfy the required conditions. With no loss of generality, suppose that ™! = ¢! for
t=1,2,...,T—1.

First, choose ¢' to be any number and A! to be any strictly positive number. Suppose

$? = ¢'. Then min;j-qzY > 0, because if 2V = gl(x) — 9y (/") < 0 for some ' > 1,
then ¢! = /', which is a contradiction. So there is ¢? such that

Pt < ¢? < mi{l{qﬂ + ALz}, (A7)
j>
If p? ~ ¢! then min;.1 zY/ > 0 because if 2V = p'(d) — 8yl (¥/) < 0 for some j/ > 1,
then ¢! - lpj/, which is a contradiction. Setting ¢? = ¢!, we obtain
¢' = ¢ <min{p' + 112V}, (A8)
j>
We claim that there is A2 > 0 such that
¢l < ¢? + A2Z2,

Clearly this inequality holds if z2! > 0. If z2! = ¥?(x!) — 9%yl (x!) < 0, then ¢? = ¢!; this
implies that ¢! < ¢? and thus the inequality holds for A? sufficiently small.

We now go on to choose ¢* and A3. Since ¢/ - ¢’ for all j > 2 and i = 1,2, we obtain
z!l > 0. Consider two cases: when > = 2 = ! and ¢° ~ ¢? = ¢!. In the former case,
both min;~, zY > 0 and min;-, z% > 0. Therefore

¢* < min{¢? 4+ A\2z%}.
j>2
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If * = ¢!, obviously we also have
¢* < mi?{(pl + ALz,
1>

this inequality also holds if ¢ > ¢! since in that case (A.7) holds. It follows that we can
find ¢> such that

¢* < ¢* < min {min{qﬂ + MzY}, min{¢? + )L2zzj}} :
J>2 j>2

We turn to the case where @3 ~ ¥? = ¢l. It follows from (A.7) and (A.8) that ¢ <
min;-o{¢! + A'z%}. We also know that z% > 0 for all j > 2. Therefore, we can choose ¢
such that

¢* = $> < min {min{gbl + Az}, min{¢? + Azzzj}} :
j>2 j>2
Now choose A> > 0 sufficiently small so that
¢f < ¢>+A%2% fori=1,2.

Clearly that this inequality holds for any A3 > 0if z% > 0. If z3 < 0 then ¢® = ¢/, in
which case ¢* > ¢ and the inequality will be satisfied for A sufficiently small.

Repeating this argument, we choose ¢ (for t < T — 1) such that if ¢ = '~! then

¢! < ¢' < min {,min {¢° + /\stj}} (A.9)
s<t—1 [ j>t-1
and if ¢! ~ ¢'~1 then
=1 _ ot < : . s 5.5] . Al
¢ ¢ < min {].r>ntl_nl{4> + A%z }}, (A.10)

and Af > 0 (fort = 2,3,...,T) such that
¢ <Pt A2 fori <t —1. (A.11)

For a fixed #, (A.9) and (A.10) guarantee that ¢! < ¢' + Alz!!' for t < ' while (A.11)
guarantees that this inequality holds for t > #'. So we have found A’ and ¢' to obey
condition (c), while the first two conditions hold by construction. u

We now return to the proof that (2) implies (3). Let 2~ be a complete preorder that
extends =, and 5 and let the numbers ¢! and Af > 0 (for t = 1,2,...,T) satisfy
properties (a) — (c) in Lemma A.1. Define the function U : X x R_ — R by

U(x,—e) = rtréi%l{(l)t + Al (x) — de) ). (A.12)
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This function is an augmented utility function since it is strictly increasing in the last
argument. We claim that this function also satisfies the property that, ateach t € T,

U(x!, —p!(xh) > U(x, —(8") "1y’ (x)) forall x € X.

Indeed, at a given observation s, for any t # s, we have ¢ + Af (! (x%) — ¢'¢°(x°)) > ¢° by
condition (c); furthermore, ¢° + A°(¢°(x°) — #¢°(x°)) > ¢° since A* > 0 and & € (0, 1].
Therefore, U(x°, —¢°(x°)) > ¢°. On the other hand, by the definition of U,

U(x, =(8°)7197(x)) < ¢°+ A (9°(x) = 9°(x)) < 9"
So U(x*, —p(x%)) > U(x, =9 1p*(x)) for all x. |

The augmented utility function U at the price system ¢ induces an indirect utility given
by V(1) = maxyex U(x, —1p(x)). In the case where GAPP holds and exact rationalization
is possible, one could also choose the rationalizing utility function U so that its indirect
utility V agrees with any ordering over {¢'}]_, that is consistent with the revealed pref-
erence relations. (Note that this feature is also present in Afriat’s Theorem; see Remark 2
in Section A.1.1.) The following result is used in Section A.5.

