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Abstract

We propose a new estimation methodology to address the presence of covariate
measurement error by exploiting the availability of spatial data. The approach uses
neighboring observations as repeated measurements, after suitably controlling for the
random distance between the observations in a way that allows the use of operator
diagonalization methods to establish identification. The method is applicable to gen-
eral nonlinear models with potentially nonclassical errors and does not rely on a priori
distributional assumptions regarding any of the variables. The method’s implemen-
tation combines a sieve semiparametric maximum likelihood with a first-step kernel
conditional density estimator and simulation methods. The method’s effectiveness is
illustrated through both controlled simulations and an application to the assessment of
the effect of pre-colonial political structure on current economic development in Africa.

Keywords: Errors-in-variables, Economic development, Operator methods, Spa-
tial statistics.
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1 Introduction

With the increasing availability of Graphical Information System (GIS) data (Zhou et al.,
2017) and network data (de Paula, 2017), spatial econometrics (Pinkse and Slade, 2010b;
Redding and Rossi-Hansberg, 2017) is becoming an increasingly influential field. Further,
spatial setups readily generalize to more abstract spaces, with the spatial dimensions repre-
senting individual or product characteristics, and the increasing availability of rich datasets
with suitable covariates enables this avenue of research.

This paper identifies another advantage provided by the use for spatial datasets. The
inherent redundancy provided by numerous nearby observations in spatial frameworks gen-
erates information that can be used to correct for covariate measurement error and achieve
consistency without requiring additional information such as validation data or the knowl-
edge of the measurement error distribution. The method is very generally applicable, as it
allows for nonlinear models as well as non-classical measurement error (Schennach, 2016).
This is made possible in part by leveraging identification results from Hu and Schennach
(2008) and Hu (2008) and in part by devising a scheme to generate “virtual” observations
that can act as repeated measurements, from the information provided by the observed
sample.

Our approach is to be contrasted to others developed within the Kriging literature (Krige
(1951), Chilès and Desassis (2018)). Kriging is a common method to carry out inference
regarding spatial quantities in between available measurements. While this approach has
been extended to allow for measurement error (e.g. Cressie (1993)), most of this line of
research does not consider the implications of using the mismeasured data as a covariate.
Methods that do consider covariates tend to rely on distributional assumptions and linearity
(e.g., Szpiro, Sheppard and Lumley (2011)) or achieve bias reduction but not consistency
(e.g. Alexeeff, Carroll and Coull (2016)).

While the approach we take is reminiscent of using lags or leads as repeated measure-
ments in the context of time series or panel data econometrics (Hu and Shum, 2012; Cunha,
Heckman and Schennach, 2010; Griliches and Hausman, 1986), a corresponding approach in
a spatial framework is not currently available, due to significant conceptual and algorithmic
challenges. Unless the spatial data happens to lie on a fixed grid (a rare occurrence), there
is no spatial analog of a fixed time-shift, since the spacing between data points is a ran-
dom quantity.1 This randomness generally invalidates the use of neighboring observations
as proper repeated measurements.

We propose to overcome this challenge by expressing the joint density of the dependent
variable, the mismeasured variable, and its value at a neighboring point, conditional on the
distance to the neighboring point. This approach enables us to condition on a fixed distance
to generate a virtual repeated measurement with statistical properties suitable to play the
role of the counterpart of a fixed lag repeated measurement. We show that any given fixed
distance permits the identification of the model, but efficiency considerations suggest the use

1Although there is long tradition of using neighboring observations as instruments in the spatial literature
(e.g., Kelejian and Prucha (1998)), it is well-known that instruments cannot be used to correct for measure-
ment error in general nonlinear models (Amemiya, 1985). Furthermore, such instruments cannot simply
be converted into suitable repeated measurements, because the variable distance between the observations
causes an unknown bias in the measurement error that is difficult to account for.
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of a weighted average of estimators coming from different distances. The effectiveness and
feasibility of this approach is demonstrated through a controlled simulations study.

The estimator is applied to provide further corroboration to an important study (Michalopou-
los and Papaioannou, 2013) seeking to quantify whether pre-existing political structures of
ethnic groups in the pre-colonial Africa still have a significant impact on contemporary
economic development. The main descriptor of the political structure is a measure of cen-
tralization of political power (i.e., whether decisions are made at a very local level in a
decentralized fashion or at a broader level in a centralized fashion).

The conclusions of this study, however, rest on the accuracy of such estimated cen-
tralization measures. Our approach specifically enables us to quantify the relevant error
distributions and obtain measurement error-robust estimates by exploiting the spatial na-
ture of the data to construct repeated measurements of centralization using data points in
the geographical vicinity of each observation. Remarkably, our results reinforce those of
the authors by uncovering an even stronger relationship between pre-colonial centralization
and contemporary development. This points to a significant potential for our method to
circumvent measurement error issues in a broader range of similar applications.

The paper is organized as follows. Section 2 describes the setup, its motivation and
establishes identification, section 3 discusses the estimator and its implementation, section
4 provides simulations to assess the performance of the estimator, section 5 applies our
estimator to the study of political complexity on current economic development, and section
6 concludes.

2 Setup and Identification

Throughout the text, we denote random variables (or random functions) by upper case
letters, while the corresponding lower case letter denotes specific values. We also denote
(conditional) densities by f with suitable random variable subscripts and assume their exis-
tence, relative to a suitable dominating measure.

We consider a spatial setup, denoting (potentially abstract2) locations by S. The model
of interest is

Y (S) = g(X∗(S)) + U(S) (1)

where Y (S) is the dependent variable, X∗(S) is an unobserved regressor, U(S) is the model

error. We observe a sample (Si, Xi
def
= X(Si), Yi

def
= Y (Si), i = 1, ..., n) where X(S) is an

error-contaminated version of X∗(S):

X(S) = X∗(S) + V (S). (2)

Although, for simplicity, we do not make this explicit in the notation, covariates could be
included by making all assumptions and densities conditional on the covariates in what
follows.

2Abstract location examples could include product or individual characteristics. In “big data” settings,
low-dimensional abstract location variables could be extracted from high-dimensional covariates through
linear (Jolliffe, 1986) or nonlinear (Gunsilius and Schennach, 2019) principal component analysis.
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We are interested in the conditional distribution fY (s)|X∗(s)(y|x∗), which will allow us to
recover the function g. Since X∗(s) is unobserved due to measurement error, this density is
not directly revealed by the data and its identification will be secured through availability of
repeated measurements. Here we observe that spatial processes provide natural candidates
for repeated measurements for X(s) through neighboring observations X(s+ ∆s), where ∆s
is some fixed vector-valued shift. Our identification argument relies on one specific value
of ∆s, but, in fact, there are potentially an infinite number of repeated measurements (for
different ∆s), which can be used to improve efficiency.

In our approach, the disturbances satisfy the following:

Assumption 2.1 (Exclusion restrictions). The random variables V (s), U(s), V (s+ ∆s) are
mutually independent conditional on X∗(s) for any s and any ∆s such that ‖∆s‖ > d for
some given known d ≥ 0.

