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Abstract

We provide estimation methods for panel nonseparable models based on low-rank

factor structure approximations. The factor structures are estimated by matrix-

completion methods to deal with the computational challenges of principal compo-

nent analysis in the presence of missing data. We show that the resulting estimators

are consistent in large panels, but suffer from approximation and shrinkage biases.

We correct these biases using matching and difference-in-difference approaches. Nu-

merical examples and an empirical application to the effect of election day regis-

tration on voter turnout in the U.S. illustrate the properties and usefulness of our

methods.

1 Introduction

Nonseparable models are useful to capture multidimensional unobserved heterogeneity,

which is an important feature of economic data. The presence of this heterogeneity
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makes the effect of covariates on the outcome of interest different for each unit due to

factors that are unobservable or unavailable to the researcher. In the absence of further

restrictions, a different data generating process essentially operates for each unit, which

creates identification and estimation challenges. One way to deal with these challenges

is the use of panel data, where each unit is observed on multiple occasions. In this

paper, we develop an approach to estimate nonseparable models from panel data based

on homogeneity restrictions and low-rank factor approximations. Whilst homogeneity

restrictions have been used previously in this context, the application of low-rank factor

approximations is more novel.

The nonseparable model that we consider includes observed discrete covariates or

treatments, multidimensional unobserved individual and time effects, and idiosyncratic

errors. We construct the effects of interest as averages or quantiles of potential outcomes

constructed from the model by exogenously manipulating the value of the treatments.

These effects are generally not identified from the observed data because the treatment

assignment is usually determined by the unobserved individual and time effects. Fol-

lowing the previous panel literature, we impose cross-section and time-series homogene-

ity restrictions to identify the effects of interest, see, e.g. Chamberlain (1982); Manski

(1987); Honoré (1992); Evdokimov (2010); Graham and Powell (2012); Hoderlein and

White (2012); Chernozhukov, Fernández-Val, Hahn and Newey (2013).

The estimation of the nonseparable model is challenging due to the presence of the

multidimensional unobserved individual and time effects. We cannot just exclude these

effects because they are endogenous, i.e., related to the treatments. We deal with this

problem by approximating their effect with a low-rank factor structure. This approach can

be interpreted as a series or sieve approximation on the unobservables. We characterize

the error of this approximation in terms of the functional singular value decomposition of

the expectation of the outcome conditional on the treatment and unobserved effects. For

smooth conditional expectation functions, the mean square error of the approximation

error vanishes with the rank of the factor structure at a polynomial rate.

We develop an estimator of the low-rank factor approximation in the case where the

covariate of interest is binary. This is an empirically relevant case as it covers the treat-

ment effect model for panel data. We also show how to extend the model to include

additive controls and fixed effects. Here, we rely on the analogy between the estimation

of treatment effects and the matrix completion problem previously noted by Athey, Bay-

ati, Doudchenko, Imbens and Khosravi (2017) and Amjad, Shah and Shen (2018). Thus,
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given that the principal components program is combinatorially hard in the presence of

missing data, we consider the convex relaxation of this program that replaces a constraint

in the rank of a matrix by a constraint in its nuclear norm, following Srebro and Jaakkola

(2003) and Fazel (2003). The resulting estimator is the matrix-completion estimator.

The main theoretical result of the paper is to show that the matrix-completion estima-

tor is consistent under asymptotic sequences where the two dimensions of the panel grow

to infinity at the same rate. This result does not follow from the existing matrix comple-

tion literature that assumes that the matrix to complete has low-rank. In our case, the

underlying matrix of interest can have full rank, but we impose appropriate smoothness

assumptions on the data generating process that guarantee that the singular values of the

matrix form a rapidly decreasing sequence. This allows a low-rank approximation, and it

also implies a bound on the nuclear norm of the matrix. Our consistency proof for the

matrix completion estimator therefore crucially relies on the bound of the nuclear norm,

but does not impose any low-rank conditions. Our proof strategy also avoids the high-

level restricted strong convexity assumption (see e.g. Negahban and Wainwright 2012).

We instead provide interpretable conditions on the underlying process of the observable

and unobservable variables directly.

The matrix-completion estimator is consistent, but can be biased in small samples.

This bias comes from two different sources: approximation bias due to the low-rank factor

structure approximation and shrinkage bias due to the nuclear norm regularization of the

principal component analysis program (Cai, Candès and Shen, 2010; Ma, Goldfarb and

Chen, 2011; Bai and Ng, 2019b). We propose matching approaches to debias the estimator.

For each treatment level, the simplest approach consists of finding the observation in the

other treatment level that is the closest in terms of the estimated factor structure. We

also propose a two-way matching procedure that combines matching with a differences-in-

differences approach. The two-way procedure is related to several recent proposals such

as the matching approach of Imai and Kim (2019) to estimate causal effects from panel

data and the blind regression of Li, Shah, Song and Yu (2017) for matrix completion.

The difference with these proposals is in the information used to match the observations.

Imai and Kim (2019) use the treatment variable and Li, Shah, Song and Yu (2017) the

outcome, whereas we use the estimated factor structure. In this sense, the estimation of

the factor structure can be seen as a preliminary de-noising step of the data (Chatterjee,

2015). Amjad, Shah and Shen (2018) proposed a similar debiasing procedure based on

the estimated factor structure, but they rely on synthetic control methods instead of
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matching.

