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Abstract 

 
 Economic data are often generated by stochastic processes that take place in continuous time, 
though observations may occur only at discrete times.  For example, electricity and gas consumption take 
place in continuous time.  Data generated by a continuous time stochastic process are called functional 
data.  This paper is concerned with comparing two or more stochastic processes that generate functional 
data.  The data may be produced by a randomized experiment in which there are multiple treatments.  The 
paper presents a method for testing the hypothesis that the same stochastic process generates all the 
functional data.  The test described here applies to both functional data and multiple treatments.  It is 
implemented as a combination of two permutation tests.  This ensures that in finite samples, the true and 
nominal probabilities with which each test rejects a correct null hypothesis are equal.  The paper presents 
upper and lower bounds on the asymptotic power of the test under alternative hypotheses.  The results of 
Monte Carlo experiments and an application to an experiment on billing and pricing of natural gas 
illustrate the usefulness of the test. 
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PERMUTATION TESTS FOR EQUALITY OF DISTRIBUTIONS OF FUNCTIONAL DATA 

1.  INTRODUCTION 

Economic data are often generated by stochastic processes that take place in continuous time.  

Examples are gas and electricity consumption by households, asset prices or returns, and wages.  Other 

continuous time processes include the temperature and concentration of an air pollutant at a given 

location.  Many of these processes can be recorded in continuous time, though they may be reported only 

in discrete time.  Data generated from a continuous time stochastic process are random functions and are 

called functional data.  The analysis of functional data is a well-established research area in statistics that 

has generated a vast literature.  See, for example, Hall and Hossein-Nasab (2006); Jank and Shmueli 

(2006); Ramsay and Silverman (2002, 2005); Yao, Müller, and Wang (2005); and the references therein.   

 In this paper, we are concerned with comparing two or more stochastic processes that generate 

functional data.  These processes are produced by a randomized experiment in which there are one or 

more treatment groups and one control group.  Our objective is to test the hypothesis that the same 

stochastic process generates the functional data in all the groups.  More precisely, the null hypothesis is 

that the functional data (random functions) generated by the stochastic processes for the treatment and 

control groups have the same probability distribution.  Our interest in this hypothesis is motivated by 

experiments in billing and pricing of gas and pricing of electricity that have been conducted in several 

countries, including the US and Ireland.  In a typical experiment, households are assigned randomly to 

treatment and control groups.  The treatment groups have one or more experimental billing or price 

schedules, and the control group has regular billing and pricing.  Consumption of gas or electricity by 

households in the treatment and control groups is measured at frequent time intervals for several months.  

For example, in the Irish experiment on gas billing and pricing that we analyze later in this paper, 

consumption was measured every 30 minutes for twelve months.  Gas consumption takes place in 

continuous time, though it is measured only at discrete times.  The consumption path of a household is a 

random function of continuous time.  The consumption paths of all households in the treatment groups 

(control group) are random samples of functions generated by the treatment (control) consumption 

processes.  The hypothesis tested in this paper is that the consumption processes of the treatment and 

control groups are the same.  The alternative hypothesis is that the treatment and control processes differ 

on a set of time intervals with non-zero Lebesgue measure.   

If the hypothesis to be tested pertained to the distributions of finite-dimensional random variables, 

then testing could be carried out using the Cramér-von Mises or Kolmogorov-Smirnov two-sample tests, 

among others (Schilling 1986, Henze 1988), or multi-sample generalizations of these tests.  But the 

Cramér-von Mises and Kolmogorov-Smirnov tests do not apply to random functions, which are infinite-
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dimensional random variables.  Methods are also available for testing the hypothesis that continuous time 

data or, equivalently, random functions are generated by a known stochastic process or a process that is 

known up to a finite-dimensional parameter (Bugni, Hall, Horowitz, and Neumann 2009; Cuesta-

Albertos, del Barrio, Fraiman, and Matrán 2007; Cuesta-Albertos, Fraiman and Ransford 2006; Hall and 

Tajvidi 2002; Kim and Wang 2006).  Methods of parametric time-series analysis can also be used in this 

setting.  However, the method described here is nonparametric.  It does not assume that the stochastic 

processes generating the data have known parametric or semiparametric forms.  Nor does it assume that 

the processes have a specific dependence structure such as stationarity or the error components structure 

of a panel.  The dependence structure is completely general and unknown. 

Another possibility is to carry out nonparametric tests of hypotheses of equality of specific 

features (e.g., moments) of the processes generated by the various treatment groups.  For example, 

Harding and Lamarche (2016) compared moments of the distributions of electricity consumption in the 

treatment and control groups in a time-of-day pricing experiment.  However, a test of equality of specific 

moments does not reveal whether the processes generated by the various groups differ in other ways.  The 

method described in this paper facilitates such an investigation. 

There are several existing methods for carrying out non-parametric distributional tests.  Székely 

and Rizzo (2004, hereinafter SR) describe a test for data that may be high-dimensional but not functional.  

The test of SR is consistent, but its other asymptotic power properties are unknown.  Schilling (1986) and 

Henze (1988) describe two-sample nearest neighbor tests for multivariate (not functional) data.  The 

asymptotic power properties of these tests are unknown.  However, we have found through Monte Carlo 

experiments that the power of several distributional tests increases as the frequency of discrete 

observations increases or, equivalently, the lengths of the intervals between discrete observations 

decrease.  This motivates the development of tests that apply to functional data as well as discrete data.  

Hall and Tajvidi (2002, hereinafter HT) describe a permutation test for functional data.  In principle, the 

HT test is an alternative to the test developed in this paper. However, the HT statistic depends on a user-

chosen tuning parameter γ  and user-chosen weights w  that HT define.  The HT statistic is highly 

sensitive to the choices of γ  and w , but there is no known systematic method for choosing these 

quantities in applications.  In the empirical application described in Section 6 and the Monte Carlo 

experiments described in Section 7, we found that the p -value and power of the HT test can vary by 

factors of more than 10 and 4, respectively.  This has led us to conclude that the HT test is not reliable in 

the settings of interest in this paper.  Consequently, we do not use the HT test in the remainder of the 

paper.   

The test described here is applicable to experiments with multiple treatment groups and a control 

group as well as experiments with one treatment group and a control group.  This is an important property 
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of the test.  Experiments with multiple treatments are common in many fields (see, for example, Chong, 

Cohen, Field, Nakasone, and Torero (2016); Ashraf, Field, and Lee (2014); and Field, Jayachandran, 

Pande, and Rigol (2016), among many others).  The experiment on gas billing and pricing analyzed later 

in this paper has multiple treatments.   

The test statistic described here combines two tests.  One of the tests is motivated by the statistic 

of Bugni, Hall, Horowitz, and Neumann (2009) (hereinafter BHHN), who describe a Cramér-von Mises-

type test of the hypothesis that a sample of random functions was generated by a continuous time 

stochastic process that is known up to a finite-dimensional parameter.  The first of the two tests used in 

the present paper is a Cramér-von Mises type test of the hypothesis that two or more samples of random 

functions were generated by the same unknown stochastic process.  The alternative hypothesis is that the 

samples were generated by different stochastic processes.   

The results of Monte Carlo experiments show that tests based on the Cramér-von Mises type 

statistic have relatively high power against alternative hypotheses consisting of changes in the variance 

and covariance functions of the stochastic processes under consideration but relatively low power against 

changes in the means of these processes.  Therefore, we combine the Cramér-von Mises type test with a 

simple statistic for comparing the means of the stochastic processes.  The results of Monte Carlo 

experiments show that our proposed combination of tests has higher power in important settings than a 

test based on the SR statistic. 

The test is implemented as a combination of two permutation tests, which ensures that in a finite 

sample, the true and nominal probabilities with which each test rejects a correct null hypothesis are equal.  

A test based on the bootstrap or asymptotic approximations to the distribution of the test statistic does not 

have this property.  The test proposed here has non-trivial power against alternative hypotheses that differ 

from the null hypothesis by 1/2( ),O N −  where N  is the number of observations in the largest sample.  

“Non-trivial” means that the power of the test exceeds the probability with which the test rejects a correct 

null hypothesis.  The asymptotic local powers of the permutation tests are the same as they would be if 

the critical values of the tests were based on the asymptotic distributions of the test statistics under the 

null hypothesis.  Thus, there is no penalty in terms of asymptotic power for the permutation test’s 

elimination of the finite-sample error in the probability of rejecting a correct null hypothesis.   

Section 2 of this paper presents the proposed test statistic for the case of a single treatment group 

and a control group.  Section 2 explains how the critical values are obtained and describes the procedure 

for implementing the test.  Section 3 presents the properties of two-sample version of the test under the 

null and alternative hypotheses.  Section 4 extends the results of Sections 2 and 3 to experiments in which 

there are several treatment groups and a control group.  Section 5 discusses methods for selecting a user-

chosen measure that is used in the test.  Section 6 applies the test to data from a multiple-treatment 
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experiment on the pricing of gas.  Section 7 presents the results of simulation studies of the test’s 

behavior using a design that mimics the experiment analyzed in Section 6.  Section 7 also presents 

simulation results illustrating the sensitivity of the HT test to the choice of tuning parameters.  Section 8 

presents concluding comments.  The proofs of theorems are in the appendix.  Section A.4 of the appendix 

presents the results of Monte Carlo experiments that illustrate the sensitivity of the HT test to user-chosen 

tuning parameters.  Section A.4 also presents the results of experiments that illustrate the increase in the 

powers of the SR test and our test as the frequency of discrete observations increases. 

2.  THE NULL HYPOTHESIS AND TEST STATISTICS IN THE SINGLE TREATMENT CASE 

 2.1  The Test Statistic 

Let [0, ]T=  be a closed interval, and let 2 ( )L   denote the set of real-valued, square-integrable 

functions on  .  In contrast to the usual definition of 2 ( )L  , we define two square-integrable functions 

that differ on a set of Lebesgue measure zero to be distinct.  We consider two stochastic processes (or 

random functions) on  :  2( ) ( )X t L∈   and 2( ) ( )Y t L∈  .  For example, ( )X t  may correspond to the 

treatment group and ( )Y t  to the control group.  In the gas pricing experiment,   is the period of time 

over which gas consumption is observed.  ( )X t  and ( )Y t , respectively, are gas consumption at time t  by 

individuals in the treatment and control groups.  Let XF  and YF  respectively be the probability 

distribution functions of ( )X t  and ( )Y t .  That is, for any non-stochastic function z  that is square-

integrable on  , 

(2.1) ( ) [ ( ) ( ) for all ]XF z P X t z t t= ≤ ∈  

and 

(2.2) ( ) [ ( ) ( ) for all ]YF z P Y t z t t= ≤ ∈ . 

The null hypothesis to be tested is 

(2.3) 0 : ( ) ( )X YH F z F z=  

for all 2 ( )z L∈  .  The alternative hypothesis we consider is 

(2.4) 1 : [ ( ) ( )] 0X YH P F Z F Zµ ≠ > , 

where µ  is a probability measure on 2 ( )L   and Z  is a random function with probability distribution µ .  