Theorem A.4.2. Suppose the data set D = { (', x")} L, obeys GAPP and let = be a complete
preorder on {y'}]_, that extends =, and . Then there is an augmented utility function U :
X x R_ — R that rationalizes D such that V(') = V(') if ¢t ~ ¢! and V(') > V(o') if
¥t = ot (where ~ and > are the symmetric and asymmetric parts of =).

Proof. From the proof of Theorem A.4.1, we know that U(x, —e) as given by (A.12) (with
6! = 1 for all t) rationalizes D. We can then conclude that V(¢!) = U(x!, —yp(x)) = ¢!
because ¢ < ¢! + A" (! (xt) — ¢! (x')) from part (c) of Lemma A.1. Finally, V satisfies
the required properties because of (a) and (b) in Lemma A.1. [ ]

We end this subsection with the proof of Theorem 2; this result is obtained as a corollary
of Theorem A .4.1.

Proof of Theorem 2. Choosing ¢ = (1,1,...,1), Theorem A 4.1 states, in particular, that
D = {(¢',x")}L_; can be rationalized by an augmented utility function if and only if it
satisfies GAPP. It remains for us to show that, under assumptions (i), (ii), and (iii), this
utility function could be extended to one defined on a closed set Y containing X and that
is increasing in xx. We know from the proof of Theorem 2 that the function U : X — R
given by

U(x, —¢) = min{g! + Ay (x) — )}

rationalizes the data (see A.12). It suffices to show that each function ¢!, which is defined
on X could be extended to a continuous function on Y that is strictly increasing in xg, in
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which case we could correspondingly extend U and the extension would be continuous
and strictly increasing in xg (since AT > 0).

That ¢! admits such an extension is guaranteed by (i), (ii), and (iii). A quick way of ar-
riving at this conclusion is to appeal to Levin’s Theorem, which is a version of Szpilrajn’s
Theorem for closed preorders (see Nishimura, Ok, and Quah (2017) for a proof of Levin’s
Theorem). Since ¢ is continuous, it induces a closed preorder =/ on X and therefore also
onY.* ForK C L, let > k be the partial order on Y such that, for x” and x in RE, we have
x' >k xif x} > x; foralli € Kand x] = x; for i ¢ K. Itis straightforward to check that, for
any number M, the set

{x € Y : thereis ¥ € X with ¥ >x x and M > ¢'(%)}

is a compact set in Y. (Recall that Y is closed, contains X, and is contained in ]REL.) Using
this property, one could check that =", defined as the transitive closure of 7' and >, is
also a closed prorder on Y. Levin’s Theorem then guarantees that there is a complete and
closed preorder 7~ on Y that extends " and has a continuous representation V : Y — R.
In particular, V must be strictly increasing in xg and satisfies the following property:
V(x') > (>)V(x)if ¢t (x') > (>)¢!(x), for ¥/, x € X. Furthermore, our assumptions
guarantee that that {V(x) : x € X} C R is a closed set. These properties guarantee
that we could choose a strictly increasing transformation & defined on the range of V, i.e,,
the set {V(x) : x € Y}, so that h(V(x)) = ¢'(x) for all x € X. Therefore the function
hoV :Y — Risa continuous extension of ' : X — R that is strictly increasing in xx. W

A.4.2. Rationality indices and their computation

Givenadataset D = {(¢',x")}L |, we know thatitadmitsa (8,9, ..., d)-rationalization
for some ¢ > 0 (see Remark 3 following Theorem A.4.1). This guarantees that the ratio-
nality index, given by

0" =sup{d € (0,1) : Dhasa (4,9,...,9)-rationalization},
is well-defined. Note that this definition generalizes the definition provided in Section
3.4 of the main paper, which applies to the linear price environment. A data set that can
be rationalized exactly has a rationality index of 1 and we could use the closeness of " to

