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Abstract

It is often desired to rank different populations according to the value of some feature of each population.
For example, it may be desired to rank neighborhoods according to some measure of intergenerational
mobility or countries according to some measure of academic achievement. These rankings are invariably
computed using estimates rather than the true values of these features. As a result, there may be
considerable uncertainty concerning the rank of each population. In this paper, we consider the problem
of accounting for such uncertainty by constructing confidence sets for the rank of each population. We
consider both the problem of constructing marginal confidence sets for the rank of a particular population
as well as simultaneous confidence sets for the ranks of all populations. We show how to construct such
confidence sets under weak assumptions. An important feature of all of our constructions is that they
remain computationally feasible even when the number of populations is very large. We apply our
theoretical results to re-examine the rankings of both neighborhoods in the United States in terms of
intergenerational mobility and developed countries in terms of academic achievement. The conclusions
about which countries do best and worst at reading, math, and science are fairly robust to accounting for
uncertainty. The confidence sets for the ranking of the 50 most populous commuting zones by mobility
are also found to be small. However, the mobility rankings become much less informative if one includes
all commuting zones, if one considers neighborhoods at a more granular level (counties, Census tracts),
or if one uses movers across areas to address concerns about selection.
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1 Introduction

Rankings of different populations according to the value of some feature of each population are ubiquitous.
Interest in such rankings stem from their ability to convey succinct answers to various questions, such as
whether a particular population is “good” or “bad” in terms of the value of this feature relative to other
populations, or which populations are “best” or “worst” in terms of the value of this feature. A prominent
example from the recent economics literature is provided by Chetty et al. (2014, 2018) and Chetty and
Hendren (2018), in which different populations correspond to different neighborhoods in the United States
and the feature by which it is desired to rank them is some measure of intergenerational mobility. A
further example of contemporary interest is provided by the Programme for International Student Assessment
(PISA), in which different populations correspond to different countries and the feature by which it is desired
to rank them is some measure of academic achievement. These rankings are invariably computed using
estimates rather than the true values of these features. As a result, there may be considerable uncertainty

concerning the rank of each population.

In this paper, we consider the problem of accounting for such uncertainty by constructing confidence
sets for the rank of each population. We consider both marginal confidence sets for the rank of a particular
population, i.e., random sets that contain the rank of the particular population of interest with probability
approximately no less than some pre-specified level, as well as simultaneous confidence sets for the ranks of
all populations, i.e., random sets that contain the ranks of all populations with probability approximately
no less than some pre-specified level. The former confidence sets provide a way of accounting for uncertainty
when answering questions pertaining to the rank of a particular population, whereas the latter confidence
sets provide a way of accounting for uncertainty when answering questions pertaining to the ranks of all
populations. We show how to construct both types of confidence sets under weak assumptions. An impor-
tant feature of all of our constructions is that they remain computationally feasible even when the number
of populations is very large. We apply our inference procedures to re-examine the rankings of both neigh-
borhoods in the United States in terms of intergenerational mobility and developed countries in terms of

academic achievement.

For each of the preceding confidence sets, we first show how they can be constructed using simultaneous
confidence sets for differences across the populations in the values of the features. The main requirement
underlying our analysis is only that these latter confidence sets for the differences are suitably valid. Our
procedure is therefore applicable not only to rankings of “populations” narrowly defined, but rather to
rankings of any objects (e.g. also treatments, treatment assignment rules, forecasting rules, etc.) as long as
suitably valid confidence sets for the differences of the objects’ performance measures can be constructed.
We show, however, that it is possible to improve upon this construction using a suitable multiple hypothesis
testing problem without imposing any further assumptions. In this sense, the assumptions involved in
establishing our formal results are weak. A novel feature of the multiple hypothesis testing problem we
consider is that it requires control of the mixed-directional familywise error rate rather than simply the
familywise error rate. As the terminology suggests, the distinction between these two error rates is that the
former penalizes not only false rejections, like the latter, but also false directional assertions. For further

discussion, see Bauer et al. (1986) as well as Sections 3.2.2 and 3.3.2 below.

As a specific example of the way in which the aforementioned confidence sets may be used by researchers,

we examine in more depth the question of identifying which populations are among the top (or the bottom).



For concreteness, we define a population to be among the top if its rank is less than or equal to a pre-
specified value 7. In order to account for uncertainty when answering this question, it may be desired to
construct what we subsequently refer to as a confidence set for the T-best populations, i.e., a random set that
contains the identities of these populations with probability approximately no less than some pre-specified
level. While it is possible to use simultaneous confidence sets for the ranks of all populations to construct
such confidence sets, we show that it is possible to improve upon this construction without imposing any

further assumptions.

In order to illustrate the widespread applicability of our inference procedure, we use it to re-examine the
rankings of both neighborhoods in the United States in terms of intergenerational mobility and developed
countries in terms of academic achievement. The former application uses data from Chetty et al. (2014,
2018), while the latter application uses data from the 2018 PISA test. In each application, we apply our
methodology to compute (i) the marginal confidence sets for the rank of a given place, (ii) the simultaneous

confidence sets for the ranks of all places, and (iii) the confidence sets for the 7-best (or the 7-worst) places.

Before describing our empirical results, we emphasize that (i)—(iii) answer distinct economic questions.
Consider, for example, the application to intergenerational mobility and neighborhoods. Marginal confidence
sets answer the question of whether a given place has relatively high or low income mobility compared to
other places. Thus, (i) is relevant if one is interested in whether a particular place is among the worst or
the best places to grow up in terms of income mobility. Simultaneous confidence sets allow such inferences
to be drawn simultaneously across all places. Thus, (ii) is relevant if one is interested in broader geographic
patterns of income mobility across the United States. By comparison, confidence sets for the 7-best (or
T-worst) answer the more specific question of which places cannot be ruled out as being among the areas
with the most (least) income mobility. In other words, (iii) is relevant if one is interested in only the top (or

bottom) of a league table of neighborhoods by income mobility.

In our analysis of data from the 2018 PISA test, we find that the conclusions about which developed
countries do best and worst at reading, math, and science are fairly robust to accounting for uncertainty.
Both the marginal and simultaneous confidence sets are relatively narrow, especially for the countries at the
top and the bottom of the PISA league tables. Indeed, only a small set of countries cannot be ruled out as

being among the top or bottom three in terms of scholastic performance.

In our analysis of data from Chetty et al. (2014, 2018), we find that several celebrated findings about
intergenerational income mobility in the United States are not robust to taking uncertainty into account.
The key outputs from these studies were “local statistics” on upward mobility across commuting zones
or counties.! The stated goal was to draw the attention of policymakers to low-mobility neighborhoods
that need improvement and to help low-income families move to high-mobility neighborhoods. We examine
how informative these local statistics are about a given neighborhood having relatively high or low income

mobility compared to other neighborhoods.

The most robust findings are obtained if we restrict attention to the 50 most populous commuting zones
or counties. In that case, both the marginal and simultaneous confidence sets are relatively narrow, and
few places cannot be ruled out as being among the top or bottom five. By comparison, in the national

ranking of all commuting zones or counties by income mobility, it is often not possible to determine with

LA key contribution of Chetty et al. (2014, 2018) is the granular estimates of intergenerational mobility. For a description of
of intergenerational mobility across broader regions of the U.S., see for example Connor and Storper (2020) and the references
therein.



statistical confidence whether a given place has relatively high or low income mobility compared to other
places. Another key finding is that the rankings of even the most populous commuting zones or counties
become largely uninformative if one uses movers across areas to address concerns about selection and draw

causal conclusions.

In order to illustrate the policy relevance of these findings, we revisit the recent Creating Moves to
Opportunity Experiment (CMTO) of Bergman et al. (2019). With the aim of helping families move to
neighborhoods with higher mobility rates, the authors conduct a randomized controlled trial with housing
voucher recipients in Seattle and King County. A treatment group of low-income families were offered
assistance and financial support to find and lease units in areas that were classified as high upward-mobility
neighborhoods within the county. The authors define high upward-mobility neighborhoods as Census tracts
with point estimates of upward mobility among the top one-third of the tracts in the county. Since no data
on outcomes is yet available, the authors predict the impacts of the moves induced by the CMTO program
on children’s future outcomes using the point estimates of upward mobility of the individual tracts. We show
that the classification of a given tract as a high upward-mobility neighborhood may simply reflect statistical
uncertainty, not that mobility is particularly high in that neighborhood. We discuss the implication of this
finding for the assumptions needed to be statistically confident, prior to the experiment, that CMTO would
actually help families move to high opportunity neighborhoods.

Our paper is most closely related to a recent paper by Klein et al. (2020), who consider the problem of
constructing confidence sets analogous to ours. The main difference between their constructions and ours is
that they rely upon simultaneous confidence sets for the values of the features for all populations, whereas, as
mentioned previously, we exploit simultaneous confidence sets for differences in the values of the features for
certain pairs of populations. In Remark 3.11 and Appendix B, we show that their confidence sets are always
at least as large as ours when there are only two populations or in the homogeneous case with common
variances and sample sizes when there are more than two populations. More importantly, we show that
their method cannot in general produce smaller confidence sets with positive probability uniformly across
populations. While it is unknown if even one component may be smaller with positive probability, we find
in our simulations that their approach generally leads to confidence sets that are much larger than ours for

all populations.

Other related work includes Goldstein and Spiegelhalter (1996), who propose the use of resampling
methods such as the bootstrap to account for the type of uncertainty with which we are concerned. In
the context of the PISA study, for instance, such a bootstrap procedure has been used to report “range
of ranks” (see OECD (2019, Annex A3)). As explained by Hall and Miller (2009) and Xie et al. (2009),
however, such methods perform poorly when some populations have features whose values are “close” to
one another. In Remark 3.7 and Appendix A, we show that the bootstrap does not satisfy the coverage
requirement when there are more than two populations. Motivated by these observations, Xie et al. (2009)
propose an alternative method for accounting for uncertainty based on combining resampling with a smooth
estimator of the rank which requires, among other things, delicate choices of user-specified “bandwidths”.

Our constructions, by contrast, require no such tuning parameters.

Finally, we note that the problems studied in this paper are distinct from those of two recent papers
in econometrics, Andrews et al. (2018) and Gu and Koenker (2020). To explain the differences consider
the example of intergenerational mobility in the U.S.. Andrews et al. (2018) develop methods for inference

on the value of mobility in the neighborhood with the highest estimated mobility. In contrast, we develop



methods for inference on the rank of a neighborhood, not on the value of mobility that was used to rank
neighborhoods; see Remarks 5.1 and 5.3 for more discussion. Gu and Koenker (2020) develop optimal
decision rules for selecting the best neighborhoods, which is related to a literature in subset selection (see
Gupta and Panchapakesan (1979) for a review), but complementary to our inference-based approach of

selecting the 7-best; see Remark 3.17 for more details.

The remainder of our paper is organized as follows. In Section 2, we illustrate the logic underlying our
inference procedures in a stylized example using a subset of the data from one of our empirical applications.
Section 3 then introduces our general setup, including a formal description of the confidence sets we consider.
We first discuss the construction of a marginal confidence set for the rank of a particular population and then
turn our attention to the construction of simultaneous confidence sets for the ranks of all populations. As
mentioned previously, in each case, we begin by describing a simple construction that relies on simultaneous
confidence sets for certain pairs of populations before showing how to improve upon this construction using
an appropriately chosen multiple hypothesis testing problem. In Section 4, we examine the finite-sample
behavior of our inference procedure via a simulation study, including a comparison with the method proposed
by Klein et al. (2020). Finally, in Section 5, we apply our inference procedures to re-examine the rankings
of both developed countries in terms of academic achievement and neighborhoods in the United States in

terms of intergenerational mobility.

2 Inference for Ranks in a Stylized Example

Suppose it is desired to rank five commuting zones (CZs) in the United States by a measure of upward
intergenerational mobility. Denote by 7; the rank of CZ j based on the mobility measure ¢;. Panel A of
Figure 1 shows estimated mobility measures éj with 95% marginal confidence intervals (estimates plus or
minus twice the standard error) for five CZs from our dataset in Section 5.2. Linton and Albany have the
highest and lowest mobility estimates among these five CZs and thus the smallest (#; = 1 for j = Linton) and
highest (#; = 5 for j = Albany) estimated ranks, respectively. Since éj is an estimate of 0;, the estimated
rank 7; may not equal the true rank r;. In particular, Linton need not have the highest mobility and Albany

need not have the lowest mobility.

Table 1 summarizes the results of accounting for uncertainty in the ranks of these five CZs using (i)
marginal confidence sets for the rank of a single CZ, (ii) simultaneous confidence sets for the ranks of all
CZs (i.e., for the entire ranking), and (iii) confidence sets containing the 7-best CZs. We first report the
estimated ranks as well as the point estimates and their standard errors. As explained further below, these
data are all that is required to compute (i)—(iii). The sixth column reports the first set of results, marginal
confidence sets for the rank of each CZ. The second set of results is reported in the seventh column, which
displays simultaneous confidence sets for the ranks of all CZs. In general, the simultaneous confidence sets
are at least as large as the marginal ones, but in this example they are identical. The last set of results
is reported in the final column, showing the number of CZs contained in the confidence set for the 7-best,
where 7 varies from one to five across the rows. For instance, with at least 95% confidence, there is only one

CZ that can be the best and there are four CZs that can be among the top two.

The remainder of this section describes how we arrive at the three set of results in Table 1 in the context

of this example.



95% CS
CZ éj SE  marg. simul. 7-best

Rank 7
1 1 Linton 0608 0014 [1,1] [1,1] 1
2 2 Gordon 0443 0010 [2,4] [2,4] 4
3 3 Trenton 0433 0.010 [2,4] [2.4 4
4 4 Jordan 0.413 0.050 [2,5] [2, 5] 5
5 5 Albany 0.331 0002 [4,5] [45 5

Table 1: Commuting zones (CZs) ranked by the estimated intergenerational mobility measure éj. “SE”
refers to the standard error of 6;. “95% CS (marg.)” refers to the 95% marginal confidence set for the rank,
“95% CS (simul.)” to the 95% simultaneous confidence set for all ranks, and “7-best” refers to the size of
the 95% confidence set for the “7-best” CZs.

A A
A: Absolute mobility, 8; B: Differences in mobility between Trenton and other CZs, A

Albany @ Albany [
Jordan [ [}

Jordan []
Trenton N —
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Figure 1: Panel A shows the estimated mobility with 95% (marginal) confidence sets (estimates plus or minus
twice the standard error) for five CZs. Panel B shows the estimated differences in mobility between Trenton
and all other CZs, together with 95% (simultaneous) confidence sets. Each marginal confidence set covers a
single mobility measure with probability 95% whereas the simultaneous confidence sets simultaneously cover
all differences in mobility measures with probability 95%.

Inference on the rank of a particular CZ

Suppose we are interested in the rank of Trenton. From Panel A of Figure 1, we see that its estimated rank
is three, but the mobility estimate is close to that of Gordon and Jordan’s mobility estimate has a large
standard error, so one might be uncertain whether Trenton’s rank is in fact larger or smaller than three. In
order to move beyond this conjecture, we use the following two-step procedure to construct a confidence set

for Trenton’s rank.

First, we consider the differences in mobility estimates between Trenton and all other CZs. It is clear
that only the signs of the differences in mobility estimates between Trenton and all other CZs being positive
or negative determine Trenton’s rank. These differences are displayed in Panel B of Figure 1 together
with 95% simultaneous confidence sets. Simultaneous coverage of this confidence set is important. In
order to explain the simultaneous coverage property, it is useful to introduce some further notation. To
this end, let Ajk be the estimator of the difference in mobility A;, = 0; — 0, for 7 = Trenton and k €
{Linton, Gordon, Jordan, Albany}. The confidence set in Panel B of Figure 1 is the product of four confidence



A: Two-sided confidence set for all differences in mobility B: Two-sided confidence set for the ranking
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Figure 2: Panel A shows all estimated differences in mobility, together with 95% (simultaneous) two-sided
confidence sets. Panel B shows estimated ranks together with 95% (simultaneous) two-sided confidence sets.

sets so the probability of it simultaneously covering all four differences A;j for j = Trenton and k €
{Linton, Gordon, Jordan, Albany} is at least 95%. The bounds for the simultaneous confidence sets depend
on quantiles from the distribution of the maximum (over k) of the differences Ajj — Aj 4. In Section 3.1,
we explain how such quantiles may be approximated using the bootstrap, but other constructions are also

possible.

Second, given the simultaneous confidence set for the differences in mobility, we count how many of
the individual confidence sets lie entirely above and below zero. The first confidence set, which is for the
difference in mobility between Trenton and Linton, lies entirely below zero. Therefore, we can conclude that
Linton has significantly higher mobility than Trenton and thus must be ranked strictly better than Trenton.
The differences in mobility between Trenton and either Gordon and Jordan are not significantly different
from zero, so these three CZs cannot be ranked relative to each other. The confidence set for the difference
in mobility between Trenton and Albany lies entirely above zero, so that Albany must be ranked strictly
worse than Trenton. Using the notation of the subsequent sections, there is one CZ that must be ranked
strictly better, [N;"| = 1, and one CZ that must be ranked strictly worse, |N;"| = 1. The confidence set for
the rank of Trenton among the p = 5 CZs is therefore

Ry ={INj[+1,....p— INJ'|} = {2,3,4} .

By virtue of the simultaneous coverage property for the differences described above, this set contains the

rank r; of Trenton with probability at least 95%.

While simple in nature, the preceding procedure illustrates the logic underlying all of our constructions.
In Section 3.2.2, we show that the confidence set R,, ; can be improved through the use of a suitable stepwise
multiple testing procedure. In the first step of the procedure, some CZs are determined to be ranked higher
or lower than the CZ of interest in exactly the manner described above; in subsequent steps, further CZs
are possibly determined to be ranked higher or lower than the CZ of interest by appropriately accounting
for those that were determined to be ranked higher or lower in previous steps. This process continues until

no further CZs can be determined to be ranked higher or lower than the CZ of interest.



A: One-sided confidence set for all differences in mobility B: One-sided confidence set for the ranking
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Figure 3: Panel A shows all estimated differences in mobility, together with 95% (simultaneous) one-sided
confidence sets. Panel B shows estimated ranks together with 95% (simultaneous) one-sided confidence sets.

Inference on the entire ranking

In order to construct a simultaneous confidence set for the entire ranking of all five CZs, rather than only for
Trenton, the approach is modified in the following fashion. We begin by computing every possible difference in
mobility estimates between all CZs, not only those involving Trenton. These differences are shown in Panel A
of Figure 2 together with simultaneous confidence sets. In this case, the confidence sets simultaneously cover
all differences A, for all j, k € {Linton, Gordon, Trenton, Jordan, Albany} with j # k. For each CZ j, we
then count how many confidence sets k lie above and below zero. For instance, for j = Trenton, we obtain
the same result as above, namely that one confidence set lies entirely below and one lies entirely above zero,
so [N | =1 and |Nj+| = 1. For j = Linton, all confidence sets lie above zero, so [N;7| = 0 and \Njﬂ = 4.

The confidence sets for each CZ are then constructed using these counts just as above.

The result of this procedure is shown in Panel B of Figure 2. The confidence set for Linton contains only
rank one, but the confidence sets for the other CZs contain two to four values. By virtue of the simultaneous
coverage property for the differences, the product of the five CZ-specific confidence sets for the ranks si-
multaneously covers the ranks of all CZs, i.e., r; for all j € {Linton, Gordon, Trenton, Jordan, Albany}, with
probability at least 95%.

In Section 3.3.2, we show that this simple construction can also be improved through the use of a multiple

testing procedure that parallels the one that we use for the marginal confidence set.

Confidence sets containing the 7-best CZs

Suppose it is desired to determine which of the five CZs could be among the 7 = 2 best CZs. From Panel A
of Figure 1, we see that Linton and Gordon have ranks one and two, but the mobility estimate of Trenton
is close to that of Gordon and Jordan’s mobility estimate has large standard errors, so one might consider
that Trenton or Jordan could also be among the top two CZs. The following procedure provides a means of

accounting for this uncertainty formally.

Denote the set of CZs which are among the two best as J3~ "' = {j: r; < 2}. This set contains at least

two CZs and strictly more than two when CZs are tied at rank one or two. We want to construct a set



J27Pest that contains the set J2°* with probability at least 95%.

A simple approach is based on one-sided simultaneous confidence sets for all ranks. Figure 3 repeats the
computations for Figure 2 except the simultaneous confidence sets for the differences are one-sided (upper
bounds) and the resulting simultaneous confidence sets for the ranks are therefore also one-sided (lower
bounds). Let Riﬁ i;’t be the jth dimension of the one-sided confidence set for the ranking, i.e., the confidence
set for r; in Panel B of Figure 3. In order to construct a set with the desired coverage property, it suffices
to collect all CZs j for which Rjni ijm contains the value two, i.e.,

J2Tbest — (5.9 ¢ Rizijm} = {Linton, Gordon, Trenton, Jordan} .
By virtue of the coverage property of the simultaneous confidence set for the ranking, this set covers the set of
the two best CZs, Jg_beSt, with probability at least 95%. While this “projection” approach for constructing
the confidence set is parsimonious and intuitive, improvements may be possible by realizing that a CZ can be
among the top two if and only if at most one other CZ (without regard to its identity) has higher mobility.
By comparison, the one-sided simultaneous confidence sets for all ranks RI°™ encodes some information
about which CZs have higher mobility than another. In Section 3.4, we propose a more “direct” procedure

based on exploiting the insight and show through simulations that it leads to smaller confidence sets.

Key features of the inference approach

Section 3 formally shows that, under weak assumptions, the above three constructions of confidence sets
asymptotically control the probability of covering the objects of interest at the desired level (95% in the
example of this section) uniformly over a large class of possible distributions for the observed data. The
following two aspects of the theoretical results are especially important in our empirical applications and

can already be understood in the context of the example in Panel A of Figure 1.

First, in our applications, we see that many estimates §; are close to one other, such as the mobility
estimates of Gordon and Trenton in the preceding example. It is therefore important to develop inference
methods that do not break down when some (or even all) measures 6; are (close to) equal to one another.
Formally, our confidence sets achieve this goal because we show that they guarantee coverage uniformly over
a large family of distributions for the observed data, and hence uniformly over all configurations of measures

01,...,0,, irrespectively of whether some (or even all) of them are (close to) equal to each other.

Second, our confidence sets satisfy the uniform coverage requirement under weak conditions. In particular,
the distributions of éj — 0; are allowed to vary across j. Such heterogeneity is salient in our empirical
applications and its importance can already be seen in Panel A of Figure 1: Trenton’s mobility estimate has

much smaller standard error than that of Jordan, but much larger than that of Albany.

