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HEDONIC PRICES AND QUALITY ADJUSTED PRICE INDICES
POWERED BY AI

P. BAJARI∗, Z. CEN∗, V. CHERNOZHUKOV∗, M. MANUKONDA∗, J. WANG∗ AND R.

HUERTA, J. LI, L.LENG, G. MONOKROUSSOS, S. VIJAYKUMAR, S. WAN

Abstract. We develop empirical models of hedonic prices and derive hedonic in-

dices for measuring changes in customer welfare based upon deep learning. We

first generate abstract product attributes, or “features,” from text descriptions

and images using deep neural networks, and then use these attributes to estimate

the hedonic price function. Specifically, we convert textual information about the

product to numeric product features using the ELMO or BERT language models,

trained or fine-tuned using Amazon’s product descriptions. We convert the prod-

uct image to numerical product features by a pre-trained ResNet50 image model.

To produce the estimated hedonic price function, we use a multi-task neural net-

work again, trained to predict the price of a product simultaneously in all time

periods. We apply the models to Amazon’s data for first-party apparel sales to

estimate hedonic prices. The resulting models have high predictive accuracy, with

R2 ranging from 80% to 90%. We also construct hedonic price indices: over the

period 2013-2017 the hedonic Fisher price index decreased, providing improvement

in customer welfare.
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1. Introduction

When prices change, a consumer may become better off or worse off. Economists

measure how consumers are affected by price changes in the economic environment,

and have developed several tools to do this. One of the most commonly used are

price indices, such as the Laspeyeres or Paasch indices: these measure changes in the

cost of a standardized basket of products between two periods, holding the basket

to be equal to the set of products purchased in the initial period (Laspeyeres) or

the final period (Paasch);1 the two are often combined into what is known as the

ideal or the Fisher price index. The Fisher price index is known to provide accurate

approximation for true cost of living when the change in prices is small.2

A common problem with these indices is product entry and exit, where the pre-

vious period’s prices are not available for new products and vice-versa. Hence,

economists often compute so-called ‘matched indices’—indices restricted to the set

of products that are bought and sold in both periods. This in itself creates ma-

jor, well-documented biases in the resulting indices. To overcome this issue, several

prominent economists have recommended using chaining: computing the indices over

higher frequency and then compounding monthly inflation rates to get yearly rates.

This ameliorates the turnover problem but does not completely solve it.

Hedonic prices were introduced by Andrew Court (1939) and Zvi Griliches (1961)

as a way of addressing the entry/exit problem in price indices. Hedonic price func-

tions summarize the relationship between the prices and the characteristics of goods

sold in differentiated products. Since newer products often have better character-

istics, the difference between the prices of the newer and the older products is not

1These quantities bound other measures of inflation/deflation based on the expenditure function

under certain assumptions; we refer to Diwert’s review for details.
2It is an exact cost of living for quadratic utility or expenditure functions, and provides second-

order accurate approximation for any smooth utility or expenditure function under small changes in

prices; see, e.g, Diewert (1977). Price indices with this property are called superlative indices, with

another prominent example being the Tornqvist index. In our analysis, the results using Tornqvist

index are very similar to the results obtained using the Fisher index.



HEDONIC PRICES AND QUALITY ADJUSTED PRICE INDICES POWERED BY AI 3

entirely attributable to inflation. Court and Griliches suggested to measure infla-

tion/deflation by looking at price changes for products holding product characteris-

tics fixed. This paradigm suggests an entirely different way of computing inflation

and, in fact, leads to a consumer theory based on utility over product characteristics

rather than over products themselves (Lancaster, 1966; McFadden, 1974). Under this

theory, products’ prices are entirely determined by its characteristics. Economists

have developed a number of results on the existence and properties of these func-

tions under various types of assumptions (see, e.g., Berry, Levinsohn, Pakes, Ekeland

(1995, 2004); Ekeland, Heckman, and Nesheim (2004), Bajari and Benkard (2005);

Chiappori, McCann, and Nesheim (2010), Chernozhukov, Galichon, Henry, Pass

(2017)).

Provided that these models are good approximations, hedonic theory suggests that

we can learn hedonic price functions by estimating regression functions that explain

observed prices in terms of products characteristics. If we successfully represent the

product j observed by the customer and producer in terms of its characteristics Xj,

then we can approximate the price at a given point in time by a function of Xj. The

characteristics of the product observable by the customer are illustrated in Figure

1, where we see the product title, product text description, and the images for the

product. Our goal is to represent this information using a numerical vector Xj of

moderately high dimension (in our case it has 2000 entries) which can be used to

accurately predict prices. Moreover, the representation needs to be algorithmic and

scalable.

The success of this approach depends on the existence of parsimonious structures

behind images and text. Traditionally, analysts relied on human experts to represent

the key features of products to find a low dimensional numerical representation Xj.

Successful experts did manage to produce low-dimensional representations for certain

groups products that proved to be successful in building hedonic models (e.g., Pakes

(1993) reports very high accuracy for predicting computer prices). However, this

approach is not scalable to many types of products and is prone to judgment biases.

These issues raise important questions: When human experts succeed, what is the

underlying fundamental reason? Can this success be replicated by machine learning

methods, and can these methods deliver scalable inference?
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We believe that humans can easily summarize the red dress image in Figure 1

and understand the key features of the product text description, even though the

original representation of this information lives in an extremely high-dimensional

space (i.e. millions of dimensions). Indeed, image consists of millions of pixels (three

layers of 640 x 480 pixels encoding the blue, red, and green color channels), words

live in a tens thousand-dimensional dictionary,3 and sentences in the product de-

scription are created by sequences of words whose length ranges in the hundreds.

However, we believe that the images and sentences can be losslessly represented in

a much lower-dimensional space, and we call this phenomenon ‘structured sparsity.’

Somehow, human intelligence is able to exploit this structured sparsity and process

information effectively (perhaps exploiting geometry of shapes in images, relative

simplicity of color schemes and shade patterns, similarity of many words in the dic-

tionary, and context-specific meaning of words). The field of artificial intelligence

(AI) developed neural networks in an effort to mimic human intelligence in many

information-processing tasks. These models do create parsimonious structures from

high-dimensional inputs, often surpassing human ability in these tasks. Going for-

ward, we will employ state-of-the-art solutions from these fields to the problem of

hedonic modeling.

In our approach we generate product attributes or features (from text and images)

by state-of-the-art deep learning models and then use them to estimate the hedonic

price function. Specifically, we convert text information about the product to numeric

features (called embeddings) using the ELMO or BERT deep learning models (Peters

et al. 2018, Devlin et al. 2018), fine-tuned on Amazon’s product descriptions. We

use a pre-trained ResNet50 model (He et al., 2016) to produce the embeddings for the

images of the product. This is the first step of the process: the models of the first step

are trained on tasks unrelated to predicting prices (e.g., tasks of image classification

or predicting a missing word in a sentence), and embeddings are extracted as the

hidden (often, penultimate) level of the neural network. In the second step of the

process, we produce the estimated hedonic price function, using neural networks

with the multi-task structure. The models of the second step are trained to predict

prices simultaneously in all time period. All the ingredients to the method rely on

3See, e.g., http://testyourvocab.com/blog/2013-05-10-Summary-of-results
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Figure 1. An example of product characteristics for a product sold

in the Amazon store

publicly available, open-source software components. We perform data preparation

in Apache Spark using the Elastic MapReduce service from Amazon Web Services

(AWS), and use an AWS SageMaker multi-GPU machine learning environment to

train the neural network models.

We apply these models to Amazon’s data for first-party4 apparel sales to estimate

the hedonic prices. The resulting hedonic models have a high predictive accuracy,

with R2 in the hold-out sample ranging from 80 to 90%. Therefore, our approach is

able to attribute up to 90% of variation in price to variation in the product embed-

dings that encode the product attributes. We find this performance remarkable for

two reasons:

(1) The production of hedonic prices is completely automatic and scalable, with-

out relying on any human-based feature extraction.