We illustrate our methods with an empirical application to the effect of election day

registration (EDR) on voter turnout and numerical simulations. We estimate average

and quantile effects using a state-level panel dataset on the 24 U.S. presidential elections

between 1920 and 2012 collected by Xu (2017). We find that, after controlling for possible

non-random adoption, EDR has a positive effect, especially at the bottom of the voter

turnout distribution. Our methods uncover stronger effects than standard difference-in-

difference methods that rely on restrictive parallel trend assumptions. The simulation

results show that our theoretical results provide a good representation of the behavior of

the estimators in small samples.

The rest of the paper is organized as follows. Section 2 describes the model and

effects of interest. Section 3 introduces the low-rank factor approximation and derives

the properties of its matrix-completion estimator. The matching methods to debias the

matrix-completion estimator are discussed in Section 4. Section 5 reports the results

of the numerical examples. All the proofs of the theoretical results are gathered in the

Appendix.

2 Model and Effects of Interest

Throughout this paper we consider the following nonseparable and nonparametric panel

data model:

Assumption 1 (Model).

Yit = g(Xit,Ai,Bt,Uit), i ∈ N = {1, . . . , N}, t ∈ T = {1, . . . , T}, (1)

where i and t index individual units and time periods, respectively; Yit is an observed

outcome or response variable with support Y ⊆ R; g is an unknown function; Xit is a

vector of observed covariates or treatments with support X ⊆ Rdx; Ai and Bt are vectors of

individual and time unobserved effects, possibly correlated with Xit, with supports A ⊆ Rda

and B ⊆ Rdb, respectively; and Uit is a vector of unobserved error terms of unspecified

dimension, for which we assume that

Uit
d
= Ujs |XNT ,AN ,BT , for all i, j ∈ N, t, s ∈ T, (2)

and

Uit ⊥⊥Xjs | AN ,BT , for all i, j ∈ N, t, s ∈ T, (3)
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where XNT = {Xit : i ∈ N, t ∈ T}, AN = {Ai : i ∈ N}, BT = {Bt : t ∈ T}, and ⊥⊥
denotes stochastic independence.

This model can be motivated from a purely statistical perspective as a latent variable

model using the Aldous-Hoover representation for exchangeable random matrices, e.g.

Xu, Massouli and Lelarge (2014), Chatterjee (2015), Orbanz and Roy (2015), and Li and

Bell (2017).1 We motivate it instead as a structural model where the unobserved effects

Ai andBt are associated with individual heterogeneity and aggregate shocks, respectively.

Additional exogenous covariates can be incorporated in the usual way by carrying out the

analysis conditional on them.

The main restriction imposed by Assumption 1 is the unit and time homogeneity in

(2). A sufficient condition for unit homogeneity is that the observations are identically

distributed across i, which is a common sampling assumption for panel data. Time

homogeneity has also been commonly used in panel data models (Chamberlain, 1982;

Manski, 1987; Honoré, 1992; Evdokimov, 2010; Graham and Powell, 2012; Hoderlein and

White, 2012; Chernozhukov, Fernández-Val, Hahn and Newey, 2013). It implies that time

is randomly assigned, conditional on covariates and unobserved effects. The additional

restriction in (3) is an exogeneity condition of Xjs with respect to Uit. Given (2), it is

a mild condition as time homogeneity already imposes that any relationship between Uit

and Xjs can only be unit and time-invariant. Taken together, (2) and (3) impose that

Uit
d
= Ujs | AN ,BT , for all i, j ∈ N, t, s ∈ T.

The model considered is similar to the static model in Chernozhukov, Fernández-Val,

Hahn and Newey (2013), but there are three important differences. First, the structural

function g has time effects as arguments and therefore allows the relationship between

Yit and Xit to vary over time in an unrestricted fashion even under (2). For example, it

can include location and scale time effects. Second, Chernozhukov, Fernández-Val, Hahn

and Newey (2013) impose that Yit and Xit are identically distributed across i, which

is stronger than the unit homogeneity in (2). Thus, unit homogeneity is conditional

on the treatments and unobserved effects and therefore does not restrict the treatment

assignment process. Third, they analyze short panels, whereas we rely on large T for

identification. Our model also encompasses the nonseparable model with time effects in

1In the Aldous-Hoover representation, Ai, Bt and Uit are independent uniform random variables.
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Freyberger (2017), where in our notation Yit = gt(Xit,A
T
iBt + Uit).

2 We provide more

examples of models covered by Assumption 1 below.