1H  is equivalent to the hypothesis that ( ) ( )X YF z F z≠  on a set of z ’s with non-zero µ  measure.  The 

measure µ  is analogous to a weight function in tests of the Cramer-von Mises type, among others.  Like 

the weight function in other tests, µ  in the test presented here influences the directions of departure from 

0H  in which the test has high power.  The choice of µ  is discussed in Section 5.   
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 Now define 

 2[ ( ) ( )] ( )X YF z F z d zτ µ= −∫ , 

and define 

 2
0

[ ( ) ( )]
T

EX t EY t dtν = −∫  

if the expectations exist.  Then 0τ ν= =  under 0H , 0τ >  under 1H , and 0ν >  if ( ) ( )EX t EY t≠  on a 

set of non-zero Lebesgue measure.  A Cramér-von Mises type test of 0H  can be based on a sample 

analog of τ  that is scaled to have a non-degenerate limiting distribution.  A test of ( ) ( )EX t EY t≠  can be 

based on a sample analog of ν .  The Cramér-von Mises type test is consistent against 1H .  That is, the 

probability that the test rejects 0H  when 1H  is true approaches 1 as the sample size increases.  However, 

as we discuss later in this paper, the test has low finite-sample power against mean shifts.  In a mean shift, 

( ) ( ) ( ) ( )X t EX t Y t EY t− = −  for all t , but ( ) ( )EX t EY t≠ .  Therefore, we combine sample analogs of τ  

and ν  to obtain our final test.  Section 2.3 describes the combined test.1 

To obtain the sample analog of τ , let { ( ) : 1,..., }iX t i n=  and { ( ) : 1,..., }iY t i m=  denote random 

samples (sample paths) of n  and m  realizations of ( )X t  and ( )Y t , respectively.  Make 

 Assumption 1:  (i) ( )X t  and ( )Y t  are separable, µ -measurable stochastic processes.  (ii) 

{ ( ) : 1,..., }iX t i n=  is an independent random sample of the process ( )X t .  { ( ) : 1,..., }iY t i m=  is an 

independent random sample of the process ( )Y t  and is independent of { ( ) : 1,..., }iX t i n= . 

 Also assume for the moment that ( )iX t  and ( )iY t  are observed for all t ∈ .  The more realistic 

setting in which ( )iX t  and ( )iY t  are observed only at a discrete set of points t ∈  is treated in the next 

paragraph.2  Define the empirical distribution functions 

(2.5) 1

1

ˆ ( ) [ ( ) ( ) for all ]
n

X i
i

F z n I X t z t t−

=

= ≤ ∈∑   

                                                      
1  The power of Cramér von Mises type tests against mean shifts is explored through Monte Carlo 
experiments in Section 7. 
 
2  ( )X t  and ( )Y t  are stochastic processes, such as gas consumption, that take place in continuous time but 
can be observed (measured) only at discrete time points, say 1 2, ,..., Jt t t .  A test of a hypothesis about the 
discrete-time processes ( )jX t  and ( )jY t  ( 1,...,j J= ) is an approximation to a test of about the 
continuous time processes ( )X t  and ( )Y t  ( t ∈ ).  The power of a test of a hypothesis about the discrete-
time processes increases as the number of time points J  increases.  See Table A1 in the appendix. 
Therefore, we develop a test that has desirable properties in the continuous time setting but can be used 
with discrete time. 
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and 

(2.6) 1

1

ˆ ( ) [ ( ) ( ) for all ]
m

Y i
i

F z m I Y t z t t−

=

= ≤ ∈∑  . 

The sample analog of τ  is 

(2.7) 2ˆ ˆ( ) [ ( ) ( )] ( )nm X Yn m F z F z d zτ µ= + −∫ . 

0H  is rejected if nmτ  is larger than can be explained by random sampling error.  The integral in (2.7) 

may not have a closed analytic form.  In that case, mnτ  can be replaced with a simulation estimator that is 

obtained by randomly sampling µ .  Let { : 1,..., }Z L=


  be such a sample.  Then the simulation version 

of nmτ  is 

(2.8) 1 2

1

ˆ ˆˆ ( ) [ ( ) ( )]
L

nm X Yn m L F Z F Zτ −

=

= + −∑  



. 

Arguments like those used to prove Theorem 3.3 of BHHN can be used to show that . .ˆ a s
nm nmτ τ→  with 

respect to the probability measure µ  as L → ∞ .  However, the α -level permutation test based on ˆnmτ  

rejects a correct 0H  with probability exactly α , even if L  is finite.  See Theorem 3.1.  

 Now suppose that ( )iX t  and ( )iY t  are observed only at the discrete times 

{ : 1,..., ; 0 }j jt j J t T= ≤ ≤ .  Then the empirical distribution functions ˆ
XF  and ŶF  are replaced by 

 1
1

1
[ ( ),..., ( )] [ ( ) ( ) for all 1,..., ]

n

X J i j j
i

F z t z t n I X t z t j J−

=

= ≤ =∑  

and 

 1
1

1
[ ( ),..., ( )] [ ( ) ( ) for all 1,..., ]

m

Y J i j j
i

F z t z t m I Y t z t j J−

=

= ≤ =∑ .3 

The test statistic remains as in (2.7), except the arguments of the empirical distribution functions are the 

finite-dimensional vector 1[ ( ),...., ( )]Jz t z t ′ .  The test statistic is 

 2
1 1( ) { [ ( ),..., ( )] [ ( ),..., ( )]} ( )nm X J Y Jn m F z t z t F z t z t d zτ µ= + −∫   . 

Define ( )j jz tζ =  ( 1,...,j J= ).  Then nmτ  is equivalent to 

(2.9) 2
1 1 1 1( ) [ ( ,..., ) ( ,..., )] ( ,..., ) ...nm X J Y J J J Jn m F F f d dτ ζ ζ ζ ζ ζ ζ ζ ζ= + −∫   , 

                                                      
3  XF  and YF  produce the version of our test that results from choosing a discrete measure.  The resulting 
test is identical to the test in (2.7) with a discrete measure. 
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where Jf  is the probability density function on J
  induced by µ .   

 We now present the sample analog of ν . Make 

 Assumption 2:  ( )EX t  and ( )EY t  exist and are finite for all [0, ]t T∈ .  

If ( )iX t  and ( )iY t  are observed for all t ∈ , define 

 1

1

ˆ ( ) ( )
n

i
i

EX t n X t−

=
= ∑   

and 

 1

1

ˆ ( ) ( )
n

i
i

EY t m Y t−

=
= ∑ . 

The sample analog of ν  is 

(2.10) 2
0

ˆ ˆ( ) [ ( ) ( )]
T

nm n m EX t EY t dtν = + −∫ .  

If ( )iX t  and ( )iY t  are observed only at the discrete times { : 1,..., ; 0 }j jt j J t T= ≤ ≤ , then 

(2.11) 1 2

1

ˆ ˆ( ) [ ( ) ( )]
J

nm j j
j

n m J EX t EY tν −

=
= + −∑ . 

 2.2  Critical Values and the Test Procedure 

Under 0H  and mild regularity conditions, the empirical processes 1/2 ˆ ˆ( ) [ ( ) ( )]X Yn m F z F z+ −  and 

1/2 ˆ ˆ( ) [ ( ) ( )]n m EX t EY t+ −  converge weakly to mean-zero Gaussian processes.  In addition, 

1/2
1 1( ) [ ( ,..., ) ( ,..., )]X J Y Jn m F Fζ ζ ζ ζ+ −   and 1/2

1 1
ˆ ˆ ˆ ˆ( ) {[ ( ) ( )],...,[ ( ) ( )]}J Jn m EX t EY t EX t EY t ′+ − −  are 

asymptotically normal.  These results can be used to derive the asymptotic distributions of nmτ  and nmν  

under 0H  with either continuous-time or discrete-time observations of ( )X t  and ( )Y t .  The asymptotic 

distributions can be used in the usual way to obtain asymptotic critical values of nmτ  and nmν .  However, 

asymptotic approximations can be inaccurate and misleading in finite samples.  We avoid this problem by 

carrying out permutation tests based on nmτ  and nmν .  Lehmann and Romano (2015, Ch. 15) provide a 

general discussion of such tests.  The critical value of a permutation test does not depend on asymptotic 

approximations.  The true and nominal probabilities of rejecting a correct null hypothesis with a 

permutation test are equal in finite samples.  Moreover, the asymptotic power of the permutation test is 

the same as the power the test based on the asymptotic critical value.  This section explains the 

permutation test procedure and how to obtain critical values for permutation tests based on nmτ .  As is 
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explained in Section 2.1, the same results apply to the simulation version of mnτ .  Critical values for 

permutation tests based on nmν  can be obtained by replacing nmτ  with nmν  throughout the following 

discussion. 

 Let (0,1)α ∈  be the nominal level of the nmτ  test.  The α -level critical value is computed by 

evaluating nmτ  for permutations of the combined sample of n m+  observations of 

{ : 1,..., ; : 1,..., }i iX i n Y i m= = .  There are ( )!Q m n= +  ways of dividing the ( )n m+  observations in the 

combined sample into one set of m  observations and another of n  observations.4  Let 1,...,q Q=  index 

these divisions or permutations, and let nmqτ  denote the test statistic based on the q ’th permutation.  The 

α -level critical value of mnτ  is the (1 )α−  quantile of nmqτ  over 1,...,q Q= .  Denote this by * (1 )nmt α− .  

Then, 

 * 1

1

(1 ) inf : ( ) 1
Q

nm nmq
q

t t Q I tα τ α−

=

 
− = ∈ ≤ ≥ − 

 
∑ . 

If Q  is large, then * (1 )nmt α−  can be estimated with arbitrary accuracy by replacing the sums over all Q  

permutations of the observations with sums over a random sample of Q  permutations.  The α -level test 

rejects a correct 0H  with probability exactly α , even if * (1 )nmt α−  is estimated by this random sampling 

method (Lehmann and Romano 2005, p. 636).   

Among the ( )!n m+  permutations of the data, only the ( )!/ ( ! !)n m n m+  combinations consisting 

of one group of n  observations and another of m  observations yield distinct values of nmqτ .  Therefore, 

the permutation test can be defined in terms of combinations of the data, rather than permutations.  The 

critical value and properties of the test are the same, regardless of whether nmqτ  is defined using 

permutations or combinations. 

 To carry out the permutation test based on nmτ , define 

 

*

*

*

1 if (1 )

 if (1 )

0 if (1 )

nm nm

nm nm nm

nm nm

t
a t

t

τ α

ϕ τ α

τ α

 > −


= = −
 < −

 

where 

                                                      
4  The ordering of the observations in a permutation does not matter.  Therefore, the same test is obtained 

if one replaces Q  with the 
m n

m
+ 

 
 

 distinct combinations of the ( )n m+  observations. 



9 
 

 0
Q Qa

Q
α +−

= , 

 *

1
[ (1 )]

Q

nmq nm
q

Q I tτ α+

=
= > −∑ , 

and 

 0 *

1
[ (1 )]

Q

nmq nm
q

Q I tτ α
=

= = −∑ . 

Let nmφ  denote a Bernoulli random variable that is equal to one with probability nmϕ . By construction, a 
test that rejects 0H  if 1nmφ =  is a size α  test.  Such a test has a random outcome when * (1 )nm nmtτ α= − .  
A possibly conservative non-stochastic level α  test can be obtained by replacing a  above with 0. 

 2.3  The Combined Test 

 To form the combined test, let , (0,1)τ να α ∈ .  Let * (1 )nmt τα−  and nmφ  be the quantities defined 

in Section 2.2 but with τα  in place of α .  Let * (1 )nm νν α−  and nmφ  be the same quantities but with nmν  

in place of nmτ  and να  in place of α .  The combined test rejects 0H  if max( , ) 0nm nm nmη φ φ≡ > .  Thus, 

the combined test rejects 0H  if either the nmτ  test or the nmν  test rejects 0H .  The probability that the 

combined test rejects 0H  is [( 0) ( 0)]nm nmP φ φ> >

 .  It follows from the Bonferroni inequality that 

under 0H   

(2.12) max( , ) [( 0) ( 0)]nm nmPτ ν τ να α φ φ α α≤ > > ≤ +

 . 