(2) The performance suggests that the hedonic price models from economics pro-

vide a good, first-order approximation to prices.

4See, e.g, https://feedvisor.com/university/amazon-1p-vs-3p/ for the definition of the

terms, such as first-party and third-party.



6 BAJARI, CEN, CHERNOZHUKOV, MANUKONDA, WANG ET AL.

Figure 2. Our method for generating hedonic price: The input consists

of images and unstructured text data. The first step of the process creates

the moderately high-dimensional numerical embeddings I and W for images

and text data via state-of-the art deep learning methods, such as ResNet50

and BERT. The second step of the process takes as input X = (I,W ) and

creates predictions for hedonic prices Ht(X) using deep learning methods

with a multi-task structure. The models of the first step are trained on

tasks unrelated to predicting prices (e.g., image classification or word pre-

diction), where embeddings are extracted as hidden layers of the neural

networks. The models of the second step are trained by price prediction

tasks. Our multitask model creates an intermediate lower dimensional em-

bedding V = V (X), called value embedding and then predicts the final

prices in all time periods {Ht(V ), t = 1, ..., T} using linear or parametric

linear functional forms, making it easy to perform inference on the last step,

using hold-out samples. Some variations of the method include fine-tuning

the embeddings produced by the first step to perform well for price pre-

diction tasks (i.e. optimizing the embedding parameters so as to minimize

price prediction loss).
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We then proceed to construct the hedonic Fisher price indices (HFPI) over 2013-

2017, constructing monthly-chained, yearly-chained, and the combined GEKS-type

HFPI (GHFPI).5 We focus discussions on GHFPI and simply refer to it as the hedonic

index, unless stated otherwise. We also compare the hedonic index with the matched

(repeated sale) Fisher index, posted price Jevons index (the geometric mean of log

of price relatives, chained at daily frequency), the BLS Urban CPI index for apparel

(CPI), constructed by the Bureau of Labor Statistics, and the Adobe Digital Price

Index (DPI) for apparel, constructed by Goolsbee and Klenow (2018) using the

Adobe Analytics data.

All indices suggest the apparel price level declines over this period. The annual

rate of inflation estimated by GHFPI is -3.16%, by the Jevons index -2.82%, by the

matched Fisher index -3.46%. In comparison, the annual rate of inflation estimated

by DPI is -1.3%, and by CPI is -.07%. Part of the difference with CPI could be at-

tributed to the limited ability of CPI to address quality change and substitution (see

Moulton, 2018 for detailed analysis), specifics of product categorization in the ap-

parel segment, and difference in the composition of baskets that consumers purchase

via Amazon.

In comparison to the hedonic indices, the matched Fisher index or Adobe’s DPI

do not incorporate quality change. Moreover, we cannot use them for chaining over

longer time periods due to the high product turnover. (The less frequent chaining

is desirable for addressing the “chain drift” – the systematic accumulation of errors

due to frequent compounding). In comparison to the hedonic indices, the Jevons

index (compounded geometric means of posted price relatives) does not incorporate

quantity weighting. Jevons index declines slightly less than GHFPI (reflecting its

limitations in capturing substitutions of customers for less expensive items).

We view our paper as developing major modernization of both hedonic price mod-

els as well as their application to large-scale data. In this way we contribute to the

literature in empirical microeconomics dedicated to hedonic price models and their

5The version of the GEKS index we use is a geometric mean of two HFPIs: one chained month-

over-month and another chained year-over-year. We use such GEKS-type index to mitigate the

“chain drift” problem, which refers to the accumulation of errors under frequent compounding.
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Index CPI BPP ADPI FHPI

Prices Yes Yes Yes Yes

Revenue Shares for Product Groups Yes Unknown Yes Yes

Quantities No No Yes Yes

Quality Adjustment Yes No No Yes

Table 1. Some properties of the CPI, BPP, ADPI, and FHPI

uses in measuring inflation. We are not aware of any prior work in this area which

developed a similar modern large-scale hedonic price models based on neural network

embeddings for product text and image descriptions. In addition, our data is unique

in that it covers the universe of apparel products that has been transacted in the

Amazon store by the first party. From these models and data, we generated inter-

esting findings: showing the usefulness of hedonic models in characterizing prices

and documenting the decline in quality-adjusted Fisher price index in Apparel. To

the best of our knowledge, there are very few related studies: An independent and

contemporaneous work by Zeng (2020) develops a related approach to hedonic prices

using scanner data, but based on random forest methods and not using the image

and text embeddings. An independent and contemporaneous work by Han et al

(2020) explores the use of image embeddings to characterize fonts as products, and

analyzes the effect of merger on product differentiation decisions (in terms of design)

of font producers.

This paper contributes to a fast-growing literature on using alternative, modern

data and techniques to measure inflation and other aggregate quantities. The Bil-

lion Prices Project at MIT constructs Jevons indices (BPP) using retail price data

sets using web-scraped and directly provided retailer’s data. The advantages of such

data sets include real-time availability at daily frequencies, low collection costs, large

product counts, and uncensored price spells. Consequently, BPP constructed using

modern real-time data can serve as useful benchmarks for official government sta-

tistics. For instance, Cavallo (2013) and Cavallo and Rigobon (2016) study several

countries and establish that inflation measures constructed using such online data

can be quite different at times from official government statistics on the CPI (the
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most extreme example being the case of Argentina). A shortcoming of this ap-

proach is that it does not incorporate quantity information. Goolsbee and Klenow

(2018) constructed matched Tornqvist indices, called Digital Price Index (DPI), us-

ing Adobe Analytics data from e-commerce clients of Adobe (which, most notably,

include quantities, in addition to prices). This approach does not have the short-

comings of the BPP index, and is able to account for substitution resulting from

consumers minimizing costs. They find that for the US online DPI inflation is sub-

stantially lower (for the period 2014-2017) than the official CPI inflation for the

categories they study; this is analogous to our findings for Apparel.

In related work using online price data Cavallo (2017) finds that online prices

are identical to their offline counterparts about 70% of the time (on average across

countries), thereby justifying the treatment of both on-line and off-line retail sec-

tor as the single sector. Gorodnichenko and Talavera (2017), Cavallo (2018a) and

Gorodnichenko et al. (2018) find that online prices change more frequently than

offline prices, thereby responding to competition more promptly, and also they ex-

hibit stronger pass-through in response to nominal-exchange-rate movements than

prices found in official CPI data. Results such as these have major implications for

important areas of macro and international economics such as the price stickiness

literature and the law of one price, as Cavallo (2018b), Cavallo and Rigobon (2016),

Gorodnichenko and Talavera (2017), Gorodnichenko et al. (2018) illustrate.

We organize the rest of the paper as follows. In Section 2, we define the hedonic

price models and price indices. In Section 3, we discuss estimation of of the hedonic

price functions via NNs. In Section 4 we describe feature engineering – the process

of representing the product information via Neural Network (NN) embeddings. In

Section 5, we examine the empirical performance of the hedonic price functions

generated by our method. In Section 6, we construct the hedonic price indices and

analyze them and other indices.

Notation. We use capital letters as W as random vectors and w the values they

take; we use W to denote matrices. Functions are denoted by arrows w 7→ f(w) or

simply f . Greek symbols, with the exception of ε, denote parameter values.
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2. Hedonic Prices and Hedonic Price Indices

2.1. The Hedonic Price Model. We denote the product by index i and time

period (month) by t. An empirical hedonic model is the predictive model for price

given the product features:

Pit = Hit + εit = ht(Xit) + εit, E[εit | Xit] = 0, (1)

where Pit is the price of product i at time t, Xit are the product features, and

the price function x 7→ ht(x) can change from period to period, reflecting the fact

that product attributes/features may be valued differently in different periods. For

our purposes, the advantage of these models is that they allow us to compare new

goods to old rather directly; we simply compare the value consumers attach to the

characteristics of the old good to those of the new.