The fact that the assumption involves a spatial shift ∆s will allow us to consider a
neighboring observation as repeated measurements. Note that, while Assumption 2.1 places
restrictions on the spatial dependence of the measurement error process V (s), we place no
such restrictions on the generating processes of X∗(s), U(s) and thus Y (s).

To precisely state our identification results, we first require some basic regularity condi-
tions about the distributions.

Assumption 2.2 (Existence of bounded densities). For a given ∆s, the joint distribution of
Y (s) and X(s), X(s+ ∆s) and X∗(s), admits a bounded density fY (s),X(s),X(s+∆s),X∗(s) with
respect to a dominating measure of the form µY × µX × µX × µX where µY is unrestricted
while µX could be either the Lebesgue measure or a discrete measure supported on a finite
set of points. All marginal and conditional densities are also bounded.

These conditions on the density allow us to cover both continuous and discrete X(s)
(and X∗(s)), thus covering either measurement error or misclassification. Although our
presentation abstracts away from the differences in these two cases, they demand significantly
different treatments both on a theoretical and implementation level (see (Hu and Schennach,
2008) and (Hu, 2008), for the continuous and discrete cases, respectively). Few restrictions
are placed on the nature of the distribution Y (s).

We also impose

Assumption 2.3 (Centering). For known functionals Mx,My, we have Mx[fX(s)|X∗(s)(·|x∗)] =
x∗ and My[fY (s)|X∗(s)(·|x∗)] = g(x∗) for any x∗.

This type of assumption is commonly made in the context of nonclassical measurement
error models (Hu and Schennach, 2008) and extends standard conditional mean assumptions
to more general centering concepts (e.g. mode, median or general quantiles). For conciseness,
we state here a condition that is sufficient to transparently cover both the discrete and
continuous cases, although it could be relaxed in the discrete case (see Hu (2008)).

We also require nonparametric analogues of rank conditions, which have a long history
in the nonparametric instrumental variable literature (Newey and Powell, 2003; Hall and
Horowitz, 2005; Hu and Schennach, 2008)
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Assumption 2.4 (Injectivity of operators). The operators LX(s)|X∗(s) and LX(s+∆s)|X∗(s)

are injective, where LB|A is defined through its action on a function h by [LB|Ah](b)
def
=∫

fB|A(b|a)h(a)dµX(a).

In the discrete case, this condition reduces to a familiar full rank condition on the matrices
of conditional probabilities fX(s)|X∗(s)(x|x∗) and fX(s+∆s)|X∗(s)(x|x∗) (indexed by x and x∗).

For the outcome variable Y (s), a weaker rank-like condition is sufficient:

Assumption 2.5 (Outcome variation). For all x∗1 6= x∗2, the set {y : fY (s)|X∗(s)(y|x∗1) 6=
fY (s)|X∗(s)(y|x∗2)} has positive probability.

Hu and Xiao (2018) observe that, in the discrete case, these conditions provide easily
verifiable conditions that reach Kruskal’s minimum rank bounds for the identification of
discrete probability models defined in terms of three-way arrays (Kruskal, 1977). As noted
in Schennach (2016), in the continuous case, these two conditions also reach a continuous
analog of Kruskal’s minimum rank bounds.

We are now ready to state our main identification result (proven in the Appendix):

Theorem 2.1 (Identification). Under assumptions 2.1 to 2.6, the (conditional) densities
fY (s)|X∗(s), fX(s)|X∗(s), fX(s+∆s)|X∗(s), and fX∗(s) are identified (almost everywhere) from the
observed joint density fY (s),X(s),X(s+∆s).

From this result, any model (such as Equation (1)) that seeks to determine a relation
between Y and X∗ is also identified. The practical use of this identification result obviously
requires the determination of the density fY (s),X(s),X(s+∆s). When locations are regularly
spaced, ∆s can be fixed so that knowledge of the sample (Y (Si), X(Si), X(Si + ∆s)) is
sufficient for estimation. However, as noted earlier, if locations Si have random spacings,
there may not be pairs of observations exactly ∆s apart from each other. In this case, we
propose to view the density of interest as a conditional density:

fY (s),X(s),X(s+∆s)(y, x, z)
def
= fY (s),X(s),X(s+∆S)|∆S(y, x, z|∆s) (3)

=
fY (s),X(s),X(s+∆S),∆S(y, x, z,∆s)

f∆S(∆s)
(4)

where the numerator and denominator can be estimated by kernel smoothing over all the con-
tinuous variables, including ∆S, under the assumptions that locations are drawn from some
continuous density over space. Naturally, this approach relies on a stationarity assumption
for estimation:

Assumption 2.6 (Stationarity). The joint distribution of Y (s), X(s), X(s + ∆s) does not
depend on s.

While stationarity assumptions have been criticized in spatial applications (Pinkse and
Slade, 2010a) due to inherent geographic inhomogeneities, this assumption can be weakened
by instead considering a conditional density

fY (s),X(s),X(s+∆s)|T,∆S(y, x, z|t,∆s) (5)
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where T is a position-dependent variable that controls for the source of the lack of station-
arity. All above assumptions and results are then understood to be conditional on T (which
is suppressed in the notation, for simplicity). For instance, T could be the distance to the
nearest body of water, the degree of a node in graph/network applications or controls for
treatment status or law enactments.3

It is even possible, in principle, to fully relax stationarity by partitioning the space of S
through a grid of resolution b and letting T denote which grid “box” point S belongs to. If we
let b → 0 as n → ∞, stationarity conditional on T will hold asymptotically under suitable
regularity conditions regarding the generating process. Consistency can be maintained if
b→ 0 sufficiently slowly as sample size grows. It is also possible to replace partitioning into
boxes by suitable kernel smoothing. We leave a formal analysis of these extensions for future
work, however, to avoid obscuring the main ideas.

3 Estimator and Implementation

Estimation is based on the identity

fY (s),X(s),X(s+∆s)(y, x, z) (6)

=

∫
fY (s)|X∗(s)(y|x∗)fX∗(s)(x∗)fX(s)|X∗(s)(x|x∗)fX(s+∆s)|X∗(s)(z|x∗,∆s)dµX(x∗),

implied by conditional independence (Assumption 2.1). Theorem 2.1 implies that this in-
tegral equation, for a given left-hand side density, has a unique solution. Hence, we can
use the right-hand side of (6) to construct an estimator analogous to a maximum likelihood
estimator (MLE) in terms of 4 unknown densities to be estimated. In the misclassification
case (µX discrete), the densities fX(s)|X∗(s)(x|x∗), fX(s+∆s)|X∗(s)(z|x∗) and fX∗(s)(x

∗) can be
parametrized as a matrix (or a vector) of probabilities, as in Hu (2008). In the continuous
µX case, the densities are represented by a sieve approximation, as in Hu and Schennach
(2008).