Thus, for example, if 0.04τα =   and 0.01να = , the combined test rejects a correct 0H  with probability 

between 0.04 and 0.05.  Section 7 presents the results of Monte Carlo experiments that illustrate the 

power of the combined test with several combinations of τα  and να  satisfying 0.05τ να α+ = .  The 

results of the experiments, which are shown in Table 3, indicate that the level and rejection probability of 

the combined test are not very sensitive to the choices of τα  and να .5 

                                                      
5  An alternative approach to (2.12) consists of combining nmτ  and nmν  into a single statistic that has the 
correct size at least asymptotically.  However, nmτ  and nmν  have different scales.  Combining them in a 
way that does not cause one statistic to dominate the other requires rescaling both, possibly through 
Studentization of each or dividing each by an interquartile range, to put them on a common scale.  We 
know of no way to do this that preserves the validity of permutation tests and, thereby, the exact finite-
sample size of each test.  The combined test (2.12) preserves the validity of permutation tests, though at 
the cost of a slightly conservative combined test.  We believe this is an acceptable price to pay for control 
of finite-sample size. 
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3.  PROPERTIES OF THE TEST IN THE SINGLE TREATMENT CASE 

 3.1  Finite Sample Properties under 0H  

 The following theorem gives the finite-sample behavior of nmτ  and nmν  under 0H  with the 

critical values * (1 )nmt τα− , and * (1 )nmt να− , respectively.   

 Theorem 3.1:  Let assumptions 1 and 2 hold.  For any distribution P  that satisfies 0H  and any 

, (0,1),τ να α ∈  

 ( )P nmE τφ α= , 

and 

( )P nmE νφ α= .    

Theorem 3.1 implies that the true and nominal rejection probabilities of the tests based on nmτ  and nmν  

are equal regardless of: 

 1.  The measure µ  or probability density function Jf  that is used to define nmτ . 

 2.  Whether ( )iX t  and ( )iY t  are observed in continuous time or only at discrete points in time. 

 3. Whether the integrals in (2.7) and (2.9) are calculated in closed form or estimated by 

simulation as in (2.8). 

 4.  Whether *
nmt  and *

nmt  are computed using all Q  possible permutations of the data or only an 

independent random sample of Q Q<  permutations. 

Theorem 3.1 also implies that nmη  satisfies (2.12) when 0H  is true. 

 3.2  Asymptotic Properties when 0H  is False 

 This section presents conditions under which tests based on nmτ , nmν , and nmη  reject a false 0H  

with probability approaching 1 as ,n m → ∞ .  The asymptotic local power functions of tests based on nmτ  

and nmν  are presented in the appendix.  These functions show that under assumption 3 below, the nmτ  

test has non-trivial power against alternatives whose distance from the null hypothesis is 1/2( )O n− .  The 

nmν  test has non-trivial power against alternatives for which the distance measure 2[ ( ) ( )]E X t Y t dt−∫  is 

1/2( )O n− .  “Non-trivial power” means that the probability of rejecting a false null hypothesis exceeds the 

probability of rejecting a correct one.  It follows from the definition of nmη  that the asymptotic local and 

finite sample powers of tests based on nmη  equal or exceed the powers of separate tests based on nmτ  and 

nmν  at the τα  and να  levels, respectively.  The asymptotic local power functions of nmτ  and nmν  are 
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very complicated and, consequently, not useful for comparing the local powers of nmτ  and nmν  with each 

other and with the local powers of other tests. Section 7 presents the results of a Monte Carlo 

investigation of the powers of the tests. 

To obtain the limiting probabilities with which tests based on nmτ  and nmν  reject a false 0H , 

make 

 Assumption 3:  As n → ∞ , ( )m m n= → ∞  and /m n λ→  for some finite 0λ > .  

 The following theorems give conditions for consistency of the nmτ  and nmν  tests against a false 

0H  when ( )X t  and ( )Y t  are observed in continuous time or at discrete times.   

 Theorem 3.2:  Let assumptions 1 and 3 hold.   

a. If ( )X y  and ( )Y t  are observed in continuous time, 0 1να< < , and 

(3.1) 2[ ( ) ( )] ( ) 0X YF z F z d zµ− >∫ , 

then  

*lim [ (1 )] 1nm nmn
P t ττ α

→∞
> − = .  

b. If ( )X t  and ( )Y t  are observed at the discrete time points 1,..., Jt t , 0 1να< < , and µ  

concentrates on points { ( ) : 1,..., }jz t j J= , then the conclusion of part a. holds.    

 Theorem 3.3:  Let assumptions 1-3 hold.   

a. If ( )X y  and ( )Y t  are observed in continuous time, 0 1να< < , and 

2
0

[ ( ) ( )] 0
T

EX t EY t dt− >∫ ,  

then  

*lim [ (1 )] 1nm nmn
P t νν α

→∞
> − = .   

b. If ( )X y  and ( )Y t  are observed at the discrete time points 1,..., Jt t , 0 1να< < , and 

2

1
[ ( ) ( )] 0

J

j j
j

EX t EY t
=

− >∑ ,  

then  

*lim [ (1 )] 1nm nmn
P t νν α

→∞
> − = .     

 Theorem 3.2 implies that the test based on nmη  rejects 0H  with probability approaching 1 as 

n → ∞  if condition (3.1) holds. 
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4.  EXTENSION TO MULTIPLE TREATMENTS 

This section outlines the extension of the results of Sections 2 and 3 to the case in which there are two or 

more treatment groups and a single control group.  We assume that the outcomes of all treatment groups 

are continuously observed.  Results for nmτ  and discretely observed outcomes can be obtained by 

replacing the measure µ  for continuously observed outcomes with a measure that concentrates on the 

observed times { : 1,..., }jt j J= .  Results for nmν  and discretely observed outcomes can be obtained by 

replacing (2.10) with (2.11).  As in Section 2.3, the test based on the multiple treatment extension of nmη  

rejects 0H  if the multiple-treatment extension of either nmτ  or nmν  rejects 0H . 

Let 0,1,...,s S=  index treatment groups with the control group labelled 0s = .  Let ( )sX t  denote 

the outcome process in treatment group s .  For each 0,...,s S=  define the cumulative distribution 

function 

 ( ) [ ( ) ( ) for all ]s sF z P X t z t t= ≤ ∈ . 

The null hypothesis is 

 0 0: for all 1,...,sH F F s S= = . 

The alternative hypothesis is 

 1 0: [ ( ) ( ) for some 1,..., ] 0sH P F Z F Z s Sµ ≠ = > . 

Let { ( ) : 1,..., }is sX t i n=  denote a random sample (sample paths) of sn  realizations of ( )sX t .  Define 

0
S

ss
n n

=
= ∑ .  The following assumptions extend assumptions 1-3 to the case of multiple treatments.   

 Assumption 1´:  (i) ( )sX t  ( 0,...,s S= ) is a separable, µ -measurable stochastic process.  (ii)  For 

each 0,..,s S= , { ( ) : 1,..., }is sX t i n=  is an independent random sample of the process ( )sX t .  Moreover, 

( )isX t  and ( )jsX t


 are independent of each other if ( , ) ( , )i s j s≠  . 

 Assumption 2´:  ( )sEX t  exists and is finite for all [0, ]t T∈  and 0,...,s S= .  

 Assumption 3´:  For each s  there is a constant 0sπ >  such that /s sn n π→  as n → ∞ .  

 For each 0,...,s S=  define the empirical distribution function 

 1

1

ˆ ( ) [ ( ) ( ) for all ]
n

s s is
i

F z n I X t z t t−

=

= ≤ ∈∑  . 

Let µ  be the measure defined in Section 2.1, and define 0 1( , ,..., )Sn n n ′=n .  The extensions of nmτ  and 

nmν  to the multiple treatment case are 
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 2
0 0

1

ˆ ˆ( ) [ ( ) ( )] ( )
S

s s
s

n n F z F z d zτ µ
=

= + −∑ ∫n  

and 

 2
0 00

1

ˆ ˆ( ) [ ( ) ( )]
S T

s s
s

n n EX t EX t dtν
=

= + −∑ ∫n . 

The multiple-treatment test is implemented by permuting the observed sample paths so that there are sn  
permuted observations in treatment group s .  Let qτn  and qν n  denote the statistics obtained from 
permutation q .  The critical values of τn  and ν n  are obtained using the method described in Section 2.2 
with nmqτ  and nmqν , respectively, replaced by qτn  and qν n .  Denote the α -level critical values by 

(1 )t α−*
n  and (1 )t α−

*
n .  As in the single-treatment case, the α -level multiple-treatment tests based on  

τn  and ν n  reject a correct 0H  with probability exactly α .  Let max( , ) 0n nη φ φ≡ >

n  if the combined test 
rejects 0H  and 0η =n  otherwise.  The combined test rejects a correct 0H  with probability between 
max( , )τ να α  and τ να α+ .  
 The multiple-treatment analogs of the continuous time versions of Theorems 3.2 and 3.3 are: 

Theorem 4.1:  Let assumptions 1´ and 3´ hold.  If ( )sX t  is observed in continuous time, 

0 1,α< <  and 

(4.1) 2
0

1
[ ( ) ( )] ( ) 0

S

s
s

F z F z d zµ
=

− >∑∫ , 

then  

*lim [ (1 )] 1
n

P tτ α
→∞

> − =n n .    

 Theorem 4.2:  Let assumptions 1´-3´ hold.  If ( )sX t  is observed in continuous time for all s , 

0 1α< < , and 

2
00

1
[ ( ) ( )] 0

S T
s

s
EX t EX t dt

=
− >∑∫ ,  

then  

*lim [ (1 )] 1
n

P t νν α
→∞

> − =n n .    

Theorem 4.1 implies that the multiple treatment extension of the combined test rejects 0H  with 

probability approaching 1 as n → ∞  if condition (4.1) holds. Similar results apply to the discrete-time 

versions of the multiple treatment tests. 
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5.  THE MEASURE μ  

 As was stated in Section 2.1, the measure µ  influences the directions of departure from 0H  in 

which tests based on nmτ  and τn  have high power.  This section presents informal suggestions about how 

µ  can be constructed.  We emphasize that regardless of the choice of µ , the probability that α -level 

permutation tests based on nmτ  and τn  reject a correct null hypothesis is exactly α .  A more formal 

approach to constructing µ  is outlined at the end of this section. 

 To obtain a flexible class of measures, let { : 1,2,...}k kψ =  be a complete, orthonormal basis for 

2[ ]L  .  We use a basis of trigonometric functions in Sections 6 and 7, but the same measure can be 

generated with any complete, orthonormal basis.  Let µ  be the probability measure generated by the 

random function 

(5.1) 
1

( ) ( )k k
k

Z t b tψ
∞

=

= ∑ , 

where the Fourier coefficients { : 1,2,...}kb k =  are random variables satisfying 

(5.2) 2

1
k

k
b

∞

=

< ∞∑  

with probability 1.  Sample paths ( )jZ t  are generated randomly by sampling the kb ’s randomly from 

some distribution such that (5.2) holds with probability 1.  The distribution of the kb ’s implies the 

measure µ .  Therefore, µ  can be specified by specifying the basis functions { }kψ  and the distribution of 

the Fourier coefficients { }kb , which ensures that µ  is a probability distribution on 2( )L  .  The test 

statistic can be computed using (2.8) by truncating the infinite sum in (5.1) at some integer K , randomly 

sampling the kb ’s and computing ( )iZ t ’s as 

 
1

( ) ( )
K

i ki k
k

Z t b tψ
=

= ∑ , 

where kib  is the i ’th realization of the random variable kb . 