Most of the product attributes Xit will remain time-invariant, but some may

change over time. We shall use the data from time period t to estimate the func-

tion ht using the modern nonlinear regression methods, such as deep neural network

methods. We shall contrast this approach with classical linear regression methods as

well as other modern regression methods, such as random forest. The key component

of our approach is the generation of product features Xit using NN embeddings of

text and image information about the product. Thus, Xit consists of text embed-

ding features Wit, constructed by converting the title and product description into

numeric vectors, and image embedding features Iit, constructed by converting the

product image into numeric vectors:

Xit = (W ′
it, I

′
it)
′. (2)

These embedding features are generated respectively by applying the BERT and

ResNet50 mappings, as explained in detail in the next section.

There is a substantial body of research on economics and empirics of hedonic

price models. On the theory side, economists have developed a theory of demand in

terms of product characteristics rather than demand (Lancaster, 1966; McFadden,

1974); they also established various existence results for the hedonic price functions

under various assumptions (Berry, Levinsohn, Pakes, Ekeland (1995, 2004); Ekeland,
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Heckman, and Nesheim (2004), Bajari and Benkard (2005); Chiappori, McCann, and

Nesheim (2010), Chernozhukov, Galichon, Henry, Pass (2017)); they developed the

use of hedonic prices for bounding changes in consumer’s surplus and welfare (Bajari

and Benkard (2005)). On the empirical side, economists have estimated a variety

of hedonic price models and linked them to the consumer’s utility (and marginal

willingness to pay for certain characteristics, see Nesheim (2007)), and also have

used them for valuation of non-tradable goods (for example, valuation of the effects

of improving ecological environment on housing prices, e.g. Stock (1989), or the

effect of environmental regulation on costs of automobiles, Berry et al 1996). Our

main use of hedonic prices is to estimate the rates of deflation (or inflation) for the

aggregate baskets of apparel products that customers buy at Amazon, following the

prior work on using hedonics (e.g., Griliches, 1961, Pakes, 2005), but with the major

deviation being the use of product features engineered via deep learning, instead of

human engineering of features, and price prediction being done with deep learning

rather than classical regression methods.

The literature typically specifies three building blocks of theoretical hedonic mod-

els: utility functions defined directly on the characteristics of products (rather than

on products per se) and customer’s characteristics; cost functions which typically

include characteristics of the good and of producers; and an equilibrium assumption

(or existence is shown as a part of analysis). This determines prices (and quantities)

given demand and costs, and establishes existence of the hedonic price function

(x, u) 7→ H?(x, u)

as a function of product attributes (x, u), which are all attributes observable by

the consumer, and u is an attribute that is not observable by the modeler. Price

functions give us information about customer preferences. For example, when the

customer’s utility is given by:

V (x, u, p) = V0(x, u)− p

where p is price of the product to be paid by the customer, the first order con-

ditions (for continuously varying attributes) for the utility maximization problem

max(x,u) V0(x, u)−H(x, u) is given by:

∂xkV0(X,U) = ∂xkH
?(X,U),
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where ∂xk = ∂/∂xk, where xk refers to the k-th component of the vector x. Therefore

in this model a standard argument for identification of average derivative of structural

function gives

E[∂xkH
?(Xj, Uj)|Xj] = ∂xkht(Xj),

that is the average marginal willingness to pay for a given characteristic is equal to

the average derivative of the hedonic price map.

Moreover, under parametric form of utility, preference parameters of a consumer

can be recovered from the first-order conditions, provided that (x, u) 7→ H?(x, u) is

additively separable in (x, u), so that ∂xkH
?(x, u) = ∂xkht(x), does not depend on u,

or provided we can identify H? and the unobservable U by other means (for example,

by making quantile or multivariate-quantile type assumptions on the way U appears

in H?.) For example, following Bajari and Benkard (2005), if the utility is Cobb-

Douglas over observed characteristics, V0(x, u, p) =
∑K

k=1 αk log(x?jk)+βg(u)−p, then

under additive separability, H?(X,U) = H?
0 (X) +U , we have αk = ∂xkht(Xj)Xjk for

the consumer who has purchased product j. Hence distributions of tastes parameters

α for consumers can be recovered under such modeling approaches.6 We will not take

this approach, but rather adopt a more pragmatic approach of using hedonic prices

inside the price indices to measure changes in price levels, following accepted practice

in applied price research and in the work of statistical agencies.

2.2. Price Indices: Hedonic vs Matched. When the economic environment

changes a consumer may be made better off or worse off. Economists often want

to measure how consumers are affected by changes in the economic environment,

and have developed several types of price indices to evaluate the change.

We focus on hedonic price indices and contrast them with matched (repeated

sales) prices indices. The matched price index tracks changes in the price of a

basket of products that are sold in both the base period and later time periods.

While the matched price method is subject to selection bias (due product entry and

exit), it ensures the index tracks goods from a common pool of products. A major

6When the characteristics are discrete bounds on individual preference parameters can be con-

structed and used in policy analysis, see Bajari and Benkard (2005).
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shortcoming of this method is that the common pool of products across time can be

small and non-representative, which is true in our case. This property will manifest

itself empirically.

The hedonic price index replaces transaction prices with predicted values using

a rich set of product characteristics (obtained using a combination of AI and ML

methods). In principle, the hedonic approach captures changes over time in the

value consumers place on product attributes. Hedonic approaches are especially

helpful for predicting prices of new goods and dealing with the entry/exit selection

bias when product prices are undefined. This is especially relevant in our case, where

we observe a very high turnover of the products.

We consider three types of each price index:

• The Laspeyres (L) type, which uses base period quantities for weighting the

prices;

• The Paasche (P) type, which uses current period quantities for weighing the

prices;

• The Fisher (F) type, which uses the geometric mean of L and P indices.

One defines the L and P -type matched indices as measures of the total rate of price

change of a basket of matching products from the current period t with a previous

period t− `:

RP,M
t,` =

∑
i∈Ct∩Ct−`

PitQit∑
i∈Ct∩Ct−`

Pj(t−`)Qit

; RL,H
t,` =

∑
i∈Ct∩Ct−`

PitQi(t−`)∑
i∈Ct∩Ct−`

Pi(t−`)Qi(t−`)
;

and the F-type index takes the form

RF,M
t,` =

√
RP,M
t,` ·R

L,M
t,` ,

where Qit is the quantity of the product i sold in month t, Pit is the average sales

price for product i at time t, Ct is the set of all products with transactions at time

t, Ct ∩ Ct−` is the match set, the set of all products with transactions at both time t

and at time t− `.
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Basic economics based on a representative consumer model suggests that matched

indices should obey the order restriction: RL,M ≥ RP,M . Aggregate quantities may

not behave like those of a representative consumer, but the relation often holds

empirically. Similar arguments can be made for hedonic indices. A way to aggregate

the two indices is to use the Fisher’s ideal index, which is a superlative index: it

measures thee exact cost of living when the utility function is quadratic and provides

a second-order approximation to the cost of living index at the given prices when the

utility function is smooth (Diewert, 1977).

We define the L, P, and F-type hedonic indices similarly, as measures of the total

rate of hedonic price change of a basket of product attributes from the current period

t with the previous period t− 1:

RP,H
t,` =

∑
i∈Ct HitQit∑

i∈Ct Hi(t−`)Qit

; RL,H
t,` =

∑
i∈Ct−`

HitQi(t−`)∑
i∈Ct−`

Hi(t−`)Qi(t−`)
;RF,H

t =

√
RP,H
t ·RL,H

t .

We note that the P index is defined over the sets of products Ct and the L index is

defined over the set of products Ct−`, which are supersets of the matching set Ct∩Ct−`.

Using a generic chaining index, we measure the price changes up to time t = t0+`m,

where t0 and ` and m are positive integers, by taking the product:

R•,•,Ct,` =
m∏
m̄=1

R•,•m̄,` where R•,•,Ct0,`
= 1.