3 General Setup and Main Results

3.1 Setup and Notation

Let j € J ={1,...,p} index populations of interest. Denote by P; distributions characterizing the different
populations and by §(P;) the associated features by which it is desired to rank them. In the example of



Section 2, j denotes a county, §(F;) is a measure of intergenerational mobility in county j, and P; is the
distribution from which we observe data for estimation of the feature §(P;). The rank of population j is
defined as

n(P) =14 Y 1{(R) > 6(P)},
keJ
where P is a distribution with marginals P; for j € J, and 1{A} is equal to one if the event A holds and
equal to zero otherwise. Let 0(P) = (0(P1),...,0(P,)) and r(P) = (r(FP1),...,7p(Pp)) . Before proceeding,
a simple example illustrates the way in which ties are handled with this definition of ranks: if §(P) =
(4,1,1,3,3,3,6)’, then r(P) = (2,6,6,3,3,3,1)".

The primary goal is to construct confidence sets for the rank of a particular population or for the ranks of
all populations simultaneously. More precisely, for a given value of « € (0, 1), we use a sample of observations
from P to construct (random) sets R,, ; such that

e ' 1S
hnrr_1>1£f érel%P{rj (P)eR,;}>1—« (1)
for a pre-specified population j € J, where P denotes a “large” nonparametric family of distributions. Here,
n denotes a measure of the size of the sample, typically the minimum sample size across populations. We
also construct (random) sets Ri™ =[], ; Rj;ﬁ i;lt such that
liminf inf P {r(P dointl > 1 ¢ . 2
minf inf, P {r(P) € By™} > 1-a @)
In all of our constructions, R, ; and RJ;LO’ i;lt are subsets of J, allowing for the possibility that the lower endpoint
is 1 or the upper endpoint is p to permit both one-sided and two-sided inference. Below, sets satisfying (1)

are referred to as marginal confidence sets for the rank of a single population and sets satisfying (2) as

simultaneous confidence sets for the ranks of all populations.

In addition, we consider the goal of constructing confidence sets for the identities of all populations whose
rank is less than or equal to a pre-specified value 7 € J, i.e, for a given value of o € (0,1), we construct

(random) sets J7 Pt that are subsets of J and satisfy

liminf inf P {JJ~""(P) C Jr "} >1—a, (3)

n—oo PecP

where
Jrhepy={jeJ:rj(P)<T}.

Sets satisfying (3) are referred to as confidence sets for the T-best populations.

Much of the analysis relies upon confidence sets C,, (1 — «, S) for sets of pairwise differences,
As(P) = (Aje(P): (4,k) € 5),

where A; 1 (P) = 0(P;) —0(Py) and S C {(j, k) € J x J : j # k}. We require these to be rectangular in the
sense that

Col=0,8) = [] Cu(l-a,8,(j k) (4)
(J.k)es
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for suitable sets {C),(1 — «, S, (4, k)) : (j, k) € S}. Furthermore, we assume that they satisfy

C e B S 1—a.
hnrgl(gf }%relfp P{As(P)eC,(1-a,5)} >1—« (5)

We now describe some examples of confidence sets that satisfy these two conditions. Let éh . ,ép be
estimators of the features 6(Py),...,0(P,) and &]2#@ an estimator of the variance of éj — 0. For S C {(j,k) €

J x J:j # k}, define the following cumulative distribution functions:

0, — 0, — A (P
Diowern(@,5,P) = P max 20— 8aP) L (6)
(4,k)€S Ojk
Aji(P) = (0; — 6y)
Lu T, )S)P = P 2 A 1 < b 7
pper,n (T ) { (max Gk <z (7)
Lsymmn(z,S,P) = P<{ max |é] 0 — Aik(P)] <z, . (8)
v (j.k)ES Gk -

Further consider estimators of (6) — (8) using an estimate P, of P to define the following confidence sets:

Clower,n(]- - Q, S) = H [é} - ék - &j,kngiver,n(l —Q, S, pn)? OO) ) (9)
(4,k)eS

Cupper,n(l - Q, S) = H ( — 00, éj - ék + 5—j,kL1Tp1per,n(1 - Q, Sa pn) ) (10)
(4:k)€S

Csymm,n(l - Q, S) = H [é] - ék: + a-j,kLs;inmm(l - @, Sa Pn) ) (11)
(3,k)ES

Q «
CVequi,n(l -, S) = C'lower,n (1 - 57 S) mCupper,n (1 - §a S) . (12)

Here, it is understood that, for a cumulative distribution function F(x) on the real line, the quantity
F~Y(1 — «) is defined to be inf{z € R : F(z) > 1 — a}; it is also understood that, for real numbers a
and b, [a %+ b] is defined to be [a — b,a + b]. If the estimators 6;,...,60, are jointly asymptotically normally
distributed, then the quantiles L[Jll(l — o, 8, P,), t € {lower,upper,symm}, can be computed from the
limiting distributions of the max-statistics in (6)—(8), e.g., through simulation. Alternatively, resampling

methods such as the bootstrap may be employed.

The four confidence sets in (9)—(12) can be viewed as nonparametric generalizations of Tukey (1953)’s
method for all pairwise comparisons and Dunnett (1955)’s method for comparisons with a control. The clas-
sical methods rely on the assumptions of normal populations and equal variances, under which critical values
can be computed using Tukey’s studentized range distribution or Dunnet’s two-sided range distribution. We
do not impose either of these assumptions, but rather only require an estimate P, of P so that the resulting
confidence set satisfies (5). The argument establishing this condition determines how P and P, should be
defined. For example, suppose we observe an i.i.d. sample Xi,...,X,, where X; = (X;1,...,X;,)" has
distribution P. When P is the set of distributions on R? satisfying a uniform integrability condition, then
the bootstrap leads to confidence sets satisfying (5) when 6(P) is the population mean vector and 6, is

the sample mean vector. For other parameters and estimators, see Romano and Shaikh (2012). This result
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may also be adapted to the case in which, for each population j € J, we observe n; realizations from a
distribution P; and the populations are independent of each other, i.e., X;; is independent of Xy ; for all
1,7, k,l such that j # (.

Remark 3.1. In light of the above discussion, whether the estimators él, e ép are dependent or not does

not pose any conceptual challenges to constructing confidence sets C,,(1 — «, S) satisfying (5). H

Remark 3.2. Romano and Shaikh (2012) provide a general theory for establishing (5) in the case when
the number of observations in each population diverges and the number of populations p is fixed. However,
the results can be extended to the high-dimensional case in which p diverges, using, for instance, high-
dimensional central limit theorems in Chernozhukov et al. (2013, 2017, 2019). For relevant results in the

case in which each éj is a sample mean, see Bai et al. (2019). ®

3.2 Marginal Confidence Sets for the Rank of a Single Population
3.2.1 A Simple Construction

Suppose we want to construct a confidence set for the rank of population j € J. Define S; = {(j, k): k €
J\ {j}}. For a confidence region C,(1 — «,S;) for Ag, (P) that is rectangular in the sense of (4) with
{C,(1—a,S;,(J, k) : (j,k) € S;}, define
Nji {ke‘]\{j}Cn(l_aasj7(]7k))gR—}7
Nf = {keJ\{j}: Cu(l -, S5, (4, k) C Ry},

where Ry = (0,00) and R_ = (—00,0). Using this notation, we have the following result:

Theorem 3.1. If C\,(1 — «, S) satisfies (4) with S = S;, then, for any P,
PAN; | +1 <15(P) < p— INFI} = P{As,(P) € Cull — o, 5))}.
If, in addition, Cp,(1 — «, S) also satisfies (5) with S = S;, then the confidence set
R ={IN;|+1,....p—N;|} (13)
satisfies (1).

The lower bound of the confidence set involves the number confidence sets for the differences Ag, (P)
which lie entirely below zero, [N} |. This quantity indicates the number of features 6(Fy) that are significantly
larger than that of population j. The rank of j must therefore be strictly larger than [N;|. Similarly, [N j+|
is the number of confidence sets that lie entirely above zero, so that there are | N, ]+ | populations with features

0(Py) strictly smaller than that of population j. The rank of j can therefore be at most p — |Nj+|.

The theorem shows that the confidence set R, ; covers the rank of population j with probability con-
verging to at least 1 — «, uniformly over distributions P € P. As mentioned previously, Romano and Shaikh
(2012) provide conditions on P such that C, (1 — «, S) satisfies (5). The confidence set therefore asymptoti-

cally covers the rank of population j with probability no less than 1 —« even under sequences of distributions
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P, with each P, € P. In particular, R, ; covers the rank of j with probability converging to at least 1 — «
even under sequences where some (or all) of §(Py ) with k # j approach 6(P;,) as n — co. In this sense,

our results do not require the features 6(Px) to be well separated from that of population j.

Remark 3.3. Choosing a one-sided (two-sided) confidence set C, (1 —a, S;) for the differences Ag, (P) leads
to a one-sided (two-sided) confidence set R, ; for the rank. For instance, suppose Cy(1 — o, S;) is a lower
bound such as (9). In that case, none of the confidence sets C, (1 — ¢, S;, (j, k)) can lie entirely below zero,
so that [N, | = 0 and the resulting confidence set for the rank is an upper bound: R, ; = {1,...,p— |N]7~'|}.
Similarly, choosing C,,(1 — «, S;) to be an upper bound such as (10) leads to the one-sided confidence set
Ry j ={IN;|+1,...,p} on the rank. Finally, the equi-tailed confidence set in (12) leads to an equi-tailed
confidence set R, ; in the sense that the asymptotic probability with which the true rank lies above the
confidence interval is bounded above by «/2, and similarly for the asymptotic probability that the true rank

lies below. W

Remark 3.4. Suppose C,(1 — «, S;) satisfies (4)-(5) with S = S; and that each C, (1 — «, S}, (j, k)) with
(4, k) € S; is consistent in the sense that its length tends to zero as n — oo. If in addition all elements
of §(P) are distinct, then R, ; = r;(P) with probability approaching one and, as a result, the coverage
probability P{r;(P) € R, ;} converges to one. This feature follows from the fact that if 6(P;) > 6(Fy), then
with probability tending to one, C, (1 — «, S}, (j, k)) lies entirely above zero. Similarly, if (P;) < 0(Px),
then with probability tending to one, C,(1 — ¢, S;, (4, k)) lies entirely below zero. ®

Remark 3.5. Since the coverage result in Theorem 3.1 only requires the confidence set C),(1 — ¢, S;) to be
rectangular and to satisfy (5), Remark 3.1 implies that there are no conceptual challenges in allowing for

dependence in the estimators él, NN

Remark 3.6. In the presence of ties, there is some ambiguity in the way in which we define the rank of
a population. Let r;(P) =1+ > .., 1{0(Px) > 0(P))} and 75(P) = p — > ,c; 1{0(Pr) > 0(P))} be the
smallest (i.e., best) and largest (i.e., worst) possible rank of population j. If population j is not tied with
any other population, then r,(P) = 7;(P) and the rank is unique. On the other hand, when population j is
tied with at least one other population, then r;(P) < 7;(P) and different definitions of the rank may select
different values from the interval R;(P) = [r;(P),7;(P)]. Suppose C,(1 — «,S) satisfies (4) and (5) with
S = 5;. An inspection of the proof of Theorem 3.1 reveals that the confidence set R,, ; not only covers our
definition of the rank, r;(P), in the sense of (1), but also any other “reasonable” definition of the rank in
the sense that

liminf inf P{R;(P) C R’}'} > 1 —a, (14)

n—oo PP J

where R;™ = [min(R,, ;), max(Ry ;)] is the interval from the smallest to the largest value in the confidence
set R, ;. In fact, one can show that there exist distributions P, namely those for which all 8(P;) are equal,

so that the inequality holds with equality:

lim P{R;(P)C R} =1—a. (15)

n—oo
In this sense, our confidence set is not conservative. W

Remark 3.7. In contrast to the confidence set R, ;, those based on the bootstrap and Bayes approaches
such as those in Goldstein and Spiegelhalter (1996) perform poorly when for some k # j 6(Py) is (close to)

equal to 6(P;). For concreteness, consider the following bootstrap procedure. For a population j, denote
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by é;‘ the estimator of 6(P;) computed on a bootstrap sample and let 7; be the rank computed using the
bootstrap estimators 67,...,60;. Confidence sets for r; could then be constructed using upper and/or lower
empirical quantiles of 77 conditional on the data. In Appendix A, we show that this intuitive approach
fails to satisfy the uniform coverage requirement (1) unless p = 2. When there are ties with population j
and p > 2, then the approach even fails the pointwise coverage requirement for a fixed P and, in fact, the
coverage probability tends to zero as p grows. For further discussion, see Xie et al. (2009) and Hall and
Miller (2009). Our approach, on the other hand, does not rely on a consistent estimator of the distribution of
estimated ranks but rather on the availability of simultaneous confidence sets for the differences Ag, (P) with
asymptotically coverage no less than the desired level uniformly over P € P. Such simultaneous confidence
sets are available under weak conditions and, in particular, do not restrict the configuration of the features
6(P;). In comparison to Xie et al. (2009), our approach also circumvents smoothing of the indicator in the

definition of the ranks and thus the need for choosing such a smoothing parameter. ®

Remark 3.8. Requiring the confidence sets for the differences C,,(1—«, S), to be rectangular in the sense of
(4) simplifies the presentation of our approach and the results, but is not essential. We note, however, that
using a non-rectangular confidence set would be equivalent to using the smallest rectangle that contains it.
Since the latter set must be at least as large as the non-rectangular confidence set, using a non-rectangular
confidence set would be overly conservative. The difference in size of the projected non-rectangular and the
rectangular confidence sets may be particularly large in high-dimensions; see Appendix D for a simulated

example. In this sense, it is undesirable to use non-rectangular confidence sets for the differences. ®

3.2.2 A Stepwise Improvement

In this section, we propose a stepwise method to improve the confidence set in Theorem 3.1. Our inference
problem shares some similarities with Tukey’s simultaneous comparisons of all pairwise means and Dunnet’s
comparisons of all means with a common control, which can be improved through the use of stepwise
procedures; see Chapter 8 of Westfall et al. (1999) and Section 9 of Lehmann and Romano (2005). One key
difference, however, is that the application of stepwise methods in our problem requires multiple tests that
control not only the familywise error rate, but also directional errors. Unfortunately, little is known about

control of directional errors in stepwise methods; Guo and Romano (2015) is one of only a few exceptions.

Consider the construction of a two-sided confidence set for the rank r;(P) by inverting tests of the family
of two-sided hypotheses,
Hjp: Ajp(P)=0 wversus Kjr:Ajp(P)#0 (16)

for (j,k) € S;. A directional error occurs when the null hypothesis is rejected and A (P) is declared
positive when in fact A; ;(P) is negative; similarly, a directional error occurs if A ;(P) is declared negative
when it is positive. By making directional claims to multiple tests of two-sided hypotheses, one is increasing
the possibility of making errors and it is important to account for the possibility of such directional (or Type

3) errors. Define
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which are the sets of pairs of populations whose differences are smaller/larger than or equal to zero, and

Rej; = {(j, k) € S;: reject Hj and claim A; ,(P) < 0},
Rej;r = {(J,k) € S;: reject Hj;, and claim Aj,(P) > 0},
which are the sets of pairs for which a test rejects the difference being equal to zero in favor of it being,

respectively, strictly smaller or larger than zero. The probability of making any mistake, either a false

rejection or an incorrect determination of a sign, is
mdFWERp = P {S}(P) NRej; # 0 or S; (P) NRej] # 0}, (17)
which Guo and Romano (2015) and Grandhi et al. (2019) refer to as the mized directional familywise error

rate.

Our goal is to develop a multiple hypothesis testing procedure for (16) that controls the mdFWER and
then obtain the desired two-sided confidence set for the rank r;(P) by replacing N, and NV ]7*' in (13) by Rej;
and Rejj'. We consider multiple hypotheses testing procedures that control the mdFWER in the sense that

lim sup sup mdFWERp < « (18)
n—oo PcP

because the coverage probability of the resulting confidence set is bounded from below by one minus the
mdFWER:

Theorem 3.2. For any P,
P{|Rej; | +1<r;(P) <p—|Rejf|} > 1 — mdFWERp.

Furthermore, if Rej; and Rejj are computed by an algorithm for which (18) holds with mdFWERp as defined
in (17), then the confidence set
R ;= {|Rej; |+ 1,...,p— |Rej/ |} (19)

satisfies (1).

In order to implement the result in Theorem 3.2 we need to devise a procedure for testing (16) that
controls the mdFWER. The only approach to controlling the mdFWER, we are aware of is Bauer et al.
(1986). We follow their idea and propose to test the family of one-sided hypotheses,

Hp o Apg(P) <0 versus K : Apg(P)>0 (20)

for (k,1) € S% = {(k,1) € Jx J: k # | and one of k,[ is equal to j}. Note that this family of null hypotheses
includes the hypotheses A; (P) < 0 and Ay ;(P) < 0. With

Rej’; ={(j.k) € S;: reject Hj, ; and claim A; ,(P) < 0},
Rej/;r = {(j,k) € S;: reject HJ’k and claim A; ,(P) > 0},
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the familywise error rate for testing the family (20) can be written as

FWER) = P {reject at least one true hypothesis Hy ; with (k1) € S;}
= P{S}(P)NRej'; #0 o1 S (P) " Rej'; #0}.

Notice that the mdFWER for testing the family of two-sided hypotheses in (16) is equal to the FWER
for testing the family of one-sided hypotheses in (20), i.e., mdFWERp = FWER’». Therefore, instead of

devising a procedure that satisfies (18) we could instead devise one that satisfies

lim sup sup FWER',» < a. (21)
n—oo PeP

Consider the following simple one-step procedure. Let Cp,(1 — «, S;) be the one-sided confidence set in
(9) with S = S%. We reject any hypothesis Hj ;, (k,1) € 57, for which Cy,(1 — a, 57, (k,1)) does not contain
zero and claim Ay ;(P) > 0. Under suitable restrictions on P, this approach satisfies (21), but it can be

improved through a stepwise version similar to those in Romano and Wolf (2005):

Algorithm 3.1 (Stepdown Procedure).

Step 0: Set Iy = S} and s = 0.
Step 1: Form the confidence set C,(1 — «, S) in (9) with S = I,.
Step 2: Reject any Hj , with (k,1) € I, for which 0 ¢ Cy,(1 — «, I, (k,1)) and claim A (P) > 0.

(a) If no (further) null hypotheses are rejected, then stop.
(b) If any null hypotheses are rejected, then let Isy; C I, denote the hypotheses that have not

previously been rejected, set s = s + 1, and return to Step 1.

Under suitable restrictions on P, this stepwise procedure satisfies (21) when C,,(1 — «, S) is, for example,
one of the confidence sets described in Section 3.1; see Romano and Shaikh (2012). By Theorem 3.2, the
confidence set

- o+
Ruj = {Rej; |+ 1,....p— [Ref} 1} ,

where Rej’; and Rej’;r are computed through Algorithm 3.1, therefore satisfies (1).

At this point it may be worth emphasizing again the special structure of the one-sided family of hypotheses
in (20): it contains inequalities of the form A; ;(P) < 0 as well as the reverse Ay ;(P) < 0. The procedure
in Algorithm 3.1 treats all inequalities equally by ignoring this special structure. While this approach
controls directional errors there may exist better procedures that exploit this structure in some way. How to
improve upon our procedure is not obvious. For instance, a stepwise procedure that removes both hypotheses
whenever one of the two is rejected, in general, does not control directional errors (Shaffer (1980)). The
formulation of the inference problem in terms of controlling the mdFWER, of the two-sided family clarifies
that alternative procedures for controlling the mdFWER that are developed in the future may also be used

for inference on ranks.

Remark 3.9. Consider the goal of constructing a one-sided confidence set for the rank r;(P) with lower

endpoint equal to 1. In this case, it is not necessary to invert a two-sided family of hypotheses like (16), but
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rather the one-sided family
Hjp: Ajp(P) <0 wversus Kjp: Ajp(P)>0 (22)

for all (j, k) € S;. In this case, there are no directional errors and the family of tests used must control the
usual FWER.

A stepwise procedure can be devised through a small modification of Algorithm 3.1. Notice that the
testing problem in (22) is identical to the one in (20) except that SJ/» is replaced by S;. Therefore, Algo-
rithm 3.1, with S} replaced by Sj, yields Rej’; = 0 so the resulting confidence set R, ; in (19) has lower
endpoint equal to 1 and satisfies (1). Analogously, we can construct a one-sided confidence set for the rank

r;(P) with upper endpoint equal to p. B

Remark 3.10. Similarly as in Remark 3.6 it is easy to see that the stepwise procedure in Algorithm 3.1
satisfies (14) and there exists a P such that (15) holds. Unlike for the single-step method, however, the
stepwise procedure achieves the equality in (15) at distributions P for which there is at least one (not
necessarily all) k # j with (P;) = 0(P;). |

3.2.3 Discussion of Optimality

While the focus of this paper is the development of methods that are easily applied, are computationally
viable, and possess proven coverage properties, the following discussion of optimality may be helpful (though a
deeper analysis is left for future work). Our methodology allows one to apply any multiple testing procedure
for jointly testing differences that controls the FWER or mdFWER, depending on whether the testing
problem is one- or two-sided. Therefore, one certainly should apply multiple testing procedures that are
ideally optimal in some sense. Although little is known about optimality in multiple testing, some known

results support our choices.

To be concrete, consider the multiple testing problem
Ajr(P) <0 wversus Aji(P)>0

for a fixed population j € J and all (j, k) € S;. The asymptotic version of this testing problem corresponds
to the situation where we observe independent draws Z; with Z; ~ N(0(P;),0?(P;)), with o(P;) known.
In certain parametric settings, Lehmann et al. (2005) derive optimal multiple testing procedures for such
one-sided testing problems; the resulting procedure rejects based on the corresponding maximum statistic,
analogous to our procedure. Moreover, more refined optimality criteria lead to stepdown improvements, of
the form also considered here. The only caveat to note is that a monotonicity assumption is required to hold
(such as in the normal limit problem), because for such (moment inequality) testing problems, considerations
such as unbiasedness and invariance do not apply. Also, the results do not apply to the two-sided testing
problem considered in (16). In this situation, there remain open questions concerning Type 1 error (or
mdFWER) control, and optimality considerations remain even harder. On the other hand, if the goal is the
construction of a two-sided 1 — « confidence interval, then it makes good sense that each endpoint should
be a 1 — «/2 confidence bound; that is, the chance that the true parameter lies above the upper endpoint or
below the lower endpoint should be no bigger than «/2; in other words, the interval should be equi-tailed.