 The mean of ( )Z t  is 

 
1

[ ( )] ( ) ( )
K

k k
k

E Z t E b tψ
=

= ∑ . 

An investigator who expects | [ ( )] [ ( )] |X YF z t F z t−  to be relatively large in certain ranges of t  can choose 

[ ( )]E Z t  to be a function, say ( )w t , that is large in those ranges and set 
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0

( ) ( ) ( )
T

k kE b w t t dtψ= ∫ . 

An investigator who has no such expectations might choose ( )w t  to be a constant.  Given a choice of 

( )w t  and the resulting mean Fourier coefficients ( )kE b , the kb ’s can be specified as 

 ( )k k k kb E b Uρ= + , 

where the kU ’s are random variables that are independently and identically distributed across values of k  

with ( ) 0kE U =  and ( ) 1kVar U = , and the kρ ’s are non-stochastic constants satisfying 

 2

1
k

k
ρ

∞

=
< ∞∑ . 

The distributions of the kU ’s can set equal to 1/3 1/3[ 3 ,3 ]U −  or (0,1)N  if the distributions of the processes 

( )X t  and ( )Y t  have thin tails.  If ( )X t  and ( )Y t  have heavy-tailed distributions, then one might 

consider taking the variables kU  to have heavy-tailed distributions such as Student- t  with a low number 

of degrees of freedom. 

 A more formal approach to choosing µ  is to specify an alternative hypothesis, specify the 

distributions of the Fourier coefficients kb  up to finitely many parameters, and choose the parameters 

through Monte Carlo simulation to maximize power.  The computation required to implement this 

approach is difficult and time-consuming, because the objective function of the optimization problem is 

non-convex and must be evaluated through high-dimensional numerical integration.  We carried out the 

power-optimization approach with several of the Monte Carlo designs described in Section 7 and found 

that it produced little increase in power over the informal choice of µ  described in Section 6. 

6.  AN EMPIRICAL APPLICATION 

This section reports the application of the ηn  test to data produced by the smart metering 

consumer behavior trial (CBT) for gas conducted by the Commission for Energy Regulation (CER) of 

Ireland.  The CER is Ireland’s independent regulator of electricity and natural gas.  The goal of the CBT 

was to investigate the effects of several different billing and pricing treatments on residential customers’ 

consumption of gas.  The gas consumption of each customer in the CBT was measured every half hour by 

a smart meter.  The CER kindly provided the data produced by the CBT and related documentation 

(Commission for Energy Regulation 2011). 

 The CBT was divided into two periods, a baseline period that took place from December 2009 

through May 2010 and an experimental period that took place from June 2010 through May 2011.  

During the baseline period, all customers participating in the CBT were charged the standard rate for gas 
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and were billed bimonthly in the usual way.  During the experimental period, customers were assigned 

randomly to a control group or one of four treatment groups.  Customers then received different 

treatments depending on their assignments.  Customers in the control group continued to be charged the 

standard rate and billed bimonthly.  Customers in the first treatment group were charged at the standard 

rate and billed bimonthly but also received a detailed report on their energy usage with recommendations 

about how to reduce consumption.  Customers in the second treatment group were charged the standard 

rate but billed monthly instead of bimonthly.  Customers in the third treatment group were charged at the 

standard rate and billed bimonthly but also received an in-home electronic device that displayed their 

instantaneous gas consumption and its cost.  Customers in the fourth treatment group, like those in the 

third group, were billed bimonthly and received the in-home device.  In addition, these customers were 

charged a variable rate according to the seasonal wholesale cost of procuring gas.  Depending on the 

season, the rate these customers were charged was between 16 percent below the standard rate (in June 

through September 2010) and 17 percent above the standard rate (in December 2010 and January 2011).   

The analysis in this section is concerned with gas consumption during the experimental period, 

when customers received different treatments depending on their assignment.  We test the null hypothesis 

that the distributions of gas consumption by customers in the four treatment groups and the control group 

were the same in each month from June through December 2010.  The data consist of observations of the 

gas consumption of 1492 customers at half-hour intervals.  The numbers of customers in the treatment 

and control groups are shown in Table 1.   

Figures 1-3 provide an informal illustration of the differences between the distributions of gas 

consumption in the five groups.  Figure 1 shows average monthly gas consumption by customers in the 

control and four treatment groups; Figure 2 shows the average standard deviation of customers’ 

consumption; and Figure 3 shows the average correlation coefficient of consumption in consecutive half-

hour periods.  It can be seen that the differences among the means and standard deviations of 

consumption in the different treatment groups are small, but there are larger differences among the 

correlation coefficients.  Thus, the main effect of the experimental treatments appears to be a shift in the 

dependence structure of gas consumption. 

We applied the multiple group version of the ηn  test and the test of SR to consumption in each of 

the months from June through December.  The statistic ηn  combines τn  and ν n .  We used a 

trigonometric basis in (5.1) and a truncated series expansion to compute τn .  Thus, (5.1) became 

( 1)/2 ( 1)/2

1 2 2 1
1 1

( ) 2 cos[ (2 ) / ] 2 sin[ (2 ) / ]
K K

k k
k k

Z t b b k t T T b k t T Tπ π
− −

+
= =

= + − + −∑ ∑ , 

where K  is an integer and T  is the number of half hours in a month.  The Fourier coefficients were 
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 ( )1 1~ ,1 /b N Kµ , 

where 

1 median max { ( ) : 1,...,1492; 1,..., }i t iX t i t Tµ = = =  

and 

 ( )~ 0,1 / ; 1kb N K k > . 

The parameter 1µ  is the mean of ( )Z t  and is set near the center of the support of the data.  Our test would 

have low power if 1µ  were outside of or too close to the boundaries of the support.  We computed p -

values for the ηn  test for 3,5,...,25K =  and found little variation over this range.  Therefore, we report 

only p -values for 25K = .  The integrals in the definition of τn  are population averages of functionals of 

( )Z t .  We used 4000L =  draws of ( )Z t  to approximate these integrals.  Equation (2.8) shows the 

approximation for the single-treatment case.  The approximation for multiple treatments, as in the CBT, is 

similar.  We used 500 permutations of the data to compute critical and p-values for the τn , ηn , and SR 

tests.  We used four different ( , )τ να α  pairs to compute ηn :  (0.02,0.03) , (0.025,0.025) , (0.03,0.02) , 

and (0.04,0.01) .  These values yield the 0.05 significance level.  To obtain any other significance level 

α , we rescaled the foregoing values so as to achieve the desired α  without changing /ν τα α .  For 

example, ( , ) (0.02,0.03)τ να α =  was rescaled to ( , ) (0.02,0.03) / 0.05ν τα α α= .  The corresponding p -

value is the value of α  at which nη  switches from 0 to 1.  

The results of the tests are shown in Table 2.  Rows 1-4 of Table 2 show the p -values obtained 

with the ηn  test.  Row 5 shows the p -values obtained with the nτ  test.  Row 6 shows the p -values 

obtained using the test of SR.  All p -values are in percentages.  The ηn  test rejects the null hypothesis of 

no treatment effect at the 0.05  level in August. It rejects the null hypothesis at the 0.10  level in July 

when ( , ) (0.04,0.01)τ να α =  and ( , ) (0.03,0.02)τ να α =  but not for the other values of ( , )τ να α .  The nτ  

test rejects the null hypothesis of no treatment effect at the 0.05 level in August and at the 0.10 level in 

July and September.  The ηn  test does not reject the null hypothesis in September through December.  

The SR test does not reject the null hypothesis in any of the months June through December ( 0.118p >  

in each month).  The ηn , nτ , and SR tests are permutation tests, so all have correct finite-sample sizes.  

Therefore, the results shown in Table 2 indicate that the ηn  and nτ  tests detect a treatment effect that is 

not detected by the SR test. 
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7.  MONTE CARLO EXPERIMENTS 

 This section reports the results of Monte Carlo experiments that explore the finite-sample 

properties of the τn  and ηn  tests.  The designs of the experiments are based on the empirical illustration 

of Section 6.  We simulate observations of half-hour gas consumption during a 30-day month.  Thus, 

{1,..., }T=  with 1440T =  half hours.  Each simulated dataset consists of 150n =  individuals who are 

distributed evenly among a control group and two treatment groups.  Thus, 0,1,2s = , 0 1 2 50n n n= = = , 

and 2
0

150ss
n n

=
= =∑ .  Each simulated dataset { ( ) : ; 1,..., ; 0,1,2}is sX t t i n s∈ = =  was generated as 

follows: 

 1.  Draw random variables { ( ) : ( , ) {1,..., } ; 0,1,2}is t i t n sξ ∈ × =   independently from the (0,1)N  

distribution. 

 2.  For all 1,..., si n=  and 0,1,2s = ; set (0) (0)is isX ξ= . 

 3.  For all 1,..., si n= ; 0,1,2s = ; and t ∈ , set 2( ) ( ) ( 1) ( ) 1 ( )is s is is sX t t X t t tρ ξ ρ= − + −  , where 

( )s tρ  is a parameter defined below. 

 4.  For all 1,..., si n= ; 0,1,2s = ; and t ∈ , set ( ) ( ) ( ) ( )is s s isX y t t X tµ σ= +  , where ( )s tµ  and 

( )s tσ  are parameters defined below.  

The resulting random variables { ( ) : ; 1,..., ; 0,1,2}is sX t t i n s∈ = =  are normally distributed 

with 

 1.  [ ( )] ( )is sE X t tµ= . 

 2.  2[ ( )] ( )is sVar X t tσ= . 

 3.  [ ( ), ( 1)] ( )is is sCorr X t X t tρ− =  for all t ∈  with 1t > . 

In addition, 
1 1 1( )i sX t  is independent of 

2 2 2( )i sX t  if 1 2i i≠  or 1 2s s≠ . 

 The specification of the experimental design is completed by defining the parameters ( )s tµ , 

( ),s tσ  and ( )s tρ .  We chose the parameters of the control group ( 0s = ) to correspond to the CBT data in 

June 2010.  For values of t  corresponding the first half hour of the day ( 1,49,97,...t = ) we set 

0 0 0[ ( ), ( ), ( )]t t tµ σ ρ  equal to the averages of those parameters in the CBT data over the first half hours of 

days in June 2010.  For values of t  corresponding to the second half hour of each day ( 2,50,98,...)t =  we 

set 0 0 0[ ( ), ( ), ( )]t t tµ σ ρ  equal to the averages of those parameters in the CBT data over the second half 

hours of days in June 2010.  The values of 0 0 0[ ( ), ( ), ( )]t t tµ σ ρ  for the remaining half hours were set 

similarly.  The values of [ ( ), ( ), ( )]s s st t tµ σ ρ  ( 1,2)s =  for the two treatment groups varied according to 
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the experiment.  We did experiments with 10 different sets of values of [ ( ), ( ), ( )]s s st t tµ σ ρ , which we call 

parameter designs.  The 10 parameter designs are: 

 1.  No treatment effect:  0 0 0[ ( ), ( ), ( )] [ ( ), ( ), ( )]s s st t t t t tµ σ ρ µ σ ρ=  for all t  and 1,2s = . 

 2.  Mean shift for treatment group 1:  1 1 1 0 0 0[ ( ), ( ), ( )] [ ( ) 0.05, ( ), ( )]t t t t t tµ σ ρ µ σ ρ= +  and 

2 2 2 0 0 0[ ( ), ( ), ( )] [ ( ), ( ), ( )]t t t t t tµ σ ρ µ σ ρ= . 