For the hedonic index we shall use month-over-month chaining with ` = 1 and year-

over-year chaining with ` = 12, getting two types of indices:

RF,H,C
t,1 and RF,H,C

t,12 ,

where the first index captures month-over-month changes in prices, especially for

non-seasonal apparel, and the second index gets year-over-year changes in products

over month `, better capturing price changes for seasonal apparel. The second index

is less susceptible to the well-known chain-drift problem that is present that arises

from accumulation of errors due to repeated compounding. A GEKS type index7

7Theoretical GEKS indices aggregated indices obtained at all chaining lags `, but we shall limit

` to 1 and 12 to keep computational costs low.
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Fisher Hedonic Price Index (GFHPI) aggregates the two types of indices by taking

their geometric mean:

RGF,H
t =

√
RF,H,C
t,1 RF,H,C

t,12 .

3. Price Prediction and Inference with Deep Neural Networks

3.1. The Multi-Price Prediction Network. Our model ingests high-dimensional

text and image features as inputs, converts them into lower dimensional vector of

value embeddings, using state-of-the-art deep learning methods, and outputs simul-

taneous predictions of price in all time periods.

The general nonlinear regression model we work with takes the form

Zi =

[
Texti
Imagei

]
e7−→ Xi

g17−→ E
(1)
i ...

gm7−→ E
(m)
i =: Vi

θ′7−→ {Hit}Tt=1 := {β′tVi}Tt=1. (3)

Here Zi is the original input, which lies in a very high-dimensional space, is nonlin-

early mapped into an embedding vector Xi which is of moderately high dimension

(up to 5120 dimensions), which is further nonlinearly mapped into a lower dimen-

sion vector E
(1)
i , and so on, until it is nonlinearly mapped into the final hidden layer

Vi = E
(m)
i , which is then linearly mapped to the final output, consisting of hedonic

price Hit for product i in all time periods t = 1, ..., T .

The last hidden layer V = E(m) is called the value embedding in our context.

The embeddings are moderately high-dimensional (up to 512 dimensions) summary

of the product, derived from most common attributes, that directly determine the

price of the predicted hedonic price of the product. Note that the embeddings V do

not depend on time and represent the intrinsic, potentially valuable attributes of the

product. However, the predicted price does depend on time t via the coefficient βt,

reflecting the fact that the different intrinsic attributes are valued differently across

time.

The network mapping (3) makes use of repeated composition of nonlinear map-

pings of the form

g` : v 7−→ {Ek,`(v)}K`
k=1 := {σk,`(v′αk,`)}K`

k=1. (4)
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where the Ek,`’s are called neurons, and σk,` is the activation function that can

vary with the layer ` and can vary with k, from one neuron to another.8 Standard

examples include the sigmoid function: σ(v) = 1/(1 + e−v), the rectified linear unit

function (ReLU) σ(v) = max(0, v), or the linear function σ(v) = v. In a given

layer some neurons can be generated linearly or nonlinearly. The use of nonlinear

activation function has been shown to be extremely powerful tool for generating

flexible functional forms, yielding both successful approximations in a wide range

of empirical problem and backed by approximation theory. Good approximations

can be achieved by both considering sufficiently many neurons and sufficiently many

layers (e.g., Chen and White, 1999; Yarotsky, 2017; Schmidt-Hieber, 2020; Farrell

et. al, 2021; Kidger and Lyons, 2020).

Our empirical model just up to m = 3 hidden layers, not counting the input. The

dimensions of each layer are described in the appendix. The first layer generated

using auxiliary text and image classification and prediction tasks, as described below.

The model can be trained by minimizing the loss function

min
η∈N ,{βt}Tt=1

∑
t

∑
i

(P c
it − β′tVi(η))2Qit, (5)

where η denotes all of the parameters of the mapping

Xi 7→ Vi(η)

and N represents the parameter space. Here we are weighting by the quantity Qit.

Regularization can be used to reduce time fluctuations of predicted price across time.

This is done by adding the penalty function to the objective function:

λ
∑
i

T−1∑
t=1

|β′t+1Vi(η)− β′tVi(η)|, (6)

with penalty level λ chosen to yield good performance in validation samples.

Next we give overview of how the initial embedding is generated. A multilingual

BERT model is used to convert text information and ResNet50 model is used to

8The standard architecture has activation function that does not vary with k, but some architec-

tures such as ResNet50 discussed later can be viewed as having an activation function depending

on k, with some neurons linearly activated and some nonlinearly.
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convert image into a subvector of E
(1)
i . These models are trained on auxiliary pre-

dictions tasks with auxiliary output ATi for text and AIi for image, which can be

illustrated diagrammatically as:

Xi =

[
Texti
Imagei

]
e7−→

ATix
Wi

Xiy
AIi

=: E
(1)
i ... 7−→ E

(m)
i := Vi 7−→ {P̂ ∗it}Tt=1, (7)

The embeddings Wi and Xi forming E
(1)
i are obtained by mapping them in an aux-

iliary outputs ATj and AIj that are scored on natural language processing tasks and

image classification tasks respectively. This step uses data that is not related to

prices, as we further describe below. The parameters of the mapping generating E
(1)
i

are considered as generally frozen in our analysis, although we’ve experimented with

fine-tuning this parameters with the goal of improving price prediction performance.

The estimates are computed using sophisticated stochastic gradient descent algo-

rithms, where sophistication is needed because this optimization is generally not a

convex problem, making the computation difficult. In particular, for price prediction

task we used the Adam algorithm (Kingma and Ba, 2014). The overall process has

many tuning parameters, and in practice we chose them by cross-validation. The

most important choices concerned the number of neurons and the number of neuron

layers.

We visualize the process conceptually via Figure 3, where we have a regression

problem, and the network depicts the process of taking raw regressors and trans-

forming them into predicted values. In the first column on the left we see the inputs

(features), and the second column the first layer of neurons. The neurons are con-

nected to the inputs and the connections represent the coefficients. Finally, the last

layers of neurons is combined to produce a vector of outputs. The coefficients βm are

shown by the connections between the last hidden layer of neurons and the output,
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Figure 3. Standard Architecture of a Deep Neural Network as de-

picted in Goodfellow et. al (2016). Relative to such standard archi-

tecture, the networks used for text and image processing have very

high dimensional inputs and very high-dimensional outputs, and low-

dimensional intermediate hidden layers. Precisely these layers, typ-

ically the penultimate layers, are used for dense embedding. In the

hedonic price prediction network the penultimate layer is interpreted

as value embedding and the output layer contains predicted hedonic

prices in all time periods.

which is multivariate. The networks with vector outputs are called the multi-task

networks.

Prediction methods based on neural networks with several layers of neurons are

called the “deep learning” methods. The popularity of the methods stems from their

impressive success in solving various problems. Neural networks recently emerged as

a powerful and all-purpose method for regression and classification analysis. Using

many neurons and multiple layers gives rise to deeper networks that are very flexible

and can approximate the best prediction or classification rules quite well.
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3.2. Assessing Statistical Significance and Confidence Intervals. The last

layer of the NN model provides us with what we interpret as “value embeddings”,

Vit = (V1t, ..., Vpt)
′,

where we have considered p up to 512. We condition on the training and validation

data, so that Vi’s are considered as frozen for all products i. Then we use the hold-out

data to estimate the following linear regression model:

Pit = V ′itβt + νit, βt = (β1t, ..., βpt)
′.

This is a low-dimensional linear regression model, for which we can apply standard

inference tools based on linear regression. Applying linear regression to the test data,

we obtain the estimate β̂t and the estimated hedonic price

Ĥit = V ′itβ̂t. (8)

For example, the statistical significance of features can be assessed by testing whether

the regression coefficients βt are equal to zero, using p-values and adjusting for mul-

tiplicity using Bonferroni approach (or other standard approaches such as step-down

methods or methods that control false discovery rates). We can also construct confi-

dence intervals for individual coefficients, as well as the level 1−α confidence intervals

for the predicted hedonic price:

[Lit, Uit] = [Ĥit ± Φ−1(1− α/2)SEit], SEit =

√
V ′itĈov(β̂t)Vit. (9)

This advantage of this approach is its simplicity, while the disadvantage is that it does

not account for uncertainty in estimating the value embeddings themselves (indeed,

we consider them as frozen conditional on the training+validation sample).