One important aspect of our approach that is distinct from earlier work (such as Hu and
Schennach (2008)) is the fact that X(s + ∆s) is not a repeated measurement in the usual
sense, because we only have access to its estimated density, not its specific value of each
sample point. We address this by sampling pseudo-observations from the density

fX(s+∆S)|Y (s),X(s),∆S(z|y, x,∆s) =
fY (s),X(s),X(s+∆S),∆S(y, x, z,∆s)∫

fY (s),X(s),X(s+∆S),∆S(y, x, z,∆s)dµX(z)

where the right-hand side can be estimated from kernel smoothing, as in Equation (3), for

some pre-specified ∆s. For estimation purposes, our sample then consists of Yi
def
= Y (Si),

Xi
def
= X(Si) and Zi drawn from an estimate of fX(s+∆S)|Y (s),X(s),∆S(z|Yi, Xi,∆s) for i =

1, . . . , n. One could, of course, draw multiple pseudo-observations per data point to reduce

3It should be stated that high-dimensionality of T may have an impact on estimation accuracy, due to
the data needs associated with high-dimensional density estimations. In practice, dimensionality of T may
thus be limited by the size of the available data.
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the simulation noise, although we did not find this to be necessary in our application and
simulations study.

We then use a semiparametric sieve maximum likelihood estimator (MLE)(Shen, 1997)
of the form:

(θ̂, η̂, f̂1, f̂2, f̂3) = arg max
(θ,η,f1,f2,f3)

n∑
i=1

lnL(Yi, Xi, Zi; θ, η, f1, f2, f3) (7)

where the maximization if performed under suitable constraints detailed below and where

L(y, x, z; θ, η, f1, f2, f3)
def
=

∫
X ∗
f(y|x∗; θ, η)f1(x∗)f2(x|x∗)f3(z|x∗,∆s)dx∗ (8)

where X ∗ denotes the support of X∗. In (8), the density fY (s)|X∗(s)(y|x∗) is indexed by θ,
the parameter of interest and η, some nuisance parameter. In our setup, θ could specify the
shape of the function g in Equation (1), while η could specify the density of the disturbance
U(S). (Other ways to separate δ and η are possible: for instance, θ could represent an
average derivative, while η includes both the density of U(S) and degrees of freedom of g
which do not affect the average derivative. See Hu and Schennach (2008) for more details.)
No such separation is imposed on the remaining densities (f1, f2, f3), which are all considered
nuisance parameters. Note that only f3 depends on the shift ∆s. The parameter of interest
θ is considered finite dimensional, while all other parameters are infinite dimensional and
approximated through sieves in finite samples. This setup reflects most empirical studies and
will enable the development of an asymptotic theory for asymptotic normality and root-n
consistency (in the next section).

The optimization in Equation (7) must be performed under some constraints in order
to enforce the assumptions needed for identification as well as basic properties of densities.
To enforce nonnegativity constraints, we actually model the square root of densities, so that
their respective squares are automatically positive:

f
1
2

1 (x∗) =
in+1∑
i=1

αipi,1(x∗) = p1(x− x∗)′α (9)

f
1
2

2 (x|x∗) =
in+1∑
i=1

jn+1∑
j=1

βijpi,2(x− x∗)qj(x∗) = p2(x− x∗)′βq(x∗) (10)

f
1
2

3 (z|x∗) =
in+1∑
i=1

jn+1∑
j=1

γijpi,3(x− x∗)qj(x∗) = p3(z − x∗)′γq(x∗) (11)

Let x∗ ∈ [0, lx], (x − x∗) ∈ [−l1, l1], and (z − x∗) ∈ [−l2, l2]. If we use Fourier series, we
have pk,1(a) = cos(k2π

lx
a) or

pk,1(a) = sin(k2π
lx
a)∀k > 1, pk,m(a) = cos(kπ

lm
a) or pk,m(a) = sin(kπ

lm
a)∀k > 1 and m

∈ {1, 2}, and qk(a) = cos(kπ
lx
a). f(yi|x∗) can be specified similarly or be fully parametric.

In the following, we use both cosines and sines in numbers in
2

each (the first of the (in + 1)
terms being the constant).
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Since non-negativity constraints are automatically satisfied by squaring, Mx[f2(·|x∗)] =
x∗, My[f1(·|x∗)] = g(x∗) and densities integrating to 1 remain to enforce. We proceed as
follows. Consider the density f = (

∑in+1
i=1

∑jn+1
j=1 piΛijqj)

2. In matrix form, f = (p
′
Λq)2 =

q
′
Λ
′
pp
′
Λq. When considering the constraint that densities integrate to 1, the use of an

orthonormal basis yields ∫
f = q

′
Λ
′
IΛq = (q′ ⊗ q′)vec(Λ′Λ) (12)

For the vector of orthogonal functions B(x∗) = [1 cos(x∗) ... cos(2jnx
∗)]′ and the transforma-

tion T that satisfies TB(x∗) = q(x∗)⊗q(x∗), we obtain the restriction B′(x∗)T ′vec(Λ
′
Λ) = 1,

i.e. [T ′vec(Λ
′
Λ)]11 = 1 and [T ′vec(Λ

′
Λ)]k1 = 0 for k > 1. Other constraints can be treated

similarly; after a bit of algebra, it is simple to implement the constraint brought by the
functional, whether the expected value, the median, the mode, or a percentile.

Solving the optimization problem (7) subject to the constraints delivers θ̂∆s for the chosen
∆s. Although any single nonzero value of ∆s delivers a consistent estimator, its efficiency
can be improved by combining the information provided by all other distances. Since kernel
estimates at two nearby points are asymptotically uncorrelated, an asymptotically optimal
linear combination of the different θ̂∆s simply involves weights inversely proportional to the
variance of the corresponding estimators. This approach is supported by our simulation
experiments in finite sample, which reveal only weak correlation between the estimation
errors of estimators based on different distances. Naturally, to ensure that this asymptotic
behavior is reached, it is recommended that the spacing between the different ∆s be selected
so that it converges to zero slower than the bandwidth does, as sample size grows.

4 Inference

Our estimator’s hybrid nature (i.e. with Zi drawn from a kernel density estimator fed into
a sieve semiparametric MLE) makes its asymptotic analysis much more involved than an
application of standard results on sieve MLE and complicates an explicit calculation of its
asymptotic variance. To address this, we establish that the construction of the Zi still
yields an estimator that admits an asymptotically linear representation, provided that the
corresponding (infeasible) sieve estimator with observed Zi has that property. This result,
stated formally below, will simultaneously ensure asymptotic normality, root n consistency,
and asymptotic validity of the bootstrap for our estimator.

To state our main asymptotic result, we define a profiled likelihood that focuses on the
parameter θ of interest:

L (θ, f) = E [lnL (Y,X,Z; θ, ω (θ))] (13)

for
ω (θ) = arg max

ω∈Ω
E [lnL (Y,X,Z; θ, ω)]

with Z distributed according to the conditional density f ≡ fZ|X,Y,∆s of the repeated mea-
surement, and where ω ≡ (η, f1, f2, f3) denotes all the nuisance parameters, which belong to
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some set Ω imposing suitable regularity conditions. Let θ0 and f0 denote the true values of
θ and f , respectively.