3.  Mean shift for both treatment groups: 1 1 1 2 2 2[ ( ), ( ), ( )] [ ( ), ( ), ( )]t t t t t tµ σ ρ µ σ ρ=

0 0 0[ ( ) 0.05, ( ), ( )]t t tµ σ ρ= + . 

4.  Mean shift for treatment group 1 and variance shift for treatment group 2: 

1 1 1 0 0 0[ ( ), ( ), ( )] [ ( ) 0.05, ( ), ( )]t t t t t tµ σ ρ µ σ ρ= +  and 2 2 2 0 0 0[ ( ), ( ), ( )] [ ( ), ( ) 0.05, ( )]t t t t t tµ σ ρ µ σ ρ= + . 

5.  Mean shift for treatment group 1 and correlation shift for treatment group 2:  

1 1 1 0 0 0[ ( ), ( ), ( )] [ ( ) 0.05, ( ), ( )]t t t t t tµ σ ρ µ σ ρ= +  and 2 2 2 0 0 0[ ( ), ( ), ( )] [ ( ), ( ), ( ) 0.2]t t t t t tµ σ ρ µ σ ρ= + . 

6.  Variance shift for treatment group 1:  1 1 1 0 0 0[ ( ), ( ), ( )] [ ( ), ( ) 0.05, ( )]t t t t t tµ σ ρ µ σ ρ= +  and 

2 2 2 0 0 0[ ( ), ( ), ( )] [ ( ), ( ), ( )]t t t t t tµ σ ρ µ σ ρ= . 

7.  Variance shifts for both treatment groups:  1 1 1 2 2 2[ ( ), ( ), ( )] [ ( ), ( ), ( )]t t t t t tµ σ ρ µ σ ρ=

0 0 0[ ( ), ( ) 0.05, ( )]t t tµ σ ρ= + . 

8.  Correlation shift for treatment group 1:  1 1 1 0 0 0[ ( ), ( ), ( )] [ ( ), ( ), ( ) 0.2]t t t t t tµ σ ρ µ σ ρ= +  and 

2 2 2 0 0 0[ ( ), ( ), ( )] [ ( ), ( ), ( )]t t t t t tµ σ ρ µ σ ρ= . 

9.  Correlation shift for treatment group 1 and variance shift for treatment group 2: 

1 1 1 0 0 0[ ( ), ( ), ( )] [ ( ), ( ), ( ) 0.2]t t t t t tµ σ ρ µ σ ρ= +  and 2 2 2 0 0 0[ ( ), ( ), ( )] [ ( ), ( ) 0.05, ( )]t t t t t tµ σ ρ µ σ ρ= + . 

10.  Correlation shift for both treatment groups:  1 1 1 2 2 2[ ( ), ( ), ( )] [ ( ), ( ), ( )]t t t t t tµ σ ρ µ σ ρ=

0 0 0[ ( ), ( ), ( ) 0.2]t t tµ σ ρ= + . 

There were 1000 Monte Carlo replications in each experiment.  Each experiment consists of 

computing the empirical probability that the null hypothesis of no treatment effect is rejected at the 

nominal 0.05 level.  We compare the rejection probabilities of the τn  and ηn  tests with the those of the 

SR test .  We used several different values of τα  and να  in the ηn  test.  In all cases, 0.05τ να α+ =  to 

ensure that the probability of rejecting a correct 0H  does not exceed 0.05.  The power of the τn  test and, 

therefore, of the ηn  test, depends on K .  Accordingly, we carried out experiments with 3,5,...,25K = .  

In all experiments, the power of both tests is a monotonically increasing function of K  that becomes flat 
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when K  reaches approximately 20.  See Figures A4 and A5.  Therefore, we display powers only for 

25K = .  All experiments used 4000L = in the tests based on τ n  and ηn .6   

The results of the experiments are shown in Table 3.  The results with design 1 indicate that the 

tests all have empirical probabilities of rejecting a correct null hypothesis that are close to the nominal 

probability.  All of the tests are permutation tests, so this result is expected.  The SR test is more powerful 

than the τn  test in parameter designs 2-3, which consist of a mean shift.  The ηn  and SR tests have 

similar powers in design 4, which has a variance shift in addition to a mean shift.  In designs 5-10, which 

include variance or correlation shifts or both, the ηn  test is more powerful than the SR test.  The SR test 

has especially low power in designs 6-10.  These designs include variance and correlation shifts but not 

mean shifts.  The SR test has high power only in the designs that include mean shifts. 

The power of ηn  against mean shifts is similar to or higher than the power of SR when 

0.025τα =  and 0.02τα = , whereas the τn  test has low power against mean shifts.  This motivates the 

test based on ηn , which combines τn  with .ν n   As is suggested by the low power of the τn  test against 

mean shifts, the power of the ηn  against mean shifts is lower when 0.04τα =  than when τα  has lower 

values.  The power of the nmη  test against alternatives that do not involve mean shifts is highest when 

0.04τα = .  The results of the experiments show that the ηn  test overcomes the weakness of the τn  test 

against mean shifts without substantially reducing power against variance and correlation shifts.  We 

conclude that the test based on ηn  has good overall power compared to the SR test.  The test based on ηn  

is particularly good at detecting correlation shifts.  We believe that this explains the empirical results of 

Section 6, as the CBT experimental treatment changed the correlation structure of gas consumption but 

had little effect on the mean or variance. 

8.  CONCLUSIONS 

 Economic data are often generated by stochastic processes that take place in continuous time, 

though observations may occur only at discrete times.  Data generated by a continuous time stochastic 

process are called functional data.  This paper has been concerned with comparing two or more stochastic 

processes that generate functional data.  The data may be produced by a randomized experiment in which 

there are multiple treatments.  The paper has presented a permutation test of the hypothesis that the same 

stochastic process generates all the functional data.  The test described here applies to functional data and 

                                                      
6  We also carried out experiments with permutation tests based on the nearest neighbor statistic of Schilling (1986) 
and Henze (1988).  The powers of tests based on this statistic were much lower than the powers of tests based on the 
other statistics.  Consequently, we do not show Monte Carlo results for the tests based on the nearest neighbor 
statistic. 
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multiple treatments.  The results of Monte Carlo experiments and an application to an experiment on 

billing and pricing of natural gas have illustrated the usefulness of the test. 
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APPENDIX:  PROOFS OF THEOREMS AND ADDITIONAL MONTE CARLO RESULTS 

  Section A.1 presents the proofs of Theorems 3.1-3.3, 4.1, and 4.2.  Section A.2 presents auxiliary 

lemmas that are used in the proofs of the theorems.  Section A.3 presents theorems giving the asymptotic 

local power functions of tests based on nmτ  and nmν . Section A.4 presents the results of a Monte Carlo 

investigation of the sensitivity of the nτ , nη , SR, and HT tests to various tuning parameters. 

 A.1  Proofs of Theorems 3.1-3.3, 4.1, and 4.2 

We present proofs only for nmτ .  The proofs for nmν  are the same after replacing nmτ  with nmν . 

Let nmG  denote the group of ( )!Q m n= +  permutations of the m n+  observations 

{ : 1,..., ; : 1,..., }i iX i n Y i m= =  that produce one set of n  observations and another of m  observations.  

Let ( , ) { : 1,..., ; : 1,..., }n m i iX i n Y i m= = =   denote the original sample and ( , )nq mq   denote the 

' thq  permutation.  Then 

 ( , ) ( , )nq mq n mg=     

for some function nmg ∈G .   

 Proof of Theorem 3.1:  For any supp( )nmw∈  , the α -level permutation test based on nmτ  can 

be written 

(A.1) 

( )

( )

( )

ˆ ˆ1  if ( ) ( )
ˆ ˆ( ) ( )  if ( ) ( )

ˆ ˆ0  if ( ) ( ),

k

k

k

T w T w

w a w T w T w

T w T w

ϕ

 >
= =
 <

  

where ˆ( )T w  denotes nmτ  when nm w= , ( )ˆ ( )kT w  denotes the k ’th largest value of ˆ{ ( )}gT gw ∈G , 

sup{ : }k Q Qγ γ α= − ∈ ≤ ,  

0 ( )ˆ ˆ( ) [ ( ) ( )]k
gQ w I T gw T w
∈

= =∑ G , 

( )ˆ ˆ( ) [ ( ) ( )]k
gQ w I T gw T w+
∈

= >∑ G  , 

 and  
0( ) [ ( )] / ( )a w Q Q w Q wα += − . 

Let ( )ˆ ( )kT gw  denote the k ’th largest value of  ˆ( )T gw .  For each g ∈G , ( ) ( )ˆ ˆ( ) ( )k kT w T gw= , 

0 0( ) ( )Q gw Q w= , and ( ) ( )Q gw Q w+ += .  Consequently, ( ) ( )a gw a w= .  Moreover,   



23 
 

 

( )

( )

( )

ˆ ˆ1  if ( ) ( )
ˆ ˆ( ) ( )  if ( ) ( )

ˆ ˆ0  if ( ) ( )

k

k

k

T gw T w

gw a w T gw T w

T gw T w

ϕ

 >
= =
 <

 

and 

 0 0
0

( )( ) ( ) ( ) ( ) ( ) ( )
( )g

Q Q wgw Q w a w Q w Q w Q w Q
Q w

αϕ α
+

+ +

∈

−
= + = + =∑

G
.  

Therefore, if ~nm P  for some distribution P  supported on supp( )nm , then 

(A.2) 1 { [ ( )]}P nm
g

Q E gϕ α−

∈
=∑

G
 . 

Under 0H , nm  is an independently and identically distributed sample of size n m+  with cumulative 

distribution function X YF F F= = .  Therefore, for any permutation g G∈ , ~ ( )nm nmg  .  

Consequently, 

(A.3) [ ( )] { [ ( )]}P nm P nmE E gϕ ϕ=  . 

The theorem follows by combining (A.2), (A.3), and | |Q = G .  Q.E.D. 

 Proposition A.1:  Define ( , )nm n m=   , and let nmP  denote the probability distribution of nm

.  Let nmG  and nmG′  be random variables that are uniformly distributed on nmG  independently of nm  

and each other.  Let ( )nm nm nmGτ   denote the test statistic nmτ  evaluated using the transformed 

observations nm nmG  .  Suppose that under the sequence of probability measures { : , 1,..., }nmP n m = ∞  

and as , ,n m → ∞  

 [ ( ), ( )] ( , )d
nm nm nm nm nm nmG Gτ τ τ τ′ ′→  , 

where τ  and τ ′  are independently and identically distributed random variables with cumulative 

distribution function ( )R ⋅ .  Define 

 (1 ) inf{ : ( ) 1 }r t R tα α− = ∈ ≥ − . 

Then, 

 1.  As ,n m → ∞ , ˆ ( ) ( )p
nmR t R t→  for every t  that is a continuity point of R . 

 2.  If ( )R t  is continuous and strictly increasing at (1 )t r α= − , then  

  * (1 ) (1 )p
nmt rα α− → −  

as ,n m → ∞ . 
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 3.  Let d
nm Zτ →  as ,n m → ∞ , where Z  is a random variable with cumulative distribution 

function  .  Then  

*
,(1 )

*

,

(a) lim ( ) liminf [ (1 )]

limsup [ (1 )] [ (1 )]

nm nm nmn ms r

nm nm nm
n m

s P t

P t r

α
τ α

τ α α

− →∞→ −

→∞

≤ ≤ −

≤ ≤ − ≤ −





 

(b)  If ( )t  is continuous at (1 )t r α= − , then  

 *
,
lim [ (1 )] [ (1 )]nm nm nmn m

P t rτ α α
→∞

≤ − = − .    