The structural function g is generally not identified, but can be used to construct

interesting effects. Let Yit(x) := g(x,Ai,Bt,Uit(x)) be the potential outcome for indi-

vidual i at time t, obtained by setting exogenously Xit = x ∈ X and drawing Uit(x)
d
=

Uit | AN ,BT , where we impose rank similarity on Uit(x) across the values of x ∈ X. The

main effects of interest are the average structural functions (ASFs)

µt(x) :=
1

N

N∑
i=1

E
[
Yit(x) | AN ,BT

]
, µ(x) :=

1

T

T∑
t=1

µt(x), (4)

and the conditional average structural functions (CASFs)

µt(x | X0) :=
1

Nt(X0)

N∑
i=1

1{Xit ∈ X0}E
[
Yit(x) | AN ,BT

]
, Nt(X0) =

N∑
i=1

1{Xit ∈ X0},

µ(x | X0) :=
1

n(X0)

T∑
t=1

Nt(X0)µt(x | X0), n(X0) =
T∑
t=1

Nt(X0), (5)

where X0 ⊆ X. The ASFs and CASFs correspond to averages of the potential outcome

Yit(x) at a given time period or aggregated over the observed time periods. In both cases

the average is over the cross sectional units in the observed sample or finite population.

Infinite-population versions of the effects can be obtained by taking probability limits as

N → ∞. If Xit includes only a binary treatment, the ASFs and CASFs can be used to

form treatment effects. For example, µ(1)−µ(0) is the time-aggregated average treatment

effect and µt(1 | 1) − µt(0 | 1) is the average treatment effect on the treated at time t.

Distribution structural functions (DSFs) can be constructed analogously replacing Yit(x)

by 1{Yit(x) ≤ y} in (4) and (5) for y ∈ Y. Quantile effects can then be formed by taking

left-inverses of the DSFs and taking differences. For example, the τ -quantile treatment

effect at time t is qt,τ (1)− qt,τ (0), where

qt,τ (x) = inf

{
y ∈ Y :

1

N

N∑
i=1

E
[
1{Yit(x) ≤ y} | AN ,BT

]
≥ τ

}
.

We provide some examples of data generating processes that satisfy Assumption 1.

The purpose is to show that Assumption 1 covers a great variety of models commonly

used in empirical analysis. Our estimation methods are generic in that we do not need

2Note that our model allows for g to depend on t because the dimension of Bt is unspecified.
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to specify the data generating process, besides of satisfying Assumption 1. Of course,

using more information about the data generating process would lead to more efficient

estimators, but at the cost of robustness to model misspecification.

Example 1 (Linear factor model). Consider the linear panel model with factor structure

in the error terms:

Yit(x) = xTβ + λT

i ft + σi(x)σt(x)Uit(x), Uit(x) |XNT ,AN ,BT ∼ i.i.d. FU ,

where Uit(x) is a zero mean random variable with marginal distribution FU , which does

not depend on x. This is special case of Assumption 1 with Yit = Yit(Xit), Ai =

(λi, {σi(x) : x ∈ X}) , Bt = (ft, {σt(x) : x ∈ X}), and Uit = Uit(Xit). The average effect

of changing the covariate from x0 to x1 at t is

µt(x1)− µt(x0) = µt(x1 | x1)− µt(x0 | x1) = (x1 − x0)Tβ.

A version of this model was considered by Kim and Oka (2014) to analyze the effect of

unilateral divorce laws on divorce rates in the U.S. This model encompasses the standard

difference-in-difference model, Yit(x) = xTβ+ λi + ft + σi(x)σt(x)Uit(x), by setting λi =

(λi, 1)T and ft = (1, ft)
T.

Example 2 (Binary response model). Assume that the potential outcome Yit(x) is binary

and generated by

Yit(x) = 1{m(x,Ai,Bt) ≥ Uit(x)}, Uit(x) |XNT ,AN ,BT ∼ i.i.d.U(0, 1),

for some unknown function m. Here, assuming that Uit(x) is uniform is a normalization,

since m can be arbitrary. This nonparametric single index model with unobserved effects

is a special case of Assumption 1 with Yit = Yit(Xit) and Uit = Uit(Xit). The ASFs at x

and t is

µt(x) =
1

N

N∑
i=1

m(x,Ai,Bt).

Similar single index models for count or censored responses are also covered by Assumption

1.

Example 3 (Treatment effect factor model). Assume that Xit contains only a binary

treatment indicator, i.e., X = {0, 1}. The potential outcomes are generated by the linear

factor model

Yit(x) = λi(x)Tft(x) + σi(x)σt(x)Uit(x), Uit(x) |XNT ,AN ,BT ∼ i.i.d. FU , x ∈ X,
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where Uit(x) is a zero mean random variable with marginal distribution FU , which does

not depend on x. This is special case of Assumption 1 with Yit = Yit(Xit), Ai =

({λi(x), σi(x) : x ∈ X}), Bt = ({ft(x), σt(x) : x ∈ X}), and Uit = Uit(Xit). The av-

erage treatment effect at t is

µt(1)− µt(0) =
1

N

N∑
i=1

[λi(1)Tft(1)− λi(0)Tft(0)],

and the average effect on the treated at t is

µt(1 | 1)− µt(0 | 1) =
1

Nt(1)

N∑
i=1

1{Xit = 1}[λi(1)Tft(1)− λi(0)Tft(0)],

provided that Nt(1) =
∑N

i=1 1{Xit = 1} > 0. Versions of this model have been considered

by Hsiao, Steve Ching and Ki Wan (2012), Gobillon and Magnac (2016), Athey, Bayati,

Doudchenko, Imbens and Khosravi (2017), Li and Bell (2017), Xu (2017), Li (2018), Bai

and Ng (2019a), Xiong and Pelger (2019), and Chan and Kwok (2020). Example 1 is a

special case with λi(x)Tft(x) = xTβ + λT
i ft.