1 as a measure of the data set’s closeness to exactly rationality.
Given the characterization of d-rationality stated in Theorem A.4.1, we also have

0" = sup{® € (0,1] : D satisfies (8, 9,...,9)-GAPP}. (A.13)

This identity provides us with a practical way of calculating ¢*. Indeed, ¥* can be ob-
tained through a binary search algorithm that works as follows. We first set the lower

42 A preorder =’ defined on a set X is closed if {(a,b) € X x X : a =/ b} is a closed subset of X x X.



REVEALED PRICE PREFERENCE 63

and upper bounds on ¢* to be 8 = 0 and 9 = 1. We then check (by checking 8-
GAPP) whether the data set passes or fails the test at ¢ = (¢F + 9)/2 (to be precise,
atd = (9,9,...,0)); if it passes the test, then we update both 9" and its lower bound
to (9F + ©!7) /2; if it fails the test, then we update 9* to 9 and the upper bound on 9* to
(0% + 1) /2. We then repeat the procedure, selecting and testing the new midpoint of the
updated lower and upper bounds. The algorithm terminates when the lower and upper
bounds are sufficiently close.

There are other plausible variations on the rationality index, based on the way one ag-
gregates ¢ across observations. Let F : (0,1]T — R} be any weakly increasing function
taking nonnegative values such that F(1,1,...,1) = 1. We can then construct a general-
ized rationality index

F* = sup{F(9) : D has a d-rationalization}.
The rationality index ¢* corresponds to the case where F is defined by
F(®) = min{d',?,...,87}.
As an alternative to this, one could choose

F@) =1—/(1— 012+ (1— 022+ ...+ (1-07)2,

which leads to a measure of rationality based on the sum of square differences from the
case of exact rationality (where ¢ = (1,1,...,1)).

Computing these generalized rationality indices can be more demanding than com-
puting the (basic) rationality index ©* since in searching for those values of ¢ that -
rationalizes the data and maximizes F (@), we would not in general be able to confine out-
selves to the the case where ¢! = 8" for all ¢, . In the literature on measuring GARP vio-
lations, there are indices, such as the one proposed by Varian (1990), that involve solving
a maximization problem with the same mathematical structure. (In that case the problem
is to find the best way to break up revealed preference cycles over consumption bundles
rather than over price vectors.) Algorithms that have been devised to compute Varian’s
index (see Halevy, Persitz, and Zrill (2018) and Polisson, Quah, and Renou (2020)) can

also be used to compute F*.

A.4.3. 9-GAPP and 9-GARP

We confine our discussion to the environment where prices are linear, so the data set
has the form D = {(p!, x*)}]_,. Let ¢ € (0,1]". We say that a utility function U : Rt — R
O-rationalizes D in the sense of Afriat if U (x') > U(x) for all x € Bf, where

By ={xeRL:p' x<d'p"-x}.
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Y-rationalization in this sense admits a characterization similar to the one we gave for
U-rationalization in the augmented utility model.

Define the relations =, 5 and - 5 on the set {x'}L_, in the following way:

' g xtif pt o xt < Opt xt and xf - g xMif pf ot < 8Pk

Denote the transitive closure of = 5 by i;? Obviously these definitions generalize the
ones given for the revealed preference relations over bundles (see Section 2.2 of the main
paper). With these definitions in place, we can also generalize the definition of GARP. We
say that the data set D obeys 9-GARP if

there do not exist observations t,t' € T such that x!' = xtand x' - 3 xt.

It is straightforward to show that 3-GARP is necessary for the d-rationalization of D
(in the sense of Afriat) by a locally nonsatiated utility function U : Rl — R. It is also
known (see Halevy, Persitz, and Zrill (2018)) that 9-GARP is sufficient to guarantee the
Y-rationalization of D (in Afriat’s sense) by a continuous, strictly increasing and concave
utility function U : RY — R.*® By definition, the critical cost efficiency index c* satisfies

c* =sup{® € (0,1] : Dhasa (8,9,...,0)-rationalization in the sense of Afriat}
and since d-rationalization in Afriat’s sense can be characterized by 9-GARP, we obtain
c* =sup{® € (0,1] : D satisfies (8, 9,...,9)-GARP}. (A.14)

With these observations in place, the proof of Proposition 3 is now straightforward.