Proof:  Parts 1 and 2 are proved by Lehmann and Romano (2005, Theorem 15.2.3).  Part 3(a) is 

similar to Lemma 5 of Andrews and Guggenberger (2010).  Part 3(b) is a corollary of part (a).  Q.E.D. 

  The following notation is used in Lemma A.2, which is stated in the next paragraph.  Let   

denote the fixed subset of [0, ]T=  on which ( )X t  and ( )Y t  are observed.  1{ ,..., }Jt t=  if ( )X t  and 

( )Y t  are observed only at the discrete times 1,..., Jt t .  [0, ]T=  if ( )X t  and ( )Y t  are observed in 

continuous time.  Let ( , ) [ ( ) ( ) ]XF z P X t z t t= ≤ ∀ ∈   and ( , ) [ ( ) ( ) ]YF z P Y t z t t= ≤ ∀ ∈  .   

For any function ( )D z  satisfying 2( )D z dµ < ∞∫ , define 

 1/2( , ) ( , ) ( ) ( )nX YF z F z n m D z−= + +  . 

Let { : 1,2,...}k kψ =  be a complete orthonormal basis for 2( )L µ  with the properties that are specified 

after (A.4) below.  Let ( )ζϒ  be a Gaussian process indexed by Jζ ∈  that has mean zero and 

covariance function 

 2cov[ ( ), ( )] [(1 ) / ]{ [min( , )] ( ) ( )}Y Y YF F Fζ ζ λ λ ζ ζ ζ ζϒ ϒ = + −    , 

where min( , )ζ ζ  is the 1J ×  vector whose j ’th component ( 1,...,j J= ) is min( , )j jζ ζ .  Define ( )zϒ  as 

a Gaussian process indexed by 2( )z L µ∈  with mean zero and covariance function 

 2cov[ ( ), ( )] [(1 ) / ]{ [min( )] ( ) ( )}Y Y Yz z F z z F z F zλ λϒ ϒ = + −,   , 

where min( , )z z  is the function of t ∈   defined by min( , ) {min[ ( ), ( )] : }z z z t z t t= ∈   .  Let *ϒ  be the 

process ϒ  defined if 1{ ,..., }Jt t=  and the process ϒ  if [0, ]T= .  Then  

 *
1 1( ){ ( )} ( ) ~ ( , )K

k k K Kz z d z Nψ µ= ×ϒ Σ∫ 0   

for any positive integer K , where KΣ  is the K K×  matrix whose ( , )k k  component is 
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(A.4) 2
,( ) [( 1) / ] { [min( , ); ] ( ; ) ( ; )} ( ) ( ) ( ) ( )K Y Y Y kk k kz z

F z z F z F z z z d z d zλ λ ψ ψ µ µΣ = + −∫ ∫ 



      .  

The basis { : 1,2,...}k kψ =  can always be chosen so that 

 ,
1
( )K k k

k

∞

=

Σ < ∞∑ . 

Define N n m= + , and let { : 1,..., }iW i N= =  denote the combined samples of observations of X  and 

Y  with i iW X=  if 1 i n≤ ≤  and i iW Y=  if 1n i n m+ ≤ ≤ + . 

 Lemma A.2:  Let assumptions 1 and 2 hold.  Let Nq  and Nq  be two permutations of {1,..., }N  

that are sample independently from the uniform distribution on {1,2,..., }N .  Then 

 ( , ) ( , )
N N

d
nmq nmqτ τ τ τ→  , 

where τ  and τ  are independently distributed as * 2( ) ( )z d zµϒ∫ .     

 Proof:   For any permutation {1,..., }q Q∈  of {1,2,..., }N  , let qi  denote the position in the 

permutation of observation i  of  .  For any function ( )z t  ( t ∈ ) define 

 1/2

1
( ) [ ( ) ( ) ]

N

Nq iq i
i

H z N U I W t z t t−

=
= ≤ ∀ ∈∑  , 

where 

 ( / ) ( ) ( / ) ( )iq q qU N n I i n N m I i n= ≤ − > . 

Then 

 2 2( , ) ( ) ( ), ( ) ( )
N N N Nnmq nmq Nq NqH z d z H z d zτ τ µ µ =  ∫ ∫ 

  

By the Cramér-Wold device, it suffices to show that  

 
N N

d
Nq Nqατ βτ ατ βτ+ → +



 . 

for any constants α  and β .  For any positive integer K  and any { , }N Nq q q∈  , 

 
1

1 2

( ) ( )

( ) ( ),

Nq Nqk k
k

NqK NqK

H z c z

H z H z

ψ
∞

=
=

= +

∑
   

 where 

 ( ) ( ) ( )Nqk Nq kc H z z d zψ µ= ∫ , 
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 1
1

( ) ( )
K

NqK Nqk k
k

H z c zψ
=

= ∑ , 

and 

 2
1

( ) ( )NqK Nqk k
k K

H z c zψ
∞

= +
= ∑ . 

Also define 

 2 2
1 1

1
( ) ( )

K

NqK NqK Nqk
k

H z d z cτ µ
=

= = ∑∫   

and 

 2 2
2 2

1
( ) ( )NqK NqK Nqk

k K
H z d z cτ µ

∞

= +
= = ∑∫ , 

where the second equality in the both lines follows from orthonormality of { : 1,2,...}k kψ = .  Similarly, 

(A.5) * * *
1 2

1
( ) ( ) ( ) ( )k k K K

k
z b z z zψ

∞

=
ϒ = = ϒ + ϒ∑ , 

where 

(A.6) *( ) ( ) ( )k kb z z d zψ µ= ϒ∫ , 

(A.7) *
1

1
( ) ( )

K

K k k
k

z b zψ
=

ϒ = ∑ , 

and 

(A.8) *
2

1
( ) ( )K k k

k K
z b zψ

∞

= +
ϒ = ∑ . 

Also define 

(A.9) * 2 2
1 1

1
( ) ( )

K

K K k
k

z d z bτ µ
=

= ϒ = ∑∫   

and 

(A.10) * 2 2
2 2

1
( ) ( )K K k

k K
z d z bτ µ

∞

= +
= ϒ = ∑∫ . 

Let *( )zϒ  be a process that is independent of but has the same distribution as *( )zϒ .  Define *
1( )K zϒ ,  

*
2( )K zϒ , kb , 1Kτ , and 2Kτ  by replacing *( )zϒ  with *( )zϒ  in (A.5)-(A.10).   To prove the theorem, it 

suffices to show that 
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(A.11) 1 1
d

K Kατ βτ ατ βτ+ → +    

as K → ∞ ,  

(A.12) 1 1 1 1N N

d
Nq K Nq K K Kατ βτ ατ βτ+ → +



   

as N → ∞  for any positive integer K , and 

(A.13) 1 1 2 2( ) ( ) 0
N N N N N N

p
Nq Nq K Nq Nq K Nq K Nq Kα τ τ β τ τ ατ βτ− + − = + →

  

  

as N → ∞  followed  by K → ∞ . 

 We begin with (A.11).  It suffices to show that 1
p

Kτ τ→  and 1
p

Kτ τ→   as K → ∞ .  We show 

that 1
p

Kτ τ→ .  The same argument shows that 1
p

Kτ τ→  .  Now 1 2K Kτ τ τ− = , so (A.7) follows from 

 2
2

1
( ) ( ) 0K k

k K
E E dτ

∞

= +
= →∑   

as K → ∞  because *
2[ ( )] ( )E z L µϒ ∈ .   

Next we show that (A.12) holds.  For any positive integer K  define 

( )1 1{ } ,{ }
N N

K K
NK Nq k k Nq k kC c c= ==



  

and  

( )1 1{ } ,{ }K K
K k k k kB b b= ==  .   

Let KΣ


 be the 2 2K K×  matrix 

 
0

0
K K K

K
K K K

×

×

Σ 
Σ =  Σ 



, 

where KΣ  is defined in (A.4).  Part 2 of Lemma A.4 implies that (0, )d
NK K KC N B→ Σ




 as N → ∞ .  

Result (A.12) now follows from the continuous mapping theorem. 

 To prove (A.13), it suffices to show 2 0
N

p
Nq Kτ →  as N → ∞  followed by K → ∞ .  The same 

argument shows that 2 0
N

p
Nq Kτ →


 as N → ∞  followed by K → ∞ .   By Lemma A.3 in Section A.3,  
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1 2

2
2

1

1/2
1 2 1 2 1 2

1

1/2
, 2

2

( ) ( )

1 [(min( , )] ( ) ( ) ( ) ( )

2 1 ( ) ( ) ( ) ( ; ) ( ) ( ) ( ) 2
( 1)

( ) ( ) (

N NNq K Nq k
k K

k kz z
k K

k Y k K k kz z

k

E E c

mN D z z z z d z d z
n

m n mN D z z d z F z z d z
n m n

N D z z d

τ

ψ ψ µ µ

λψ µ ψ µ
λ

ψ µ

∞

= +

∞
−

= +

−

−

=

  = +  
 

      − + + Σ + +       +   

+

∑

∑ ∫ ∫

∫ ∫ 

2

1 1
) ( ) .

N N

n n

iq jqz
i j

z E U U
= =

    
∑∑∫

  

The last expression is bounded as N → ∞  for every positive integer K , which implies that 

 2lim lim ( ) 0
NNq KK N

E τ
→∞ →∞

= . 

The result (A.13) follows from this and Markov’s inequality.  Q.E.D.  

 Proof of Theorem 3.2:  Arguments like those used to prove Lemma A.2 show that 

( , ) / (0,0)
N N

p
nmq nmq Nτ τ →



.  Theorem 3.2 follows from this result.  Q.E.D. 

 Proofs of Theorem 3.3:  Same as the proof of Theorem 3.2 after replacing nmτ  with nmν .  Q.E.D. 

Proofs of Theorem 4.1 and 4.2:  These theorems follow from arguments similar to those used to 

prove Theorems 3.2-3.3.  Q.E.D. 

  A.2  Auxiliary Lemmas 

 Define D  and N  as in the paragraph preceding Lemma A.2. 

 Lemma A.3:  Let assumption 2 hold, and let Nq  and Nq  be two permutations of {1,..., }N  that 

are sampled independently from the uniform distribution on {1,2,..., }N . Let qi  denote the position of 

observation i  ( 1,...,i N= ) in permutation q  of the original sample.  Define 

 ( / ) ( ) ( / ) ( )
N N Niq q qU N n I i n N m I i n= ≤ − > . 

Define 
NiqU


 similarly with Nq  in place of Nq .  Then as N → ∞ , 

(A.14) 1/2

1
(1)

N

n

iq p
i

N U O−

=

=∑ , 

(A.15) 1 2

1
( 1) /

N

n
p

iq
i

N U λ λ−

=

→ +∑ , 
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(A.16) 1 2

1
1

N

N
p

iq
i n

N U λ−

= +

→ +∑ , 

(A.17) 1

1
0

N N

n
P

iq iq
i

N U U−

=

→∑ 

, 

(A.18) 1

1
0

N N

N
P

iq iq
i n

N U U−

= +

→∑ 

, 

(A.19) 
1 1

0
N N

n N

iq iq
i i n

E U E U
= = +

   
= =      

   
∑ ∑ , 

(A.20) 1 2

1
1 /

N

n

iq
i

N E U n m−

=

 
= +  

 
∑ , 

and 

(A.21)  1 2

1
1 /

N

N

iq
i n

N E U m n−

= +

 
= +  

 
∑ .     