Throughout this paper we use standard panel data notation, with the two panel dimen-

sions being denoted by units i and time t. However, one could also consider pseudo-panel

or network applications of our results, where the two panel dimensions are denoted by i

and j, and Yij could, for example, be wage of worker i in firm j, consumption of member

i in household j, a friendship indicator between individuals i and j, or the volume of

trade from country i to country j. The existing literature on two-way heterogeneity in

network models usually either makes stronger parametric assumptions than we impose

here (e.g. Graham 2017, Dzemski 2019, Chen, Fernández-Val and Weidner 2020, Zeleneev

2020) or uses stochastic blockmodels or graphon models, which typically ignore the effect

of covariates (e.g. Holland, Laskey and Leinhardt (1983), Wolfe and Olhede 2013, Gao,

Lu, Zhou et al. 2015, Auerbach 2019). Our methods of estimating non-parametric models

with two-way heterogeneity may therefore also be of interest in a network context.

3 Estimation via Factor Structure Approximation

A natural starting point to estimate the effects in (4) and (5) is to use empirical analogs.

This amounts to replace E
[
Yit(x) | AN ,BT

]
by an estimator. There are two complica-

tions with this approach. First, the potential outcome Yit(x) is not observable. We deal
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with this complication by noting that under Assumption 1,

E
[
Yit(x) | AN ,BT

]
= E [Yit |Xit = x,Ai,Bt] ,

so that we can write the expectation of the potential outcome as an expectation of the

observed outcome. The second complication is that Ai and Bt are not observable, so that

we cannot directly estimate E [Yit |Xit = x,Ai,Bt]. To deal with this complication, we

start by noticing that

E [Yit |Xit = x,Ai = a,Bt = b] =: m(x,a, b), (6)

where the function m does not vary with i and t, by Assumption 1. We show next how

this function can be approximated and estimated using a low-rank factor structure.

3.1 Low-rank factor structure approximation

For ease of exposition we assume that the regressor domain X is finite in the rest of the

paper. Accordingly, we denote the corresponding discrete covariate and its values by

Xit and x instead of Xit and x. For most of the analysis, we will focus on the binary

treatment case where X = {0, 1}.
The approximation that we propose is based on the singular value decomposition of

the function (a, b) 7→ m(x,a, b) for each x ∈ X. We make two assumptions on this

decomposition. The first assumption is a sampling condition on the unobserved effects

that will be useful to define a norm for the eigenfunctions.

Assumption 2 (Sampling of Ai and Bt). (i) Ai is independent and identically dis-

tributed across i ∈ N, (ii) Bt is independent and identically distributed over t ∈ T, and

(iii) Ai and Bt are independent for all i, t.

For simplicity we consider the case where both Ai and Bt are independently dis-

tributed across i and over t, but since we consider asymptotic sequences where both N

and T become large one could also allow for appropriate weak dependence across both i

and t. Formalizing this weak dependence would complicate both the assumption and the

proof of the following results, which is why we decided to stick to independence in our

presentation here.

The next assumption imposes smoothness on (a, b) 7→ m(x,a, b).
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Assumption 3 (Smoothness of (a, b) 7→ m(x,a, b)). Let

m(x,a, b) =
∞∑
j=1

sj(x)uj(x,a) vj(x, b) (7)

be the functional singular value decomposition of m(x,a, b). We assume that

∞∑
j=1

sj(x) <∞.

Assumption 3 is a high-level condition on the singular values of the function m(x,a, b),

which are defined by the decomposition (7). In this functional singular value decomposi-

tion the eigenfunctions uj(x,a) ∈ R and vj(x, b) ∈ R are normalized as Euj(x,Ai)
2 = 1

and E vj(x,Bt)
2 = 1, and they also satisfy the orthogonality conditions Euj(x,Ai)uk(x,Ai) =

0 and E vj(x,Bt)vk(x,Bt) = 0, for j 6= k. The singular values are sorted such as

s1(x) ≥ s2(x) ≥ s3(x) ≥ . . . ≥ 0.

There is a large literature on singular value decompositions of functions, which shows

that, under appropriate conditions, the singular values satisfy sj(x) . j−α, where the

decay coefficient α depends on the dimensions of the arguments a, b, and on the smooth-

ness of (a, b) 7→ m(x,a, b). For sufficiently smooth functions, α > 1 and therefore∑∞
j=1 sj(x) < ∞. For example, if (a, b) 7→ m(x,a, b) is continuously differentiable up to

order s and A and B are compact, then

sj(x) . j
− s

da∧db ,

by Theorem 3.3 of Griebel and Harbrecht (2013), where da ∧ db is the minimum of da

and db. This implies that
∑∞

j=1 sj(x) < ∞ if s > da ∧ db. Assumption 3 is therefore a

high-level smoothness assumption on (a, b) 7→ m(x,a, b).