The empirical counterpart of (13) is:

L̂
(
θ, f̂
)

=
1

n

n∑
i=1

lnL (Yi, Xi, Zi; θ, ω̂ (θ)) (14)

for

ω̂ (θ) = arg max
ω̂∈Ωn

1

n

n∑
i=1

lnL (Yi, Xi, Zi; θ, ω̂)

with Zi drawn from the density f̂ ≡ f̂Z|X,Y,∆s and the maximum is taken over a sample-

size dependent sieve space Ωn (as described in the previous section). We define θ̂ =

arg maxθ L̂
(
θ, f̂
)

, for some estimated f̂ .

In accordance with the definition of a profiled likelihood, all gradients with respect to θ
below (denoted by ∇) incorporate the effect of simultaneous changes in the nuisance param-
eters through the function ω (θ) or ω̂ (θ). This approach provides a simple way to formally
abstract away the nuisance parameters from the expansion relevant to the asymptotics of θ̂.
Let X ,Y ,Z denote the support of X, Y, Z, respectively4, while Θ is the parameter space for
θ. Let F denote a neighborhood of f0 (where the sup-norm is used for f).

With these definitions in mind, we can now state our key assumptions.

Assumption 4.1 (Consistency). (i) L (θ, f0) is uniquely maximized at θ = θ0, (ii) supθ∈Θ

supf∈F

∣∣∣L̂ (θ, f)− L (θ, f)
∣∣∣ p−→ 0 and (iii) L (θ, f) is continuous in f at f0 uniformly for

θ ∈ Θ.

Assumption 4.2 (Limiting distribution). (i) supθ∈Θ

∣∣∣∇∇′L̂ (θ, f0)−∇∇′L (θ, f0)
∣∣∣ p−→ 0,

(ii) H = ∇∇′L (θ0, f0) is invertible, (iii) supθ∈Θ,f∈F

∣∣∣∇∇′L̂ (θ, f)−∇∇′L (θ, f)
∣∣∣ p−→ 0, (iv)

∇∇′L (θ, f) is continuous in f at f0 uniformly for θ ∈ Θ.

We deliberately phrase Assumptions 4.1 and 4.2 in a high-level form because they arise
in the asymptotic analysis of a conventional sieve MLE estimator and a number of different
possible sufficient conditions are already available in the literature (e.g. Hu and Schennach
(2008)). Assumption 4.1(i) merely restates the conclusion of our earlier identification argu-
ment. Assumptions 4.1(ii), 4.2(i) and (iii) only require uniform consistency and thus follow
from uniform laws of large numbers for spatial data (see Jenish and Prucha (2009), who
establish laws of large numbers under mixing and moment conditions and turn them into
uniform laws of large numbers by adding stochastic equicontinuity and dominance). These
conditions are slightly strengthened here (relative to a standard sieve MLE) to account for
an estimated f0. Assumptions 4.1(iii), 4.2(ii) and (iv) do not involve random quantities,
hence the spatial nature of the data is of no consequence. Assumption 4.1(iii) and 4.2(iv)
ensures that estimation of f0 won’t degrade the estimator’s properties. We now use a more

4The assumption of rectangular support of (X,Y, Z) is made purely for notational convenience and can
be trivially relaxed.
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primitive formulation for the assumptions that are specific to our estimator, for instance,
those related to the fact that the distribution of Z is estimated and that Zi are simulated
draws.

Assumption 4.3 (Support). (i) fY,X (y, x) ≥ ε > 0 and (ii) X ,Y ,Z are compact.

This assumption is commonly made in the analysis of semiparametric estimators with
estimated densities, but could be relaxed through tail trimming arguments. We do not
consider this extension here, because the intricate details needed would obscure the main
ideas.

Assumption 4.4 (Density estimation). (i) supy,x∈Y×X

∣∣∣f̂Y,X (y, x)− fY,X (y, x)
∣∣∣ = op

(
n−1/4

)
,

(ii) supy,x,z∈Y×X×Z

∣∣∣f̂Y,X,Z (y, x, z)− fY,X,Z (y, x, z)
∣∣∣ = op

(
n−1/4

)
, (iii) supy,x∈Y×X∣∣∣E [f̂Y,X (y, x)

]
− fY,X (y, x)

∣∣∣ = o
(
n−1/2

)
and (iv) supy,x,z∈Y×X×Z

∣∣∣E [f̂Y,X,Z (y, x, z)
]
− fY,X,Z (y, x, z)

∣∣∣ =

o
(
n−1/2

)
.

Sufficient conditions for Assumptions 4.4(i) and (ii) in spatial contexts can be found in
Carbon, Tran and Wu (1997). Assumptions 4.4(iii) and (iv) are not affected by spatial
dependence and standard conditions implying them can be found in Andrews (1995).

Assumption 4.5 (Generated Zi). (i) ∇ lnL (y, x, z; θ, ω (θ)) is bounded and Lipschitz in z
and (ii) fZ|Y X (z|y, x) is bounded.

These conditions are needed to account for the simulated nature of Zi and are simple to
verify by inspection.

Theorem 4.1 (Asymptotically linear representation). Under Assumptions 4.1, 4.2, 4.3, 4.4
and 4.5,

n1/2
(
θ̂ − θ

)
= n−1/2

n∑
i=1

ψMLE (Yi, Xi, Zi)

+n−1/2

n∑
i=1

ψkernel (Yi, Xi, Zi) + op (1)

where
ψMLE (y, x, z) = −H−1∇ lnL (y, x, z; θ, ω (θ))

is the usual influence function of a standard sieve semiparametric MLE with observed Zi,
while

Ψkernel (y, x, z) = H−1 (∇ lnL (y, x, z; θ, ω (θ))− E [∇ lnL (Y,X,Z; θ, ω (θ))])

+H−1 (E [∇ lnL (Y,X,Z; θ, ω (θ)) |Y = y,X = x]

−E [∇ lnL (Y,X,Z; θ, ω (θ))])

is the correction term due to constructing the measurement Zi.
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The conclusion of Theorem 4.1 is stated in a way such that any central limit theorems for
sample averages involving spatial data (see, e.g., Bolthausen (1982); Lahiri (2003); Jenish and
Prucha (2009, 2012) for CLT under various types of mixing and moment conditions) can be
freely used to obtain the limiting distribution. If a resampling approach is preferred, a block
bootstrap (Hall, Horowitz and Jing, 1995; Nordman, Lahiri and Fridley, 2007) approach
should be used to account for the possible spatial dependence.

5 Simulations

We conduct simulations to test the performance of our spatial estimator that corrects for
measurement error. We generate a random field X∗(S) on a subset of R2, on which we
then construct Y (S) = g(X∗(S)) +U(S) and X(S) = X∗(S) + V (S) which are observed for
S = Si, i = 1, ..., n. Sampled location are randomly chosen and thus unevenly spaced.