Following Chernozhukov et. al. (2018), one way to account for this variability is

to consider random multiple splits, s = 1, ..., S, of the data (with stratification by

month), into the test subset and training+validation data subset. Different splits

would result in different value embeddings V s
it , the coefficient estimates β̂st , the pre-

dicted hedonic price , and the covariance estimates Ĉov(β̂t)
s, as well as the confidence

intervals [U s
it, L

s
it]. Then we can aggregate the estimates and the confidence intervals

as follows:

H̃it = median
(

(Ĥs
it)
S
s=1

)
, C̃I it =

[
median

(
(L̂sit)

S
s=1

)
,median

(
(Û s

it)
S
s=1

)]
. (10)
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The adjusted nominal level for the confidence interval for V ′itβs is 1−α/2. Similarly,

for judging statistical significance of particular coefficients (or other functionals) we

can consider multiple p values (P s)Ss=1 and aggregate them by taking the median

p-value and comparing this p-value to the adjusted nominal level α/2. This ap-

proach exploit the fact that the median of arbitrary correlated variables with the

marginal standard uniform distribution is stochastically dominated by the variable

2 · Uniform(0, 1). The p-values are asymptotically uniformly distributed. We have

not pursued this approach in this version of the paper due to the high computational

costs associated with training S instead of just one model.

The above approach extends to other ways of quantifying modeling uncertainty.

Indeed, s = 1, ..., S could as well denote various perturbations of the network struc-

ture, e.g. using drop-out perturbations, which randomly omit neurons in each layer,

generating different value embedding different value embeddings V s
it . The mathemat-

ical argument in Chernozhukov et al (2018) does not rely on the source of multiplicity

generated in this way and the confidence intervals and statistical significance calcu-

lations immediately extend to cover this quantification.

4. Image and Text Embeddings Via Deep Learning

A customer usually sees the product in the form shown in Figure 1. Our task is to

convert the product characteristics, such as the product title, description, image, and

into numerical vectors which can be used for constructing hedonic price, as shown in

Figure 4. In what follows we give a high-level description of how the text and image

features are generated.

4.1. Text Embeddings from the Title and Product Description. We begin

with text processing.

First generation: Word2Vec Embeddings. We first recall some basic ideas

underlying the Word2Vec algorithm (Mikolov et al., 2013). The j-th word in the

product description can be represented by a binary encoding of a very high dimension

d, but this representation is not very useful because it is too sparse and it is not able
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Figure 4. A schematic illustration of the map from the product text

information and image to the embedding features X = (I ′,W ′)′ . Our

best model uses BERT DNN to convert title, brand, product descrip-

tion to an embedding vector W , and uses ResNet50 to convert winning

image to an embedding vector I.

to explore word similarity to compactly approximate the dictionary. Instead we aim

to represent words by vectors of much lower dimension r. Denote representation of

j-th word by uj, then the dictionary is r × d matrix

ω = {uj}dj=1,

where r is the reduced dimensionality of the dictionary. Then each word tj in a

human-readable dictionary can be represented by word uj. In our context, we can

think of each word appearing in the product description as a random variable T and

represent its corresponding embedding representation by U .

The goal of Word2Vec is to find an effective representation with the dimension

r of the embedding to be much smaller than d. This is achieved by treating ω

as parameters and estimating them so that the model performs well in some basic

natural language processing tasks. These tasks are not related to hedonic prices.
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One of the ways to train the word embeddings is to predict the middle word from

the words that surround it in word sentences. Given a subsentence s of K+ 1 words,

we have a central word Tc,s whose identity we have to predict and we have the words

{To,s} that surround it. Collapse the embeddings for context words by a sum,

Ūo =
1

K

∑
o

Uo,s,

where Uo,s is the element of ω corresponding to the word To,s. This step imposes a

drastically simplifying assumption that the context words are exchangeable.

The probability of middle word Tc,s being equal to t is modeled via multinomial

logit function:

ps(t; π, ω) := P
(
Tc,s = t | {To,s};ω

)
=

exp(π′t Ūs(ω))∑
t̄ exp(π′t̄ Ūs(ω))

,

where π = (π1, ..., πd) is m × d matrix conformable parameter vectors defining the

choice probabilities. The model constraints π = ω, and estimates ω by using the

maximum quasi-likelihood method:

max
ω=π

∑
s∈S

log ps(Ti,s; π, ω),

where the summation is over many examples S of subsequences s. Once we are

done training, we can generate the embedding for title or description of product i,

containing the embedded words {Uj,i}Jj=1 by simply averaging them:

Wi =
1

J

J∑
j=1

Uj,i. (11)

In summary, the Word2Vec algorithm transforms text into a vector of numbers that

can be used to compactly represent words. The algorithm trains a neural network in

a supervised manner such that the contextual information is used to predict another

part of the text. For example, let’s say that the title description of the item is:

“Hiigoo Fashion Women’s Multi-pocket Cotton Canvas Handbags Shoulder Bags

Totes Purses”. The model will be trained using many n-word subsentence examples,

such that the center word is predicted from the rest. If we just use K = 3 subsentence

examples, then we train the model using the following examples: (Hiigoo,Women’s)
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→ Fashion, (Fashion,Multi-pocket)→Women’s, (Women’s,Cotton)→ Multi-pocket,

and so on.

How do we judge whether the text embedding is successful or not? In the hedonic

price context, we can check whether Word2Vec features improve the quality of pre-

diction of the price by the hedonic model. 9 We can also check if similar words Tk and

Tl have similar embeddings. We can measure the similarity through the correlation

or cosine-similarity, more precisely:

sim(Tk, Tl) = U ′kUl/(‖Uk‖‖Ul‖).

The more similar the words are, according to our human notion of similarity, the

higher the value the formal similarity measure should take, with the maximal value

of 1. For example, the following are the 5 words that are most similar to “tie” under

the similarity measure: “necktie” and “bowtie”. The dense embedding also induces

an interesting vector space on the set of words, which seem to encode analogies well.

For example, the word “briefcase” is most cosine-similar to the artificial latent word

Word2Vec(men′s) + Word2Vec(handbag)−Word2Vec(women′s).

Word2vec embeddings were among the first generation of early successful algo-

rithms. These algorithms have been improved by the next generation of NLP algo-

rithms, such as ELMO and BERT, which are discussed next.

Second Generation: ELMO. The Embeddings from Language Models (ELMO)

algorithm (Peters et al, 2018) uses the ideas of the Shannon game, where we guess

the next word in the sentence m with n words, i.e.

pfk,m(t) = P [Tk+1,m = t|T1,m, ..., Tk,m; θ]

and also uses the reverse guessing as well:

pbk,m(t) = P [Tk−1,m = t|Tk,m, ...Tn,m; θ],

9Indeed, in our early experiments we verified that such embeddings were helpful in prediction

and improved over using basic catalogue features, and our experiments below make use of more

sophisticated word embeddings that improved the prediction even further.
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where θ is a parameter vector. Recursive neural networks with a single or multiple

hidden layers are used to model these probabilities. Parameters are estimated using

quasi maximum log-likelihood methods, where the forward and backward log quasi-

likelihoods are added together.

To give a simple example, suppose we wanted to grasp the context better in the

previous example, so we could be, instead of collapsing embeddings for the context

word by a sum assign individual parameters to each context. This would result in a

model closely resembling the previous model, but where the order of context words

would play a role. For example, we could model

P (Tk,m = t | {Tj,m}k−1
j=1) =

e
∑k−1

j=1 π
′
t,kUk,m(ω)∑

t̄ e
∑k−1

j=1 π
′
t̄,k
Uk,m(ω)

,

and similarly in reverse order. ELMO uses a more sophisticated (and more parsimo-

nious) non-linear recursive nonlinear regression (recurrent neural network) model to

build these probabilities, shown in Figure 5.