Proof of Proposition 3. First we note that there is a generalization to Proposition 1: it is
straightforward to check p' =, 3 p' if and only if i - o ¥ and pt - , P if and only
if ¥ - 5 #t. Thus, D satisfies 9-GAPP if and only if D satisfies 9-GARP. Then it follows
immediately from (A.13) and (A.14) that the critical cost efficiency index of D is equal to
the rationality index of D. |

#3Indeed, we could obtain this result by modifying our proof of Theorem A.4.1. First, -GARP guarantees
that there is a complete preorder 7 on {x'}L; that extends = g and - 5. Then, by mimicking the proof
of Lemma A.1, one could guarantee the existence of numbers ¢’ and A! > 0 (for t = 1,2,...,T) with the
following properties: (a) ¢! > ¢! if x' = x'; (b) ¢! = ¢! if x*' ~ x!;and (c) ¢ < ¢! + Alp! - (xf — d'xt) for
all t # t'. The utility function U : RY — R given by

U(x) = min{¢' + A'p" - (x — 8'x")}

is a continuous, concave, and strictly increasing. It is straightforward to check that property (c) guarantee
that U rationalizes D in Afriat’s sense.
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A.4.4. Allowing for variation in product characteristics across observations

In Section 4.1(3) we considered a model of differentiated goods, where each product is
represented by a vector of product characteristics in the space R%. We assumed in that
section that the set of available goods, X, is fixed across observations but that assumption
is not crucial to our model or test. We now allow the range of products available to the
consumer to vary across observations.

The changes we have in mind include the introduction of new products and also changes
to characteristics of an existing product. The latter could be a substantive change — for
example, a change to the formula for a breakfast cereal — or it could be a change (say)
to the amount of money spent on advertising that alters a product’s utility (in the broad
sense). All these cases could be formally captured by a data set D = {(y',x!, X))},
where X! is the set of products available at observation ¢, x! (as usual) is the product cho-
sen, and ¢’ : X! — R is the price system as observation t. Notice that the price system
at observation t is defined on X' (the set of available products at observation t). An aug-
mented utility function U : Y x R_ — R, where Y is a subset of R} containing U;cr X!
rationalizes D if, at each observation ¢,

U(xt, —y¢'(xh) > U(x, —¢'(x)) forall x € X¥;

in other words, x' and its associated expenditure gives greater utility than any other prod-
uct available at observation t. Sometimes, there is universal agreement that certain prod-
uct characteristics K C L will always make the product more desirable; in this case, we
would also like the rationalizing utility function to be increasing in xx.

Developing a test of whether D = {(¢',x!, X")}L, can be rationalized by an aug-
mented utility function that is increasing in xg requires a modification of the notion of
revealed preference.

We say that ¢ is directly revealed preferred to !, and denote it by ¢! =, ! if 9 (£) <
¥ (x") where £ € X" and £ >k x'.** In other words, ¢ is directly revealed preferred
to ! if there is a product £ available at ¢’ that is weakly superior to x’ in the dimensions
belonging to K, the same in the other dimensions, and costs less than x. We say that ¢! is
directly strictly revealed preferred to !, and denote it by ¢ =, * if ¢ is directly revealed
preferred to ¢! and, either ¢! (£) < (x!) or £ > x'. We denote the transitive closure
of =yp by =3, that is, Pt = ! if there are ty, tp,...,ty in T such that ¢! =op Y1,
P =gy g2, N =, N, and 9N =, 9 in this case we say that ¢! is revealed
preferred to ', If anywhere along this sequence, it is possible to replace =, with >, then
we denote that relation by " >~ op ¢! and say that ¢ is strictly revealed preferred to y'.

HThe partial order > is defined as follows: x” >g x"if x” = x" ; and x¥ > x.
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It is straightforward to check that if D can be rationalized by an augmented utility
function that is strictly increasing in xx then it obeys GAPP with respect to =, and -, in
the following sense:

there do not exist observations t,t' € T such that ¢ oy Whand ¢t -3, ¥t

The following theorem asserts that the converse is also true.

Theorem A.4.3. Let the data set be D = {(y',x!, X!)}_,, where X" is finite for all t € T and
' X' — Ry is strictly increasing in xg, i.e., if X" >g x" and both x' and x' are in X', then
WH(x") > t(x'). Let Y be a closed set in R% containing User X'

Then D can be rationalized by an augmented utility function U : Y x R_ — R that is strictly
increasing in xx if and only if satisfies GAPP with respect to =3, and >,,.