We specify g(x∗) = θ1 + θ2x
∗, and (θ1, θ2) = (−3.5, 2). The error terms, U and V , are

normally distributed independently of x∗ with standard deviations of 1.3 and 0.8, respec-
tively.

We parametrically specify f(yi|x∗) in the optimization problem and analyze results for
(θ1, θ2, σu). Two forms of the estimators are tested: a simple, unweighted average over all
distances, and an inverse-variance-weighted average scheme.

The number of Sieve terms has been chosen by examining the resulting densities and
ensuring small variations in the number of Sieves do not cause the resulting estimator to
vary much. This is in line with the suggestion in Hu and Schennach (2008) ”that a valid
smoothing parameter can be obtained by scanning a range of values in search of a region
where the estimates are not very sensitive to small variations in the smoothing parameter”.
With Section 3’s notations, this leads to in = 6, jn = 4 for f(x|x∗), in = 4, jn = 4 for f(z|x∗),
and in = 4 for f(x∗). In the appendix, we report additional simulations for a range of sieves
truncation choices - in = jn = 2k, k = 1, 2, 3 for all densities - which suggest performance
does not depend strongly on the number of Sieves terms within the range 4−6. Lower values
appear too rough and reduce the performance of the estimator, while higher values add too
much variance and let the number of parameters explode, which also increases computational
burden. These two versions of the estimators are compared to the infeasible OLS that uses
the unobserved regressor and to the biased OLS estimator that regresses on the mismeasured
regressor. Results are displayed in the following tables.

Table 1: θ1 = −3.5

Mean Standard deviation RMSE
Infeasible OLS −3.50 0.12 0.12
OLS −0.77 0.15 2.74
Unweighted Spatial −3.58 0.10 0.13
Weighted Spatial −3.57 0.08 0.11

It is seen — as expected in presence of substantial measurement error — that the bi-
ased OLS regression using the mismeasured regressor performs poorly, displaying strong
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θ2 = 2

Mean Standard deviation RMSE
Infeasible OLS 2.00 0.03 0.03
OLS 1.22 0.04 0.78
Unweighted Spatial 2.04 0.04 0.06
Weighted Spatial 2.03 0.03 0.05

σu = 1.3

Mean Standard deviation RMSE
Infeasible OLS 1.30 0.02 0.02
OLS 1.80 0.03 0.50
Unweighted Spatial 1.26 0.03 0.05
Weighted Spatial 1.26 0.03 0.05

Simulations with 1500 observations. Infeasible OLS refers to the infeasible OLS estimator
using the unobserved true regressor; OLS is the biased OLS estimator using mismeasured
covariate; Unweighted Spatial is our unweighted average spatial estimator; Weighted Spatial
is the optimally weighted average spatial estimator.

attenuation bias.
Our estimator exhibits significant improvement over biased OLS. For all parameters,

it also attains a RMSE that is no more than three times that of the efficient, infeasible
OLS estimator that uses the actual covariate. Of course, a finite-sample bias is expected,
especially given the slight misspecification induced by the truncation of the Sieve expansion,
but its magnitude remains reasonable. Furthermore, the estimator performs similarly to
OLS in terms of variance.

Further simulations exploring the link between the distance ∆s that determines the choice
of instrument and estimation accuracy reveal a non-trivial relationship. Using the RMSE
of the estimated θ2 as a figure of merit, we find that using ∆s = 1.5 provides the best
result with a RMSE of 0.04, beating both the closer distance of 0.75 (RMSE 0.07) and the
larger distance of 1.25 (RMSE 0.9). The reason for this non-monotone behavior is likely
that closer observations improve the instrument’s strength, while larger distances induces a
higher count of observations, which allows a more precise estimate of the conditional density.
The analysis of the ∆s-dependence is done here for illustration purposes — when using a
weighted average over a range of ∆s (as we shall do in our application), there is no need to
select a specific ∆s.

While estimators from individual distances can exhibit heavy tails, the presence of outlier
estimates is alleviated thanks to averaging over different estimates. For instance in estimating
θ2 = 2, the first percentile is 1.98 and the 99th reaches 2.08. In this example, the intercept
is somewhat more prone to outliers; in estimating θ1 = −3.5, the corresponding percentile
figures are -4.15 and -3.51.
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6 Application

We revisit the influential study of Michalopoulos and Papaioannou (2013) to demonstrate
how our approach can effectively deliver measurement-error robust estimation and inference
in the context of spatial data, without necessitating additional auxiliary variables, such as
instruments or validation data. In this particular application, the possibility of significant
measurement error in a key regressor is an important concern that existing methods have
been unable to fully address.

This study investigates the relationships between pre-colonial ethnic political centraliza-
tion and contemporary development. The underlying motivation is to confirm anecdotal
observations that the pre-existence of a complex large-scale political structure within ethnic
groups appears to strongly impact economic development, independently of political struc-
tures put in place during colonization. The pre-colonial political structure is captured by
measures of the extent of jurisdictional hierarchy beyond the local level developed by Mur-
dock (1969). Obtaining such measures is challenging, as it involves subjective assessments,
and is thus prone to misclassification errors, as discussed by Michalopoulos and Papaioannou
(2013). As this quantity appears as a regressor in the analysis, the possibility of measurement
error induced bias must be considered.

The dependent variable in this study is economic activity. Given unavailability of com-
parable economic indicators across African ethnic homelands, the authors employ nighttime
artificial light intensity as a proxy for economic activity, in the spirit of Henderson, Storey-
gard and Weil (2012), Elvidge et al. (1997) and Doll, Muller and Morley (2006), among
others.

Their main regression takes the form:

yi = β0 + β1x
∗
i + w′iβW + εi (15)

where yi denotes light density at night, x∗i is the (correctly-measured) level jurisdictional
hierarchy or “complexity”, taking value in {0, 1, 2, 3, 4}, and wi is a vector of covariates
including population density, location controls (distance to the capital city, distance to the
border, and distance to the coast), geographic features (land suitability for agriculture,
malaria stability index, land area under water, and petroleum and diamond dummies), and
income per capita. Country fixed effects are also considered.

Results from Table 2 and 3 in Michalopoulos and Papaioannou (2013), which are par-
tially reproduced in Table 2, suggest that a one unit increase in the jurisdictional hierarchy
index — roughly corresponding to a one standard deviation increase — leads to an increase
in light luminosity of 20 % (with all controls and country fixed effects) to 40% (without
controls) — corresponding to a 0.1 to 0.2 standard deviation increase. See Michalopoulos
and Papaioannou (2013) for details.

These results suggest a strong relationship between pre-colonial political complexity and
current economic development, and here we seek to ensure that this finding is robust the pres-
ence of misclassification errors. It is also of independent interest to quantify how prevalent
classification errors are in such frameworks.

While the correctly classified variable is unobserved, it can be argued that the misclassifi-
cation is mode-preserving (Schennach, 2018), i.e. for any true underlying level of complexity,
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Table 2: Replicated results

Coefficient se 95% CI lb 95% CI ub
No controls 0.41 0.12 0.17 0.66
Controls 0.2 0.05 0.1 0.29
Controls and FE 0.18 0.05 0.08 0.27

OLS estimate for hierarchy index coefficient on (log) light luminosity; standard errors (se);
lower bound (lb) and upper bound (ub) of 95% confidence interval (CI). FE refers to country
fixed effects.