With this restriction, the methodology for each endpoint can be obtained through one-sided tests.
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An alternative approach for both one-sided and two-sided multiple testing problems is developed in
Spjotvoll (1972), based on the criteria of expected number of rejections (and not the FWER). Note that if
the expected number of false rejections is bounded by «, then so is the FWER (by Markov’s inequality). In
the normal problem, optimal procedures are derived; see Examples 1 and 3 in Section 3 of that paper. The
important point is that the form of the optimal procedures rejects each hypothesis based on the normalized
value of Z; — Zj; the asymptotic version is analogous to our bootstrap procedure. In other words, the test
statistics for the individual tests are used. The only difference is that critical values are obtained under a
slightly different criterion, leading to the conservative Bonferroni critical values. Our procedure uses less
conservative critical values based on the bootstrap’s estimated distribution of the maximum, even though
the FWER is controlled if the expected number of false rejections is controlled. In any case, the critical

values are asymptotically quite similar.

In summary, the above approaches to optimality are quite distinct, but lead to procedures that are
indeed quite analogous to the ones recommended here. However, there is one remaining gap in the logic that
deserves further attention. It may be possible to construct confidence intervals for ranks without having to
explicitly make decisions about each of the differences A; ;(P). While it may not seem natural, it leaves
open the possibility of improved methods. On the other hand, consider a confidence interval for r;(P). The
construction we propose yields a confidence interval for r;(P), as well as decisions about which populations
have their corresponding 6(Py) above (or below, or both) that of 8(P;). Moreover, the additional claims
can be made with no added contribution to Type 1 error rates. Such information can be quite useful. For
example, if country j is ranked below specified countries in terms of academic achievement, country j could
then use this information to consider why these countries have better performance. If we require that any
procedure be able to provide such information as well, then any procedure must be derived by some multiple
testing procedure, thereby closing the gap, and attention may then be restricted to constructions based on

multiple testing procedures.

3.3 Joint Confidence Sets for the Ranks of All Populations

In this section, we show how arguments similar to those in Sections 3.2.1 and 3.2.2 can be used to construct

simultaneous confidence sets for the ranks of all populations.

3.3.1 A Simple Construction

Define San = {(j,k) € J x J : j # k}. Let Cp(1 — o, San) be a confidence region for Ag, (P) that is
rectangular in the sense of (4) with {Cy(1 — o, San, (4, k)) : (4, k) € San}. Similarly to the definitions of N;°
and Nj, for each j € J, denote by

N E{kGJ\{j}:Cn(lfaasalh(jak))gR—}a

Frall

N;:all = {k eJ \ {]} Cn(l - ausalla (Ja k)) g R+}

the sets of confidence sets for the differences Ag

+
(NSan

of population j. The following result is analogous to Theorem 3.1:

(P) that lie entirely below and above zero. The set N, il

) therefore contains all populations & whose features 6(Fy) are significantly larger (smaller) than that

all
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Theorem 3.3. If C,,(1 — «, S) satisfies (4) with S = San, then, for any P,

PO {INal + 1 75(P) S p— INFul} p 2 P{As.(P) € Cull = o, S}
jeJ

If, in addition, C,(1 — a, S) also satisfies (5) with S = Sap, then the confidence set

Rioint = H{|N]Tall‘+]‘7"'7p_|thwll|} (23)

jeJ

satisfies (2).

Remarks similar to those after Theorem 3.1 also apply to Theorem 3.3.

Remark 3.11. An alternative approach to constructing a confidence set that satisfies (2) is based on
simultaneous confidence sets for the features 6(P) rather than for their pairwise differences Ag, (P). The
recent paper by Klein et al. (2020) is a special case of this approach. In Appendix B, we prove that, in
some special cases, the resulting confidence set for the ranking is strictly larger than our proposal in (23).
In addition, in our simulations in Section 4 and Appendix F, we find that their confidence set is always at

least as large as ours, but in most cases substantially larger.

An intuitive explanation for these findings is that the rank of a population depends on the features 6(P)
only through their pairwise differences. Although a 1 — « simultaneous confidence set for the features 6(P)
can be transformed into a 1 — « simultaneous confidence set for the vector of pairwise differences Ag,, (P),
we show in Appendix B that such a construction covers the true differences with probability strictly larger
than 1 — «. In this sense, the simultaneous confidence set for the differences is conservative. In contrast,
our proposal is based on a nonconservative simultaneous confidence set for the vector of pairwise differences
(in the sense that the coverage probability is equal to 1 — « for some data-generating processes), which is
weakly shorter for all data-generating processes and strictly shorter for some. The improvement in size of
the simultaneous confidence set for the pairwise differences then translates into an improvement in size of

the confidence set for the rank. W

3.3.2 A Stepwise Improvement

Consider the goal of constructing a two-sided confidence set for all ranks. In order to describe a way in

which we can improve upon Theorem 3.3 consider the problem of testing (16) for all (j, k) € San. Define

San(P)

"
San(P)

{(4, k) € San : Aj k(P) <0},
{(j, k) € San : Ajx(P) > 0}

and let Rej; .y = {k € J: (j,k) € Rej;} and Rejj:an ={k € J: (j,k) € Rej};} with

Rej; = {(J, k) € San: reject Hjj, and claim A (P) < 0},
Rejf, = {(j, k) € San: reject Hjj, and claim A;x(P) > 0} .

19



The mixed directional familywise error rate for the problem of testing (16) for all (j, k) € Sy is then
mdFWERp = P {5}, (P) NRej;; # 0 or S;;(P) NRejy, # 0} . (24)

The following result is analogous to Theorem 3.2.
Theorem 3.4. For any P,
P o {IReal + 1 <75(P) <p— |Rejful} p > 1 — mdFWERp .
jeJ

Furthermore, if Rej; ., and Re];tan are computed by an algorithm for which (18) holds with mdFWERp as
defined in (24), then the confidence set

Rt = H {|Rejj_,all‘ +1...p- |R€]Ia“|} 25)
jes

satisfies (2).
In order to implement the result in Theorem 3.4 we need to devise a procedure that controls the mdFWER.

As for the marginal confidence sets, we can control the mdFWER for the two-sided testing problem by
controlling the FWER,

FWER', = P{reject at least one true hypothesis Hy, , with (k,1) € San} , (26)

for the one-sided testing problem (20) with (k,1) € San.

Consider the following simple one-step procedure. Let C,, (1 — a, Say) be the one-sided confidence set in
(9) with S = Sa;. We reject any hypothesis Hllml’ (k,1) € San, for which C,,(1—c«, San, (k,1)) does not contain
zero and claim Ay ;(P) > 0. Under suitable restrictions on P, this approach satisfies (21) with FWER',
as defined in (26), but it can be improved through a stepwise version similar to those in Romano and Wolf
(2005):

Algorithm 3.2 (Stepdown Procedure).

Step 0: Set Iy = Sa and s = 0.
Step 1: Form the confidence set C,,(1 — «,.S) in (9) with S = I;.
Step 2: Reject any H; ; with (k,[) € I5 for which 0 & C,,(1 — «, I, (k,1)) and claim A ;(P) > 0.

(a) If no (further) null hypotheses are rejected, then stop.

(b) If any null hypotheses are rejected, then let Isy; C I; denote the hypotheses that have not

previously been rejected, set s = s + 1, and return to Step 1.

Under suitable restrictions on P, this stepwise procedure satisfies (21) with FWER), as defined in (26)

when C,,(1 — «,S) is, for example, one of the confidence sets described in Section 3.1; see Romano and
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Shaikh (2012). By Theorem 3.4, the confidence set
Riomt = H {IRejy| +1,....p— [Rej |}
jed

where Rej,; and Rej;'11 are computed through Algorithm 3.2, therefore satisfies (2).

3.4 Confidence Sets for the 7-Best Populations

The goal of this section is to construct confidence sets for the 7-best populations, i.e., for given values of
7€ Jand a € (0,1), we want to construct (random) sets J7 Pt that satisfy (3).

Given a confidence set RI°Mt = HjeJRJ;Zi;“ that satisfies (2), such as those in (23) and (25), it is

straightforward to construct J7~Pest satisfying (3) by defining
sitet={jesire R} (27)

In this section, however, we propose a more “direct” approach which, in simulations, we have found to
perform better than the naive projection in (27). For a given value of 7 € J and some j € J, consider the
hypothesis

Hj:r;(P) <.

Let 7 be a permutation of .J such that 0(Pr(1)) > 0(Pr2)) > ... > 0(Pr(p)) and define K = {K C J: |[K| =
7 —1} to be the set of all subsets of J with cardinality 7 —1 (i.e., K = {#} when 7 = 1). The null hypothesis

H; is equivalent to
max 0(P,)—0(P;)} <0
keJ\{n(l),...,w(T_n}{ (Pr) = 0(F;)} <
and implies
i 0(P,) — 0(P;)} <O0.
jpin max {0(Py) —0(Py)} <

In order to form a test statistic for this inequality, we replace the features 8(P;) by their estimators:

Thj= }(IIEII’% krenf\%{ek —0;}. (28)

Further, for I C J and K € K, let

o1 = max k§ﬂ§{9k —0; — A ;(P)}

and denote by M, (z,I, K, P) = P{T, 1,k < x} the cdf of T}, ; . Finally, define the critical value

én(l—a,l) = II?g})C{Mn_l(l —o,I,K,P,) (29)

for some estimate P, of P. The following algorithm is a stepwise procedure for testing the family of null

hypotheses H; with j € J.

Algorithm 3.3.
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Step 0: Set I = J and s = 0.
Step 1: Reject any H; with j € I for which T;, ; > é,(1 — o, I).

(a) If no (further) null hypotheses are rejected, then stop.

(b) If any null hypotheses are rejected, then let I,1; C I denote the hypotheses that have not

previously been rejected, set s = s + 1, and repeat Step 1.

The confidence set for the 7-best populations can then be defined as all those j € J for which H; is not
rejected by Algorithm 3.3.

Theorem 3.5. Assume that, for each K € IC,

liminf inf P{T Jg—bcst(P),K S M;l(]_ - Oé,<]8-_bCSt(P),}—{7 pn)} 2 1—a. (30)

n—oo PeP n,

Then the confidence set
Jrbest = {5 € J: Hj is not rejected }

computed through Algorithm 3.3, satisfies (3).

Under a uniform integrability condition on P, the uniform asymptotic coverage requirement (30) holds

for various choices of P,; see Romano and Shaikh (2012).

Remark 3.12. One could replace T}, ; by a studentized version of the statistic,

, 0 — 0,
T, = min max —; J
KeKkeJ\K Ok, j

where &,%J is an estimator of the variance of §), — éj, and modify M, (z,I, K, P) to be the distribution of

0, —0; — A (P
T,,1,k = max max g ’J( ) .
Jje€l keJ\K Ok,j

Studentization may be especially desirable when the distributions of éj vary considerably. H

Remark 3.13. The computation of the critical value ¢é,(1 — «,I) involves the maximization of M, 1(1 —
ol K, Pn) over K € K. For instance, when 7 = 2, then K = {{1},{2},...,{p}}. For 7 > 1, there are
(Tf 1) elements in /C, so the construction of the critical value becomes computationally more demanding the
larger 7. There are, however, at least two special cases in which the optimization becomes trivial. First of
all, to form a confidence set for the best population (7 = 1), no optimization is necessary because in this
case K = {(}. Second, suppose 6, — 0(Py),... ,ép — 60(P,) are exchangeable. In this case, one can show that
M, (1 —a,I,K,P,) is independent of K, so the the computation of the critical value é,(1 — a,I) does not

require optimization over K € K regardless of the value of 7. H

Remark 3.14. An alternative approach to computing critical values for the test statistic in (28) is based
on an estimate of the set J \ {m(1),...,m(7 — 1)}. To see this first notice that (28) is bounded above
by maxpex{0x — 0; — Ay j(P)} with K = J\ {x(1),...,7(r — 1)}. Letting S, (-, K, P) denote the cdf of
maxye g {0 — 9j — Ayg ;(P)} for some set K C J, an infeasible critical value for (28) is therefore given by
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S 1 —a, J\ {x(1),...,7(r = 1)}, P,) with P, an estimate of P. To obtain a feasible counterpart, one
could replace the set J\ {w(1),...,7(7 — 1)} by an estimate as follows.

Suppose 0 is y/n-consistent. Let 7, be a permutation of J such that HA,}H(D > ... > éﬁTL(p) and define

Ka={jet: b <bs+ent,

where {€,},>1 is a sequence of positive constants so that €, — 0 and €ny/n — 0o. Then, it is easy to see
that the estimated set K, contains .J\ {r(1),...,n(7 — 1)} with probability approaching one. Since S;;7*(1—
a, K, Pn) is monotone with respect to K, a feasible critical value is therefore given by S, 1(1 — «, Kn, [:’n)
An obvious challenge in the implementation of this construction is the choice of ¢, (a problem that is similar
to moment selection), but an advantage is that it remains computationally feasible even for large values of
7. Whether or not the alternative critical value is smaller or larger than that in (29) is not obvious to us

and thus left for future research.

It may also be possible to employ a two-step method as in Romano et al. (2014) by finding K, that
contains J \ {m(1),...,7(7 — 1)} with probability approaching 1 — 8 for 0 < § < « and using the critical
value S, 1(1 — o+ B, K,, Pn) instead. W

Remark 3.15. The 7-worst populations in terms of 6;(P),...,8,(P) are also the 7-best populations in
terms of —601(P),...,—0,(P). Therefore, the procedure described above can be used for the construction
of a confidence set for the 7-worst populations by simply changing the signs of the features 6(P;) and their

estimators. MW

Remark 3.16. Similarly to the reasoning in Remark 3.1 there are no conceptual challenges in satisfying

(30) while allowing for dependence in the estimators 6, . . ., ép. [ |

Remark 3.17. The problem of finding a subset J7 Pt satisfying (3) is related to the subset selection
problem in the PhD thesis by Gupta (1956). He assumed that éj and 6(P;) are the sample and population
mean, respectively, and are such that 6; — 0(Py),..., ép — 6(P,) are ii.d. from a normal distribution with
known variance. For this case, he proposed a confidence set for the identity of the population with the largest
mean. Many extensions of Gupta’s idea have been proposed since then; see Gupta and Panchapakesan
(1979, Chapters 11-19) for a review. Appendix C shows that this approach only guarantees coverage of
one, but not necessarily all, of the best populations in case there are ties. For example, if there are only
two populations (p = 2) and their means are equal, then the probability of Gupta’s confidence set covering
J&fbeSt is strictly less than the desired level 1 — . In contrast, the confidence set proposed in this section
asymptotically covers Jg§ “best for any 7 € J with probability no less than the desired level. Importantly,
unlike Gupta’s confidence set, our proposal does not rely on his i.i.d. assumption. Allowing for heterogeneity
in the populations’ distributions is important in our empirical applications in which the populations’ variances

differ substantially across populations. H

4 Examining the Finite-Sample Performance through Simulations

In this section, we examine the finite-sample performance of several procedures for constructing confidence
sets for the rank of a single population, for the ranks of all populations, and for the set of 7-best populations

with a simulation study.
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Data generating process

The data generating process is calibrated to the data from the empirical application in Section 5.2 in which
we rank neighborhoods in the U.S. by measures of intergenerational mobility. Let éc = (éQh ... ,éc’p) and
sec = (Sec,...,Sec,p) denote the “correlational” estimates of mobility and their standard errors for the
p most populous commuting zones (CZs) from Chetty et al. (2018). Similarly, denote by 6y, and sep; the
“movers” estimates of mobility and their standard errors for the p most populous CZs from Chetty and
Hendren (2018). Let 7 = (71,...,7p) be the vector with j-th element equal to the number of individuals
either moving from or to CZ j in the movers dataset (i.e. it is an estimate of the number of observations

used in estimation of the movers estimate for CZ j).

For each CZ j = 1,...,p, we generate an i.i.d. sample X 1,..., X, with sample size n; = xf; and
X;i~ N(b,, 0'?), independently across j,

where, for ¢t € {C, M} (i.e. depending on which of the two datasets we base the simulations on),

0; = O 7=1 (31)
! O+ 030 1 (Oksr — Orp), §>1

~ A2 . .
and 0']2- = f;se; ;. There are two main parameters that govern the design, ¢ and k.

The parameter § governs how close the mobility measures 6; are to each other. When ¢ = 1, then they
are equal to those from the data. For smaller (larger) values, the measures are closer to (further away from)

each other than in the data and, in the extreme case of 6 = 0, they are all identical.

The parameter « governs the sizes of the samples drawn for each CZ. k = 1 corresponds to the case in
which the CZ-specific sample sizes are the same as in the data. Smaller (larger) x means we draw a smaller
(larger) sample than in the data or, equivalently, the standard errors for the resulting mobility estimates are

larger (smaller).

Figures 4 and 5 show the data generating processes (more precisely, the configuration of mobility measures
and standard errors) for different parameter values of k and ¢. In each figure, the panel in the center depicts
the data generating process calibrated to the data. The panels to its left and right show how changing
0 affects the slope of the vector of mobility measures. The panels above and below show how changing
k changes the standard errors of the mobility estimates. All simulations are based on 2,000 Monte Carlo

samples and nominal coverage of 95%.

Simulation exercises

We consider three inference problems: inference on the rank of a single CZ, simultaneous inference on the
ranks of all CZs, and inference on the set of 7-best CZs with 7 = 2. In this section, we only present and
discuss the results for inference on a single rank, the other results can be found in Appendix F. We perform

inference on the CZ j with the largest mobility estimate ét’j among the p most populous CZs.

We consider different procedures for constructing the confidence sets. Critical values for the different

methods are based on the parametric bootstrap so as to mimic the empirical analysis in Section 5.2, in which
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Figure 4: Correlational simulation design: for j = 1,...,50, the panels show 6; (solid lines) and
8; £ 20;/,/n; (dashed lines), varying x and 6. The panel denoted by “(data)” shows the design calibrated
to the data.

we only observe point estimates and standard errors so a nonparametric bootstrap cannot be implemented.?
Specifically, for a given Monte Carlo sample X 1,..., X; »,, we compute the sample average éj7 the sample
variance Erj?, the standard error se; = 6,/,/m;, and &JZ, = 6? + 6,%. Then, we generate 1,000 draws of normal
random vectors Z = (Zi,...,%,) ~ N(0,diag(6%,...

S:SJ

,62)). We compare the following methods, setting

“DM?”: the simple construction in (13), based on symmetric confidence sets for the differences in means as in
(11), where L}

symmn(1—a, S, P,) is the empirical (1—a)-quantile of the 1,000 draws of max; ies |Z;—
Zk| /6 k-

“DM.step”: the stepwise constructions (19) computed through Algorithm 3.1, based on confidence sets

2Simulation results for the nonparametric bootstrap, which are not reported here, are very similar to the results for the
parametric bootstrap.
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-1
lower,n

for the differences in means as in (9), where, in the sth step, L (1-a, IS,I:’n) is the empirical

(1 — a)-quantile of the 1,000 draws of max; pyer, (Z; — Zx) /6 k-

“M?”: the alternative confidence set described in Appendix B, based on symmetric confidence sets for the

means as in (39), where ¢j_, is the empirical (1 — )-quantile of the 1,000 draws of max;c |Z;|/5;.°

Results

Table 2 shows coverage frequencies, where coverage is computed as in Remark 3.6, i.e. of the set of ranks.

Figures 67 plot the “relative” length of the marginal confidence sets, which is computed as the length of the

3Using §1—q as defined in (40) or (41) yields almost identical results, but we choose to use bootstrap quantiles here to make
the method more similar to our proposals “DM” and “DM.step”, which also use bootstrap quantiles.
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Figure 6: Marginal confidence set for the rank of a single CZ: relative length for the correlational design

confidence set averaged over the Monte Carlo samples and divided by the number of CZs p. For example, a

relative length equal to one (or 0.4) means that all (or 40% of the) CZs are included in the confidence set.

We obtain five insights from the simulation results for inference on a single rank. First, Table 2 shows
that all methods control the coverage frequency at the desired nominal level for small and large sample sizes,
regardless of whether mobility measures are well separated (0 large), nearly tied (§ = 0), or tied (6§ = 0),
and regardless of whether there are few or many CZs to be ranked (p small or large). The only instances of
a small amount of undercoverage occur when the mobility measures are all equal (6 = 0) and, at the same

time, either the sample size is small or the number of CZs is large.

Second, the coverage frequency of “M” is approximately equal to one in all scenarios whereas our methods
“DM” and “DM.step” tend to have coverage frequency closer to the desired level. In consequence, our
methods tend to lead to confidence sets for the ranks that are not larger than those of “M” and substantially

smaller in many scenarios. For instance, Figure 7 with p = 25 and x = 10 shows that the confidence set of
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Figure 7: Marginal confidence set for the rank of a single CZ: relative length for the movers design

“M” maybe almost twice as large as those of “DM” and “DM.step”. Improvements in the size of confidence
sets by using the stepwise method (“DM.step”) instead of the single-step method (“DM”) are small, but
in Appendix F we provide a different simulation design in which the stepwise method leads to significant

reductions of length.

Third, Figures 6 and 7 show that all methods produce confidence sets that decrease in size as the
mobility measures become more separated from each other (4 increases). When § = 0, then all CZs have
equal mobility measures and the confidence sets for a the rank of a single CZ include all CZs, i.e. relative
length is equal to one. This is expected because, in this case, all CZs are tied at rank equal to one. As 9
increases the mobility measure of the CZ of interest becomes well separated from all other CZs. The length
of the confidence set decreases towards 1/p and the coverage frequency increases towards 1. Provided the
sample size is not too small, this behavior is a consequence of the confidence sets for the differences being

consistent (see Remark 3.4).

28



Fourth, comparing left and right columns of Figures 6 and 7 shows that, as the sample size increases and
as long as there are no ties, the length of the confidence sets decreases and the coverage frequency increases.
This behavior is a consequence of the fact that a large sample size leads to small variances of the estimated
mobility measures so that, by the consistency of the confidence sets for the differences, true differences in

mobility measures are easier to detect (see Remark 3.4).