The formulation of this smoothness assumption is convenient for our purposes, because

it immediately leads to a low-rank approximation of m(x,a, b). The low-rank approxi-

mation truncates the singular value decomposition to the first R elements,

m(x,a, b) =
∞∑
j=1

sj(x)1/2uj(x,a)︸ ︷︷ ︸
=:φj(x,a)

sj(x)1/2vj(x, b)︸ ︷︷ ︸
=:ψj(x,b)

=
R∑
j=1

φj(x,a)ψj(x, b)+ζR(x,a, b). (8)

The first term is the approximation and the second term is the approximation error.

Under Assumption 3,

ζR(x,a, b)→ 0 as R→∞.
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In other words, the approximation error can be made negligible by increasing the trunca-

tion point R. For example, if sj(x) . j−α with α > 1, then

E
[
ζR(Xit,Ai,Bt)

2
]

= E

[
∞∑

j=R+1

sj(Xit)uj(Xit,Ai) vj(Xit,Bt)

]2

. R1−2α.

Hence, ζR(Xit,Ai,Bt) converges in mean square to zero.

Combining (6) and (8), we obtain the approximate factor model

Yit = λi(Xit)
Tft(Xit) + ζR(Xit,Ai,Bt) + Eit, Eit := Yit − E [Yit | Xit,Ai,Bt] , (9)

where λi(x) = [φ1(x,Ai), . . . , φR(x,Ai)]
T, ft(x) = [ψ1(x,Bt), . . . , ψR(x,Bt)]

T, and the

composite error νit := ζR(Xit,Ai,Bt)+Eit contains the approximation error, ζR(Xit,Ai,Bt),

and the conditional expectation error, Eit. The factor structure λi(Xit)
Tft(Xit) can be

seen as a series approximation on unobserved individual and time effects to the function

m(Xit,Ai,Bt) if we let R = RN,T to grow with N and T such that ζR(Xit,Ai,Bt) van-

ishes as N, T → ∞. The factor structure approximation is exact in some cases for fixed

R. For instance, in Example 3

m(Xit,Ai,Bt) = λi(Xit)
Tft(Xit),

so that ζR(Xit,Ai,Bt) = 0 a.s. if R is greater or equal to the number of factors.

In the model (9) the factor structure changes with the treatment level. In other words,

we have a different pure factor model for each x ∈ X, that is

Yit = λi(x)Tft(x) + νit if Xit = x.

This observation leads to our first estimation strategy where the data is partitioned by

the treatment level and separate factors and factor loadings are estimated in each element

of the partition by solving the least squares program

min
{λi}Ni=1,{ft}Tt=1

1

2

N∑
i=1

T∑
t=1

Dit(x) (Yit − λT

i ft)
2 , (10)

where Dit(x) := 1{Xit = x}. Unfortunately, we cannot solve this problem using standard

principal component analysis due to the presence of missing data, that is, each observa-

tional unit (i, t) is not available at all treatment levels. In the next section, we apply

matrix completion methods to deal with this problem.
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3.2 Estimation by matrix completion methods

We start by expressing the program (10) in matrix form. Let ΓR(x) = λN(x)fT (x)T,

where λN(x) = [λ1(x), . . . ,λN(x)]T, a N × R matrix of factor loadings, and fT (x) =

[f1(x), . . . ,fT (x)]T, a T × R matrix of factors. The least squares estimator of ΓR(x) is

the N × T matrix Γ with typical element Γit that solves

min
{Γ∈RN×T :rank(Γ)≤R}

1

2

N∑
i=1

T∑
t=1

Dit(x) (Yit − Γit)
2 .

Let Y (x) be a N×T matrix whose (i, t) element is Yit if Xit = x and is missing otherwise.

The previous program is closely related to the problem of completing the missing entries

of Y (x) using a low rank approximation matrix ΓR(x) (Rennie and Srebro, 2005; Candès

and Recht, 2009; Candes and Tao, 2010). This connection was previously noticed by

Athey, Bayati, Doudchenko, Imbens and Khosravi (2017) and Amjad, Shah and Shen

(2018) in the context of treatment effects models. The solution is the N × T matrix of

rank R whose entries are the closest in the mean squared error sense to the corresponding

entries of Y (x).

The previous program is combinatorially hard because of the constraint in the rank of

the matrix (Srebro and Jaakkola, 2003). Following Fazel (2003) we consider the convex

relaxation of the program

min
{Γ∈RN×T :‖Γ‖1≤R1}

1

2

N∑
i=1

T∑
t=1

Dit(x) (Yit − Γit)
2 ,

where ‖Γ‖1 is the nuclear norm of Γ and R1 is a positive constant such that R = f(R1),

where f is an increasing function. Hence, ζR(x,Ai,Bt) vanishes as R1 →∞. We replace

the rank constraint, rank(Γ) ≤ R, by a constraint on the nuclear norm of the matrix,

‖Γ‖1 ≤ R1, i.e. we replace a constraint in the number of nonzero singular values by

a constraint in the sum of singular values. This program is convex in Γ and can be

reformulated in Lagrange form as

min
{Γ∈RN×T }

1

2

N∑
i=1

T∑
t=1

Dit(x) (Yit − Γit)
2 + ρ(R1)‖Γ‖1, (11)

where ρ(R1) ≥ 0 is a regularization parameter, which is a one-to-one increasing function

of R1. There exist efficient algorithms to solve this program (Mazumder, Hastie and

Tibshirani, 2010).
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Let Γ̂(x) be a solution to (11) with typical element Γ̂it(x). Then, we can form estima-

tors of the ASF and CASF as

µ̂t(x) =
1

N

N∑
i=1

[
Dit(x)Yit + {1−Dit(x)}Γ̂it(x)

]
,

and

µ̂t(x | x0) =

∑N
i=1Dit(x0)

[
Dit(x)Yit + {1−Dit(x)}Γ̂it(x)

]
∑N

i=1Dit(x0)
.