The basic structure of ELMO is as follows: Given a sentence m of n words, (1)

words are mapped to context-free embeddings in Rd. (2) A network is trained to

predict each word Tk,m of a string given (a) words (T1,m, . . . , Tk−1,m) or (b) words

(Tk+1,m, . . . , Tn,m). The objective is to minimize the average over sum of the log-loss

over the 2n − 2 prediction tasks, where the average is taken over all sentences. (3)

The embedding of word Tk,m is given by a weighted average of outputs of certain

hidden neurons corresponding to this word’s entire context. Importantly, the same

final logistic (“softmax”) layer is used for prediction objectives (2a) and (2b). Thus

the inputs to this layer, which represent the forward and backward context, are

constrained to lie in “the same space.”

Training. In Figure 5, the output probability distribution pfk is taken as a prediction

of Tk+1,m; similarly pbk is taken as a prediction of Tk−1,m. The parameters of the

network θ are obtained by maximizing quasi-loglikelihood:

max
θ

∑
m∈M

(
n−1∑
k=1

log pfk,m(Tk+1,m; θ) +
n∑
k=2

log pbk,m(Tk−1,m; θ)

)
,
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pf1pb1 pf2pb2 pf3pb3 pf4pb4

Hidden

Layers
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Embedding

Outputs

Softmax

(Logit)

Figure 5. ELMO Architecture. This is ELMO network for a string

of 4 words, with L = 2 hidden layers. Here, the softmax layer (multi-

nomial logit) is a single function mapping each input in Rd to a prob-

ability distribution over the dictionary Σ.

where M is a collection of sentences (titles and product descriptions) in our data

set.

Producing embeddings. To produce embeddings from the trained network, each word

tk in a sentence m = (t1, ..., tk) is mapped to a weighted average of the outputs of

the hidden neurons indexed by k:

tk 7→ wk :=
L∑
i=1

γiw
f
ki + γ̄iw

b
ki.

The embedding for the sentence (or product description) is produced by summing

the embeddings for each individual word. The weights γ and γ̄ can be tuned by the

neural network performing the final task. In principle, however, the whole network

could be plugged in to the network performing the final task and allowed to update.
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Second generation: BERT. Bidirectional Encoder Representations from Trans-

formers (BERT) is another contextualized word embedding learned from deep lan-

guage model (Devlin et al, 2018). It is a successor of ELMO and achieved state-of-art

results on multiple NLP tasks, improving somewhat on ELMO. Instead of using Re-

current Neural Network as in ELMO, BERT uses the Transformer structure with

attention mechanism (Vaswani et al., 2017) that pays attention to whole sentence or

context.

Unlike the language model in ELMO which predicts the next word from previous

words, the BERT model is trained on two self-supervised tasks simultaneously:

• Mask Language Model: randomly mask certain percentage of the words in

the sequence and predict the masked words

• Next Sentence Prediction: given a pair of sentences, predict whether one

sentence proceeds another.

The structure of BERT model is as follows: (1) Each word in the input sentence is

broken to subwords and tokenized using a context-free embedding called WordPiece.

A special token [cls] is added to the beginning of the sequence. And x% of the

tokens are replaced by [mask]; (2) For each token, its input representation consists

of i) its token embedding from (1), ii) position embedding indicating the position of

the token in the sentence, and iii) segment embedding indicating whether it belongs

to sentence A or B. (3) The input representation of tokens in the sequence is fed into

the main model architecture: L layers of Transformer-Encoder blocks. Each block

consists of a multi-head attention layer, followed by a feed forward layer. (4) The

output representation of the mask token [mask] is used to predict the masked word

via a softmax layer, and the output representation of the special [cls] token is used

for Next Sentence Prediction. The loss function is a combination of the two losses.

We next focus in detail on the main structure step (3), especially the “multi-head

attention” layer.

Computing The Attention. We begin with n word context-free embeddings (x1, x2, . . . , xn),

with each xk ∈ Rd. Let X denote the matrix whose kth row is xk. The Multi-Head
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Figure 6. BERT Architecture

Attention mapping is applied on X directly:

X 7−→ MultiHead(X,X,X),

where

MultiHead(Q,K,V) = Concatenate(Head1, . . . ,Headh)ω
O,

Headi = Attention(QωQi ,Kω
K
i ,Vω

V
i ),

Attention(Q̃, K̃, Ṽ) = softmax
(
Q̃K̃T/

√
dk

)
Ṽ,

where ωO and (ωQi , ω
K
i , ω

V
i ) are matrix parameters, which are trained to maximize the

model performance. In other words, each word embedding is replaced by weighted

average of all other words’, and the weights are learned from the scaled dot-product

of different projections of the word embeddings themself. The projection matrices

are parameters learned during training.

Generating product embeddings. Depending on specific tasks and resources, Devlin

et al. (2018) suggested to use the BERT embeddings in various ways: 1) use the last

layer, second-to-last layer or concatenate last 4 layers of the encoder outputs from

the pre-trained BERT model, 2) fine tune the whole BERT model on the downstream

task, or 3) train the BERT language model from scratch on the new data. For this
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study, we choose the feature-based approach, and extract the second-to-last layer as

embeddings from the pre-trained BERT model. Each product’s text embedding is

the average of the embeddings of each word/token from the input text field.

Comparing ELMO and BERT. While ELMO and BERT are both recent break-

throughs in NLP, the former marked the first contextual word embedding trained

from deep language model, and the latter was the first contextual word embedding

using Transformer architecture. Note that since the BERT paper was published

second and could respond directly to the ELMO paper (but not vice-versa), the

comparisons are likely to be biased towards the latter.

There appear to be several differences between the two proposals: (1) They use

different initial context-free embeddings. (2) ELMO applies an initial convolutional

layer to a character embedding, while BERT augments the WordPiece embedding at

sub-word level with positional data. ELMO is based on Recurrent Neural Network

while BERT is based on Transformer architecture. (3) The ELMO implementation

only allows the averaging weights to be fine-tuned, whereas BERT proposes fine-

tuning the whole network. The biggest difference lies in the choice of fundamental

architectures. RNNs are known for not being able to capture long-term dependencies.

The transformer architecture is more efficient at capturing long-range dependencies

in the text. Furthermore, ELMO creates context by using the left-to-right and right-

to-left language model representations, while in BERT models the entire context

simultaneously.

4.2. Construction of Image Embedding using ResNet50. One of the most

successful deep learning methods for image classification was developed He et al.

(2016). At the time of the release, the paper achieved the best results in image

classification, in particular, for the ImageNet and COCO datasets.

The central idea of the paper itself is to exploit ”partial linearity”: traditional

nonlinearly generated neurons are combined (or added together) with the previous

layer of neurons. More specifically, a building block is to take a standard feed-forward

convolutional neural network and add skip connections that bypass two (or one or
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Figure 7. The ResNet50 operates on numerical 3-dimensional arrays rep-

resenting images. It first does some early processing by applying convolu-

tional and pooling filters, then it applies manyL residual block mappings,

producing arrays shown in green. The penultimate layer produces a high-

dimensional vector I, the image embedding, which is then used to predict

the image type.

several) convolution layers at a time. Each skipping step generates a residual block

in which the convolution layers predict a residual. Formally each k-th residual block

is a neural network mapping

v 7−→ (v, σ0
k(ω

0
kv)) 7−→ (v, σ1

k ◦ ω1
kσ

0
k(ωkv)) 7−→ v + σ1

k ◦ ω1
kσ

0
k(ω

0
kv),

where ω’s are matrix-valued parameters or “weights”. This can be seen as a special

case of general neural network architecture, designed so that it is easy to learn the

identity maps (or submaps entering the composition of the entire network). Putting

together many blocks like these sequentially results in the overall architecture de-

picted in Figure 7.

The deep feed-forward convolutional networks developed in prior work suffered

through major optimization problems – once the depth is high enough, additional
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layers often resulted in much higher validation and training error. It was argued

that this phenomenon was a result of vanishing gradients, making it difficult to

optimize. The residual network architecture addresses this by using the residual

block architecture. This possibility allowed high quality training even for very deep

networks.