Finally, the differences between the correlational and movers designs have substantial impact on the
length of the confidence sets. Consider the second panels in the top rows of Figures 6 and 7. The red vertical
lines at § = 1 mark the data-generating process that is calibrated to the data. In the correlational design,
our confidence sets “DM” and “DM.step” are relatively small (both containing on average 6% of the 50 CZs)
whereas in the movers design the confidence sets are very large (containing on average more than 70% of the
50 CZs, respectively). This finding is not surprising because, in the movers design, standard errors are much
larger and the mobility measures less well-separated than in the correlational design (compare the middle
panels in Figures 4 and 5). To illustrate the magnitude of the statistical noise in the movers design notice
that even a 10-fold increase in the sample size (x = 10) and its implied v/10 &~ 3.16-fold decrease in the
standard errors reduces the size of the confidence sets only to about 16% (“DM”) and 14% (“DM.step”) of
the 50 CZs (i.e. 8 and 7 of the 50 CZs). In contrast, in the correlational design, the same increase in sample
size reduces the size of both confidence sets from about 6% to 4% of the 50 CZs (i.e. 2 of the 50 CZs).
Therefore, even after a 10-fold increase in the sample size, there still is considerable uncertainty in the rank

in the movers design whereas the rank in the correlational design is almost certain.
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5 Empirical Applications

5.1 Ranking of Developed Countries by Student Performance in PISA

We now apply our inference procedures from Section 3 to re-examine the question that motivates the PISA

test: Which countries do best and worst at reading, math, and science?

What is PISA and why does it matter?

Over the past two decades, the Organisation for Economic Co-operation and Development (OECD) have
conducted the PISA test. The goal of this test is to evaluate and compare educational systems across countries
by measuring 15-year-old school students’ scholastic performance on math, science, and reading. The PISA
test was first performed in 2000 and then repeated every three years. Each country that participates in a
given year has to draw a sample of at least 5,000 students to be tested. The results from the PISA test are
reported on a scale constructed using a generalized form of the Rasch model (OECD, 2017). For each domain
(reading, math, and science), the scale is constructed with a mean score of 500 and standard deviation of
100. The scores are then tabulated by country in what has become known as PISA’s international league
tables.

Every three years, the release of these league tables stimulates a global discussion about education systems
and school reform in both international media and at the national level across many OECD countries. Indeed,
several governments have set national performance targets based on how well the country ranks in the league
tables (Breakspear, 2012). A low ranking in the PISA league table is known to cause media attention and
political discussion. In Germany, for example, the poor results in the first PISA test triggered a heated
debate about the country’s education system, which ultimately resulted in wideranging reforms (Hubert,
2006).

How much should we trust the ranking in PISA’s league tables?

In order to examine which countries do best and worst at reading, math, and science, we use publicly available
data from the 2018 PISA test. We restrict attention to the OECD countries. Since PISA never combines
math, science, and reading scores into an overall score, we perform our analyses separately for each domain.
For brevity, we focus on the league table for reading, but we report a complete set of results for each domain

in Appendix G.1.

We begin by presenting the point estimates and marginal confidence intervals (estimates plus or minus
twice the standard errors) for the expected reading test score in each OECD country.? These results are
reported in Figure 8. There is considerable variation in the point estimates across countries. Estonia ranks
first with an average test score of around 523. The runner up is Canada, followed by Finland in third place.
At the bottom of the league table, one finds Chile, Mexico, and Columbia. These countries have reading

scores that are more than 20% lower than the countries at the top of the league table.

By applying our procedures from Section 3 to the point estimates and standard errors in Figure 8, we

can compute (i) the marginal confidence set for the rank of a given country, (ii) the simultaneous confidence

4The only exception is Spain, for which there is no data available.
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Figure 8: Point estimates and marginal confidence intervals (estimates plus or minus twice the standard
errors) of the expected reading score on the PISA test for each OECD country (except for Spain for which
there is no data)

set for the ranks of all countries, and (iii) confidence sets for the 7-best (or the 7-worst) countries. Marginal
confidence sets answer the question of whether a given country is performing relatively well on the reading test
as compared to the other countries. Thus, (i) is relevant if one is interested in whether a particular country
is among the worst or the best countries in terms of its scholastic performance on reading. Simultaneous
confidence sets allow such inferences to be drawn simultaneously for all countries. Thus, (ii) is relevant if one
is interested in broader geographic patterns of scholastic performance in reading across OECD countries. By
comparison, confidence sets for the 7-best (or 7-worst) answer the more specific question of which OECD
countries cannot be ruled out as being among the countries with the best (worst) scholastic performance in
reading. In other words, (iii) is relevant if one is interested in only the top (or bottom) of the international

league table.

The confidence sets are implemented as for the simulations in Section 4 and Appendix F, using the
stepwise procedures (“DM.step”) for the confidence sets for ranks and the projection method (“DM.step”)

for the 7-best and 7-worst problems. All confidence sets are computed at the 95% nominal level.

Figure 9 presents the ranking of the OECD countries according to the point estimates of the expected
reading scores. Panel A displays the marginal confidence sets while Panel B reports the simultaneous
confidence sets. Table 3 reports additional results for the top five countries (Panel A) and the bottom
five countries (Panel B). Each panel of this table presents results for math, reading, and science. For each
domain, we report the point estimates, the standard errors, the 95% marginal confidence sets for the ranks,
and the number of countries that cannot be ruled out (with 95% confidence) as being among the set of

countries with the 7-highest (top panel) or the 7-lowest (bottom panel) expected PISA test scores.

As evident from Panel A of Figure 9, the marginal confidence sets are relatively narrow, especially for

the countries at the top and the bottom of the ranking. This finding suggests that citizens of these countries
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can be quite confident in the reading performance of their pupils. For instance, the upper endpoint of the
confidence set for Estonia’s rank suggests it is (with 95% confidence) the country with at least the fifth-
highest expected test score. By comparison, the lower endpoint of the confidence set for Columbia’s rank
suggests (with 95% confidence) that it is among the bottom two OECD countries in terms of scholastic

performance on reading.

A natural question is whether the ranking of the OECD countries according to the expected reading score
remains informative if one allows inferences to be drawn simultaneous across all countries. The results in
Panel B of Figure 9 suggest the ranking remains fairly informative, especially at the top and at the bottom of
the PISA league table. Therefore, we can be fairly certain about which countries are at the top and bottom
of the ranking. In addition, the columns denoted by “r-best” and “r-worst” in Table 3 show the number of
countries in the 95% confidence set for the 7-best and 7-worst. Only eight (five) countries cannot be ruled

out as being among the top (bottom) three countries in terms of scholastic performance on reading.

Remark 5.1. As discussed in the introduction, our methods and those developed by Andrews et al. (2018)
share some technical similarities, but answer distinct economic questions, and should thus be viewed as
complements, not substitutes. To illustrate this empirically, we apply the methods of Andrews et al. (2018)
to the PISA data and construct 95% confidence sets for the expected PISA scores of the countries with
the highest and the lowest estimated scores.” For instance, their 95% “conditional” confidence set for the
expected reading score of the sample “winner”, Estonia, is (517.9, 526.6). This is a fairly narrow confidence
set for the expected value of the reading score and thus one can be confident that the sample “winner” truly

has a high reading score.

However, just like Estonia’s marginal confidence interval displayed in Figure 8, Andrews et al. (2018)’s
confidence set does not allow us to draw any conclusions about what is the true rank of Estonia nor which
country has true rank one. On the other hand, our marginal confidence sets for the rank of Estonia tell
us that (with 95% probability) its true rank lies between 1 and 5. In addition, our 7-best confidence set
for 7 = 1 shows that (with 95% probability) there are 6 countries in total that could be the best. See
Appendix G.2 for more results and details. ®

5We are grateful to the authors for sharing their code, allowing us to easily apply their methods to our applications.
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Ranking by Reading Score with 95% Marginal CS
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Figure 9: Panel A: for each OECD country, we plot its rank by reading score and the 95% marginal
confidence set (“CS”). Panel B: for each OECD country, we plot its rank by reading score and the 95%
simultaneous confidence set (“CS”). Different quartiles of the rankings are indicated with different colors.
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5.2 Ranking Neighborhoods by Intergenerational Mobility

We now apply our inference procedures from Section 3 to re-examine the question that motivates the work
of Chetty et al. (2014, 2018) and Chetty and Hendren (2018): Where in the United States is the land of
opportunity?

Data and background

The empirical analysis in this section is based on publicly available estimates of intergenerational income
mobility across areas in the United States. These estimates come from two studies that both use tax records
covering the U.S. population. The first is Chetty et al. (2018). They document how children’s expected
incomes conditional on their parents’ incomes vary according to the area (commuting zone (CZ), county, or
Census tract) in which they grew up. The second is Chetty and Hendren (2018).” The goal of this paper is
to examine the degree to which the differences in income mobility across areas reflect causal effects of place.
Both studies present the empirical results through league tables and heat maps which rank places according

to point estimates of income mobility.

In the baseline analysis, Chetty et al. (2018) define the following measure of intergenerational mobility:

Yep = E[yz|c(l) = C,p(i) = p] 5 (32)

where y; is child i’s percentile rank in the national distribution of incomes relative to all others in her birth
cohort; child 4’s income is measured as her average income in the years 2014-2015 (aged 31-37 depending on
cohort); p(i) denotes the child’s parental income percentile in the national distribution of parental income in
child i’s birth cohort; and ¢(7) is the area in which the child ¢ grew up. As in Chetty et al. (2018), we focus on
Yeos, the expected income rank of children who grew up in area ¢ with parents at the 25th percentile of the
national income distribution of parental income.® Following Chetty et al. (2018), we refer to the estimates

of §eo5 as correlational estimates of upward mobility.

In Figure 10, we present the estimates of g.o5 with marginal confidence intervals (estimates plus or minus
twice the standard errors) from Chetty et al. (2018). These correlational estimates of upward mobility cover
all the 741 commuting zones and 3208 of the 3219 counties.” We first sort the places by the values of .25,
and then report these point estimates and their marginal confidence intervals for each CZ (top graph) and
county (bottom graph). There is considerable variation in f.o5 across areas. Since CZs typically comprise
several counties, it is not surprising that the standard errors tend to be a lot larger when a neighborhood is

defined as a county rather than as a CZ.

In Chetty and Hendren (2018), the parameters of interest are the exposure effects of spending an ad-

ditional year of one’s childhood in a given area. Consider a child ¢ from a set of one-time movers from an

6The data files could be accessed following these links: commuting zones; counties and tracts. The variables of interest in
all three files are kfr_pooled_pooled_p25 and kfr_pooled_pooled_p25_se.

"The data files could be accessed following these links: commuting zones and counties. The variables of interest are
causal_p25_czkr26 and causal_p25_czkr26_se for commuting zones; causal_p25_cty_kr26 and causal_p25_cty_kr26_se for counties.

8Chetty et al. (2018) take several steps to simplify the estimation problem of the f.25 across areas. We use the main
estimates they report and refer to their paper for estimation details.

9Following Chetty et al. (2018) we use 1990 Commuting Zones classification and 2000 counties classification. For 11 counties
data is not available.
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Figure 10: Estimates of g.25, the expected percentile rank of a child’s average household income for 2014-
2015 in the national distribution of her cohort, with marginal confidence intervals (estimates plus or minus
twice the standard errors). The estimates cover all 741 commuting zones (Top) and 3208 of the 3219 counties
(Bottom).

origin o(7) to a destination d(7). She moves at the age m(i) and spends A — m(i) time in the destination.

The (vector of the) amount of time spent in a given area is denoted by:

A—m(i) if e=d(®)
€ic =y m; if ¢ = o(7) (33)

0 otherwise
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The exposure effects can be estimated by the regression model:
Yi=od+ €;- [ + &, (34)

where a,q is an origin-by-destination fixed effect, €; = (e;.: ¢ = 1,2,...) is a vector of explanatory variables
for the number of years that child 7 lived in place ¢ during her childhood, and the exposure effects are
given by the parameters £ = (tep: ¢ = 1,2,...) = (uQ + plp: ¢ =1,2,...), where p is the parental income
percentile. The estimates are normalized to be mean zero across places, so that ji., measures the exposure
effect relative to the average place. As in Chetty and Hendren (2018) we focus on pi.25, the effect of spending
an additional year of childhood in area c for children with parents at the 25th percentile of the national
income distribution of parental income.' Following Chetty and Hendren (2018), we refer to the estimates

of peos as movers estimates of exposure effects.

In Figure 11, we present the point estimates of pi.o5 with marginal confidence intervals (estimates plus or
minus twice the standard errors) from Chetty and Hendren (2018). These results cover 595 of the 741 CZs
and 2367 of the 3219 counties.!! The point estimates suggest considerable variation in exposure effects across
areas. The standard errors are, however, sizable, indicating that it can be difficult to draw firm conclusions

about which areas produce more or less upward mobility.

Given the relatively large standard errors, in a subset of the analyses, we restrict attention to the most
populous CZs and counties. The motivation for this sample restriction is to examine if one can achieve a
more informative ranking by restricting attention to larger areas. This sample restriction is also imposed in
a subset of the analyses of Chetty et al. (2014, 2018) and Chetty and Hendren (2018). In Appendix G.3, we
present point estimates of ¥.o5 and peo5 with marginal confidence intervals for the 50 most populous CZs
and counties. As expected, the estimates are more precise for this restricted set of areas as compared to the
population of CZs and counties at large. The gains in precision are particularly salient for the correlational
estimates. By way of comparison, the standard errors of the movers estimates remain relatively large even

if one restricts attention to the most populous areas.

Before we present the confidence sets for the ranks, there are three remarks worth making. First, Chetty
and Hendren (2018) report both the raw estimates of the exposure effect of place ¢, pco5, as well as forecasts
that minimize the mean-squared-error (MSE) of the predicted impact of growing up in place c. We focus on
the raw estimates. This choice is, in part, because Chetty and Hendren (2018) do not report the confidence
intervals on the forecasts, but also because the forecasts are very similar to the correlational estimates in
most CZs. The reason is that the forecasts are constructed as weighted averages of the correlational estimates
(based on stayers) and the mover estimates, with greater weight on the mover estimates when they are more
precisely estimated. Given that most estimates of p.95 are very noisy, the forecast estimates are very similar
to the correlational estimates. Indeed, we calculate that in a majority of the CZs, the forecasts assign at

least 90 percent of the weight to the correlational estimates.

Second, the movers estimators may not necessarily be independent across CZs. While our inference
procedures accommodate dependence in a straightforward fashion (see Remarks 3.5 and 3.16), doing so
would require not only standard errors for each mobility estimate, but an estimate of the whole covariance

matrix of the estimators. Such information is unfortunately not available to us. Thus, we are unable to

10Chetty and Hendren (2018) take several steps to simplify the estimation problem of p.25 across areas. We use the main
estimates they report and refer to their paper for estimation details.
1 Chetty and Hendren (2018) do not report results for the other counties and CZs due to limited data in these areas.
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Figure 11: Movers estimates of exposure effects p.95 with marginal confidence intervals (estimates plus or
minus twice the standard errors). The estimates cover 595 of the 741 commuting zones (Top) and 2367 of

).

Bottom

(

the 3219 counties

examine if the movers estimators are dependent or incorporate such dependence in the construction of the

ignoring potential dependence among the estimators most likely

confidence sets for the ranks. Furthermore,

understates the uncertainty in the estimates we use, so we conjecture our very wide confidence sets for the

ranks would widen even further when accounting for dependence.

Third, we follow closely the analyses of Chetty et al. (2014, 2018) and Chetty and Hendren (2018), and

do not try to change their definitions of neighborhoods to improve precision. If the commuting zones were
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aggregated up to larger geographic regions such as states or Census regions, it is likely that one obtains a
more informative ranking. However, this would change the target parameters and the analyses might no
longer be suitable for the stated purposes, namely to draw the attention of policymakers to neighborhoods
that need improvements and to help families move to high-mobility neighborhoods. For these purposes,
local statistics are arguably needed. Indeed, in recent work, Chetty et al. (2018) define a neighborhood to
be a Census-tract, which encompasses a population of between 2,500 and 7,500 people, and is even more
granular than counties. They then construct heat maps (referred to as the Opportunity Atlas) by dividing
the Census-tracts into deciles based on their estimated value of 7.05. A stated goal of these maps are to
identify local high-opportunity neighborhoods that are affordable to low-income families and providing an
input into the design of affordable housing policies. The estimates and standard errors of .05 for each
Census-tract level is available here. When using this data, we find that both the marginal and simultaneous
confidence sets are far too wide to draw conclusions about the ranks of the neighborhoods at such a granular
level. For brevity, we chose not to report these results in the paper, focusing instead on CZs and counties

for which informative rankings are more likely.

Confidence sets used to rank places by intergenerational mobility

By applying our procedures from Section 3 to the point estimates and standard errors in Figures 10 and 11,
we can compute (i) the marginal confidence sets for the rank of a given place, (ii) the simultaneous confidence

sets for the ranks of all places, and (iii) the confidence sets for the 7-best (or the 7-worst) ranked places.

Before presenting the results, we again emphasize that (i)—(iii) answer distinct economic questions.
Marginal confidence sets answer the question of whether a given place has relatively high or low income
mobility compared to other places. Thus, (i) is relevant if one is interested in whether a particular place is
among the worst or the best places to grow up in terms of income mobility. Simultaneous confidence sets
allow such inferences to be drawn simultaneously across all places. Thus, (ii) is relevant if one is interested
in broader geographic patterns of income mobility across the United States. By comparison, confidence sets
for the 7-best (or 7-worst) answer the more specific question of which places cannot be ruled out as being
among the areas with the most (least) income mobility. In other words, (iii) is relevant if one is interested

in only the top (or bottom) of a league table of neighborhoods by income mobility.

The confidence sets are implemented as for the simulations in Section 4 and Appendix F, using the
stepwise procedures (“DM.step”) for the confidence sets for ranks and the projection method (“DM.step”)

for the 7-best and 7-worst problems. All confidence sets are computed at the 95% nominal level.

Ranking of the most populous places

We begin the empirical analysis by considering the 50 largest CZs by population size. Figure 12 presents the
ranking of these CZs according to the point estimates of 3.05. Panel A displays the marginal confidence sets
while Panel B reports the the simultaneous confidence sets. Table 4 reports additional results for the top
five CZs (Panel A) and the bottom five CZs (Panel B). Each panel of this table presents two sets of results:
Columns 3-7 are based on the correlational estimates of upward mobility 7.25, while columns 8-12 are based

on the movers estimates of exposure effects p.05. For each set of results, we report the point estimates, the
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standard errors, the 95% marginal confidence sets, and the number of places in the 95% confidence sets for

the 7-best (top panel) or the 7-worst values of J.o5 or ficos.

Among the 50 largest CZs by population size, the point estimates of f.o5 range from 0.457 in San
Francisco to 0.355 in Charlotte. As evident from Panel A of Figure 12, the marginal confidence sets based
on the correlational estimates are relatively narrow, especially for the CZs at the top and the bottom of the
ranking. This finding suggests that citizens of these CZs can be quite confident in the mobility ranking of
their hometown. For instance, with 95% confidence, San Francisco is among the top two of these 50 CZs
in terms of income mobility. By comparison, with 95% confidence, Charlotte is among the bottom three of

these 50 CZs in terms of income mobility.

A natural question is whether the ranking of the CZs according to the correlational estimates remains
informative if one allows inferences to be drawn simultaneously across all places. The results in Panel B of
Figure 12 suggest this is indeed the case and we can have high confidence about which CZs are at the top
and bottom of the correlational ranking. The sizes of the 95% confidence sets for the 7-best and 7-worst
CZs confirm this finding. For example, only four (three) places cannot be ruled out as being among the top
(bottom) two CZs in terms of income mobility. Furthermore, there are only six places that cannot be ruled
out as being among the top five CZs, while ten CZs cannot be ruled out as being among the bottom five

places.

Taken together, the results based on the correlational estimates ¥.05 suggest it is possible to achieve a
quite informative ranking of the 50 largest CZs according to upward mobility. By contrast, the exposure
effects pc25 are too imprecisely estimated to draw firm conclusions about which CZs produce more or less
upward mobility. As evident from the marginal confidence sets for .25 in column 11 of Table 4, it is difficult
to learn much about whether a particular CZ has relatively high or low exposure effects. For example, the
citizens of Seattle cannot rule out with 95% confidence that the majority of other CZs have higher income
mobility. Drawing inferences simultaneously across all CZs is even more challenging, as evident by the 7-best
and 7-worst results for pe25. Consider, for example, column 12 of Panel A in Table 4. As these results show,
none of the 50 CZs can be ruled out with 95% confidence as being among the top five places in terms of

exposure effects.
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Figure 12: Panel A: point estimates and the 95% marginal confidence sets (“CS”) for the ranking of the
50 most populous CZs by Z.25. Panel B: point estimates and the 95% simultaneous confidence sets (“CS”)
for the ranking of the 50 most populous CZs by .o5.
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Panel A: Top 5

Correlational Movers
Rank 7 CZ Je2s SE 95% CS  7-best CZ fle2s SE 95% CS  7-best
1 1 San Francisco  0.457  0.001 1, 2] 4 Seattle 0.229  0.082 [1, 38] 44
2 2 Salt Lake City  0.457 0.001 [1, 4] 4 Washington DC  0.163  0.077 [1, 41] 48
3 3 Boston 0.453 0.001 [1, 4] 5 Cleveland 0.124 0.107 [1, 48] 50
4 4 Minneapolis 0.452  0.001 (2, 5] 5 Fort Worth 0.121  0.090 [1, 48] 50
5 5 San Jose 0.449  0.001 [4, 6] 6 Minneapolis 0.116  0.120 [1, 48] 50
Panel B: Bottom 5
Correlational Movers
Rank 7 CZ Ye25 SE 95% CS  T-worst CZ fic2s SE 95% CS  7-worst
46 5 Raleigh 0.369 0.001 (45, 46] 10 Charlotte -0.248  0.096 [3, 50] 49
47 4 Indianapolis 0.364 0.001  [46, 47] 5 Port St. Lucie  -0.263  0.090 [3, 50] 49
48 3 Jacksonville  0.358  0.001 (48, 50] 4 Raleigh -0.278  0.105 [3, 50] 49
49 2 Atlanta 0.358  0.001 (48, 50] 3 Fresno -0.377  0.100 [13, 50] 48
50 1 Charlotte 0.355  0.001 (48, 50] 3 New Orleans -0.391  0.111 [14, 50] 48

Table 4: Panel A: Top 5 among the 50 most populous commuting zones ranked by the correlational estimates
on the left and by the movers estimates on the right. Panel B: Bottom 5 among the 50 most populous
commuting zones ranked by the correlational estimates on the left and by the movers estimates on the right.
“95% CS” refers to the 95% marginal confidence set for the rank, and “r-best” and “7-worst” refer to the
size of the 95% confidence sets for the “r-best” and “r-worst” commuting zones.