Proof. We skip the proof of the necessity of GAPP, which is straightforward, and turn to
establishing its sufficiency. Let X = UjerX'. We claim that we can extend the function
¢! X! — Ry to a function ¢' : X — R that is increasing in xx and such that D =
{(f, x')}L_, satisfies GAPP (v;ith respect to the revealed preference orders =, and -,
induced by D). Then an application of Theorem 2 will guarantee that D, and thus also
D, can be rationalized by an augmented utility function U : Y x R_ — R that is strictly
increasing in xg.

To guarantee that D satisties GAPP, with respect to i; and >’;, we need to specify
P!(x), for x € X\ X', in such a way that =3=>3, and ~3=>3,. Then GAPP holds with
respect to =, and -, because GAPP holds with respect to =7, and *-7,. Because X is
finite, such an extension ¢t can be obtained with no technical difficulty. For x € X'\ Xt
if there is no x’ € X! such that x’ >k x, we choose ¥!(x) > max{y*(x®) : s € T}, while
making sure that ¢’ remains increasing in xg. If there is ¥’ € X' such that ¥’ > x, then
choose ¥'(x) to be strictly lower than ¥'(x’), but if x = x® for some observation s, then
choose it(x) = 9'(x°) > ¢*(x°) if p*(x') > ¢°(x°). In this way, we guarantee =;=>},
and -,=>,. |

APPENDIX A.5. MORE ON COMPENSATING VARIATION
Our objective is to prove equation (11) from the body of the paper:
inf(p.) = max{m; : m satisfies (10) for some s € S} (A.15)
where (10) requires p'2x® + mS = p°x°.

Proof. Since S is a finite set, there is 3 € S that achieves the maximum on the right
of (A.15). We have already shown that inf(y.) > m$, so it remains to show that they
are equal. We shall do this by producing, for any € > 0, an augmented utility function
rationalizing D for which the compensating variation is smaller than m3 + €.
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T .
t=17

we know that U exists since D obeys GAPP by assumption. Let ¢ : X — R be the nonlin-

To this end, let U be any augmented utility function that rationalizes D = {(p', x)
ear price system given by i(x) = p'2- x +m + € and suppose that £ € argmax, . U(x, —§(x)).
Now consider the data set D' = D U {(¢, £) }. Obviously this data set can be rationalized
(in fact it is rationalized by U). Furthermore, ¢ %, p® for any s € S. This is because

P = Pt bl e > ol =
for any s € S. (Recall that, be definition, m3 > mS for all s € S.) Thus there is a complete
preorder - on {p'}L_; U {¢}, completing the revealed preference relations on D’ such
that p'' = . By Theorem A.4.2, there is an augmented utility U rationalizing D’ such
that its indirect utility V satisfies V(p"1) > V(¢). In other words,

V() = maxU(x, —p - x = mi — €) < U(x", —pft - 1),
xXe

So for the augmented utility function U, the compensating variation must be smaller than
ms + €. |

Our treatment of the compensating and equivalent variations can be easily extended
to allow for nonlinear pricing. We give a sketch of the procedure for calculating a bound
on the compensating variation and leave the reader to fill in the details; this procedure is
completely analogous to the one for linear prices described in Section 3.3

Let U be the consumer’s augmented utility function. Suppose that the initial price is
¢h and it changes to 92, leading to a change in consumption from x'! to x’2. Then the
compensating variation y is, by definition, the variable that solves the equation

max,cgr U(x, —92(x) — pe) = V(9') = U(x"1, —p" (x")). (A.16)

Note that y. is unique since U is strictly increasing in the last argument. We could think
of y. as the lump sum transferred from the consumer (if it is positive) or to the consumer
(if it is negative) after the price change that will make her indifferent between the two
situations.

Now suppose a data set D obeys GAPP and contains the observation (¢, x1). How
can we form a lower bound of the compensating variation of a price change from ¢" to
2?2 (Note that our discussion is valid whether or not ¢ is an observed price system in
the D.) Formally, we wish to find

inf{pc : pc solves (A.16) for some augmented utility function U that rationalizes D}.

Abusing terminology somewhat, we shall denote this term by inf(y.).