Just like with text embeddings, we are not interested in the final predictions of

these networks but rather in the last hidden layer, which is taken to be the image

embedding. We rely on publicly trained ResNet50 model to generate inference.10

5. Empirical Performance of Hedonic Price Models

Data. We use Amazon’s proprietary data on daily average transaction prices and

quantities for the first-party sales from the entire population of apparel, that has tens

of millions of products sold in the Amazon store.11 Our study covers the period from

01/2013 to 11/2018. The transaction prices of a product j in month t are defined as

the ratio of total sales (Sit) over the quantity sold (Qit),

Pit = Sit/Qit,

where the price is treated as missing for the case of no sales.

One key characteristic of our data is the very high turnover of products from month

to month, as shown in Figure 12 below. Moreover, there is a considerable growth in

selection of products. The data set we used for this analysis was roughly 20 terabytes

because of the number of products and the length of the time period covered. The

Spark environment on an EMR cluster was the most appropriate environment to hold

and process such large data. The product embeddings and estimation of the hedonic

10We also tested with image model fine tuned on Amazon Catalog with similar structure as

ResNet50, and observed some small performance improvement.
11The quantity information is proprietary, but we note, however, that there are methods of

approximating quantity weights based upon product ranking data; see, e.g., Chessa and Griffioen

(2019) and Office of National Statistics (2020). Therefore, the hedonic prices and hedonic price

indices derived using quantity weight can be approximated to a various extent by the publicly

available price information, product information and images, and product rank information.
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price functions were carried out on a GPU cluster of the Amazon Web Services using

the Sagemaker notebooks.

Performance for Predicting Prices out-of-Sample. In Table 2 we first examine

the predictive performance, recording the R2 for predicting prices in the hold-out

sample of products. We consider three methods for estimating the hedonic function:

• linear regression using features generated by a collection of binary encodings

of the product catalogue;

• linear regression using DL featuresW and I generated by BERT and ResNet50;

• tree-based (random forest and generalized boosting) regression using DL fea-

tures W and I;

• multi-task neural network regression using DL features W and I.

As we can see from Table 2, as we switch from the basic catalogue features to using

the DL embeddings W and I, we obtained the first major improvement, just using

linear regression methods. As we switch from the linear regression to a scalable

implementation of tree-based methods, we obtained the second major improvement.

Finally, as we switch from the random forest to the multi-task neural network we

obtain the final major improvement. Thus, the neural network model easily achieves

better predictive performance over other methods.

Figure 8 also presents the month-to-month performance of the various models.

The out-of-sample R2 for the best multi-task NN model ranges between 80% to

90%. Multi-task NN uniformly dominate singe-task NNs, which in turn uniformly

dominate boosted tree models, which in turn uniformly dominate linear models.

The BERT-based multi-task NN nearly uniformly outperforms ELMO-based multi-

task NN, although the performance of the two models is generally similar. The

performance of the best models is better at the beginning of the studied period and

worsens at the end of the period, perhaps in part due to increasing variety and number

of products being transacted (this is shown in Figure 13). It is worth mentioning

that the out-of-sample R2 agrees with validation R2 we obtained in training (not

reported), which is reflective of our training approach that assures that no overfitting

happens: we make sure that the training R2 and the validation R2 are very close.
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Method R2

Linear Model with basic catalogue features ≈ 30− 45%

Linear Model with DL features W and I ≈ 55− 65%

Random Forest/Boosted Tree Models with DL features W and I ≈ 70− 80%

Single-Task Neural Network with DL features W and I ≈ 75− 85%

Multi-Task Neural Network with DL features W and I ≈ 80− 90%

Table 2. Summary of Out-of-Sample Performance of the Empirical

Hedonic Price Function.

Examples of hits and misses. It is instructive to examine the performance of the

best NN model through the lenses of particular examples. Here we take one example

where the prediction worked well and another where the prediction worked poorly,

see Figures 10 and 11. For the first example, a sweater, the NN model predicts

the price of this item at about 100. The time-averaged average price as shown on

camelcamel.com is 97, with the price ranging from 39 (corresponding to liquidation

events) to 120. For the second example, a designer dress, the NN predicts the price

of this item at about 300, but the most recent offer prices for this item were around

2400. While this seems like a major miss, the price history for this item as seen

on camelcamel.com, suggests that there were periods where the price for this item

ranged between 206 and 2800, with an average sale price of 464. An important

feature that is possibly missed by the NN embeddings are ”cruising around custom

rose gold buttons,” although it is hard to be verify the importance of this feature

objectively.

Statistical Significance and Inference. Next we examine the statistical signif-

icance of the hedonic price model using the approach of Section 3.2. We illustrate

this approach in Figure 9, which reports the estimated coefficients on value embed-

dings for the month of November 2018 and reports the component-wise confidence

intervals. We also illustrate the construction of the confidence intervals for predicted

hedonic price in Table 3, which reports the 90% confidence intervals for estimated

hedonic prices for two example products.
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Figure 8. The Out-of-Sample Performance of the Empirical Hedo-

nic Price Function obtained Using Neural Network every month since

March of 2013. Multi-Task Neural Networks dominate Singe-Task

Neural Networks, which in turn dominate Boosted Tree Models, which

in turn dominate Linear Models.
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Figure 9. Statistical Significance of Value Embeddings via Linear

Regression Model Applied to the Test Sample. The figure shows the

point estimates and the pointwise 95% confidence intervals on the co-

efficients of the value embeddings as estimated by the linear regression

model applied to the hold-out sample. Note that two thirds of the

coefficients are significant at the 10−5 level.
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Figure 10. An example of accurate prediction of (B001GUN1N6):

The Neural Network model predicts the price of this item at about

100. The average price on camelcamel.com is 97, with the price ranging

from 39 to 120.

Product Year/Month Pit Ĥit SEit [Lit(Hit), Uit(Hit)] [Lit(Pit), Uit(Pit)]

B01DJ34PD2 201812 118.8 114.6 0.05 [114.5, 114.7] [102, 126]

B01MSBDGTL 201812 119.9 110.25 0.06 [110.1, 110.4] [98 , 122]

Table 3. Examples of Construction of Confidence Intervals for Predicted He-

donic Price Hit = V ′itβt and the Sale Price Pit. Here Ĥit = V ′itβ̂t is the estimated

hedonic price. The term σ̂2 = V ′itĈov(β̂t)Vit is the square of the standard er-

ror, and [Lit, Uit] = [Ĥit ± z.95σ̂] is the 90% confidence interval for Hit. The

predictive confidence interval for Pit is [Lit(Pit), Uit(Pit)] = [Ĥit ± z1−α/2ν̂] with

ν̂2 = σ̂2 + V̂ar(Pit −Hit) . The term z.95 is .95-th quantile of the standard normal

distribution.
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Figure 11. An example of inaccurate prediction: The Neural Net-

work model predicts the price of this item at about 300, but the recent

offer prices for this product were around 2400. While this seems a

miss, the price history for this item (B06XR39DJ1), that can be seen

on camelcamel.com, suggests that there were periods where the price

for this item ranged between 206 and 2800 and 206, with an averaged

price of 464.
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Apparel Indexes Inflation

Fisher Hedonic, Yearly Chaining (FY) -0.77%

Fisher Hedonic, Monthly Chaining (FM) -5.32%

Fisher Hedonic, GEKS (
√
FY · FM) -3.16%

Fisher Matched, Monthly Chaining -3.46%

Jevons Posted, Daily Chained -2.82%

Adobe DPI, Monthly Chained -1.30%

U.S. Urban Apparel (BLS) -0.04%

Table 4. Estimates of Average Annual Rate of Inflation in Apparel

over 4 years, 2013-2017: Fisher Hedonic Index, Fisher Matched Index,

Jevons Posted Price Index, Adobe DPI, and the BLS Index for Urban

Areas. Adobe DPI is based on 2014-2017.

6. Hedonic Price Indices for Apparel

Here we will use the definitions of hedonic indices introduced in Section 2. For

computation of the hedonic indices we use the best predictive model – the multi-

task NN model with W and I features, where W features are obtained as BERT

embeddings and I features are obtained as ResNet50 embeddings.