As shown in Appendix G.3, the above conclusions do not materially change if we instead consider the 50
largest counties by population size. On the one hand, it is possible to achieve a quite informative ranking of
these counties according to g.25. Both the marginal and the simultaneous confidence sets are fairly narrow,
and relatively few counties are included in the confidence sets for the 7-best or the 7-worst places. On
the other hand, the exposure effects pi.05 are too imprecisely estimated to obtain an informative ranking of
counties according to income mobility. First of all, the marginal confidence sets for u.o5 are generally too
wide to draw conclusions about whether a particular county has among the highest or the lowest exposure
effect, as evident from column 11 of Table 12.'> Furthermore, the 7-best and 7-worst results for p.os
show that the ranking of counties by exposure effects is largely uninformative when inferences are drawn
simultaneously across all places. Consider, for example, column 12 of Table 12. These results show that
none of these counties can be ruled out with 95% confidence as being among the top two places when it
comes to exposure effects, and only one county can be ruled out with 95% confidence as being at the very

bottom of this ranking.

So far, we have presented the statistical uncertainty through 95% confidence sets for the rank of a
given place. An alternative way to present the statistical uncertainty is to compute the number of places
whose confidence sets for the ranks have upper endpoint equal to the lower endpoint for a given confidence
level. If the two endpoints are equal, then we know with 95% confidence the true rank of the place. In
Appendix Table 13, we perform such computations to summarize the statistical uncertainty. We consider
the simultaneous confidence sets for the ranks for both the 50 most populous CZs and the 50 most populous

counties, and we use estimates of both the correlational measures .95 and of the exposure effects pico5.

The results echo our previous conclusions about the uncertainty in the ranking of places by upward mo-

bility. The results based on the correlational estimates suggest it is possible to achieve somewhat informative

12 An exception is DuPage for which the marginal confidence set suggests that its exposure effect is relatively high compared
most of the other counties.
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conclusions about the ranking of the 50 largest CZs or counties. For example, at a 90% percent confidence
level, there are 1 CZ and 7 counties for which the endpoints of the confidence sets for the rank are equal.
By comparison, at a 10% percent confidence level, there are 4 CZs and 8 counties with that property. In
contrast, the movers estimates for CZs and counties are too imprecise to obtain confidence sets for the ranks

with equal endpoints, even at confidence levels as low as 5%.

National ranking of places by income mobility

So far, we have focused on the 50 largest CZs and counties by population size. We now shift attention to all
CZs and counties, revisiting the key question of Chetty et al. (2014), Chetty et al. (2018) and Chetty and
Hendren (2018): Where in the United States is the land of opportunity?

In order to analyze this question, the authors present heat maps based on estimates of upward mobility.
They construct these maps by dividing the CZs (or the counties) into deciles based on their estimated value
of §eo5. Panel A of Figure 13 presents the heat map for the CZs. This map is the same as presented in Chetty
et al. (2014). Lighter colors represent deciles with higher values of g.05. Equivalently, one can interpret the
heatmap as showing the ranks of CZs by assigning the same color to ranks in a decile to easy readability
(rather than a unique color to each rank). The point estimates of income mobility vary significantly across
areas. For example, CZs in the top decile have an .5 > 0.517, while those in the bottom decile have
Jeos < 0.362. Note that the 36th percentile of the family income distribution for children at age 31-37 is
$26,800, while the 52nd percentile is $44,800; hence, the differences in upward mobility across these areas

correspond to substantial differences in children’s incomes.

The stated purpose of heat maps such as the one in Panel A of Figure 13 is to draw the attention of
policymakers to low-mobility neighborhoods that need improvement and to help low-income families move
to high-mobility neighborhoods. A natural question is how informative the local statistics reported in these
maps are about a given neighborhood having relatively high or low income mobility compared to other
neighborhoods. To answer this question, we construct two new heat maps. These maps show the upper
(Panel B of Figure 13) and lower (Panel C of Figure 13) endpoints of the simultaneous confidence sets for
the CZs’ ranks. These confidence sets allow inferences to be drawn simultaneously across all CZs. Thus,
the new results in Figure 13 make precise what conclusions one can draw about which individual CZs have

relatively high and low mobility.

In order to interpret the results, it is useful to observe that if the simultaneous confidence sets were
sufficiently narrow, then the heat map in Panel B would be identical to the heat map in Panel C. It is only
in this case the point estimates of §.o5 and, thus, the heat map in Panel A (or, equivalently, in Chetty et al.
(2014, p. 1591)), would give a reliable answer to the question of where in the United States is the land of
opportunity. More generally, how much we can learn about this question depends on how similar the heat
map in Panel B is to the heat map in Panel C. If the CZs that have lighter colors in Panel B also have
lighter colors in Panel C, then we can with 95% confidence conclude that these areas have high mobility.
Conversely, if the CZs that have darker colors in Panel C also have darker colors in Panel B, then we can

with 95% confidence conclude that these areas have low mobility.

A visual inspection of the heat maps in Panels B and C of Figure 13 indicates that the uncertainty tends
to be too large to draw firm conclusions about which CZs have high or low income mobility compared to

other places in the United States. In other words, it is not possible to tell apart with 95% confidence the
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Figure 13: Ranking of Commuting Zones by point estimates and lower and upper endpoints of simultaneous
confidence sets. The heat maps are based on estimates of .05, the mean percentile rank of child’s average
household income for 2014-2015, for the full set of CZs. Panel A: the map is constructed by dividing the
CZs into deciles based on the estimated values of §.25, and shading the areas so that lighter colors correspond
to higher absolute mobility or, equivalently, lower (“better”) rank. Panel B (Panel C) shows the lower
(upper) endpoint of the 95% simultaneous confidence sets for the ranks of all CZs, using the same color
coding as for the estimated ranks in Panel A.
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CZs where children have opportunities to succeed from those without such opportunities. Notable exceptions
include many of the individual CZs in the Southeast and in the Great Plains, where mobility is relatively
low and high, respectively. In these regions, it is often possible to determine with 95% confidence whether

a particular CZ has relatively high or low mobility compared to other CZs in the United States.

We investigate these tentative conclusions in greater depth in Figure 14. For each CZ, we compute the
difference between the lower and the upper endpoint of the 95% simultaneous confidence set. Next, we plot
these differences against the estimated ranks of the CZs. The larger the difference, the less we know about
the ranking of a CZ. To ease interpretation, we normalize the differences by the number of CZs. Thus, a
difference of 1 means one cannot determine with 95% confidence whether a CZ has the highest or the lowest
income mobility in the United States. By comparison, a difference of 0 means we can be 95% confident in
the exact rank of the CZ.

As evident from Figure 14, the results tend to be much more informative in the upper and the lower
parts of the ranking. In other words, we can be most confident in conclusions about which CZs that have
the highest or the lowest income mobility. One possible explanation of this finding is that g.e5 is more
precisely estimated among the CZs that rank at the top and at the bottom. As shown in Appendix G.5, this
explanation is at odds with the data. The standard errors of g.25 are not particularly small for these CZs.
Instead, the explanation is that the point estimates of .05 differ more across the CZs in the upper and the

lower parts of the ranking as compared to the CZs in the middle of the ranking.

A limitation of Figure 14 is that it only shows where in the ranking the results are most informative, not
where in the United States. Thus, Figure 15 is useful because it highlights which of the spatial patterns of
income mobility are robust to accounting for uncertainty in the estimates of g.25. The heat map in Panel A is
constructed by assigning the CZs to groups depending on the lower and upper endpoints of the simultaneous
confidence sets.'> A CZ is assigned to a high mobility group if the upper endpoint of its simultaneous
confidence set is in the top half of the national ranking of CZs, i.e., when the confidence set lies entirely
in the top half of the ranking, indicating high mobility. A CZ is assigned to a low mobility group if the
lower endpoint of its simultaneous confidence set is in the bottom half of the national ranking of CZs, i.e.,
when the confidence set lies entirely in the bottom half of the ranking, indicating low mobility. Grey colors
represent the CZs with simultaneous confidence sets such that the places cannot be assigned to either the
high or the low mobility group. The heat map in Panel B is constructed in the same way, except the high

(low) mobility group is now defined as the top (bottom) quartile in the national ranking of the CZs.

The results in Figure 15 calls for caution on concluding whether an individual CZ has high or low income
mobility compared to other CZs in the United States. In the national ranking of places by income mobility,
it is rarely possible to tell with 95% confidence if a given CZ has relatively high or low income mobility
compared to other CZs. There are, however, two main exceptions. With 95% confidence, it is often possible
to identify individual CZs with relatively low mobility in the Southeast and individual CZs with relatively
high mobility in the Great Plains.

As shown in Appendices G.5 and G.6, the national ranking becomes largely uninformative if one defines
a neighborhood to be a county or if one uses the movers estimates. In other words, it is not possible to draw

firm conclusions about which counties in the United States have relatively high or low values of g.05. Nor is

13In Appendix Figure 38, we show that this heat map does not materially change if we assign CZs to groups based on
marginal confidence sets.
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Figure 14: For each CZ, we compute the difference between the upper and the lower endpoint of the 95%
simultaneous confidence set. Next, we plot these differences against the estimated ranks of the CZs. To ease
interpretation, we normalize the differences by the number of CZs. Thus, a difference of 1 means one cannot
tell whether a CZ has the highest or the lowest income mobility in the United States. By comparison, a
difference of 0 means we can be confident in the exact rank of the CZ. Each dot in the graph represents
a CZ. The CZ is assigned to a high mobility group (light color) if the upper endpoint of its simultaneous
confidence set is in the top half of the national ranking. The CZ is assigned to a low mobility group (red
color) if the lower endpoint of its simultaneous confidence set is in the bottom half of the national ranking.
Grey colors represent the CZs with simultaneous confidence sets such that the places cannot be assigned to
either the high or the low mobility group.
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Figure 15: The heat map in Panel A is constructed by assigning the CZs to groups depending on the
lower and upper endpoints of the simultaneous confidence sets. A CZ is assigned to a high mobility group,
Unlikely Bottom Half, if the upper endpoint of its simultaneous confidence set is in the top half of the
national ranking of CZs, i.e., when the confidence set lies entirely in the top half of the ranking, indicating
high mobility. A CZ is assigned to a low mobility group, Unlikely Top Half, if the lower endpoint of its
simultaneous confidence set is in the bottom half of the national ranking of CZs, i.e., when the confidence
set lies entirely in the bottom half of the ranking, indicating low mobility. Grey colors represent the CZs
with simultaneous confidence sets such that the places cannot be assigned to either the high or the low
mobility group, i.e., the Undetermined CZs. The heat map in Panel B is constructed in the same way,
except the high and low mobility groups are now defined in terms of top and bottom quartiles in the national
ranking of the CZs. Thus, we refer to these groups as Unlikely Bottom 3 Quartiles and Unlikely Top
3 Quartiles.
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it possible to say much about which CZs or counties produce more or less upward mobility as measured by

the exposure effects pieo5.

Remark 5.2. Since both the correlational and the movers estimates are constructed from tax records
covering most of the U.S. population, one may wonder why we assess uncertainty in the ranks stemming
from uncertainty in such estimates. We follow the original papers Chetty et al. (2018) and Chetty and
Hendren (2018) by using their reported standard errors, for which the authors must have had in mind some
underlying source of randomness that leads to uncertainty in their estimates. Potential such sources could
be: (i) the U.S. population is a sample from a superpopulation, or (i) some of the explanatory variables
of outcomes (child’s income rank) are not fixed and could have experienced different realizations. The
description of how standard errors are computed in Chetty et al. (2018) and Chetty and Hendren (2018)
suggests that the authors view (i) as the main source of randomness. However, (ii) also seems relevant in the
present context. For instance, for any given parent, the income rank could take on various values, but only
one is observed, which means only one of the many potential outcomes (child’s income rank) is observed. The
randomness in parents’ income rank therefore induces randomness in estimates of a neighborhood’s mobility.
Similarly, any given family could, in principle, move or not move from one neighborhood to another and it
may do so at different points in time. Since we observe only one realization, we also only observe one of
the many potential outcomes (child’s income rank). The randomness in the decision to move and its timing
therefore induce randomness in the movers estimates of a neighborhood’s mobility. Note, however, that
assessing the uncertainty from (ii) rather than (i) requires different methods for computing standard errors
(Abadie et al. (2020)) and access to the microdata. H

Remark 5.3. As discussed in the introduction and in Remark 5.1, our methods and those developed by
Andrews et al. (2018) share some technical similarities, but answer distinct economic questions, and should
thus be viewed as complements, not substitutes. To illustrate this empirically, we apply the methods of
Andrews et al. (2018) to the correlational estimates and construct 95% confidence sets for the true mobility
of the CZ with the highest estimated mobility.'* For instance, their 95% “conditional” confidence set for the
true mobility of the “winning” CZ among all CZs is (-2.70, 0.66). Since the confidence set includes zero (the
smallest possible value of the mobility measure), one cannot be confident that the sample “winner” truly
has high mobility. The corresponding confidence set for the “winning” CZ among only the 50 most populous
CZs, San Francisco, is (0.389, 0.457). While this confidence set excludes zero, comparing it to the range of
estimates for the 50 most populous CZs, it is still fairly wide. Taken together, the results using Andrews
et al. (2018)’s methods suggest there is considerable statistical uncertainty about the true value of upward
mobility at the top of the estimated ranking of CZs, even if one restricts the study to the 50 most populous
CZs.

However, just like the marginal confidence interval for the “winner” displayed in Figure 10, Andrews et al.
(2018)’s confidence sets do not allow us to draw any conclusions about what is the true rank of the sample
“winner” nor which CZ has true rank one. In contrast, our confidence set for the rank of San Francisco
among the 50 most populous CZs tells us that (with 95% probability) its true rank lies between 1 and 2. In
addition, our T-best confidence set for 7 = 1 shows that (with 95% probability) there are only 4 CZs that
could be the best. It is interesting to note that our confidence sets for the ranks are very narrow even though
Andrews et al. (2018)’s confidence sets for expected mobility of the “winner” are fairly wide. This finding

illustrates that it can be possible to achieve a statistically informative ranking even if one cannot draw firm

14We are grateful to the authors for sharing their code, allowing us to easily apply their methods to our applications.
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conclusions about the true value of the sample “winner”. See Appendix G.4 for more results and details. H

5.3 Illustrating the Policy Implications of the Uncertainty in the Rankings

The estimates of Chetty et al. (2014, 2018) and Chetty and Hendren (2018) have been highly influential both
among policymakers and researchers. For example, the rankings of neighborhoods by (point estimates of)
intergenerational mobility play a key role in Chetty’s 2014 Testimony for the United States Senate Committee
on the Budget (Chetty, April 1, 2014). In this testimony (pages 6 and 7), he emphasizes that policy should

target areas that are ranked at the bottom of the league tables based on their estimates of upward mobility:

“Since rates of upward mobility vary widely across cities, place-based policies that focus on specific cities

such as Charlotte or Milwaukee may be more effective than addressing the problem at a national level.”

and, moreover, that it is key to disseminate information about which areas have relatively high and low

estimates of upward mobility:

“Perhaps the most cost-effective way to improve mobility may be to publicize local statistics on economic
mobility and other related outcomes. Simply drawing attention to the areas that need improvement can
motivate local policy makers to take action. Moreover, without such information, it is difficult to determine
which programs work and which do not. The federal government is well positioned to construct such statistics
at minimal cost with eristing data. The government could go further by offering awards or grants to areas
that have substantially improved their rates of upward mobility. Shining a spotlight on the communities
where children have opportunities to succeed can enable others to learn from their example and increase

opportunities for economic mobility throughout America.”

In light of the large degree of uncertainty, however, one may be concerned that such local statistics (e.g.,
the league tables and heat maps) do not necessarily contain valuable information about upward mobility. As
a consequences of this uncertainty, it can also be problematic to use such statistics to disseminate information

or target interventions. The spotlight might be shining on noise, not signal.

In order to illustrate the issues that may arise if one chooses to design interventions based on the lo-
cal mobility statistics, we next re-visit the recent Creating Moves to Opportunity (CMTO) experiment of
Bergman et al. (2019). This experiment is a collaboration between researchers and public housing authorities

to introduce and evaluate interventions to “create moves to opportunity” for low-income families.

The CMTO experiment

The motivation for the CMTO experiment is the argument that low-income families tend to live in neigh-
borhoods with low upward mobility. In order to understand how policy may be designed to help low-income
families move to neighborhoods with higher mobility rates, the authors perform a randomized controlled
trial with housing voucher recipients in Seattle and King County. A treatment group of low-income families
were offered assistance and financial support to find and lease units in areas that were classified as high

upward-mobility neighborhoods.

The authors “define high upward-mobility neighborhoods as Census tracts that have point estimates of

upward income mobility in approximately the top one-third among tracts in the Seattle and King County
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Figure 16: Estimates of .05, the expected percentile rank of child’s average household income for 2014-2015
in the national distribution of her cohort, with marginal confidence intervals (estimates plus or minus twice
the standard errors) for all 397 Census tracts in Seattle and King County.

area” (Bergman et al., 2019, p. 10, Section IIL.B Defining Opportunity Areas).'® Following this definition,
we use the estimates of g.o5 for the 397 tracts in the Seattle and King County area to classify areas as

upward-mobility neighborhoods.'®

Figure 16 plots these estimates alongside marginal confidence intervals
(estimates plus or minus twice the standard errors). The point estimates vary considerably, but the standard
errors are relatively large. Figure 17 presents a map of Seattle and King County which shows the location
of the 132 tracts that have point estimates of upward income mobility in the top one-third, and, as a result,

are classified by us as high upward-mobility neighborhoods.

Remark 5.4. Chetty et al. (2020) show that mobility estimates across tracts are (significantly) spatially
correlated even though the estimates are computed from samples that are independent across tracts. They

argue that, therefore, the estimates in Figure 16 are more precise than their own standard errors suggest.

We do not agree with this conclusion for the following reason. For simplicity consider two tracts ¢ = A, B.

From each tract we draw an i.i.d. sample from the distribution F, in tract ¢, independently of the data in the

151n practice, the authors make a few adjustments to this definition. We refer to Appendix A of Bergman et al. (2019) for a
discussion of these adjustments.

16These estimates are available at https://www.opportunityatlas.org/. To address concerns about noise in the correlational
estimates Bergman et al. (2019) also construct forecasts of upward mobility at the tract level. The forecasts are weighted
averages of the correlational estimates of .25 and predictions based on observable characteristics of the tracts, with greater
weight on the correlational estimates when they are more precisely estimated. Given that most correlational estimates are
very noisy, the forecast estimates are very similar to the predictions based on covariates. For two reasons, we do not consider
the forecasts. First of all, Bergman et al. (2019) do not report standard errors for the forecasts, which we would need for the
implementation of our method. Second, forecasts are based on covariates such as the estimated mobility rate of the tract based
on information on children’s income around age 22. We conjecture that this estimate of lagged upward mobility suffers from
similar amounts of noise as the estimates of mobility when children are in their 30s. Therefore, we expect the forecasts of
upward mobility to be similarly noisy as the estimates of g.o5 that we use.
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Figure 17: This map of Seattle and King County shows the location of the 132 tracts that were classified as
high upward-mobility neighborhoods. High-upward-mobility neighborhood consists the Census tracts with
estimates of §.05 among the top one-third of the tracts in the Seattle and King County area.

other tract. We then construct estimates .05 of the mobility measure 925, the latter being a feature of the
distribution F,. Therefore, the estimates 405 and 4gas being similar must either come from finite-sample
bias in the estimates or from true mobility §425 and ggos being similar. The latter might occur, for instance,
when the distributions F)4 and Fp are similar. Therefore, similarity of mobility estimates across tracts is

unrelated to the precision with which they are estimated.

Chetty et al. (2020) also argue that there is significant variation in true mobility. This argument involves
decomposing the variance of estimates across tracts, ye25, ¢ = 1,2,..., into the variance of true mobility
Je25, ¢ = 1,2, ..., (the “signal”) and into the variance of “noise”. Since “noise” turns out to be low in this
decomposition, they argue that therefore there is large variation in the signal, i.e. true mobility. However,
a small variance of the “noise” across tracts does not imply that the precision of any particular tract-level

mobility estimate is small.'” =

171n fact, Chetty et al. (2018) estimate the variance of “noise” as the average squared standard error of the tract-level estimates
(after accounting for additional noise that was introduced to guarantee privacy of individuals in the sample). Therefore, a small
“noise” variance implies that the average of the standard errors is small, but not necessarily any individual standard error.
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Panel A: Tracts

all tracts 50 most populous tracts
K top group T-best T-worst bottom group top group T-best T-worst bottom group
1/3 1...132 1...395 1...397 266 ...397 1...17 1...50 1...50 34 ...50
1/4 1...99 1...392 1...397 299 ...397 1...12 1...47 3...50 39...50
1/10 1...40 1...390 3...397 358 ...397 1...5 1...42 12 ...50 46 ...50
1/100 1...4 1...360 116 ...397 394 ...397
Panel B: CZs

all CZs 50 most populous CZs
K top group T-best T-worst bottom group top group T-best T-worst bottom group
1/3 1...247 1...446 289 ...741 495 ...741 1...17 1...20 31...50 34 ...50
1/4 1...185 1...367 396 ...741 557 ...741 1...12 1...15 37 ...50 39 ...50

Table 5: Panel A: “top group” shows the indices of the x fraction of tracts with the largest estimated
mobility (among the 50 most populous tracts and among all tracts, respectively). “r-best” shows the indices
of the tracts that are in the 95% confidence set for the 7-best tracts, where 7 is set to x times the number
of tracts. Similarly, “bottom group” and “7-worst” show the indices of the k fraction of tracts with the
smallest estimated mobility and the indices of the tracts in 95% confidence set for the r-worst. Panel B:
shows the corresponding results of Panel A for CZs instead of tracts. The confidence sets are implemented
as described in Appendix F, using the stepwise procedure (“DM.step”).

Does the classification of an opportunity neighborhood reflect noise or signal?

In light of our previous findings, one might worry that a tract defined as a high upward-mobility neighborhood
does not have statistically higher mobility rates as compared to the other tracts. To examine this, we
compute a 95% confidence set for the 7-best tracts in the Seattle and King County, where 7 is set equal to
132 (approximately one-third). The confidence set is implemented as described in Appendix F, using the
stepwise procedure (“DM.step”). The result is shown in the first row of Panel A of Table 5. We find that
all but 2 out of 397 tracts could be among the top one-third, and, as a result, be classified as high upward-
mobility neighborhood according to our definition. In addition, all 397 tracts lie in the confidence set for
the T-worst. Thus, we conclude the classification of a given tract as a high upward-mobility neighborhood

may simply reflect statistical uncertainty (“noise”) rather than particularly high mobility (“signal”).