We now describe how to compute this bound. Let S C T be the set of observations such
thats € Sif ¢° = 1. This set is nonempty since it contains p'! itself. For each s € S,
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there is m; such that

Pi2(x) + m = p*(x°). (A.17)
For any U that rationalizes D, the compensating variation y, > mg. Indeed, if m < mg,
then m # y. for any utility function rationalizing D because

max, g, U(x, =92 (x) —m) = U(x, =92 (x°) —m) > U(x*, —y"2(x*) — mg)
= U(x', =9 (x*)) = U(x", —y" (x")) = V(y").

Thus inf(p.) > mg for all s € S. In fact, by adapting the argument we provided for the
case of linear prices in the earlier part of this section, we could show that

inf(pc) = max{m; : m$ satisfies (A.17) for some s € S}. (A.18)

Since the right side of this equation can be computed from the data, we have found a
practical way of calculating inf(p.).

Notice that if §2 is revealed preferred to ¢, in the sense that there is s’ € S such that
mS > 0, then inf(j;) > 0; in other words, a lump sum tax of inf(y.) will leave the agent
no worse off than at t; and potentially better off. On the other hand, if ¢2 is not revealed
preferred to gbtl, that is, for every s € S, we have m{ < 0, then inf(y.) < 0; in other words,
at = ¢, a lump sum transfer of inf(y.) to the agent will guarantee that the agent no
worse off than at t; and potentially better off.

APPENDIX A.6. PROOF OF THEOREM 3

It remains for us to show that if there is v € 1R|fl| such that Av = 7t then there is a prob-
ability space (Q), F, 1) and a random variable x : Q — (RL)T such that {(p!, x!(w)) }ter
obeys GAPP almost surely and that (17) in the main paper holds, that is,

A(Y) = u({w € Q: x'(w) € Y}) for any measurable Y C RL. (A.19)

it! to be the conditional distribution of demand at observation ¢

Given 7t! we define 7t
when it restricted to the cone Ki*! = {r-x : x € B'*!, r > 0}. Thus, if Y is a measurable
subset of IRQ, then

(Y N Kivt) = vt qivt ().
(Recall that, by definition, 7r't! = 7! (K't).) Of course, if Y N K'* = @ then 7! (Y) = 0.

Given a and t, there is a unique 7, such that a’i! = 1; let K} = K’! and let 7, be the
probability measure on R: such that 7t = 7/t. Obviously, 7t (K}) = 1.

Let A, be the product measure on (RY)T given by A, = X;cr7th. It follows from the
definition of a that

wierKt © {x e (RY)T: {(pt,x!) }er satisfies GAPP}
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and since 7t (K!) = 1 for all t, we obtain
Ao ({x e (RE)T : {(p!, x!)) }rer satisfies GAPP}) = 1. (A.20)

Note that x! refers to the tth entry of x).

Define QO = A x (R})T and the probability measure y on Q by u({a} X Y) = v,A,(Y)
for any measurable set Y C (lRi)T, where v, refers to the ath entry of v. Lastly, define
x:Q — (RE)T by x((a,x)) = x. Then, using (A.20), we obtain

n({(a,x) € Q:{(p', x'(a,x))}ier satisties GAPP })
— 2 VA ({x € ( ]RL)T {(P X (a x)) }ter satisfies GAPP}) = Z v, = 1.

ac A acA

It remains for us to show that (A.19) holds. Let Y be a measurable set in IRL . For any Kitt,

n({(a,x) e Q:x'(a,x) eYNK"}) = Y vdo({x € RE)T: x'(a,x) € YNK*Y})

acA

= Y vh({x e (RY)T :xf e YNK*})
ac A

= Y val({x' e R} :xf € YNK*})
acA

Recall that A'* = {a € A:a'* = 1},s0 foranya ¢ A,
al({x' € RL : x" € YN K*'}) = 0.

Thus
Y vty ({xf e Ry :xf e YNK™}) = Y veh({x' € RL 1 xf € YN K'Y
ac A ac Aivt
(Y N K
- it Va
acAltt

= A(YnK'),

where the last equation follows from the fact that Av = 7. Thus we have shown that, for
all Kitt,

u({(a,x) € Q: x'(a,x) € YNK*}) = #(Y nK*).
This in turn guarantees that (A.19) holds. |

APPENDIX A.7. OMITTED DETAILS FROM SECTION 6

In this section, we formally develop our bootstrap procedure from Section 6.2. We
begin by describing Weyl-Minkowski duality**which is used for the equivalent (dual)

4SSee, for example, Theorem 1.3 in Ziegler (1995).
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restatement (28) of our test (26). As we mentioned earlier, we will also appeal to this
duality in the proof of the asymptotic validity of our testing procedure.