In Table 4, we present our main result – the estimates of average annual rate of

inflation in apparel over 2013-2017, via GEKS Fisher HPI, the Fisher HPI, Jevons

Posted PI, and the CPI for Apparel in Urban Areas by BLS:

The main conclusions we draw from these results are the following.

E.1 All indices, apart from CPI, suggest an average price decline in 2013-2017 of

at least .77%. In contrast, the BLS CPI for apparel suggests that there was

very little decline in the price level.
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Figure 12. Turnover Rate for Products. The figure shows the ratio

of the number of products with transactions in a given month and no

transaction in the previous month.

E.2 GFHPI declines at a slower rate than the matched Fisher index potentially

highlighting the importance of hedonic adjustment.

Indeed, the matched index potentially contains a matching bias created by the high

turn-over of products illustrated in Figure 12.

The differences with CPI could be attributed to a number of sources: There are

methodological differences: BLS uses a hybrid index where price levels are first mea-

sured within narrow subgroups of products, without quantity weighting, and then

aggregated by Tornqvist index using expenditure shares for subgroups; moreover,
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Figure 13. Number of Products in the Current Period over the Base

Period.

BLS also uses different quality adjustments. Moulton (2018) discusses methodolog-

ical points, and estimates that the upward bias in the overall (non-apparel specific)

CPI index may be in the range [.4%, 1.3%], which could potentially reconcile some

of the difference. Other sources of the difference could be the Amazon-specific pro-

ductivity improvements leading to lower prices (e.g., improvements in supply-chain

productivity) and different shares of products in the customers’ baskets

We also performed similar calculations using linear model instead of NN (not re-

ported), and conclusions seem qualitatively robust with respect to whether linear

model or nonlinear NN model used. However, the nonlinear NN models, which do

exhibit superior predictive ability, results in a more pronounced quantitative drop

in the price index level. For example, the month-over-month chained FHPI index

based on the linear model declined 5% less (in absolute terms) over 2013-2017 than

the same index based the NN model. The difference is less drastic than one might
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expect from having markedly different predictive performance, but the hedonic price

index is a ratio of weighted averages of predicted hedonic prices. Since noise gets re-

duced by averaging, the key determinants of the biases in the index are the weighted

averages of biases of the estimated hedonic prices. The NN models are more noisily

estimated than the linear models, but they are much less biased giving better pre-

dictive performance as a result. Still, taking weighted averages of prices translates

into only “moderate” differences between the indices based on the NN and on the

linear models.

In Figure 14, we demonstrate the construction and dynamics of the GFHPI and

compare it with the Jevons index. The GFHPI is constructed by taking the geometric

mean of the Fisher HPI chained at month-over-month frequency and the Fisher

HPI chained at year-over-year frequency.12 The Jevons index is a geometric mean

of the posted price relatives, and does not incorporate any quantity weighting. It

measures the average “within” price level change calculated on a much larger universe

of products (with and without transactions). The Fisher index reflects both the

“within” price change and the “between” price change, since it also reflects the

substitutions arising from cost-minimizing behavior by customers. The key empirical

observations we draw are as follows.

E.3 The GFHPI and yearly-chained FHPI exhibit slower rates of decline than the

monthly-chained FHPI, highlighting perhaps the importance of the ”chain

drift”.

E.4 The Jevons index exhibits steady declines over the studied period, where the

rate of decline is slightly smaller than the rate of decline in GFHPI.

This may suggest that the “between” effects are not large, and that GFHPI can

be approximated using the Jevons index. This is attractive because the Jevons index

can be constructed by web-scraping the publicly available price data.

12As mentioned before, the motivation for GFHPI is to mitigate the chain drift problem, caused

by propagation of errors due to frequent compounding in monthly chaining.
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Figure 14. Construction of Dynamics of the GEKS-type Fisher He-

donic Price Index and Comparison with the Jevons index. The index

is constructed by taking the geometric mean of the Fisher HPI chained

at month-over-month frequency and the Fisher HPI index chained at

year-over-year frequency. The Jevons index is a geometric mean of

posted price relatives, and does not incorporate any quantity weight-

ing. It measures the average ”within” price level change. The Fisher

index reflects both the ”within” price change and ”between” price

change, since it also incorporates the substitutions effects arising from

cost-minimizing behavior by customers.

7. Conclusion

We develop empirical models of hedonic prices and derived hedonic prices for

measuring the changes in customers’ welfare, based upon deep learning. We generate

product attributes or features (from text description and images) by deep learning

models, and then use them to estimate the hedonic price function, utilizing modern
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machine learning methods. Specifically, we convert the text information about the

product to numeric product features using the ELMO or BERT neural network

model, trained on Amazon’s product descriptions. We convert the product image

to numerical product features by a pre-trained ResNet50 neural network model.

To produce the estimated hedonic price function, we use neural networks again.

All the ingredients to the method rely on publicly available, open-source software

components. Computing was done in Spark over EMR for data wrangling and Sage

Maker (multi-core GPU) environment at the Amazon Web Services to train the

neural network models.

We apply the models to Amazon’s proprietary data on first-party sales in apparel

to estimate the hedonic prices. The resulting hedonic models have a high predictive

accuracy for several product categories, with the R2 ranging from 80% to 90%. We

construct the hedonic price indices for measuring the welfare of Amazon’s customers

and observe that over 2013-2017 the price index decreased, providing improvement

in customers welfare.
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Appendix A. Details of Different Architectures for Prediction

Using Embeddings

Here we summarize different configurations for neural nets that we’ve tried.

Model 1: ELMO + Single Task Models. The first neural network model we

tried is the Single Task model, i.e. predicting product prices one period at a time.

For text, we used a pre-trained ELMO embedding. For images, we used pre-trained

ResNet 50 embedding. The structure is shown in Figure 15. This neural net-

work takes the pre-computed ELMO text embedding (of dimension 256) and the

pre-computed ResNet50 image embedding (of dimension 2048) as input, transforms

through 1 to 3 fully connected hidden layers with dropout, and a final linear layer

maps the last hidden layer of neurons to the one-dimensional output, which is the

predicted hedonic price. We trained one model for each time period, so in total there

are T neural networks for T time period.

Model 2: BERT + Multitask model. The second neural network model that we

tested is the Multitask NN with pre-trained BERT embeddings. The BERT embed-

dings are precomputed from a multi-lingual BERT model trained by Google. The

input is ResNet50 image embeddings (of dimension 2048) and concatenated BERT

sentence embeddings for title, brand, description and bullet points (of dimension

768 · 4 = 3072). The multitask NN has 1 to 3 dense layers and the output is a T

dimensional vector, which represents the hedonic price for each of the T time periods.

Fine-Tuned BERT + Multitask model. In the last experiment, we used the end-

to-end training framework to fine-tune a BERT model for hedonic price prediction.

The model takes raw product text as input, tokenized using the WordPiece tokenizer

and truncated / padded to a maximum sequence length dS, and run through a BERT

base model which consists of 12 transformer blocks. Then the sequence output (of

dimension dS × dT ) from the transformer blocks is aggregated through a Global

Average Pooling layer to product embedding (of dimension dT ). Then the product

embedding is linearly mapped to the output which is T -dimensional hedonic price

vector for T time periods. In our experiment, we use dS = 512, and dT = 768.
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Figure 15. SingleTask + ELMO model. Product text is mapped to W

and image is mapped to I of dimensions 256 and 2048. For illustration pur-

pose, we only show two hidden layers with dimension 7 and 5 respectively.

In practice, we use three layers with dimension 2048, 1024, and 256. The

output is price for one time period t.

The loss function is the same as in Model 2, which combines the weighted squared

error term and a regularization term that controls volatility. The weights from all or

some layers of the transformer blocks are fine-tuned for the pricing task. Figure 17

is a simple illustration of the end-to-end BERT + Multitask model structure.

We are experimenting with different numbers of fine-tuned layers. Some initial

results show that fine-tuning model improves model performance by a large margin,

but it also takes much longer to train. This part of the work is not included in this

paper, and we are continuing to explore this research direction.
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