 Proof:  We begin by obtaining preliminary results that are used to prove (A.14)-(A.21).  The 

quantity 

 1

1
( )

N

n

q
i

n I i n−

=
≤∑   

has a hypergeometric distribution for n  draws from a population of size N  that has n  “successes.”  

Therefore, 

 1 1

1
( ) / (1 )

N

n

q
i

En I i n n N λ− −

=
≤ = → +∑   

and 

 
2

1
2

1
( ) 0

( 1)N

n

q
i

mVar n I i n
N N

−

=

 
≤ = → 

− 
∑  

as N → ∞ .  It follows that 

 1 1

1
( ) (1 )

N

n
p

q
i

n I i n λ− −

=
≤ → +∑ . 

By a similar argument, 

 1 1

1
( ) (1 )

N

N
p

q
i n

m I i n λ− −

= +
≤ → +∑ . 

In addition, Theorem 1 of Lahiri, Chatterjee, and Matti (2007) implies that 
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 1/2 1 2

1
( ) ( / ) (1)

N

n

q p
i

N N I i n n N O−

=

 
≤ − = 

 
∑ . 

 Now consider the limiting behavior of 

 1

1
( ) ( )

N N

n

q q
i

n I i n I i n−

=
≤ ≤∑ 

.  

tFix 2 {0,..., }i n∈  arbitrarily.  Consider the even that out of the observations indexed by 1,...,i n= , there 

are exactly 2i  such that ( ) 1
NqI i n≤ =


.   By the hypergeometric distribution, the probability of this event 

is 

 
1

2 2

n m N
i n i n

−
   
   −    

. 

In addition, because the permutations Nq  and Nq  are independent, ( ) ( )
N Nq qI i n I i n≤ ≤



 has the 

hypergeometric distribution, and so 

  
2

1 2

1
( ) ( )

N N

n

q qi
i

niE n I i n I i n
N

−

=

 
≤ ≤ = 

 
∑ 

, 

and 

  
2

1 2 2

1
( ) ( )

1N N

n

q qi
i

i N i mVar n I i n I i n n
N N N

−

=

  −
≤ ≤ =  − 

∑ 

, 

where 
2i

E  and 
2i

Var , respectively, denote the mean and variance conditional on 

 2
1

( ) .
N

n

q
i

I i n i
=

≤ =∑ 

  

The unconditional mean is 

 1 2 2

1
( ) ( ) ( / ) (1 )

N N

n

q q
i

E n I i n I i n n N λ− −

=

 
≤ ≤ = → + 

 
∑ 

. 

The unconditional variance satisfies 

  1

1
( ) ( ) 0

N N

n

q q
i

Var n I i n I i n−

=

 
≤ ≤ → 

 
∑ 

. 

Therefore, 

 1 2

1
( ) ( ) (1 )

N N

n
p

q q
i

n I i n I i n λ− −

=
≤ ≤ → +∑ 

. 

By an analogous argument, 
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 1 2

1
( ) ( ) (1 )

N N

N
p

q q
i n

m I i n I i n λ− −

= +
≤ ≤ → +∑ 

. 

 We now use the foregoing results to prove (A.14)-(A.21).  Result (A.14) now follows from 

 1/2 1/2 1 2

1 1
( / / ) ( ) ( / ) (1)

N N

n N

iq q p
i i

N U N n N m N N I i n n N O− −

= =

 
= + ≤ − = 

 
∑ ∑ . 

Result (A.15) follows from 

 1 2 2 2

1 1 1
( / ) ( ) ( / ) ( ) ( 1) /

N N N

n n n
p

iq q q
i i i

N U N n I i n N m I i n λ λ−

= = =
= ≤ + > → +∑ ∑ ∑ .   

A similar argument gives (A.16).  Result (A.17) follows from 

 

1 1

1 1

2 2 2

( ) ( ) ( ) ( )

1 1 12 0.

N N N N N N

N n

iq iq q q q q
i i

p

N N N NN U U N I i n I i n I i n I i n
n m n m

λ λ λ
λ λ λ

− −

= =

   = ≤ − > ≤ − >      

+ + + → − + =  

∑ ∑  

 

A similar argument yields (A.18). 

 To obtain (A.19) observe that 

 
1 1 1

( ) ( )
N N N

n n n

iq q q
i i i

N NU I i n I i n
n m= = =

= ≤ − >∑ ∑ ∑ . 

This and the preliminary results imply that  

 
1

0
N

n

iq
i

E U
=

 
=  

 
∑ . 

This and 

 
1

0
N

N

iq
i

U
=

=∑  

imply that 

 
1

0
N

N

iq
i n

E U
+ +

 
=  

 
∑ , 

which establishes (A.19). 

 To prove (A.20), observe that 

 1 2
2 2

1 1 1
( ) ( )

N N N

n n n

iq q q
i i i

N NN U I i n I i n
n m

−

= = =

= ≤ + >∑ ∑ ∑ . 

This result and the preliminary results imply that  
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 1 2

1
1 /

N

n

iq
i

E N U n m−

=

 
= + 

  
∑ . 

In addition, 

 To prove (A.21), observe that 

 

1 2
2 2

1 1 1
( ) ( )

2 / / .

N N N

N N N

iq q q
i i i

N NN U I i n I i n
n m

n m m n

−

= = =

= ≤ + >

= + +

∑ ∑ ∑
. 

This result and (A.20) imply (A.21).  Q.E.D. 

 Lemma A.4:  Let assumptions 1 and 2 hold, Nq  and Nq  be two permutations of {1,..., }N  that 

are sampled independently from the uniform distribution on {1,2,..., }N , ˆ
NXqF  ( ˆ

NXqF


) be the empirical 

distribution function of the first n  observations in permutation Nq  ( Nq ), and ˆ
NYqF  ( ˆ

NYqF


) be the 

empirical distribution function of observations 1,...,n N+ .  Then 

(A.22) 1/2
1

ˆ ˆ[ ( ; ) ( ; )]{ ( )} ( ) ( , )K d
X Y k k KN F z F z z d z Nψ µ=− → Ξ Σ∫    

and 

(A.23) 
11/2

2 1
1

ˆ ˆ[ ( ; ) ( ; )]{ ( )} ( )
,

ˆ ˆ[ ( ; ) ( ; )]{ ( )} ( )

N N

N N

K
Xq Yq k k K K Kd

KK K K KXq Yq k k

F z F z z d z
N N

F z F z z d z

ψ µ

ψ µ

= ×
×

×=

 −  Σ   →     Σ −    

∫
∫

0
0

0
 

 

 
, 

where 

 1( ){ ( )} ( )K
k kD z z d zψ µ=Ξ = ∫  

and KΣ  is the K K×  matrix defined in (A.4).     

 Proof:  Let { : 1,..., }iW i N=  denote the combined sample of observations of X  and Y . 

 Proof of (A.23):  Let qi  denote the position of observation i  ( 1,...,i N= ) in permutation q  of 

the original sample.  Then for any permutation q , 

(A.24) 1/2 1/2

1

ˆ ˆ[ ( ; ) ( ; )] [ ( ) ( ) ]
N

Xq Yq iq i
i

N F z F z N U I W t z t t−

=

− = ≤ ∀ ∈∑   , 

where 

 ( / ) ( ) ( / ) ( )iq q qU N n I i n N m I i n= ≤ − > . 

 Step 1:  We show that 
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(A.25) { }1/2
2 111

[ ( ) ( ) ] ( ) ( ) ,N

N

N Kiq K K Kd
i k iNk Kk K K Kiqi

U
N I W t z t t z d z N

U
ψ µ µ ×−

×
= ×=

   Σ 
≤ ∀ ∈ − →      Σ   

∑ ∫
0

0
0



 , 

where 

 ( ) ( ; ) ( ) ( ) ( ) ( ; ) ( ) ( )iNk nX k Y kI i n F z z d z I i n F z z d zµ ψ µ ψ µ= ≤ + >∫ ∫  . 

Let ,α β ∈  and Kγ ∈  be arbitrary constants.  By the Cramér-Wold device, it suffices to show that  

(A.26) 1/2 2

1
(0, )

N
d

i
i

N N σ−

=

ϒ →∑ , 

where 

 { }
1

( ) [ ( ) ( ) ] ( ) ( )
N N

K

i k iq iq i k iNk
k

U U I W t z t t z d zγ α β ψ µ µ
=

ϒ = + ≤ ∀ ∈ −∑ ∫

  

and 

 2 2 2
,

, 1
( )

K

k k K kk
k k

σ α β γ γ
=

= + Σ∑  




. 

 To establish (A.26), observe that conditional on ( , )N Nq q , 1{ }N
i i=ϒ  is a sequence of independent 

mean-zero random variables with variances 

{

}

2 2

, 1
( ) ( ) { [min( , ); ] ( ; ) ( ; )} ( ) ( ) ( ) ( )

( ) { [min( , ); ] ( ; ) ( ; )} ( ) ( ) ( ) ( ) .

N N

K

iN k iq iq nX nX nX kk kz z
k k

Y Y Y k kz z

U U I i n F z z F z F z z z d z d z

I i n F z z F z F z z y z d z d z

σ γ γ α β ψ ψ µ µ

ψ µ µ

=

= + ≤ −

+ > −

∑ ∫ ∫

∫ ∫

 











   

   

  

  

By Lemma A.3,  

(A.27) 2 1 2 2

1
0

N

N iN
i

Nσ σ σ−

=

≡ → >∑  

with probability 1 relative to the distribution of  ( , )N Nq q .  Moreover, for any sufficiently small 0δ >  

and as N → ∞ , 

2 22 2 2 2

2 22 2 2

(| | | , ) max | | [max(| |,| |)] max | ( ) | ( )
min( , )

1(9.28) max | | [max(| |,| |)] max | ( ) | ( ) .
min(1, )

i N N k kk K k K
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NE q q K z d z
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K z d z

δ δδ δ δ δ

δ δδ δ δ

γ α β ψ µ

λγ α β ψ µ
λ

+ ++ + + +

≤ ≤

+ ++ + +

≤ ≤

   ϒ =     

 +  → < ∞    

∫

∫










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Result (A.26) and, therefore, (A.25), now follows from (A.27), (A.28), and a triangular array central limit 

theorem (Serfling 1980, p. 30). 

 Step 2:  For any 1,...,k K=  

(A.29) 1/2 1/2

1 1
( , ) ( , ) [ ( ; ) ( ; )] ( ) ( )

N N N N

N n

iq iq iNk iq iq nX Y k
i i

N U U N U U F z F z z d zµ ψ µ− −

= =

= −∑ ∑ ∫ 

  , 

where we have used 

 
1 1

0
N N

N N

iq iq
i i

U U
= =

= =∑ ∑ 

. 

Lemma A.3 implies that  

 1/2

1
( , ) (1)

N N

n

iq iq p
i

N U U O−

=

=∑ 

. 

Therefore, the right-hand side of (A.29) is (1)pO .  Combining this result, (A.24), and (A.25) yields 

(A.23).  Proof of (A.22):  We have 

(A.30) 1/2 1/2

1

ˆ ˆ[ ( ; ) ( ; )] [ ( ) ( ) ]
N

X Y i i
i

N F z F z N U I W t z t t−

=

− = ≤ ∀ ∈∑   , 

where 

 ( / ) ( ) ( / ) ( )iU N n I i n N m I i n= ≤ − > . 