In the next section, we provide conditions under which these estimators are consistent

using asymptotic sequences where N, T →∞. These estimators, however, might display

shrinkage biases in finite samples due to the nuclear norm regularization (Cai, Candès

and Shen, 2010; Ma, Goldfarb and Chen, 2011; Bai and Ng, 2019b). We propose two

matching procedures to debias the estimator in Section 4.

3.3 Consistency of Matrix Completion Estimator

Let Γ∞(x) be the N ×T matrix with typical element Γ∞it (x) = m(x,Ai,Bt) and E(x) be

the N × T matrix with typical element

Eit(x) :=

{
Eit = Yit − Γ∞it (x) if Xit = x,

0 otherwise.
(12)

Note that Γ∞(x) = limR→∞ ΓR(x) a.s. Furthermore, we introduce the notation D(x) =

{(i, t) ∈ N×T : Xit = x}, and n(x) = |D(x)| for the number of observations with Xit = x.

We assume x ∈ X throughout.

Recall that

Γ̂(x) ∈ argmin
Γ∈RN×T

QNT (Γ, ρ, x), QNT (Γ, ρ, x) =
1

2

∑
(i,t)∈D(x)

(Yit − Γit)
2 + ρ‖Γ‖1, (13)

where ρ := ρ(R1). Here, if the argmin over Γ ∈ RN×T is not unique, then we can choose

Γ̂(x) arbitrarily from the set of minimizers — our results are not affected by that, we only

require that QNT (Γ̂(x), ρ, x) ≤ QNT (Γ, ρ, x), for all Γ ∈ RN×T . We want to show that

Γ̂(x) converges to Γ∞(x) as N, T →∞ in some sense such that µ̂(x)− µ(x) = oP (1). For

that we require additional assumptions.
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Assumption 4 (Error Moments). Conditional on XNT , AN and BT , Eit(x) is inde-

pendent across (i, t) ∈ D(x), and there exists a constant b < ∞ that does not depend on

i, t, N , T , such that

E
[
Eit(x)4 | AN ,BT ,XNT

]
≤ b.

Furthermore, we assume that n(x)−1
∑

(i,t)∈D(x) Γ∞it (x)2 = OP (1).

Assumption 4 could equivalently be replaced by the two high-level conditions

2

n(x)

∑
(i,t)∈D(x)

Γ∞it (x)Eit = oP (1), ‖E(x)‖∞ = OP

(√
N + T

)
.

The first of those conditions is implied by Assumption 4 through application of the weak

law of large numbers, while the second follows, for example, by the spectral norm inequal-

ity in Lata la (2005). In principle, we could still derive those high-level conditions if we

allowed for appropriate weak dependence of Eit(x) across i and over t, but we again focus

on the independent case for simplicity of presentation.

We first provide a consistency result for the entries of Γ̂(x) that correspond to the

observed values of Y (x).

Lemma 1. Let the Assumptions 2, 3 and 4 hold, and assume that ρ = ρNT is chosen

such that ρNT/
√
N + T →∞ and ρNT

√
NT/n(x)→ 0 as N, T →∞. Then,

1

n(x)

∑
(i,t)∈D(x)

[
Γ̂it(x)− Γ∞it (x)

]2

= oP (1).

A necessary condition for the existence of the sequence ρ = ρNT in Lemma 1 is

n(x)/
√

(N + T )NT → ∞, that is, the fraction n(x)/(NT ) of observations with Xit = x

can converge to zero, but not too fast. Apart from that, Lemma 1 does not restrict the

assignment process that determines XNT . Notice also that Lemma 1 does not require

Assumption 1 because Γ∞(x) is a reduced-form parameter.

Lemma 1 is not directly useful to show the consistency of the estimators of the ASF,

because it only guarantees `2-consistency of Γ̂(x) over the set of entries (i, t) for which

Xit = x. Those are exactly the observations for which an unbiased estimator of Γ∞it (x) =

m(x,Ai,Bt) is already available, namely Yit. The consistency result we would like to

obtain is

1

NT

N∑
i=1

T∑
t=1

[
Γ̂it(x)− Γ∞it (x)

]2

= oP (1), (14)
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but such a result will certainly require stronger assumptions on XNT than we have im-

posed so far. The existing literature on matrix completion relies on the concept of re-

stricted strong convexity to derive (14). This approach shows that under certain conditions

on a matrix M with entries Mit, and on XNT (which determines the set D(x)), there

exists a constant c > 0 such that with high probability

1

NT

N∑
i=1

T∑
t=1

M2
it ≤

c

n(x)

∑
(i,t)∈D(x)

M2
it.