Table 3: Measurement error robust estimates

Coefficient se 95% CI lb 95% CI ub
No control 1.28 0.31 0.68 1.87
Controls 0.77 0.16 0.45 1.08
Controls and FE 0.27 0.13 0.01 0.52

Measurement-error corrected estimate for hierarchy index coefficient on (log) light luminos-
ity; standard errors (se) are estimated using a block bootstrap; lower bound (lb) and upper
bound (ub) of 95% confidence interval (CI). FE refers to country fixed effects.

the most likely observed assessed value is the correct appraisal. Combined with repeated
measurements provided by the spatial structure, this identifies the distribution f(yi|x∗).

In the sample, the highest level of complexity (xi = 4) occurs less than 1% of the time,
thus making it difficult to estimate probabilities involving that event with good accuracy.
To alleviate the issue, we pool outcomes X = 3 and X = 4 together at the value 3.5

We estimate the spatial autocorrelation of the hierarchical complexity to vary from 0.35
to 0.25 for distances between 10 and 150 kilometers. This supports our identification strategy
and we consider ∆s = j × 10 km for j = 1, ..., 15 as instruments.

To account for the numerous covariates W , we consider a first-step regression of y on
x and W and subtract the effects of the covariates to obtain ỹ

def
= y − WβW to which

we apply our procedure. This is justified if the explanatory power of the controls does not
fundamentally differ when using the true rather than the mismeasured variable as a regressor.
As the strongest correlation between X and a control is -0.25, we believe the assumption is
plausible. Since the main estimator is nonparametric, its slower convergence rate dominates
the asymptotics, and the noise from this parametric first-step is neglected for the computation
of asymptotic variances. We exploit our asymptotically linear representation result and
estimate standard errors via a block bootstrap.

Applying our measurement-error robust, inverse variance-weighted spatial estimator yields
the results shown in Table 3.

A regression without additional controls yields a statistically significant estimate of 1.28,

5Alternative strategies would be to use the weighted-average value (3.1) or to drop observations with a
4. These options do not materially change the results, as can be expected by the very low frequency of 4s.
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a much larger finding than the OLS counterpart. The coefficient decreases as controls are
added, though measurement error robust estimates still point to a stronger influence of
political complexity on development than the biased OLS coefficients do. The use of our
measurement error robust estimator also does not come at the cost of a significant decrease
in statistical significance.

Our method also identifies the misclassification matrix, which is reported in tables 4, 5,
and 6. There appears to be substantial misclassification in all specifications. While extreme
misclassifications are less frequent, subjective assessments can often deviate to nearby cat-
egories and this is reflected in the estimated probabilities. These results support the view
that measurement error is a major concern in such applications and that our method offers
a viable avenue to address this issue.

Table 4: P[X = i|X∗ = j] (no control)

0.35 0.30 0.15 0.12
0.35 0.35 0.31 0.28
0.21 0.26 0.32 0.22
0.08 0.09 0.21 0.38

Table 5: P[X = i|X∗ = j] (controls)

0.42 0.07 0.16 0.19
0.42 0.38 0.30 0.27
0.12 0.38 0.31 0.27
0.04 0.17 0.23 0.27

Table 6: P[X = i|X∗ = j] (controls and FE)

0.47 0.10 0.15 0.13
0.40 0.39 0.27 0.29
0.09 0.39 0.32 0.29
0.05 0.12 0.27 0.29

Misclassification probability matrices (i: row; j: column

Overall, our results reinforce those of Michalopoulos and Papaioannou (2013) and, if any-
thing, uncover an even stronger relationship between pre-colonial centralization and current
development. Not only are the point estimates of the coefficients larger, but their statis-
tical significance also remains very high. Our proposed approach thus seems to provide a
practical and feasible way to address measurement error issues at no extra data collection
cost in spatial settings. This capability should prove especially useful in the context of noisy
historical data and, more broadly, in any noisy data setting where observation pairs can be
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assigned a quantifiable notion of “proximity”. This not only includes geographically tagged
data, but also more abstract spaces, such product or consumer characteristics or network
data.

7 Conclusion

We have show that the use of spatial data provides a formal and effective way to correct
for the presence of potentially nonclassical covariate measurement error in general nonlin-
ear model without relying on distributional assumptions. Using neighboring observations
as repeated measurements requires carefully controlling for the nonuniform spacing between
observations by constructing the joint distribution of all measurements conditional on the
distance between observations, in order to ensure that the resulting measurement system sat-
isfies the appropriate conditional independence restrictions needed to establish identification
of the model.

The method’s implementation combines a sieve semiparametric maximum likelihood with
a first-step kernel conditional density estimator and simulation methods. Monte Carlo sim-
ulations suggest that this implementation performs well at typically available sample sizes.

The method’s effectiveness is further illustrated by revisiting a well-known study of the
effect of pre-colonial political structure on current economic development in Africa. Our
estimator support the authors’ original findings by showing that their results are robust to
allowing for the likely possibility that political structure is measured with error. Our results
suggest that the studied relationship could even be stronger than previously thought.

Our approach opens the way to considering much broader classes of repeated measure-
ments than previously thought possible, as long as a well-defined notion of proximity between
pairs of observations can be defined. Beyond geographical data, this could be applicable to
network data as well as more abstract spaces of consumer or product characteristics.
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A Proofs

Theorem 2.1. We handle the case of discrete and continuous µX separately. We let =d denote
equality in distribution.

For the continuous case, we show assumptions 1 to 5 in Hu and Schennach (2008) are
satisfied in our framework. Identification then follows from their Theorem 1.

First, assumption 2.1 implies their assumption 2, both (i) and (ii). For (i), we observe
that Y (s)|X(s), X∗(s), X(s + ∆s) =d g(X∗) + U(S)|X(s), X∗(s), X∗(s + ∆s) + V (s + ∆s)
by our assumptions about the generating process, equations (1) and (2). The first term is
known conditional on X∗ and thus by assumption 2.1

Y (s)|X(s), X∗(s), X(s+ ∆s) =d g(X∗) + U(S)|X∗(s)
=d Y (s)|X∗(s). (16)

Next, we have

X(s)|X∗(s), X(s+ ∆s) =d X∗(s) + V (s)|X∗(s), X∗(s+ ∆s) + V (s+ ∆s)

=d X∗(s) + V (s)|X∗(s)
=d X(s)|X∗(s), (17)

so (ii) holds as well.
Assumptions 2.2, 2.4, and 2.5 are direct counterparts of assumptions 1, 3, and 4 in

Hu (2008) adapted to our spatial setup. Finally, the existence of Mx in assumption 2.3
establishes their assumption 5.

Hence, by Theorem 1 in Hu (2008), the knowledge of fY (s),X(s),X(s+∆s)(y, x, z) identifies
fY (s)|X∗(s), fX(s)|X∗(s), fX(s+∆s)|X∗(s), and fX∗(s).