Theorem A.7.1. (Weyl-Minkowski Theorem for Cones) A subset C of R is a finitely generated
cone

C ={via1 + ...+ vja)aa| : vy > 0} for some A = [ay,...,ay] € R4 (A.21)
if, and only if, it is a finite intersection of closed half spaces

=t e t < or some B € . .
C R!|Bt <0 B € R™! (A.22)

The expressions in (A.21) and (A.22) are called a V-representation (as in “vertices”) and
a H-representation (as in “half spaces”) of C, respectively. In what follows, we use an
H-representation of cone(A) corresponding to a m x I matrix B as implied by Theorem
A7.1.

We are now in a position to show that the bootstrap procedure defined in Section 6.2 is
asymptotically valid. Note first that @ = [9, 8], where

f = max pv= max p; A.23

R L AL (A.23)
f = min ov= min p;, A24
N veAlAl-1 P 1<j<|A| Pi ( )

where p; denotes the jth component of p. We normalize (p,6) such that ©® = [0,0 + 1].
Next, define

H o= {1,2,..,]|A]} (A.25)
H = {jeH|pj =6} (A.26)
H o= {jeH|pj=0} (A.27)
Ho == H\(HUH). (A.28)

Recall that 7y is a tuning parameter chosen such that 7y | 0 and vV N1y 1 0. For 0 € ©,
we now formally define the Ty-tightened version of S as

Sey(0) = {Av [ pv = 0,v € Ve (0)},

where

s (0-0)y o> 00w o gy
V]Z‘ﬂU'Ho"]eﬂ’V/Z O,JGH’

Voo (0) := v e Aldl

1/ .

],,2[1_@—9)!&\_(9—@)@\ w4,

HUHo| — [HUHo| | THol” !

In applications where p is binary, the above notation simplifies. Specifically, in our
empirical application on deriving the welfare bounds, p = 1.+ and 6 = J\/tt;;t’- Here,
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0=1,0=0,and 6 — @ = 1 holds without any normalization. Also, H (H)is just the set of
indices for the types that (do not) prefer price p! compared to p'’, while H is empty. We
then have:
Sox W) = {AV | Uyv = Nimgr, v € Voy Wingo) §
where
(1- -/\[tt;;t’)TN
| 2]

VTN(./\ftt;;t/) = {1/ c A4l vj > JEH, vy > _

]

-/vtt’;,t’TN’ e 7 } .

We now state the mild data assumptions.
Assumption 2. Forallt =1,.., T, Ne kras N — oo, wherex; > 0,1 <t <T.

Assumption 3. The econometrican observes T independent cross-sections of i.i.d. sam-
N
ples | x! ,t = 1,.., T of consumers’ choices corresponding to the known price
(1) Jn(r)=1

vectors {p;}1_;.

2 S ' — gV I, — gL I,
Next, let dy,, := 1{x!,, € B}, d}, ;) = [d,7), ., d,7p)], and d}, = [d",.., d;/"]. Let d;
denote the choice vector of a consumer facing price p' (we can, for example, let d; = d}).
Define d = [dj, ..., d7}]": note, E[d] = 7 holds by definition. Among the rows of B some
of them correspond to constraints that hold trivially by definition, whereas some are for

non-trivial constraints. Let KR be the index set for the latter. Finally, let
g = Bd
= (81, 8l

With these definitions, consider the following requirement:

Condition 1. For each k € KR, var(gx) > 0 and E[|gx/+/var(gx)[*T°1] < ¢, hold, where
c1 and c; are positive constants.