See Theorem 1 in Negahban and Wainwright (2012), Lemma 12 in Klopp et al. (2014),

and Lemma 3 in Athey, Bayati, Doudchenko, Imbens and Khosravi (2017). Thus, if

Mit = Γ̂it(x)−Γ∞it (x) and XNT satisfy restricted strong convexity, then (14) would follow

from Lemma 1.

We pursue a different strategy than the existing matrix completion literature to show

that

µ̂(x) :=
1

T

T∑
t=1

µ̂t(x) =
1

NT

N∑
i=1

T∑
t=1

Dit(x)Yit +
1

NT

N∑
i=1

T∑
t=1

[1−Dit(x)] Γ̂it(x)

is a consistent estimator of (NT )−1
∑N

i=1

∑T
t=1 Γ∞it , which under Assumption 1 is equal

to µ(x) defined in (4). We believe that our approach is simpler in the setting of this

paper where Γ∞it (x) is not necessarily of low-rank. In particular, we do not aim to show

(14), but instead we derive consistency of µ̂(x) directly. However, the following theorem

still requires additional assumptions on the assignment process that determines XNT , in

the same way that additional conditions on XNT are required to verify restricted strong

convexity. For simplicity, we focus on consistency of µ̂(x) in the main text, but results

for more general weighted averages of the form (NT )−1
∑N

i=1

∑T
t=1Wit(x) Γ∞it (x), with

known weights Wit(x) ∈ R, are presented in the appendix. For example, in the case of the

treatment effects on the treated that we consider in the empirical application of Section

5.1, Wit(x) = n(1)−1Xit.

Theorem 1. Let the Assumptions 1, 2, 3 and 4 hold. Consider N, T → ∞ at the

same rate, and let ρ = ρNT be chosen such that ρNT/
√
N + T → ∞ and ρNT/

√
NT →

0. Define Pit(x) := Pr
(
Xit = x | AN ,BT

)
, and assume that mini,t Pit(x) > 0 and that

(NT )−1
∑N

i=1

∑T
t=1 P

−1
it (x) = OP (1). Let G(x) be the N ×T matrix with entries Git(x) =
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P−1
it (x)(Dit(x)− Pit(x)), and assume that ‖G(x)‖∞ = OP (

√
N + T ), and

1

NT

N∑
i=1

T∑
t=1

P−1
it (x)Git(x) = oP (1),

1

NT

N∑
i=1

T∑
t=1

Γ∞it (x)Git(x) = oP (1). (15)

Then,

µ̂(x) = µ(x) + oP (1).

To interpret the conditions in Theorem 1, notice that due to the definitions Dit(x) =

1{Xit = x} and Pit(x) = Pr
(
Xit = x | AN ,BT

)
, E
[
Git(x) | AN ,BT

]
= 0 by construc-

tion, and Git(x) therefore plays a role very similar to the error term Eit(x). In particular,

the conditions in (15) can be verified by a weak law of large numbers, as long as P−1
it (x)

is not too large, and Git(x) is not too strongly correlated across i and over t. Regarding

the condition on the spectral norm ‖G(x)‖∞ = OP (
√
N + T ), there are many results in

the random-matrix theory literature that show this rate for mean-zero random matrices

G(x), see, for example, Geman (1980), Silverstein (1989), Bai, Silverstein and Yin (1988),

Yin, Bai and Krishnaiah (1988). In particular, if Git(x) is independent across both i and

t, then this rate result follows from the very elegant spectral norm inequality in Lata la

(2005), see the proof of Lemma 1 in the appendix, where apply that inequality to Eit(x).

However, that simple argument would require Xit to be independently distributed across

i and t, conditional on AN , BT . More generally, we expect ‖G(x)‖∞ = OP (
√
N + T ) to

hold whenever the matrix entries Git(x) have zero mean, sufficiently bounded moments,

and weak correlation across both i and t, see Section S.2 of the supplementary material

of Moon and Weidner (2017) for details.

An important restriction on the treatment design that is imposed by Theorem 1 is that

Pr
(
Xit = x | AN ,BT

)
> 0 for all i and t. However, the key technical step in our proof

of the theorem is Proposition 1 in the appendix, which does not necessarily require that

strong condition.3 We will not explore deviations from that assumption here, because we

think that that Pit(x) > 0 is a plausible assumption in many applications. For example,

in our empirical application in Section 5.1, Xit = 1{t ≥ τi}, where τi is the date of the law

change in state i. In that case, if we consider τi to be a random variable with sufficiently

large support conditional on the unobserved effects, then the condition Pit(x) > 0 is

satisfied.

3This is because Pit(x) need not be chosen equal to Pr
(
Xit = x | AN ,BT

)
in that proposition, but

verifying the conditions of the proposition is harder if Pit(x) is chosen differently.
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We have thus shown that consistent estimates for ASFs can be obtained via the matrix

completion estimator even if the estimand Γ∞it (x) = m(x,Ai,Bt) itself is not of low rank.