By an argument similar to that used in step 1 of the proof of (A.23), we can show that for any 1K ≥   

(A.31) { }1/2
1

11
[ ( ) ( ) ] ( ) ( ) ( , )

N K d
i i k iNk K

ki
N U I W t z t t z d z Nψ µ µ−

×
==

≤ ∀ ∈ − → Σ∑ ∫ 0 . 

Also, by an argument similar to step 2 of the proof of (A.23), we can show that 

(A.32) 1/2 1/2

1
( ) ( ) ( )

N

i iNk k
i

N U N D z z d zµ ψ µ−

=

=∑ ∫ . 

Result (A.22) follows from (A.30)-(A.32).  Q.E.D. 

 A.3.  Asymptotic Distributions under Local Alternatives 

 We first consider the asymptotic local power of the nmτ  permutation test when ( )X t  and ( )Y t  

are observed at a the finite set of points 1( ,..., )Jt t .  Let ( )ζϒ  be the Gaussian process indexed by Jζ ∈  

defined in the paragraph preceding Lemma A.2.  Define a sequence of local alternatives by  
1/2( ) ( ) ( ) ( )nX YF F n m Dζ ζ ζ−= + +   
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for every Jζ ∈  and some function D  such that 2( ) JD dζ µ < ∞∫  .  XF  is now indexed by the sample 

size n  because, under a sequence of local alternatives, XF  changes as n  increases.  YF  can also be 

indexed by m .  We do not index YF  this way because doing so adds complexity to the notation without 

changing the result.  Define (1 )r α−  as the 1 α− quantile of the distribution of the random variable 

2[ ( )] Jdζ µϒ∫  . 

 The following theorem gives the asymptotic power of the nmτ  permutation test against sequences 

of local alternatives when ( )X t  and ( )Y t  are observed at a finite set of points.   

 Theorem A.1:  Let assumptions 1 and 2 hold.  Then, 

 

{ }

{ }

2 *

*

2
0

[ ( ) ( )] (1 ) liminf [ (1 )]

limsup [ (1 )]

lim [ ( ) ( )] (1 ) .

J nm nmn

nm nm
n

J

P D d r P t

P t

P D d r
δ

ζ ζ µ α τ α

τ α

ζ ζ µ α δ
+

→∞

→∞

→

ϒ + > − ≤ > −

≤ > −

≤ ϒ + > − −

∫

∫

 

  

 

 Proof of Theorem A.1: This theorem follows from Proposition A.1 and Lemma A.2.  Q.E.D. 

It follows from Theorem A.1 that the α -level permutation test based on nmτ  has asymptotic 

local power exceeding α  whenever 2[ ( )] 0JD dζ µ >∫  .  

We now consider the asymptotic local power of the nmτ  test when ( )X t  and ( )Y t  are observed 

in continuous time.  ( )zϒ  is the Gaussian process indexed by 2( )z L µ∈  defined in the paragraph 

preceding Lemma A.2.  Define a sequence of local alternatives by  

1/2( ) ( ) ( ) ( )nX YF z F z n m D z−= + +  

for every 2 ( )z L µ∈  and some function D  such that 2( )D z dµ < ∞∫ .  As in the discrete case, XF  is 

indexed by n  because, under a sequence of local alternatives, XF  changes as n  increases.    Define 

(1 )r α−  as the 1 α− quantile of the distribution of the random variable 2( )z dµϒ∫ . 

The following theorem gives the asymptotic power of the permutation test against sequences of 

local alternatives when ( )X t  and ( )Y t  are observed in continuous time.   

 Theorem A.2:  Let assumptions 1 and 2 hold.  Then, 
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{ }

{ }

2 *

*

2
0

[ ( ) ( )] (1 ) liminf [ (1 )]

limsup [ (1 )]

lim [ ( ) ( )] (1 ) .

nm nmn

nm nm
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P z D z d r P t
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δ
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τ α

µ α δ
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→∞
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ϒ + > − ≤ > −

≤ > −

≤ ϒ + > − −

∫

∫ 
 

 Proof of Theorem A.2:  Like Theorem A.1, Theorem A.2 follows from Proposition A.1 and 

Lemma A.2.  Q.E.D. 

 Now consider the nmν  test when ( )X t  and ( )Y t  are observed in continuous time.  Define a 

sequence of local alternatives by  

(A.33) 1/2( ) ( ) ( ) ( )X t Y t n m D t−= + + . 

where D  is a non-stochastic function and  

(A.34) 2
0

( )
T

D t dt < ∞∫ .  

Under (A.33) and (A.34), arguments like those used to prove Theorems A.1 and A.2 apply to nmν  after 

replacing the processes 1/2 ˆ[ ( ) ( )]X Xn F t F t−  and 1/2 ˆ[ ( ) ( )]Y Ym F t F t−  with 1/2 ˆ[ ( ) ( )]n EX t EX t−  and 

1/2 ˆ[ ( ) ( )]m EY t EY t− , respectively.  Therefore, 

 Theorem A.3:  Let assumptions 1-3 hold.  Let ( ) (0 )t t Tϒ ≤ ≤  be a mean-zero Gaussian process 

with the same covariance function as ( )X t  and ( )Y t .  Let (1 )r α−  denote the 1 α−  quantile of 

2
0

( )
T

t dtϒ∫  .  Then 
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0
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2
00

[ ( ) ( )] (1 ) liminf [ (1 )]

limsup [ (1 )]

lim [ ( ) ( )] (1 ) .

T
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nm nm
n

T

P t D t dt r P

P

P t D t dt r
δ

α ν ν α

ν ν α

α δ
+

→∞

→∞

→

ϒ + > − ≤ > −

≤ > −

≤ ϒ + > − −

∫

∫



 

  

A similar result holds when ( )X t  and ( )Y t  are observed in discrete time. 
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 A.4.  Sensitivity of the nτ , nη , SR, and HT tests to various parameters. 

 Table A1 presents the results of Monte Carlo experiments that illustrate the sensitivity of the 

power of the nτ  and SR tests to the frequency of the observations in the discrete case.  Table A2 

illustrates the sensitivity of the power of the HT test to its tuning parameters.  Figures A1 and A2 

illustrate the sensitivity of the power of the nη  test to Κ .  Because of the long computing times required 

to simulate a month of observations at several observation frequencies, Table A1 is based on one 

simulated day of observations.  For brevity, Table A1 and Figures A4-A5 are based only on designs 4 and 

6 of Section 7. 
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TABLE 1:  DISTRIBUTION OF CUSTOMERS AMONG GROUPS 

 

 Control Treatment 1 Treatment 2 Treatment 3 Treatment 4 Total 

Number of 

Customers 

524 236 227 251 254 1492 

Percentage of 

Customers 

35.1 15.8 15.2 16.8 17.0 100 

 

 

 

TABLE 2:  P-VALUES IN % OF THE TESTS WITH THE CBT DATAa 
Test ( , )τ να α  June July Aug. Sept.  Oct. Nov. Dec. 

nη  (0.04,0.01) 14.4 6.4 1.9 10.9 29.7 51.7 100 

 (0.03,0.02) 15.3 8.6 2.6 14.5 39.6 68.9 100 

 (0.025.0.025) 12.3 10.3 3.1 17.4 47.5 82.7 100 

 (0.02,0.03) 10.2 12.8 3.8 21.8 59.3 100 100 

nτ  N.A 11.6 5.2 1.6 8.7 23.8 41.4 84.4 

SR N.A. 11.8 18.6 30.4 16.8 92.2 88.4 93.6 

 

a.  As is explained in Section 6, the p -values in this table are the values of α  in ( , ) / 0.05ν τα α α  at 

which nη  switches from 0 to 1. The powers of nη  and nτ  are for 25K =  .   
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TABLE 3:  EMPIRICAL REJECTION PROBABILITIES IN % IN THE MONTE CARLO 

EXPERIMENTS 

 

Test ( , )τ να α   Design 

1 

Design 

2 

Design 

3 

Design 

4 

Design 

5 

Design 

6 

Design 

7 

Design 

8 

Design 

9 

Design 

10 

nη  (0.04,0.01) 4.3 42.8 55.7 83.2 87.1 64.4 95.8 64.3 96.7 88.9 

 (0.03, 0.02) 4.4 51.7 62.1 83.3 83.6 59.7 93.3 60.2 94.6 84.0 

 (0.025, 0.025) 4.3 52.7 63.1 82.8 82.7 55.3 91.8 56.2 93.4 81.9 

 (0.02, 0.03) 4.4 55.2 64.7 82.1 80.2 50.9 90.5 52.4 91.9 77.8 

nτ   N.A. 4.9 18.8 41.0 78.4 84.9 66.8 95.6 66.7 97.6 89.2 

SR N.A. 5.1 61.8 61.7 83.9 56.1 20.7 20.7 5.6 19.2 5.3 
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TABLE A1:  SENSITIVITY OF THE POWERS IN % OF THE nmτ  AND SR TESTS TO THE 

FREQUENCY OF DISCRETE OBSERVATIONSa  
 

Design Frequency nmτ  SR 

4 5 min 80.7 23.4 

 10 min 61.2 18.3 

 30 min 30.4 9.8 

6 5 min 80.4 24.4 

 10 min 60.6 18.6 

 30 min 30.2 10.8 

 

a.  The designs are described in Section 7.  The powers of the nmτ  test are with 25K = .  
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TABLE A2:  SENSITIVITY OF THE POWER IN % OF THE HT TEST TO ITS TUNING 

PARAMETERSa 

 

Design 
γ   Weight 1 2 3 4 5 6 7 8 9 10 
1 (i) 5.4 11.9 11.4 100 26.6 100 100 19.4 100 17.7 
1 (ii) 5.6 11.8 11.0 100 19.8 100 100 14.0 100 12.4 
1 (iii) 5.3 11.3 11.5 100 39.1 100 100 29.9 100 30.4 
1.5 (i) 5.5 12.5 12.3 100 25.3 100 100 17.9 100 16.6 
1.5 (ii) 6.0 12.3 12.1 100 17.6 100 100 11.1 100 10.6 
1.5 (iii) 5.7 11.7 11.6 100 42.3 100 100 32.5 100 32.0 
2 (i) 5.5 12.7 12.7 100 25.1 100 100 17.3 100 15.8 
2 (ii) 5.5 12.6 12.7 100 17.4 100 100 10.9 100 10.0 
2 (iii) 5.6 11.9 11.7 100 43.9 100 100 33.5 100 33.4 
2.5 (i) 5.3 13.0 13.1 100 24.7 100 100 16.4 100 14.8 
2.5 (ii) 5.3 13.2 13.5 100 16.9 100 100 10.0 100 8.8 
2.5 (iii) 5.6 12.3 12.2 100 45.9 100 100 34.1 100 34.8 

 
a.  The tuning parameters γ , weights, and labels of the weights are defined in Hall and Tajvidi (2002).   
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Figure 1:  Average half-hour consumption 



45 
 

 
Figure 2:  Sample standard deviation of half-hour consumption 
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Figure 3: Sample correlation of consumption between consecutive half hours. 
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Figure A1:  Power of the nη  test in design 4 with ( , ) (0.25,0.25)τ να α = . 
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Figure A2:  Power of the nη  test in design 6 with ( , ) (0.25,0.25)τ να α =  

 


	CEMMAP COVER.pdf
	Revision_March2021a.pdf