A natural question is whether an alternative definition could have reduced the noise in the classification.
We investigate this in the second to fourth rows of Table 5, showing the 95% confidence sets for the 7-best
and the T-worst when 7 is set to 1/4, 1/10, or 1/100 of the tracts. We see that 360 tracts could even be
among the top-4 (approximately, 1/100 of the tracts) tracts and that 394 could be among the worst-4. The
results are very similar when we try to determine the top 1/3, 1/4, or 1/10 only among the 50 most populous
tracts. Taken together, these results suggest that changes in the definition of upward-mobility neighborhoods

at the tract-level is unlikely to reduce the noise in the classification.

To show how, in principle, the 7-best and 7-worst confidence sets could be used to select treatment
and control groups consider Panel B of Table 5. It shows the analogous results to those in Panel A for
CZs. Among the 50 most populous CZs, the confidence sets for the 7-best and the 7-worst when 7 = 17
(approximately one-third of the CZs) do not overlap. The CZs 1...20 could be among the top one-third
while CZs 31...50 could be among the bottom one-third. Therefore, we can be confident that none of the

tracts classified as top one-third are in fact among the bottom one-third and vice versa, which means we
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could define the top/bottom one-third of the 50 most populous CZs as treatment/control group.

Among all CZs, the confidence sets for the 7-best and 7-worst when 7 = 247 (one-third of the CZs) do
overlap. However, the same confidence sets for 7 = 185 (approximately one-fourth) do not overlap, which
means we could define the top-/bottom-fourth of all CZs as treatment/control group and be confident that
none of the treatment CZs is in fact among the bottom one-third and none of the control CZs is in fact

among the top one-third.

Implications of the noise in the classification of an opportunity neighborhood

This noise in the classification raises the question of whether, and under what conditions, one could be
confident that CMTO would actually help families move to high upward-mobility neighborhoods, prior to
the experiment taking effect. In other words, assuming that the correlational estimates of tract-level upward
mobility can be given a causal interpretation, would one then expect a positive average treatment effect of
CMTO?

The answer to this question depends on what assumptions, if any, one is willing to make about the
location choices of the treatment group in response to CMTO.'® Without assumptions on these location
choices, it is insufficient to test whether average upward mobility among tracts in the top one-third (the
treatment group) is higher than in the bottom two-thirds (the control group). Rather, the key question
becomes whether some of the tracts in the bottom two-thirds can have mobility higher than the tracts in

the top one-third. To see why, consider the following two examples.

Suppose average mobility among tracts in the top one-third is higher because of one tract having high
mobility while all other tracts in the top one-third have mobility lower than those in the remaining two-
thirds. In that case, only families moving to that single high-mobility tract are treated with higher mobility
while all other families are treated with lower mobility. On average, the families that moved to top one-third
tracts because of the experiment may therefore have moved to neighborhoods with lower mobility. Of course,
whether or not this is the case will depend on the distribution of mobility across neighborhoods to which
families actually moved. Without making assumptions about the individual tracts the families would move

from and to as a result of the experiment, the average treatment effect can be zero, positive or negative.

Suppose instead the average in the top one-third is higher because all the tracts in the top one-third have
high mobility except one tract that has mobility lower than those in the remaining two-thirds. In that case,
families moving to that single low-mobility tract are treated with lower mobility while all other families are
treated with higher mobility. On average, families that moved to the top one-third tracts because of the
experiment may again have moved to neighborhoods with lower mobility. As before, whether or not this is
the case will depend on the distribution of mobility across neighborhoods to which the families would move
from and to as a result of the experiment. Without making assumptions about this, the average treatment

effect can again be zero, positive or negative.

Of course, these are extreme cases but they help make an important point: Whether the tracts in the

top one-third have higher rates of upward mobility on average is neither sufficient nor necessary for low

18Given the realized location choices of the families in CMTO, one could in principle check or modify any assumption made.
We do not do this, however, as data on location choice are not available to us.
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income families to be moving to neighborhoods with higher upward mobility as a result of the experiment.'?
Without making assumptions about the individual tracts that the treated families would move from and
to in response to the experiment, the relevant condition to test is that none of the tracts in the bottom
two-thirds can have mobility higher than the tracts in the top one-third. Above, we examined this, finding
that if one uses a confidence level of 95%, all but 2 out of 397 tracts could be among the top one-third.
This finding suggests that assumptions on location choices indeed are needed to be statistically confident at

conventional levels, prior to the experiment, that CMTO would have a positive impact.

One possible assumption to make is that the treated families move from randomly selected tracts in the
bottom two-thirds to randomly selected tracts in the top one-third. Under this assumption, the relevant
condition to test is whether the average upward mobility among tracts in the top one-third is higher than in
the bottom two-thirds. However, when performing this test, it is necessary to address the concern that the
classification is based on the estimated levels of upward mobility, not the true ones. To do so, one may use
the methods of Andrews et al. (2018). When we apply their method to the CMTO data, we estimate a 95%
conditional confidence set of (-0.0305; 0.0911) for the difference between the average upward mobility of the
top one-third and the bottom two-thirds of tracts. This means that conditional on the identities of tracts
in the top one-third we cannot rule out with 95% confidence that they have lower average upward mobility

than tracts in the bottom two-thirds.??

Interestingly, we reach a different conclusion if we rely on the unconditional confidence sets instead of the
conditional ones. We estimate the unconditional hybrid confidence set to be (0.0342, 0.0908) for the difference
between the average upward mobility of the top one-third and the bottom two-thirds of tracts. As argued
by Andrews et al. (2018), the choice between conditional and unconditional inference methods is necessarily
context-specific, as it depends on the extent to which we care about validity conditional on selecting a given
target. In the context of CMTO, conditional inference is relevant to answer the question of the expected effect
of moving to the tracts that were actually classified as high upward-mobility neighborhoods. Unconditional
inference, on the other hand, is relevant if the primary goal is to assess the efficacy of hypothetical experiments
targeting the top one-third of Census tracts, with less focus on the collection of tracts that were actually

classified as high upward-mobility neighborhoods in CMTO.

6 Concluding remarks

In this paper we show how to account for uncertainty in the ranking of different populations according
to the value of some feature of each population. We consider both the problem of constructing marginal
confidence sets for the rank of a particular population as well as simultaneous confidence sets for the ranks

of all populations. We show how to construct such confidence sets under weak assumptions.

We also provide two empirical examples in which our method produces highly informative confidence sets

for ranks. One is the ranking of countries according to the results on the PISA test. The other is the ranking

19This argument does not rely on heterogeneous effects of place or non-random mobility. Even if the effect of a given tract
is the same for all families or low-income families move randomly to tracts in the top one-third, the average effect of the
experiment may very well be negative

20 Andrews et al. (2018) also analyze the CMTO data. Their analysis differs in two ways. First, they consider all tracts in
the Seattle CZ, while we use the same data as in Bergman et al. (2019), which consist of only the tracts inside the Seattle city
boundary and King County. Second, they compare the average upward mobility of the top one-third to the average upward
mobility of all tracts. We focus instead on the the top one-third versus the bottom two-third, since this contrast maps directly
to the assumption of location choices that we consider.
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of the most populous commuting zones or counties in the United States according to upward mobility. Such
rankings by upward mobility, however, become much less informative if one includes all commuting zones of
counties, if one defines neighborhoods with even more granularity (e.g., by considering Census tracts), or if

one uses movers across areas to address concerns about selection.

A natural question is why it is difficult to achieve an informative ranking in certain cases. Based on our
simulations, in which our confidence sets in some cases cover the true ranking with probability close to one,
one may be concerned that this phenomenon stems from a lack of power of our procedures. We emphasize,
however, that these situations may arise precisely when the ranking is most informative. To see this, consider
the case in which standard errors of the mobility estimates, say, are nearly zero for all neighborhoods (relative
to the differences in mobility estimates across neighborhoods). Due to the discreteness of the ranks, the
ranking has essentially no uncertainty and any “reasonable” confidence set should cover the true ranking
with probability (close to) one. In other situations when there is more uncertainty in the ranking, our method

achieves coverage closer to the nominal level. These features are borne out in our simulations.

We therefore argue that a more appropriate explanation for why it may not be possible to achieve an
informative ranking is that researchers may simply be demanding too much from the data. This explanation
is most plausible when estimates vary substantially across populations but standard errors are large, when
standard errors are small but the estimates do not vary much across populations, or when both standard
errors are large and estimates do not vary much across populations. To think about when our (or any)
approach will deliver an informative ranking, a useful starting point is the naive pairwise comparisons that
ignore the multiple testing issue. Take, for example, the 397 tracts in the CMTO experiment in Seattle.
To obtain a complete ranking of these tracts by upward mobility, it is necessary to compare 78,606 unique
pairs. The problem is that at most 30.2% of these pairs consist of tracts that differ significantly at the 95%
significance levels. Importantly, the conclusion that 30.2% of the pairs are significantly different ignores
that one has performed 78,606 comparisons, so even by chance, many of these comparisons will show up
as significant when in fact they are not. Indeed, when taking the multiple testing into account, it is clear
the uncertainty is too large to achieve an informative ranking of the tracts in Seattle according to upward

mobility.
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Appendix A The “Naive” Bootstrap Undercovers

In this section, we show that the “naive” bootstrap as described in Remark 3.7 does not satisfy the uniform coverage requirement
unless p = 2. Furthermore, we show that when there are ties and p > 2, then the approach even fails the pointwise coverage

requirement for a fixed P and, in fact, the coverage probability tends to zero as p grows.

To simplify the subsequent discussion, we focus on the case in which the estimators of the features §(P;) are independent
and normally distributed, éj ~ N (0(Pj),1) for all j € J. In this case, we obtain finite-sample results, but they easily extend
to the asymptotic case when n — oo and variances are unknown. Suppose 8(P;) = 0 for all j € J. Consider the parametric

bootstrap in which we draw é;‘ ~ N(éj, 1) independently, conditional on the data 6 = (61,...,8,).

Suppose we want to construct a one-sided confidence set for the rank of population j, for which the upper endpoint is equal
to p:
Ry = {L;,...,p} ,
where ﬁ;‘ is the a-quantile of f]’f, conditional on the data §. Further suppose all populations are tied with 8(P;) = 0 for all
Jj € J, so that all ranks are equal to one, r;(P) =1 for all j € J. For R, ; to cover the rank rq(P), it must be the case that

the event
E= {ﬁ; = 1} = {P{é; > max{63,...,0%5}/0} > a}

g

P{é;—él—(ég—eé) L 02—b

holds. Consider first p = 2. Then,

P{éf > max{63,...,03}

é}:P{éI>é;

V2 V2

o (hh
B ‘I’<ﬂ>

= — éQiél « =1—«
TS CR AT

Therefore, the bootstrap confidence interval R ; covers r1(P) with the desired probability.

)

>

so that

Now consider p > 2. Let M be the index such that éM = max{ég, el ép}. First note that
6} (35)

P{e;—el—(ajw—em o O =0 é}

P{é; > max{63,...,0%}

é}<P{é{ > 0%,

V2 V2

1 On — 01
- q’( V2 )

refn(454) )

Clearly, by the strict inequality in (35), E C F and P{E} < P{F}. Letting z1_o be the (1 — a)-quantile of the standard

normal distribution, we have

Opr — 0 Oa,...,0,} — 0
P{F}:P{M\Elﬁzla}:P{maX{ 27\@; b} 1S21a} ’

which, for example, is strictly less than P{(f2 — 61)/v/2 < z1_a} = 1 — o. Therefore, P{E} < 1 — o and the confidence set
Ry, | does not cover the rank r1 (P) with the desired probability. Moreover, as p — oo, max{ég, cee, ép} — 0o in probability, so

Let F' be the event

the coverage probability tends to zero.
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Appendix B An Alternative Construction of Confidence Sets for
Ranks

Let 6‘n(1 — a) be a confidence set that is rectangular in the sense that
an(l —a)= H 5'rL(l -, )
jeJ
for suitable sets {Cp(1 — o, 5): j € J}, and that simultaneously covers the vector of features 6(P) with limiting probability
1—oa:
n—oo

liminf inf P{O(P) € Cn(l—a)}>1—a.
iminf inf {0(P)e Crn(l — )} > e

For instance, the confidence set could be constructed as in Example 3.7 of Romano and Shaikh (2012). Define

Njf

]V;r = {k € J\ {j}: Cn(1 — a, ;) lies entirely above Cy, (1 — o, k)} .

{k‘ € J\ {j}: Cn(1 — , §) lies entirely below Cp (1 — o, k)}

Then, it is easy to see that
iminf i N . _INT _
hmlanl)reli;P{\Nj |+1<r(P) <p—INfI} >1-a

n—oo
and
iminf i N~ . _INt _
1;11;10%1”}%21;]3 ﬂ {|Nj [+1<rj(P)<p—I|N; \} >l-o.
JjEJ
Therefore,
Rog = {IN7141,...,0— INf |} (36)
is a confidence set that covers the rank r;(P) with limiting probability at least 1 — « and
Riont = TT{IN; 1+ 1,0 = NS |} (37)

JEJ
is a confidence set that covers the vector of ranks r(P) with limiting probability at least 1 — a.

To formally compare the approach proposed in the main text with the one of this section, we focus on the case in which

the estimators of the features §(P;) are independent and normally distributed, i.e.,

b1

AR P 35)

~N(9(P),dmg(

ni np
Op

where UQ(P]') > 0,7 € J are known. In this case, we obtain finite-sample comparisons between the two methods, but the results

easily extend to asymptotic (as n — co) comparisons and to the case of unknown variances.

We consider the confidence set for the entire ranking, RI>™ based on Cn(1—a), where Cpn(1 —a) =[T,c; Cn(1 —a,j) is

jeg bn
such that
~ . N o(P;) ]
Cn(l—a,j) = |05+ (nj.)‘ho‘:| . jed, (39)
j
and §1_q is either the
1 1—a)l/p
% — quantile of the N(0,1) distribution (40)
or the
(1 - 25) — quantile of the N(0,1) distribution . )
4

The quantile in (40) imposes independence of the estimators and (41) is the quantile used in the Bonferroni method. We
compare ﬁﬂfim to our confidence set R‘iﬁ)i"t based on Cn (1 — «, San) with Cn(1 — o, San) = H(j,k)esau Cn(1 — o, San, (4, k))
such that

o2(P; o2(P,

M + (k)ql—a:| , (42)

n; nk

Cn(l - avsallz (.77 k)) = |:éj - ék: +
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where g1« is the

0; — 0 — A (P
(1 — @) — quantile of max 1% k 2.1 (P)|

(G:k)E€San  [02(Pj) | o2(Py) .
n; + n

This quantile is similar to L;ylmm,n(l — &, Sal1, P) as defined in (8) except that the estimated variances in (8) are replaced by

the population variances.

For the following lemma, let R(P) = [];c ;{r;(P),...,7;(P)}, where r;(P) and 7;(P) are the smallest and largest ranks
defined in Remark 3.6.

Lemma B.1. Suppose (38) holds. Let RI*™ be based on Cr (1 — o) = [Lics Cn(1— a,j) satisfying (39) with §1—o as defined
in either (40) or (41). Let RIO™ be based on Cp(l — o, Sap) = H(j,k)esan Cn(1 — a, San, (4, k)) satisfying (42). Then the

following statements hold:

(i) For any o € (0,1), RI®™ satisfies P(r(P) € Rionty > p(R(P) C RI°™) > 1 —a.
(ii) For any a € (0,1), RI™ satisfies P(r(P) € RIP™) > P(R(P) C RI®™) > 1 — o, where the second inequality is satisfied
with equality when all elements of (P) are equal.
(iit) If p =2, then Rjr(fint is a subset of ﬁjr(fint, and a strict subset with positive probability.

(w) If o(Pj) = o(Py) for all j,k € J and nj = ny, for all j,k € J, then RIS s o subset of RO and a strict subset with
positive probability.

This lemma shows, first, that the alternative confidence set RI?™ covers the ranking 7(P) and the set of ranks R(P) each
with probability strictly larger than 1 — o, independently of the configuration of features 0(P1),...,0(Pp,). On the other hand,
our proposed confidence set for the set of ranks achieves coverage probability equal to 1 — « in the case when all features 6(P;)
are equal. In addition, there are two special cases in which our approach leads to bounds on the ranks that are not wider and
strictly narrower than the alternatives proposed in this section: when there are only two populations or when the variances and

sample sizes of all populations are equal.

In the case when p > 2, not all variances, and not all sample sizes are equal, then our confidence set and the alternative
proposed in this section cover the ranking with probability strictly larger than 1 — «. In this case, we do not know whether our
method leads to smaller confidence sets. However, we can compare the endpoints of the two confidence sets as follows. In the

proof of the lemma, we show that
P{r(P) e Big™} > P{0(P;) — 0(Py) € [B; — O % (7 + 1)@1—a | for all (G,k) € San} >1-a,

where 7; = o(P;)//m;. Similarly, our confidence set satisfies

P{r(P) c Rj;ﬁnt} > P{G(Pj) —0(Py) € [é] — 0, + ,/7'].2 +T§q1_a] for all (j,k) € Sall} >l—a.

Comparing the two expressions, it is clear that we cannot have

(75 + TE)@i—a < /7] +TRq1-a

for all (j,k) € San. In particular, if there is one pair (j, k) such that this strict inequality holds, then there must be at least one
other pair (j/,k’) such that the inequality is reversed:

(Tjr + T )@1—a >\ /T3 + TR 10 -

~int . . . . . pjoint .
Therefore, the confidence set R)y'™" cannot be contained in ours. Whether our confidence set is contained in R}y’ in general,

we leave open for future research.

Remark B.1. Consider the case in which 6(P) is a vector of expectations and 6 the corresponding vector of sample means.
Then, the two confidence sets }Nﬁfmt in Lemma B.1, one using the critical value in (40) and the other the Bonferroni critical value
in (41), coincide with the two proposals in Klein et al. (2020). The simulations in Section 4 confirm the results in Lemma B.1

by showing that our confidence sets for ranks are either of similar or strictly smaller size than those by Klein et al. (2020). W

59



Appendix C Comparison With Gupta (1956)

Gupta (1956) proposes a confidence set that contains the identity of the population with the largest mean, based on observations

from independent, normally distributed populations with equal and known variances:

Xn~N (,u(P), "zr(LP )> , (43)

Jgupta

where o2(P) > 0 is known. His confidence set contains all j € J such that

o o o(P)
max X, r — Xn,; <d ,
e R T oI =S n

where d solves
/<I>(u + AP p(wdu =1—a, (44)

® and ¢ denote the cdf and pdf of the standard normal distribution, and « € (0,1/2). Let m be an arbitrary permutation
of J such that p(Pr1)) > #(Pr(2)) = -+ = pu(Pr(p)), where p(Pj) is the jth element of u(P). Gupta shows that the best
population, (1), is contained in his confidence set with probability no less than 1 — a:

o(P) }

P i) € 29} =P {ps o = Koy < %2

= /klicb,,(k) (z +d%> br(1y(z)dz

> /’I’W(l) <x+d&\/?)p71 Pr(1)(z)dx
— [ @@+ a7 plu)da

where ®; and ¢; denote the cdf and pdf of the normal distribution with mean p(P;) and variance o?(P)/n. The first equality
uses normality and independence of the means. The inequality above follows because, since the populations have equal variances
their distributions are stochastically ordered by their means. The final equality is due to a change of variables. Since d is chosen
so that the last expression is equal to 1 —«, the coverage probability P {71'(1) S JS’UNB} is no smaller than 1 —ca. The inequality
becomes an equality when all means are equal to each other. In this sense, Gupta’s approach selects the critical value from the

least-favorable configuration of means.

The requirement of covering (1) with probability no less than a prespecified level is not the same as covering the set

1—best 1—best
JO ']0

of 1-best populations, , as defined in Section 3.4. In fact, Gupta’s confidence set may cover with probability
strictly less than 1 — « when the largest mean ,u(P,r(l)) is tied with at least one other mean. To see this consider the case p = 2

and suppose p(P1) = u(P2). Then, by the distributional assumption (43), we have
P{Jéfbest C JSupta} — P{{1,2} - JSupta}

_ Sy <a” D)

=P {?33{?2;‘{)‘% —XngbsdTm }

— e Xk — b (P) ~min Xnj — p;(P)

= r{pey o(P)v 58 o(P)/vi <a

- 2/ [(u + d) — D(u)] $(u)du

The last equality uses the expression of the distribution of the range statistic for two i.i.d. standard normal random variables.
Since, for all d > 0,

2/[<I>(u+d) — ()] é(u)du = /cb(u+d)¢(u)du+ V ®(u+ d)p(u)du — 1} < /<I>(u+d) $(u)du

and since o > 1/2 implies that d solving (44) for p = 2 must be positive, we have

P{JS—I)est C JSupta} <l—a.
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contour plot of CPY (p,t)

15

Figure 18: Contour plot of CPY(p,t) with 1 — a = 0.95.

Consider now the case when p > 2 and ¢ of the means are tied as the best (2 <t < p), say
w(Pr) = ... = p(Pr) > p(Pryr) = .. 2 p(Pp) -
Then

P{J&_b65t g J’r(L;upta} — P{{lv' ) .,t} g JSupta}

- _ a(P)
P{je?ffa.ft} max{Xnn = Xy} S d—m }
Ko — 1(P) L el TC) }
<p ——r TN
- {ke?}%%,t} a(P)/v/n je{lo i} o(P)/v/n

—t [ [@(u+ ) o) bu)du

=cpPY (4,1

Denote by d(p) the solution to (44), i.e. Gupta’s choice of critical value for a given number of populations p. Figure 18 plots
the contours of CPY (p,t) = Cf'\I/DU(d(p)7 t) (with 1 — a = 0.95) as a function of the number of populations p and the number of
ties at the largest mean ¢. This is an upper bound on the probability with which Gupta’s confidence set covers the set of 1-best
populations, Jéfbes‘“. Only in the lower right corner of the plot, i.e. for large p and small ¢, is the upper bound of the coverage

probability larger than the desired level 0.95, otherwise it is strictly smaller.