For the discrete case, we first show that our assumptions imply the assumptions 1, 2, 2.1,
2.2 of Hu (2008). Note that their assumptions explicitly include possible conditioning on a
covariate w, while we our notation leaves such conditioning implicit, for simplicity.

19



Our assumption 2.1 implies their assumption 1 and 2, by the same reasoning that lead
to Equations (16) and (17) above. Next, our assumption 2.4 reduces to their assumptions
2.1 and 2.2 in the discrete case, since the integral operators reduce to matrix multiplications
when µX is discrete: [LB|Ah](b) =

∫
fB|A(b|a)h(a)dµX(a) =

∑
a FB|A(b|a)h(a)µ({a}).

Finally, although none of our assumptions imply one of their set of alternative assump-
tions 2.3 through 2.7, these assumptions are only needed to secure the proper ordering of the
possible values of the latent discrete variable X∗. Any re-ordering of it implies a re-ordering
of the column of the matrix fX(s)|X∗(s)(x|x∗). However, any ordering other than the correct
one would lead to a violation of our assumption 2.3: Mx[fX(s)|X∗(s)(·|x∗)] = x∗. Hence our
assumption 2.3 has the same effect as their set of alternative assumptions 2.3 through 2.7.
(Note that in the special case where Mx is the mode functional, our assumption 2.3 regarding
X(s)|X∗(s) is the same as their assumption 2.7.)

From the above consideration, we can invoke their Theorem 1 to establish identification
of our model in the discrete case.

Proof of Theorem 4.1. We take the following convention to ensure that the Zi vary smoothly
as f is changed in the expression L̂ (θ, f) for f 6= f̂ . Letting F−1 (·|x, y) denotes the in-
verse of the cdf of Z given X and Y with respect to the first argument, we set Zi =
F̂−1
Z|X,Y,∆s (Ui|Xi, Yi) (in the unidimensional case6) where Ui is drawn from a uniform and the
Ui are kept fixed as f varies. This is purely a device of proof and a harmless convention
because L̂ (θ, f) is only evaluated at f = f̂ in the estimator. However, the structure of the
proof (which uses constructs involving L̂ (θ, f) for f 6= f̂) is considerably simplified with this
convention.

We first show consistency. Assumptions 4.4(i),(ii) and 4.3(i) imply that
∥∥∥f̂ − f0

∥∥∥ p−→ 0.

To show that θ̂
p−→ θ, we observe that, by the triangular inequality,∣∣∣L̂(θ, f̂)− L (θ, f0)

∣∣∣ ≤ ∣∣∣L̂(θ, f̂)− L(θ, f̂)∣∣∣+
∣∣∣L(θ, f̂)− L (θ, f0)

∣∣∣ .
The first term satisfies

∣∣∣L̂(θ, f̂)− L(θ, f̂)∣∣∣ p−→ 0 by Assumption 4.1(ii) and the fact that

eventually f̂ ∈ F since f̂
p−→ f0. The second term is also such that

∣∣∣L(θ, f̂)− L (θ, f0)
∣∣∣ p−→

0 by Assumption 4.1(iii) and f̂
p−→ f0. Since L̂

(
θ, f̂
)

converges uniformly to a function that

is uniquely maximized at θ0 (by Assumption 4.1(i)), it follows that θ̂ = arg maxθ∈Θ L̂
(
θ, f̂
)

p−→
arg maxθ∈Θ L (θ, f0) = θ0, by Theorem 2.1 in Newey and McFadden (1994).

By a standard expansion of the first order conditions ∇L̂
(
θ̂, f̂
)

= 0 around the true

value θ = θ0, we have:

∇L̂
(
θ0, f̂

)
+∇∇′L̂

(
θ̄, f̂
)(

θ̂ − θ0

)
= 0

6In the the multivariate Zi case, one proceeds iteratively, starting with Zi,1 = F−1Z1|X,Y (Ui,1|Xi, Yi) and

continuing with Zi,k = F−1Zk|Z1,...,Zk−1,X,Y (Ui,k|Zi,1, . . . , Zi,k−1, Xi, Yi) for k = 2, . . . ,dimZi and with all Ui,k

mutually independent.
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where θ̄ is mean value between θ0 and θ̂. Rearranging, we have

n1/2
(
θ̂ − θ0

)
= −n1/2

(
∇∇′L̂

(
θ̄, f̂
))−1

∇L̂
(
θ0, f̂

)
= −n1/2

(
∇∇′L̂

(
θ̄, f̂
))−1 (

∇L̂
(
θ0, f̂

)
−∇L

(
θ0, f̂

)
+∇L

(
θ0, f̂

)
−∇L (θ0, f0)

)
= Ψ̂MLE + Ψ̂kernel +R1

where we have inserted −∇L
(
θ0, f̂

)
+∇L

(
θ0, f̂

)
= 0 and ∇L (θ0, f0) = 0 (by definition)

and where

Ψ̂MLE = −n1/2Ĥ−1
(
∇L̂ (θ0, f0)−∇L (θ0, f0)

)
Ψ̂kernel = −n1/2Ĥ−1

(
∇L

(
θ0, f̂

)
−∇L (θ0, f0)

)
R̂ = −n1/2Ĥ−1

((
∇L̂

(
θ0, f̂

)
−∇L

(
θ0, f̂

))
−
(
∇L̂ (θ0, f0)−∇L (θ0, f0)

))
Ĥ = ∇∇′L̂

(
θ̄, f̂
)
.

We first show that Ĥ
p−→ H ≡ ∇∇′L (θ0, f0) as follows:

Ĥ −H =
(
∇∇′L̂

(
θ̄, f0

)
−∇∇′L (θ, f0)

)
+
(
∇∇′L̂

(
θ̄, f̂
)
−∇∇′L̂

(
θ̄, f0

))
where the first term is such that

(
∇∇′L̂

(
θ̄, f0

)
−∇∇′L (θ, f0)

)
p−→ 0 from Assumption

4.2(i), while the second term can be written as:

∇∇′L̂
(
θ̄, f̂
)
−∇∇′L̂

(
θ̄, f0

)
=

(
∇∇′L̂

(
θ̄, f̂
)
−∇∇′L

(
θ̄, f̂
))

−
(
∇∇′L̂

(
θ̄, f0

)
−∇∇′L

(
θ̄, f0

))
+
(
∇∇′L

(
θ̄, f0

)
−∇∇′L

(
θ̄, f̂
))

.

The two first term converge in probability to zero by Assumption 4.2(iii) and the fact that
eventually f̂ ∈ F , by Assumptions 4.4(i),(ii) and 4.3(i). The last term converges in proba-
bility to 0 since, by Assumption 4.2(iv),

plimn−→∞∇∇′L
(
θ, f̂
)

= ∇∇′L
(
θ, plimn−→∞ f̂

)
= ∇∇′L (θ, f0) uniformly for θ ∈ Θ.