This guarantees the Lyapunov condition for the triangular array CLT used in establishing
asymptotic uniform validity. This type of condition has been used widely in the literature
of moment inequalities; see Andrews and Soares (2010).
PROOF OF THEOREM 4.
Define
C = cone(A)
and
T(6) ={m=Av:pv=0veR4},
an affine subspace of IR. It is convenient to rewrite 7 () as 7(8) = {t € R' : Bt = d(0)}
where B € it x R!, d(-) € m x 1, and 771 all depend on (p, A). We let bj denote the j-th
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row of B. Then
S) =cnaA-tnT().
By Theorem A.7.1, C = {7t : Bt < 0}, therefore

SO) = {teRA:Bt<0,Bt =d(8), 1)t =1} (A.29)
Let
¥(0) = [¥1(0), ... pu(0)] 6€O
with B
Ig 73)0| if jeH,
$;(6) = o if j 7,
1~ Gt — ] 1€ o,

where terms are defined in (A.25)-(A.28). Then
Sey(0) = {m = Av:v > nyy(6),v e A4, o'y = 0},

Finally, let

Coy ={m=Av:v>1Nny(0)}.
Then

Sey(0) = Co, N AT AT ().

Proceeding as in the proof of Lemma 4.1 in KS, we can express the set C, as

Coy = {t:Bt < —1n9p(0)}
where
¢(0) = —BAY(6).
As in Lemma 4.1 in KS, let the first /7 rows of B represent inequality constraints and the
rest equalities, and also let &y, the (k, 1)-element of the matrix —BA. We have

A

P =Y Prp(6)
=1

where, for each k < 1, {®Dy,} |hi|1 are all nonnegative, with at least some of them being
strictly positive, and ®y, = 0 for all h if i < k < m. Since () > 0,1 < h < |A| for
every 8 € © by definition, we have 4)]-(9) > C,1 < j < m for some positive constant C,
and ¢;(0) = 0,7 < j < m for every 6 € ©. Putting these together, we have

Sey(0) = {teRMA: Bt < —1y¢(0), Bt = d(0), 15t = 1}
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where 1y denotes the | A|-vector of ones. Define the R!-valued random vector

1 . A
Ty 1= g6 e L~ NOS)

where S is a consistent estimator for the asymptotic covariance matrix of v/N(7 — 7).
Then (conditional on the data) the distribution of

5*(0) ;== N mi * Q[ —
©):=N min_ [, -0l ~ 1)

corresponds to that of the bootstrap test statistics. Let

B

B.:=| B

1y
Define ¢ = rank(B,) for the augmented matrix B, instead of B in KS, and let the ¢ x m-
matrix K be such that KB, is a matrix whose rows consist of a basis of the row space
row (Bs). Also let M be an (I — /) x [ matrix whose rows form an orthonormal basis of

kerB, = ker(KB,), and define P = (Kﬁ*). Finally, let § = B.7t.

Define
!/
Ty) = (;) prars (;) xR,y e R
t(x) = min T(x,y)
yeRI-L
S(g) = . min t(K[g_,Y])
v=[r=" A=), 7=<0,7'€col(B)
with
Om—m
Y- = | d(6)
1

where 0,5 denotes the (m — 17)-vector of zeros. It is easy to see that t : R® — R, is a
positive definite quadratic form. By (A.29), we can write

on(6) = Ns(g) = s(VNg).
Likewise, for the bootstrapped version of § we have

5*(0) = N Wergin( G)WN — 1)’ Qg — 7]
™N

= s(en(8) +0),
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where ¢ = B,7/ty. Note the function ¢n (&) = [@k (&), ..., 9P (&)] for & = (&1, ., Em)' €
col(B,). Moreover, its k-th element q)lz‘\] for k < 1 satisfies

P () =0

if |§k| < dand & < 6,1 < j < m, 6 > 0, for large enough N and (p]f\,(é) = 0 for
k > m. This follows (we use some notation in the proof of Theorem 4.2 in KS, which
the reader is referred to) by first noting that it suffices to show that for small enough
6 > 0, every element x* that fulfills equation (9.2) in KS with its RHS intersected with
ﬂ;ﬁ:lsj(é),sj(&) = {x :|bjx — d;(0)| < 76} satisfies

x*|S(0) € mjle]T NLNT(H).
If not, then there exists (4,%) € FN'T(0) X ﬁ;.]:lH]' N LNT(6) such that
(@ —)'(2|S:(0) — %) =0,

where ¥|S:(0) denotes the orthogonal projection of ¥ on S¢(). This, in turn, implies
that there exists a triplet (ag, a1,a2) € A x A x A such that (a7 — ag)’ (a2 — a9) < 0. But
as shown in the proof of Theorem 4.2 in KS, this cannot happen. The conclusion then
follows by Theorem 1 of Andrews and Soares (2010). [ |
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