Therefore, for most (¢, p) combinations, Gupta’s confidence set does not cover Jé_beSt with the desired probability whereas
our proposals in Section 3.4 asymptotically cover Jgibe“ with probability no less than 1 — « for 7 = 1, but also for any other

T > 1.
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Appendix D Rectangular Versus Non-Rectangular Confidence Sets

In this section, we compare the size of two different simultaneous confidence sets Cr (1 — «, S) for the differences: rectangular
ones and ellipses. Suppose we want to construct a two-sided confidence set for the rank of the first population, i.e. we require
a simultaneous confidence set Cr, (1 — o, S) with S = {(j,k): j =1 and k # 1}.

Suppose for simplicity that § ~ N(O(P),I) and let Z = (Z1,. .., Zp) ~ N(0,I) denote a random vector that is independent
of the data. Then
Crect,n(l -« S) = H [él — ék + Crect,n(l - Oz):|,
k#1
where crect,n(1 — @) is the (1 — a)-quantile of

max |Z1 — Z,
o |Z1 — Zy|,
is a rectangular simultaneous confidence set for the differences. Another possible confidence set for the differences is the ellipse

Cellipse,n(l -, S)

AS = (Al,k)k#lz Z(él — ék — Al,k)Q S Cgllipse,n(l — Oé) 5
k#1

where Cellipse,n (1 — ) is the (1 — a)-quantile of

> (21— Zk)?.

k#1
To use this non-rectangular confidence set for the construction of a confidence set for the rank, one needs to check whether
components of the vector of differences are significantly above or below zero. To this end, we need to project the confidence

ellipse onto the axes, leading to the smallest rectangle in RP~! that contains the confidence ellipse:

CVellipse,'n(]- - Q, S) = H [él - ék + Cellipse,n(]- - a)]
k#£L
Since maxg£1 |Z1— Zk| < /Zkyﬁl (Zl — Zk)z, it follows that Crect,n(l —Oé) < Cellipse,n(l — ) and, thus, that Cempsem(l —a,S)
must be at least as large as Crect,n(1 — @, S). To analyze the magnitude of the difference in sizes, we simulate the quantiles
crect,n (1 — @) and cellipse,n (1 — ) with 1,000 draws of Z and set a = 0.05. Figure 19 shows the two quantiles for various values

of p.

As expected the quantile for the rectangular confidence set for the differences is smaller than that for the non-rectangular

one for all p. For p = 3, the two quantiles are close, but the difference between them grows with the dimension p.

Appendix E Proofs

E.1 Proofs of Results in the Main Text

Proof of Theorem 3.1. Suppose the event Asj (P) € Cn(1—a, Sj) holds. Then, any k # j such that Cr(1—a, Sy, (j,k)) C R_
satisfies 0(P;) < 6(Py). Therefore, the rank r;(P) is strictly larger than the number of k # j for which Cp(1—a, Sj, (4, k)) C R_.
Similarly, any k # j such that Cpn(1 — «, S}, (4, k)) C Ry satisfies 0(P;) > 6(Py). Therefore, the rank r;(P) is bounded above
by the number of elements in J minus the number of k # j for which Cn(1 — «,Sj,(j,k)) C Ry. This establishes the first

inequality of the theorem and the coverage statement follows immediately. H
Proof of Theorem 3.2. Suppose S;'(P) N Rej; = 0 and S;(P) N Rejj' = 0. Then, 6(P;) < 0(Py) for (j, k) € Rej; and
0(P;) > 0(Py) for (j, k) € Rejj7 so the bounds on the rank follow just as in the proof of Theorem 3.1. This establishes the first
inequality of the theorem and the coverage statement follows immediately. H

Proof of Theorem 3.3. Analogous to the proof of Theorem 3.1.

Proof of Theorem 3.4. Analogous to the proof of Theorem 3.2. B
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comparison of quantiles
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Figure 19: Graph of ¢rect,n(1 — @) (“rectangular”) and cepipse,n (1 — @) (“ellipse”) for @ = 0.05 and various
values of the dimension p.

Proof of Theorem 8.5. Let I = {7 permutation of J: 0(Pr(1)) > ... > 0(Pr(,))} be the set of permutations of J that preserve
the ranking of the elements of (P). Notice that r;(P) = min,en 7~ 1(j) and denote by n; € Il a permutation that achieves the
minimum, i.e. (wj)*l(j) = minge 7 1(4). The permutation 7% may vary with j, but two different permutations 7% and 7

can differ only on elements for which the corresponding elements in 6(P) are equal (i.e. 0(Prx(y)) = O(P,r;;(t)) for all j, k,t € J).
J

Pick an arbitrary 7* € {77,...,m;} and define
J* = {r*(1),..., 7" (r = 1)}.
Then:
Hj &  rmP)<rT
& (m) T <
< 0(Pj) 2 0(Prx (7))
< 0(Pj) > 0(Prx(r))
s 0P >0(P) YeeJ\J*
< kg}]a\@*{G(Pk) —0(Pj)}<0 (45)

The statement of the theorem obviously holds when all hypotheses are false. Therefore, assume that at least one of the
hypotheses is true. Let § be the smallest integer such that there is a false rejection at Step §, i.e. there is a 3 cl;N JgibeSt (P)
such that T, = > én(1 — o, I5). By definition, Jg_bESt (P) C I; and therefore é, (1 — a, Jg_beSt(P)) < én(1l— e, Ig). Thus,

max Th,j > Tn§ > én(1l -« Jg*best(P))
jejgfbest(P) ’
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and

FWERp = P {reject at least one Hj,j € Jg_bCSt(P)}
<P max Ty > én(1—a, JT7PSN(P)) 5. (46)
jeJ‘r—best(P)

To compute this probability consider:

P max Thj<zx
jesg =Pt (p)

P max min max {ék - é]} <z
jesg—best(p) KEK keJ\K

P O, —0; b <
RIS

P{ max max {ék—éj —AkJ(P)} §$}

jEJg_beSt(P) keJ\J*

Y

(Y

> min P max max {é 0. — A 'P}<x
- Kex {jEngeSt(P)kEJ\K k=Y Ri(P) g < }
= Ilglenilcp Tn,Jg_beSt(P),K S .T} (47)

where the second inequality follows from (45).

Then there exists a set K* = K} (P) € K such that, by combining (46), (47), and the definition of é,(1 — «, Jg*beSt(P))7
we have

<en(l—a, Jg_beSt(P))}

FWERp <1-— IIPEH}CP Tn“]g—best(P)’K <

=1-P {Tn,J(’;*be“(P),K* < ?g% M1 - a, Jg*bcsc(P)’K, pn)}

<1-pP {TnﬂJg_best < M7Y(1 - o, JTPN(P), K*, 13”)} .

(P),K*

Therefore,

limsup sup FWERp <1 —liminf inf P<T

-1 T—best * P
n—oo PEP n=o0o PCP n,Jg PO (P) K+ <M (- o, Jg (P), K ’P")}

<1-—liminf inf min P{T

—1 T—best >
n—oco PEP KEK n,Jg TP (P), K <M (= Jg (P), K, P")}

<a,

where the last inequality follows from (30) and the fact that K is a finite set. The desired result now follows because

liminf inf P{J7 7P (P) C JE7P°t} = 1 — limsup sup FWERp > 1 — a.
€

n—roo n—oo PeP

E.2 Proofs of Results in the Appendix

Proof of Lemma B.1. Since the quantile in (40) is smaller than that in (41), we show the results for (40) and the analogous
results for (41) then follow immediately. Define 7; = o(P;)/\/1;.

Consider the claim (i). Suppose A; (P) € Cn(l —a,(j, k) = [0; — 0k £ (75 + T)G1—a] for all (j,k) € Sayy. Then, for
all k € N;, the interval én(l — a, (j, k)) lies entirely below zero, so that (P;) < 6(Py). Similarly, for all k € ]Vf, we have
0(Pj) > 0(Py). Therefore, the smallest possible value of the rank of j cannot be smaller than the number of elements in Nj_,
ie. r;(P) > |J\~/j_ |, and the largest value of the rank of j cannot be larger than p minus the number of elements in ]V]*, ie.
7;(P)<p— |N]+\ Therefore,

P {R(P) C El;f;int} > P {Aj,k(P) € Cn(1— a, (4, k)) for all (j,k) € san} .
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Letting o ), = 75 /(75 + 7% ), we have
P{AJJC(P) € 6”(1 - Q, (.7’ k)) for all (.7’ k) € Sall}
=P {Q(P]) — G(Pk) c [é] — ék + (Tj + Tk)q~17a:| for all (], k) € San}

i a(P 5
_p ax 0; —0(P;j) O 0(Py) <Fia
(4,k)E€San

T+ Tk T + Tk
0; — 0(P)) 0 —0(Py)| _ ~
=P P R el My & [PPSR L2 B A
{(j7$2§a11 Yk Tj ( k) T) = Qi-a
6; —0(P;)| |6, — 0P
> P max max J (7) , k (i) <qi-a
(J,k)ESan Tj Tk

0 — 0(P))

Tj

< Zjla}

The strict inequality follows from the fact that, for any numbers w € (0,1) and A # — B, we have [wA—(1—w)B| < max{|A|, |B|}.
This inequality is applicable above because a1 € (0,1) and P{(éj —0(Py))/1j = (B — O(Py))/7} = 0 for all (j,k) € Sa.

Therefore, the desired claim in (i) follows.

= P < max
jeJ

=1—a,

Part (ii) follows from analogous arguments to those in the proof of Theorem 3.3 and in Remark 3.6.

Consider part (iii). Notice that, for p = 2, q1—q is the (1 — «/2)-quantile of the standard normal distribution. Suppose
there is a k € J such that 5n(1 — o, k) lies entirely above 5’n(1 —a,j), ie.,

Op — ThG1—a > 0j + Tjd1—a

or, equivalently,
0; = O, + (7j + Tk)@1—a <0 .

This implies that Cy (1 — o, Sai1, (4, k)) lies entirely below zero if 7; + 75, > /sz + T,f and ¢1—q > q1—qa- The former condition
obviously holds because 7; > 0 for all j € J. The latter follows because, since o € (0, 1),

1+\/17a>17g
2 2

Therefore, we have shown that |]\7;\ <IN, | for all j € J. Similarly, we can show that |ij+\ < |NJ+| for all j € J. For
|ﬁ;| < |N;"| to occur for some j € J, there must exist a k € J such that

05— O+ /72 + 210 <0< 05— b + (5 + 1T —a

6 — 05 € (\/72 + Ra1-a, (5 + )T -

This event occurs with positive probability because the interval has positive length, as shown above, and the difference in the

or, equivalently,

estimators is normally distributed. Similarly, we can show that \]\~/';'| < |NJ+\ for some j € J occurs with positive probability,

so the desired claim follows.

Finally, consider part (iv). Suppose there is a k € J such that én(l — o, k) lies entirely above 571(1 —a,j), ie.,

A A 20(P) _
0; — 0, + ( )q17a<0.
Notice that q1—q is the (1 — @)-quantile from the distribution of max; xyes,, %|Zj — Zy|, where Z1,...,Z, are iid. N(0,1)
random variables. This quantile satisfies \/iql_a < 2¢1—q for all a € (0,1) so that
- V20(P) - . 20(P)_
9379k+ = QI—a<9j*9k+ \/ﬁq1—a<0:

which means that Cy, (1 — «, San, (4, k)) lies entirely below zero. Therefore, \]\ij_| < |N]._\ for all 5 € J. Similarly, we can show
that |N]+| < |N]+\ for all j € J. The remainder of the proof is then similar to that of part (iii). l
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and stepwise methods.
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Appendix F Additional Simulation Results

F.1 Joint Confidence Sets for the Ranks of All Populations
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0.6

0.4

0.2

0.0

Figure 20: Joint confidence sets for the ranks of all CZs: relative length for the correlational design

In this section, we present the simulation results for simultaneous inference on the ranks of all populations

and on the 7-best populations with 7 = 2. We also provide additional simulations comparing the single-step

The simulation design is the same as described in Section 4. The methods analyzed are also the same as
described in Section 4, except that “DM” is now based on (23) rather than (13) and “DM.step” is now based
on (25) computed through Algorithm 3.2 rather than (19) computed through Algorithm 3.1.

Table 6 and Figures 2021 are the counterparts of Table 2 and Figures 6—7. The plotted relative length

of the simultaneous confidence sets is computed as the average length across CZs, averaged across Monte
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Figure 21: Joint confidence sets for the ranks of all CZs: relative length for the movers design

Carlo samples, and divided by p. The results are qualitatively the same as those for the rank of a single
population. One additional insight is that the length of the simultaneous confidence sets for the ranks of
all populations shrinks more slowly with the sample size and the degree of separation between the mobility

measures, 0.

F.2 Confidence Sets for the m-Best Populations

The simulation design is the same as described in Section 4 with one modification: instead of (31), #; is now

defined so that the distance between the two top-ranked CZs and the remaining ones can be varied by the
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parameter 0. Specifically,

ét,ja .] = 172
0; = ét,S +(1-9) (ét,Q - étd) ; j=3
Or3 + 52?;;1;(9},1”1 —0p1) + (1-0) (ét,2 - ét,?)) , 3>3

When § = 1, then as in the main text 6; is equal to the mobility estimate from the data. When § = 0, then
02 = ... = 0,, which means the two top-ranked CZs are not separated from the remaining CZs and the set
of 7-best CZs contains all CZs. Values of § between 0 and 1 correspond to cases in which the top-two ranked
CZs are distinct from the remaining CZs, but not as well separated as in the data. Similarly, a value of §

larger than 1 corresponds to a case in which the separation is larger than in the data.

We compare the following methods:

“DM?”: the projection confidence set in (27), based on confidence sets for the differences in means as in (10),
where L. (1 —a,8, P,) is the empirical (1 — a)-quantile of the 1,000 draws of maxj ke S, (Zr —
Zi)] k-

“DM.step”: the projection confidence set “DM” except that stepwise improvements as in Remark 3.9 are

applied.

“T”: the test inversion procedure from Section 3.4, using the test statistic in (28), where the critical value
én(1 — o, I) is the maximum (over K € K) of the empirical (1 — «)-quantile of the 1,000 draws of

max;cj Maxpe p\ K12k — Zj}-

“M”: the projection confidence set in (27), based on symmetric confidence sets for the differences in means

as in “M” above.

Table 7 and Figures 22-23 are the counterparts of Table 2 and Figures 6-7. First, Table 7 shows that
all methods control the coverage frequency at the desired nominal level for small and large sample sizes,
regardless of whether the mobility measures of the top-two CZs are well-separated from the remaining ones,

and regardless of whether there are few or many populations to be ranked.

For both the correlational and the movers design, all methods’ coverage frequencies are close to one for
most parameter combinations except when § = 0. In the correlational design, coverage is actually close to
the nominal level when § = 0 and the sample size is large. However, unlike for inference on ranks, coverage
does not necessarily increase monotonically as the top-two become more separated (6 grows). Simulations
further below show that the coverage frequency may be closest to the nominal level at a strictly positive

value of §.

Second, the coverage frequency of “M” is approximately equal to one in all scenarios whereas our methods
“T7, “DM” and “DM.step” tend to have coverage frequency closer to the nominal level at least when § = 0.
In consequence, our methods, in particular the stepwise method “DM.step”, tend to lead to confidence sets
for the 2-best populations that are not larger than those of “M” and smaller in some scenarios. While the
differences are small in the correlational design, the methods “DM” and “DM.step” may lead to significantly
shorter confidence sets in the movers design. The direct “T” method dominates “M” in most scenarios, but

may also perform worse than “M” in terms of size of the confidence set when the sample size is small relative
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Figure 22: Confidence sets for the 7-best CZs: relative length for the correlational design

to the number of CZs (see the top row of Figure 23). In an alternative simulation design further below, we
show that the differences between our proposals “DM” /“DM.step” and “M” can be much more substantial.

In addition, “T” may significantly outperform all other methods.

Third, as the two top-ranked CZs are more separated from the remaining ones (J increases), the size
of the confidence sets decreases. Comparing the bottom rows of Figures 22 and 23, we see that, in the
correlational design, the top-two CZs can be distinguished from the third-ranked CZ even for small values
of § whereas, in the movers design, all three CZs are in the confidence set for the 2-best regardless of the

value of §.

Fourth, comparing the left and the right columns in Figures 22 and 23 shows that an increase in sample

size leads to smaller confidence sets, as expected.

To highlight some differences in performance across the four methods that could not be seen in the

simulation design calibrated to the data, we now present additional simulation results from a different
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Figure 23: Confidence sets for the 7-best CZs: relative length for the movers design

design. For each population j = 1,...,p, we generate an i.i.d. sample X 1,..., X, from N(6;,1) so that all

samples across populations are mutually independent. The parameter § = (61, ...,6,) is defined as follows:

6, =6
o1
0y = 03 = =
2 3 (52
i=...=0,=0

In all simulation scenarios, the first three populations, 7 = 1,2, 3, possess ranks less than or equal to 2
and are thus elements of the set of 2-best populations. All other elements of 6 are equal to zero. Suppose
02 = 1. Then, the magnitude of §; determines how well the top three populations are separated from the
remaining ones. A value of d; > 1 allows us to consider data-generating processes in which the populations

at rank equal to two (i.e. s, 03) are separated from that of rank equal to one (i.e. #;). When d; = 0,
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Figure 24: Confidence sets for the 7-best: length of the confidence sets for p = 10.

then all populations are tied with all elements of 6 equal to 0. All simulations are based on 1,000 Monte
Carlo samples and nominal coverage of 95%. The methods we compare are the same as described above, but
in addition we also consider the “naive” procedure that simply picks the two populations with the largest

estimated means.

Table 8 shows the coverage frequencies, where coverage is computed as in the other simulations, i.e. as
in Remark 3.6. Figure 24 shows the length (not the relative length as in the tables above) of the confidence
sets, averaged over the Monte Carlo samples, for p = 10. Several aspects of the simulation results are
similar to those above, so we focus the discussion on differences. First, the “naive” method does not control

the coverage frequency at the desired nominal level. It never covers the set of T-best populations because,
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by definition it only selects two populations even though, in all scenarios, there are at least three 7-best

populations.

Second, the coverage frequency of “M” is approximately equal to one in all scenarios whereas our methods
“T”, “DM” and “DM.step” tend to have coverage frequency closer to the nominal level. In consequence,
our methods tend to lead to confidence sets for the 2-best populations that are not larger than those of “M”
and substantially smaller in most scenarios. For instance, the top row of graphs in Figure 24 shows that the
confidence sets of “M” may be up to about 50% larger than those of our proposed methods. The method
“T” generally produces even smaller confidence sets than the projection methods “DM” and “DM.step”,
but the gains are modest. Similarly, the stepwise improvements (“DM.step”) help shorten the confidence
sets relative to “DM”, but the gains are modest. Overall, the three methods “DM”, “DM.step”, and “T”

perform similarly well.

Third, as in the case of inference on a single rank and on all ranks, comparing the top and the bottom
rows of Figure 24 shows that as the first three populations’ means become better separated from the others
(62 decreases or 97 increases). The lengths of the confidence sets shrink because it is easier to recover the

populations with rank less than or equal to two (exactly those first three populations).

Finally, Table 8 shows that the coverage frequency is not necessarily closest to the nominal level when
all populations are tied (6; = 0). For instance, when d; = 3 and p = 3, then the coverage frequency of our

procedures is close to one when all populations are tied (6; = 0), but takes values near 0.98 when ¢; is large.
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01

n S p  test 0 022 044 067 089 111 133 156  1.78 2

100 1 3  naive 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 _0.000

M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM 0.996  0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996  0.996

DM.step  0.995 0995 0.995 0.995 0.995 0.995 0.995 0.995 0.995  0.995

T 0.993  0.993 0993 0.993 0.993 0.993 0.993 0.993 0.993  0.993

10 naive 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M 0.999  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM 0.992  0.999  0.999  0.999  0.999 0.999  0.999 0.999  0.999  0.999

DM.step  0.991 0999 0.998 0.998 0.998 0.998 0.998 0.998 0.998  0.998

T 0.992  0.998 0997 0.997 0.997 0.997 0.997 0.997  0.997  0.997

50  naive 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM.step  0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

T 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

3 3 naive 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M 1.000  0.999 0.999  0.998 0.998 0.998 0.998 0.998 0.998  0.998

DM 0.996  0.992 0982 0.979 0979 0.979 0.979 0.979 0.979  0.979

DM.step  0.995 0989 0.978 0974 0.973 0.968 0.968 0.968 0.968  0.968

T 0.993  0.990 0981 0.979 0979 0.979 0.979 0.979 0.979  0.979

10 naive 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M 0.999  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM 0.992  0.998 0998 0.997 0.997 0.997 0.997 0.997  0.997  0.997

DM.step  0.991 0998 0.998 0.997 0.997 0.996 0.996 0.996 0.996  0.996

T 0.992  0.997 0997 0.997 0.995 0.995 0.995 0.995 0.995  0.995

50  naive 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM.step  0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

T 0.990 1.000 1.000 1.000 1.000 1.000 1.000 0.998  0.998  0.998

200 1 3 naive 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM 0.995 0.995 0995 0.995 0.995 0.995 0.995 0.995 0.995  0.995

DM.step  0.995 0995 0.995 0.995 0.995 0.995 0.995 0.995 0.995  0.995

T 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995  0.995

10 naive 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM.step  0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

T 0.988  1.000 0.999  0.999 0.999  0.999  0.999  0.999  0.999  0.999

50  naive 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM 0.986  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM.step  0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

T 0.991  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

3 3  naive 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M 1.000  1.000 1.000 0.999 0.999  0.999 0.999  0.999 0.999  0.999

DM 0.995 0.988 0985 0.984 0984 0.984 0.984 0.984 0.984 0.984

DM.step  0.995 0.987 0.983 0.980 0.980 0.980 0.980 0.980 0.980  0.980

T 0.995 0.986 0982 0.981 0981 0.981 0981 0.981 0.981 0.981

10 naive 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M 1.000 0999 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM 0.985 0.996 0.995 0.996 0.996 0.996 0.996 0.996 0.996  0.996

DM.step  0.985 0.996 0.995 0.995 0.995 0.995 0.995 0.995 0.995  0.995

T 0.988  0.996 0.995 0.993 0.992 0.990 0.991 0.990  0.990  0.990

50  naive 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

DM 0.986  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000

DM.step  0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

T 0.991  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
Table 8: Confidence sets for the T-best populations: coverage
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F.3 Single-Step Versus Stepwise Methods

In this section, we show through simulations that the stepwise procedure “DM.step” may provide significant
improvements in length of the confidence set for the rank of a population relative to the single-step method
“DM77 .