It follows that Ĥ
p−→ H. By assumption 4.2(ii), we also have Ĥ−1 p−→ H−1, so that

Ψ̂MLE −ΨMLE
p−→ 0, Ψ̂kernel − Ψ̃kernel

p−→ 0 and R̂−R p−→ 0 for

ΨMLE = −n1/2H−1
(
∇L̂ (θ0, f0)−∇L (θ0, f0)

)
= −n−1/2H−1

n∑
i=1

ψMLE (Yi, Xi, Zi)

Ψ̃kernel = −n1/2H−1
(
∇L

(
θ0, f̂

)
−∇L (θ0, f0)

)
R = −n1/2H−1

((
∇L̂

(
θ0, f̂

)
−∇L

(
θ0, f̂

))
−
(
∇L̂ (θ0, f0)−∇L (θ0, f0)

))
.
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where ψMLE (y, x, z) = ∇ lnL (y, x, z; θ, ω (θ)) is the usual influence function of a sieve MLE
estimator of θ, while

Ψ̃kernel

= −n1/2H−1

∫ ∫ ∫ (
f̂ (z|y, x)− f (z|y, x)

)
fY X (y, x)∇ lnL (y, x, z; θ, ω (θ)) dydxdz

= −n1/2H−1

∫ ∫ ∫ (
f̂ZY X (z, y, x)

f̂Y X (y, x)
− fZY X (z, y, x)

fY X (y, x)

)
fY X (y, x)∇ lnL (y, x, z; θ, ω (θ)) dydxdz

where we have set f̂ (z|y, x) ≡ f̂ (z|y, x,∆s) and f (z|y, x) ≡ f (z|y, x,∆s) to simplify the
notation.

Ψ̃kernel can be further linearized by using the fact that:

(
â

b̂
− a

b

)
=

(
â− a
b
− a

b

b̂− b
b

)
+

(
1 +

b̂− b
b

)−1
a
b

(
b̂− b
b

)2

−

(
b̂− b

)
b

(â− a)

b


=

(
â− a
b
− a

b

b̂− b
b

)
+ op

(
n−1/2

)
if ‖â− a‖ = op

(
n−1/4

)
,
∥∥∥b̂− b∥∥∥ = op

(
n−1/4

)
and b ≥ ε > 0. Setting b = fZY X (z, y, x) and

a = fY X (y, x) and invoking Assumption 4.4(i) and (ii) yields:

Ψ̃kernel

= −n1/2H−1

∫ ∫ ∫
f̂ZY X (z, y, x)− fZY X (z, y, x)

fY X (y, x)
fY X (y, x)∇ lnL (y, x, z; θ, ω (θ)) dydxdz

+n1/2H−1

∫ ∫ ∫
fZY X (z, y, x)

fY X (y, x)

(
f̂Y X (y, x)− fY X (y, x)

)
fY X (y, x)

fY X (y, x)

×∇ lnL (y, x, z; θ, ω (θ)) dydxdz + n1/2op
(
n−1/2

)
= Ψ̃1

kernel + Ψ̃2
kernel + op (1)

where

Ψ̃1
kernel = −n1/2H−1

∫ ∫ ∫ (
f̂ZY X (z, y, x)− fZY X (z, y, x)

)
∇ lnL (y, x, z; θ, ω (θ)) dydxdz

Ψ̃2
kernel = n1/2H−1

∫ ∫ (
f̂Y X (y, x)− fY X (y, x)

)
E [∇ lnL (Y,X,Z; θ, ω (θ)) |Y = y,X = x] dydx.

Using standard semiparametric correction terms for density estimation (Newey (1994)) and
under the small bias Assumption 4.4(iii) and (iv), these terms can be shown to be asymp-
totically equivalent to sample averages:

Ψ̃k
kernel = n−1/2

n∑
i=1

ψkkernel (Yi, Xi, Zi) + op (1)
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for k = 1, 2, where

ψ1
kernel (y, x, z) = H−1 (∇ lnL (y, x, z; θ, ω (θ))− E [∇ lnL (Y,X,Z; θ, ω (θ))])

ψ2
kernel (y, x, z) = H−1 (E [∇ lnL (Y,X,Z; θ, ω (θ)) |Y = y,X = x]− E [∇ lnL (Y,X,Z; θ, ω (θ))])

and ψkernel (y, x, z) = ψ1
kernel (y, x, z) + ψ2

kernel (y, x, z) is thus as given in the statement of the
Theorem.

To show that the remainder term R is op (1), we need to show that n1/2((∇L̂ (θ0, f) −
∇L (θ0, f))− (∇L̂ (θ0, f0)−∇L (θ0, f0) is stochastically equicontinuous in f at f = f0 for all
sufficiently large n. This standard property follows from (a) ∇L (θ0, f) being linear in f with
bounded prefactor by Assumption 4.5(i), (b) ∇L̂ (θ0, f) being Lipschitz in each of the Zi by
Assumption 4.5(i) and (c) the Zi being Lipschitz in f (in the sup norm ‖·‖∞). The third
assertion can be shown by observing that changes F − F0 in the conditional cdf of Zi are
bounded by C ‖f − f0‖∞ for some C <∞. Since both f0 and f are bounded by Assumption
4.5(ii), the change F−1 − F−1

0 is also bounded by C ′ ‖f − f0‖∞ for some C ′ <∞. Thus the
Zi are Lipschitz in f .
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B Additional simulations

Table 7: θ1 = −3.5

Mean Standard deviation RMSE
Unweighted Spatial; low Sieve −4.38 0.24 0.91
weighted Spatial; low Sieve −4.32 0.23 0.85
Unweighted Spatial; medium Sieve −3.58 0.19 0.20
weighted Spatial; medium Sieve −3.58 0.19 0.20
Unweighted Spatial; high Sieve −3.60 0.11 0.15
weighted Spatial; high Sieve −3.59 0.08 0.12

θ2 = 2

Mean Standard deviation RMSE
Unweighted Spatial; low Sieve 2.26 0.06 0.27
weighted Spatial; low Sieve 2.25 0.06 0.26
Unweighted Spatial; medium Sieve 2.05 0.06 0.07
weighted Spatial; medium Sieve 2.05 0.06 0.08
Unweighted Spatial; high Sieve 2.04 0.05 0.07
weighted Spatial; high Sieve 2.04 0.04 0.06

σu = 1.3

Mean Standard deviation RMSE
Unweighted Spatial; low Sieve 1.17 0.06 0.14
weighted Spatial; low Sieve 1.23 0.05 0.08
Unweighted Spatial; medium Sieve 1.34 0.03 0.05
weighted Spatial; medium Sieve 1.34 0.03 0.05
Unweighted Spatial; high Sieve 1.24 0.05 0.08
weighted Spatial; high Sieve 1.23 0.04 0.07

Unweighted Spatial: unweighted average spatial estimator; Weighted Spatial: optimally
weighted estimator. With Section 3’s notations, low Sieve means in = jn = 2; medium Sieve
means in = jn = 4; high Sieve means in = jn = 6
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