The simulation design is different from the one in the main text. For each population 7 = 1,...,p, we
generate an i.i.d. sample X;1,...,X;, from N(6,,1) so that all samples across populations are mutually
independent. The parameter § = (61,...,6,) is defined as follows:

1

91:§+6

1
02, ...,0, lie on an equally-spaced grid from 0 to 3

The magnitude of § determines how well the first population, on whose rank we perform inference, is separated
from the remaining ones. All simulations are based on 1,000 Monte Carlo samples, n = 100, p = 100, and

)

nominal coverage of 95%. We compare the two methods “DM” and “DM.step” as described in Section 4.

Tables 9 and 10 show the coverage frequency and the length (not relative length as in some previous
tables) of the marginal confidence set for the first population. In these simulations, most populations are
well-separated (even when ¢ is small) and thus coverage is close to one. The length of the confidence sets
may differ significantly between the two methods. For instance, for § = 0.5 the stepwise procedure leads to
a confidence set that is 1 — 7.91/9.84 ~ 20% shorter than that of the single-step method.

0
n b2 P test 0 0.125 0.25  0.375 0.5  0.625 0.75  0.875 1
100 1 100 DM 1.000 1.000 1.000 1.000 0.998 0.998 0.998 0.998  0.998

DM.step 1.000 1.000 1.000 0.999 0.998 0.998 0.998 0.998  0.998

Table 9: Marginal confidence set for the rank of the most populous CZ: coverage

[
n P P test 0 0.125 0.25  0.375 0.5 0.625 0.75  0.875 1

100 1 100 DM 84.10 65.62 43.53 23.28 9.84 3.83 2.27 2.01 2.00
DM.step 83.28 63.91 40.92 20.40 7.91 3.18 2.15 2.00 2.00

Table 10: Marginal confidence set for the rank of the most populous CZ: length
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Appendix G Supporting Results for the Empirical Applications

G.1 PISA Student Tests in OECD Countries: Math and Science Proficiency

OECD Countries Mean 2018 PISA Math Test Scores
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OECD Countries Mean 2018 PISA Science Test Scores
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Figure 25: Mean PISA Test Scores with marginal confidence intervals (estimates plus or minus twice the

standard errors) for the sample of OECD countries. The PISA scale is normalized to approximately fit a

.

Math Test Score; Bottom

.

normal distribution with the mean of 500 and standard deviation of 100. Top

Science Proficiency Test Score.
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Ranking by Math Score with 95% Marginal CS
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Ranking by Math Score with 95% Simultaneous CS
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Figure 26: Panel A: for each OECD country, we plot its rank by math score and the 95% marginal confidence
set (“CS”). Panel B: for each OECD country, we plot its rank by math score and the 95% simultaneous

confidence set (“CS”). Different quartiles of the rankings are indicated with different colors.
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Ranking by Science Score with 95% Marginal CS
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Ranking by Science Score with 95% Simultaneous CS
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Figure 27: Panel A: for each OECD country, we plot its rank by science proficiency score and the 95%
marginal confidence set (“CS”). Panel B: for each OECD country, we plot its rank by science proficiency
score and the 95% simultaneous confidence set (“CS”). Different quartiles of the rankings are indicated with

different colors.
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G.2 Applying Andrews et al. (2018) to the PISA Data

This subsection provides more details and the results for the application of Andrews et al. (2018) to the
PISA data as discussed in Remark 5.1.

The results are reported in Table 11. Following Andrews et al. (2018), we consider two types of confidence
sets. While we refer to their paper for details, it is useful to observe how these confidence sets differ. The
first type of confidence set is valid conditional on the target selected, in this case on the identity of the
country with the highest point estimate, Estonia (the “winner” in the sample). Conditional validity is
more demanding but may be desirable in the PISA setting, for example if one wants to ensure validity
conditional on the recommendation made to a policy maker in Estonia. The second type of confidence set is
unconditional and requires validity on average over the countries that statistically could have had the highest
point estimate. For unconditional validity, Andrews et al. (2018) develop two procedures for constructing
confidence sets, a projection and a hybrid procedure, the latter typically delivering shorter confidence sets
than the former while satisfying the same unconditional coverage guarantee. Confidence sets for the sample

“losers” are construct in an analogous fashion.

We find that both the conditional and the unconditional hybrid confidence sets are relatively narrow
while the unconditional projection confidence set is wide. For example, the 95% conditional confidence set
for the expected reading score of the sample “winner”, Estonia, is (517.9, 526.6). Only 4 out of 35 other
countries have higher point estimates than the lower endpoint of this confidence set. In conclusion, one can
be confident that the sample “winner” truly has a high reading score. However, just like Estonia’s marginal
confidence interval displayed in Figure 8, Andrews et al. (2018)’s confidence set does not allow us to draw
any conclusions about what is the true rank of Estonia nor which country has true rank one. On the other
hand, our marginal confidence sets for the rank of Estonia tell us that (with 95% probability) its true rank
lies between 1 and 5. In addition, our 7-best confidence set for 7 = 1 shows that (with 95% probability)

there are 6 countries in total that could be the best.
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Reading

CS on PISA score Number of countries CS on PISA score Nu'mber of countries
Type of CS . lo i . with sample score . lo “loser” with sample score
Of sampre “winher above CS lower bound © SoPie HOSer below CS upper bound
Conditional: (517.9, 526.6) 4 (406.0, 419.3) 1
Unconditional:
Projection (458.6, 587.4) 31 (298.6, 526.1) 31
Hybrid (517.8 526.7) 4 (405.8, 419.5) 1

Table 11: Andrews et al. (2018) equal-tailed 95% confidence sets for the expected score of the countries with
the highest (sample “winner”) and the lowest (sample “loser”) point estimates on PISA Reading test among
the OECD countries.

“Number of countries with sample score above CS lower bound” shows the number of point estimates above
the lower bound of the corresponding 95% confidence set for the sample “winner”. “Number of countries
with sample score below CS upper bound” shows the number of point estimates below the upper bound of
the corresponding 95% confidence set for the sample “loser”.

Conditional 95% CS provides coverage conditional on a particular country with the highest (lowest) point
estimate. Projection 95% CS provides coverage on average over the countries that could statistically get the
highest or the lowest point estimates. Hybrid 95% CS combines conditional and unconditional approaches
to provide unconditional coverage with improved length of the CS.
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-- estimate +/- 2SE

— estimate

Mean percentile rank in the national distribution of child's average family income in 2014-2015 for 50 most populous CZs

-- estimate +/- 2SE

— estimate

&
Mean percentile rank in the national distribution of child's average family income in 2014-2015 for 50 most populous counties
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G.3 50 Most Populous Commuting Zones and Counties
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Figure 28: Estimates of the mean percentile rank of child’s average household income for 2014-2015 in the

national distribution of her cohort (Z.25) with marginal confidence intervals (estimates plus or minus twice
the standard errors) from Chetty et al. (2018) for the 50 most populous Commuting Zones (Top Panel)

and the 50 most populous counties (Bottom Panel).



-- estimate +/- 2SE

— estimate

Movers estimates based on child's income at the age 26 for 50 most populous CZs

9
— estimate
-- estimate +/- 2SE

Movers estimates based on child's income at the age 26 for the 50 most populous counties
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Figure 29: Movers estimates of the exposure effects (pc25) with marginal confidence intervals (estimates plus
or minus twice the standard errors) from Chetty and Hendren (2018) for the 50 most populous CZs (Top

Panel) and for the 50 most populous counties (Bottom Panel).
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Counties with 95% Simultaneous CS
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Figure 30: Panel A: point estimates and the 95% marginal confidence sets (“CS”) for the ranking of the 50

most populous counties by §.25. Panel B: point estimates and the 95% simultaneous confidence sets (“CS”)
for the ranking of the 50 most populous counties by ge25.
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Commuting Zones with 95% Marginal CS
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Commuting Zones with 95% Simultaneous CS
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Figure 31: Panel A: point estimates and the 95% marginal confidence sets (“CS”) for the ranking of the

50 most populous CZs by pc25. Panel B: point estimates and the 95% simultaneous confidence sets (“CS”)
for the ranking of the 50 most populous CZs by pic25.
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Figure 32: Panel A: point estimates and the 95% marginal confidence sets (“CS”) for the ranking of the
50 most populous counties by p.25. Panel B: point estimates and the 95% simultaneous confidence sets
(“CS”) for the ranking of the 50 most populous counties by pic25.
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Panel A: Top 5

Correlational Movers
Rank 7 County Ge25 SE 95% CS  7-best County ficas SE 95% CS  7-best
1 1  Bergen 0520 0002 [1,1] 2 DuPage 0.540 0.123 [1, 10] 25
2 2 Faifax 0511 0002 [2,2] 2 Hartford ~ 0.325 0.182  [1, 50] 50
3 3 Nassau 0.493  0.002 [3, 3] 4 Contra Costa  0.306  0.129 [1, 45] 50
4 4 DuPage 0.484  0.002 [4, 6] 8 Bergen 0.302 0.186 [1, 50] 50
5 5 Middlesex 0.480 0.002 [4, 8] 8 Pinellas 0.276  0.127 [1, 48] 50
Panel B: Bottom 5
Correlational Movers
Rank 7 County Je25 SE 95% CS  T-worst County fle2s SE 95% CS  T-worst
46 5  Milwaukee 0.363 0.001 [45, 47] 6 Marion -0.153  0.082 [2, 50] 49
47 4 Franklin 0.360 0.001  [46, 47] 5 Hennepin -0.185  0.100 [2, 50] 49
48 3 Wayne 0.346  0.001 [48, 49] 3 Alameda -0.257 0.114 [5, 50] 49
49 2 Marion 0.344 0.001 [48, 49] 3 Hillsborough  -0.279  0.116 [5, 50] 49
50 1 Shelby 0.318  0.001 [50, 50] 1 Fairfield -0.386  0.199 [4, 50] 49

Table 12: Panel A: Top 5 among the 50 most populous counties ranked by the correlational estimates on
the left and by the movers estimates on the right. Panel B: Bottom 5 among the 50 most populous counties
ranked by the correlational estimates on the left and by the movers estimates on the right. “95% CS” refers
to the 95% marginal confidence set for the rank, and “r-best” and “7-worst” refer to the size of the 95%

confidence sets for the “7-best” and “r-worst” counties.

Table 13: The number of places with the same rank at the upper and the lower endpoints of the 95%
confidence sets for a given confidence level. The analyses are done for both the correlational and the mover

CZ

County

Confidence

level

Correlational

Movers

Correlational

Movers
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estimates, using the 50 most populous CZs and the 50 most populous counties.
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G.4 Applying Andrews et al. (2018) to the Intergenerational Mobility Data

This subsection provides more details and the results for the application of Andrews et al. (2018) to the

intergenerational mobility data as discussed in Remark 5.3.

We focus on correlational estimates for CZs, as these are the most precise estimates and, thus, offer the
best opportunity to reach informative conclusions. Table 14 reports the results. Following Andrews et al.
(2018), we consider the 95% conditional and unconditional (hybrid and projection) confidence sets for a
neighborhood’s true mobility. As discussed in Section G.2, the former is valid conditional on the identity
of the neighborhood with the highest point estimate, while the latter requires validity on average over all
the neighborhoods that statistically could have had the highest point estimate. Conditional validity is more
demanding but may be desirable if the goal is to help low-income families move to the neighborhood with

highest estimated mobility.

We first consider inference on the CZ with the highest point estimate in the national ranking.?! The
95% conditional confidence set for true mobility of the “winning” CZ is (-2.70, 0.66). Thus, we may expect,
with 95% confidence, an income rank between 0 and 66 among children who grew up in the CZ with the
highest point estimate of mobility with parents’ income at the 25th percentile.?? Since the confidence set
includes zero (the smallest possible value of the mobility measure), one cannot be confident that the sample
“winner” truly has high mobility. This conclusion holds both if we consider the conditional confidence set

and unconditional (hybrid or projection) confidence sets.

Next, we restrict the inference problem to the 50 largest CZs by population size. The 95% conditional
confidence set on upward mobility of the CZ with the highest point estimate, San Fransisco, is (0.389, 0.457).
Thus, we may expect, with 95% confidence, an income rank between 39 and 46 of the children who grew up
in San Francisco with parents at the 25th percentile. The lower endpoint of this confidence set is lower than
the point estimates of 31 of the 49 other CZs. By comparison, the 95% unconditional hybrid confidence set

is narrower than the conditional ones, but still contains the point estimates of 19 of the 49 other CZs.

Taken together, the results from Andrews et al. (2018) suggest there is considerable statistical uncertainty
about the true value of upward mobility at the top of the estimated ranking of CZs, even if one restricts the

study to the 50 largest CZs by population size.

However, just like the marginal confidence interval for the “winner” displayed in Figure 10, Andrews et al.
(2018)’s confidence sets do not allow us to draw any conclusions about what is the true rank of the sample
“winner” nor which CZ has true rank one. In contrast, our confidence set for the rank of San Francisco
among the 50 most populous CZs tells us that (with 95% probability) its true rank lies between 1 and 2.
In addition, our 7-best confidence set for 7 = 1 shows that (with 95% probability) there are only 4 CZs
that could be the best. It is interesting to note that our confidence sets for the ranks are very narrow even
though Andrews et al. (2018)’s confidence sets for true mobility of the “winner” are fairly wide. This finding
illustrates that it can be possible to achieve a statistically informative ranking even if one cannot draw firm

4

conclusions about the true value of the sample “winner”.

21We have also performed inference on the neighborhoods with the highest point estimate within each state. In many cases,
the lower endpoint of the 95% confidence sets include the point estimates of a majority of the other neighborhoods within the
state.

22 Although percentiles can only take values between 0 and 1, the estimated confidence sets of Andrews et al. (2018) may take
negative value. Following their suggestion, we therefore trim the confidence sets when interpreting the results by substituting
negative lower endpoints with zero.
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All 741 CZs 50 most populous CZs

CS on correlational Number of CZs with CS on correlational Number of CZs with

Type of CS mobility for correlational estimates mobility for correlational estimates
sample “winner” above CS lower bound sample “winner” above CS lower bound
Conditional: (-2.70, 0.66) 741 (0.389, 0.457) 31
Trimmed (0, 0.66) 741
Unconditional:
Projection (-14.95, 16.28) 741 (0.417, 0.496) 19
Trimmed (0, 16.28) 741
Hybrid (-2.79, 0.66) 741 (0.416, 0.457) 19
Trimmed (0, 0.66) 741

Table 14: Andrews et al. (2018) equal-tailed 95% confidence sets for true upward mobility of the CZ with the
highest correlational point estimate (sample “winner”) among all 741 CZs and among the 50 most populous
CZs.

“Number of CZs with correlational estimates above CS lower bound” refers to the number of point estimates
above the lower bound of the corresponding confidence set for the sample “winner”.

Conditional 95% CS provides coverage conditional on the identity of the CZ with the highest mobility point
estimate. Projection 95% CS provides coverage on average over the CZs that could statistically have had
the highest point estimate. Hybrid 95% CS combines conditional and unconditional approaches to provide
unconditional coverage with improved length of the CS.
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G.5 Heat Maps of y.5 for Counties and Structure of the Rankings
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Figure 33: Top Panel for each CZ we plot the standard error (“SE”) against the rank of the CZ. Bottom
Panel for each CZ we compute the difference in estimated mobility (y.25) between the CZ (7%,;) and the
next CZ @52-;1) in the estimated ranking. Next, we plot these differences against the estimated ranks of
CZs. Each dot on both panels represents a CZ. The CZ is assigned to a high mobility group (light color) if
the upper endpoint of its simultaneous confidence set is in the top half of the national ranking. The CZ is
assigned to a low mobility group (red color) if the lower endpoint of its simultaneous confidence set is in the
bottom half of the national ranking. Grey colors represent the CZs with simultaneous confidence sets such
that the places cannot be assigned to either the high or the low mobility group. We emphasize two points:
1) the middle of the ranking does not have particularly large SEs; 2) in the middle of the ranking estimates

of mobility are more similar.
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Figure 34: Ranking of counties by point estimates and lower and upper endpoints of simultaneous confidence
sets. The heat maps are based on estimates of g.25, the mean percentile rank of child’s average household
income for 2014-2015, for the full set of counties. Panel A: the map is constructed by dividing the counties
into deciles based on the estimated values of ¥.25, and shading the areas so that lighter colors correspond
to higher absolute mobility or, equivalently, lower (“better”) rank. Panel B (Panel C) shows the lower
(upper) endpoint of the 95% simultaneous confidence sets for the ranks of all counties, using the same color
coding as for the estimated ranks in Panel A.

91



1.00
_. 075
c
S
o
2
w|g
3|
23
3o
T | 0.50 2o e
- | © -_.-':'{ AT
£l % tes
a2 R A
© E ,.ﬁ" ..‘ .
€ |3 (3 T LI
w|Z ",g".g" :
@ s,
I} A,
S| o025 4
' *y.
s'_:
b
‘
;
%
0.00
0 1000 2000 3000

Rank

Unlikely Bottom Half Undetermined [l Unlikely Top Half

Figure 35: For each county, we compute the difference between the upper and the lower endpoint of the 95%
simultaneous confidence set. Next, we plot these differences against the estimated ranks of the counties. To
ease interpretation, we normalize the differences by the number of counties. Thus, a difference of 1 means
one cannot tell whether a county has the highest or the lowest income mobility in the United States. By
comparison, a difference of 0 means we can be confident in the exact rank of the county. Each dot in the
graph represents a county. The county is assigned to a high mobility group (light color) if the upper endpoint
of its simultaneous confidence set is in the top half of the national ranking. The county is assigned to a
low mobility group (red color) if the lower endpoint of its simultaneous confidence set is in the bottom half
of the national ranking. Grey colors represent the counties with simultaneous confidence sets such that the
places cannot be assigned to either the high or the low mobility group.
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Figure 36: Top Panel for each county we plot the standard error (“SE”) against the rank of the county.
Bottom Panel for each county we compute the difference in estimated mobility (%.25) between the county
(9%,5) and the next county (yjff;gl) in the estimated ranking. Next, we plot these differences against the
estimated ranks of the counties. Each dot on both panels represents a county. The county is assigned to a
high mobility group (light color) if the upper endpoint of its simultaneous confidence set is in the top half
of the national ranking. The county is assigned to a low mobility group (red color) if the lower endpoint
of its simultaneous confidence set is in the bottom half of the national ranking. Grey colors represent the
counties with simultaneous confidence sets such that the places cannot be assigned to either the high or the
low mobility group. We emphasize two points: 1) the middle of the ranking does not have particularly large

SEs; 2) in the middle of the ranking estimates of mobility are more similar.
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Figure 37: The heat map in Panel A is constructed by assigning the counties to groups depending on the
lower and upper endpoints of the simultaneous confidence sets. A county is assigned to a high mobility
group, Unlikely Bottom Half, if the upper endpoint of its simultaneous confidence set is in the top half
of the national ranking of counties, i.e. when the confidence set lies entirely in the top half of the ranking,
indicating high mobility. A county is assigned to a low mobility group, Unlikely Top Half, if the lower
endpoint of its simultaneous confidence set is in the bottom half of the national ranking of counties, i.e.
when the confidence set lies entirely in the bottom half of the ranking, indicating low mobility. Grey colors
represent the counties with simultaneous confidence sets such that the places cannot be assigned to either the
high or the low mobility group, i.e. the Undetermined counties. The heat map in Panel B is constructed
in the same way, except the high and low mobility groups are now defined in terms of top and bottom
quartiles in the national ranking of the counties. Thus, we refer to these groups as Unlikely Bottom 3
Quartiles and Unlikely Top 3 Quartiles.
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Figure 38: The heat map in Panel A is constructed by assigning the CZs to groups depending on the lower
and upper endpoints of the simultaneous and marginal confidence sets. A CZ is assigned to a high mobility
group, Unlikely Bottom Half, if the upper endpoint of its simultaneous confidence set is in the top half
of the national ranking of CZs, i.e., when the confidence set lies entirely in the top half of the ranking,
indicating high mobility. A CZ is assigned to a high mobility group, Marginal \ Simultaneous, if the
upper endpoint of its marginal confidence set is in the top half of the national ranking of CZs but the upper
endpoint of its simultaneous confidence set is in the bottom half of the national ranking of CZs. A CZ is
assigned to a low mobility group, Unlikely Top Half, if the lower endpoint of its simultaneous confidence
set is in the bottom half of the national ranking of CZs, i.e., when the confidence set lies entirely in the
bottom half of the ranking, indicating low mobility. A CZ is assigned to a low mobility group, Marginal
\ Simultaneous, if the lower endpoint of its marginal confidence set is in the bottom half of the national
ranking of CZs but the lower endpoint of its simultaneous confidence set is in the top half of the national
ranking of CZs. Grey colors represent the CZs with marginal and simultaneous confidence sets such that
the places cannot be assigned to either the high or the low mobility group, i.e., the Undetermined CZs.
The heat map in Panel B is constructed in the same way, except the high and low mobility groups are now
defined in terms of top and bottom quartiles in the national ranking of the CZs. Thus, we refer to these
groups as Unlikely Bottom 3 Quartiles and Unlikely Top 3 Quartiles.
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G.6 Heat Maps for the Movers Estimates of the Exposure Effects
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Figure 39: Ranking of Commuting Zones by point estimates and lower and upper endpoints of simultaneous
confidence sets. The heat maps are based on movers estimates of the exposure effects ji.05. Panel A: the
map is constructed by dividing the CZs into deciles based on the estimated values of .05, and shading the
areas so that lighter colors correspond to higher values of exposure effects or, equivalently, lower (“better”)
rank. Panel B (Panel C) shows the lower (upper) endpoint of the 95% simultaneous confidence sets for
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the ranks of all CZs, using the same color coding as for the estimated ranks in Panel A.

96



T
mE

Rank

M 2,130 - 2,367

1,894 - 2,130

M 1,657 - 1,894

1,421 - 1,657
1,184 — 1,421
947 - 1,184
711 - 947
474 - 711
238 - 474
238 - 238
No data

Figure 40: Ranking of counties by point estimates and lower and upper endpoints of simultaneous confidence
sets. The heat maps are based on movers estimates of the exposure effects j.05. Panel A: the map is
constructed by dividing the counties into deciles based on the estimated values of o5, and shading the
areas so that lighter colors correspond to higher values of exposure effects or, equivalently, lower (“better”)
rank. Panel B (Panel C) shows the lower (upper) endpoint of the 95% simultaneous confidence sets for
the ranks of all counties, using the same color coding as for the estimated ranks in Panel A.
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