This is the main technical result of this paper. However, inference on µ(x) based on µ̂(x)

can be problematic, because µ̂(x) is subject to both low-rank approximation and shrinkage

biases. The low-rank approximation bias is due to the approximation error ζR(x,a, b) in

the decomposition of m(x,a, b) in equation (8). The shrinkage bias comes from bias in

Γ̂(x) due to the presence of the nuclear norm penalization in the objective function of

(13). To isolate this bias, consider a simple case where Yit(x) follows a deterministic pure

factor model

Yit(x) = Γit(x) =
R∑
j=1

sj(x)uj(x,Ai)vj(x,Bi).

Then, the matrix completion estimator of Γit(x) in (13) yields

Γ̂it(x) =
R∑
j=1

[sj(x)− ρ]+uj(x,Ai)vj(x,Bi)

where [z]+ = max(z, 0). Compared to Γ(x), Γ̂(x) has the same eigenvectors but the

singular values are shrunk toward zero. This argument carries over to the case where Yit(x)

follows an approximate factor structure (Cai, Candès and Shen, 2010; Ma, Goldfarb and

Chen, 2011; Bai and Ng, 2019b). Because of these biases, we explore alternative estimates

for µ(x) in Section 4.

3.4 Covariates and fixed effects

As we mentioned in Section 2, exogenous covariates can be incorporated by conditioning

on their values. This method can produce very noisy estimators in small samples unless

the covariates take only on few values. Here we consider a semiparametric version of the

model that imposes additivity in the effect of the exogenous covariates. It also allows

for additive unobserved individual and time effects that might vary across the covariate

level x. These effects can be subsumed in the factor structure, but are usually considered

separately in empirical analysis as the estimators perform better without regularizing

them (Athey, Bayati, Doudchenko, Imbens and Khosravi, 2017).

Let Cit be a dc-vector of covariates, α(x) = (α1(x), . . . , αN(x)) be a N -vector of

individual effects and δ(x) = (δ1(x), . . . , δT (x)) be a T -vector of time effects. Then, we
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can replace the program (11) by

min
{β∈Rdc ,α∈RN ,δ∈RT ,Γ∈RN×T }

N∑
i=1

T∑
t=1

1{Xit = x} (Yit −CT

itβ − αi − δt − Γit)
2 + ρ(R1)‖Γ‖1,

Chernozhukov, Hansen, Liao and Zhu (2018), Moon and Weidner (2018) and Beyhum and

Gautier (2019) provide algorithms to solve this program. Let β̂(x), α̂(x) = (α̂1(x), . . . , α̂N(x)),

δ̂(x) = (δ̂1(x), . . . , δ̂T (x)), and Γ̂(x) be the solution of the previous program. We can form

estimators of the ASF and CASF as

µ̂t(x) =
1

N

N∑
i=1

[
1{Xit = x}Yit + 1{Xit 6= x}

{
CT

itβ̂(x) + α̂i(x) + δ̂t(x) + Γ̂it(x)
}]

,

and

µ̂t(x | x0) =∑N
i=1

[
1{Xit = x0 = x}Yit + 1{Xit = x0 6= x}

{
CT
itβ̂(x) + α̂i(x) + δ̂t(x) + Γ̂it(x)

}]
∑N

i=1 1{Xit = x0}
.

4 Debiasing Using Matching Methods

The matrix completion estimator of the ASF is generally biased. As we explained in

Section 3.3, the bias comes from two sources: low-rank approximation bias and shrinkage

bias. One could attempt to correct the shrinkage bias by shifting the singular values of

Γ̂(x) upwards. However, inference results on the ASFs based on matrix completion are

generally very difficult to obtain even if Γ∞(x) is truly low rank. In our setting, the

presence of the additional low-rank approximation bias makes this even more challenging.

We instead discuss alternative estimators and show that they have significantly lower

biases than the matrix completion estimators in the numerical simulations of Section 5.2.

To construct the estimators of Γ∞(x), we start by extracting the factor structure of

Γ̂(x) in (13). Let λ̂i(x) and f̂t(x) be the R× 1 vectors that satisfy

Γ̂it(x) = λ̂i(x)T f̂t(x),

subject to the usual normalizations that T−1
∑T

t=1 f̂t(x) f̂t(x)T is the identity matrix of

size R and N−1
∑N

i=1 λ̂i(x) λ̂i(x)T is a diagonal matrix. Next, we apply a matching pro-

cedure to this factor structure. In its simplest version, we estimate each entry Γ∞it (x)
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such that Xit 6= x, by matching with the observation with Xjs = x that is the nearest

neighbor in terms of the vectors λ̂i(x) and f̂t(x). In particular, Γ̆it(x) = Yi∗∗(i,t,x),t∗∗(i,t,x)

where i∗∗(i, t, x) ∈ N and t∗∗(i, t, x) ∈ T are a solution to the program

minj∈N,s∈T

∥∥∥λ̂i(x)− λ̂j(x)
∥∥∥2

+
∥∥∥f̂t(x)− f̂s(x)

∥∥∥2

s.t. Xjs = x.

We also consider a two-way matching procedure that combines matching with a

difference-in-difference approach. It consists of two steps:

(i) For all x ∈ X and (i, t) ∈ N × T such that Xit 6= x, find the matches i∗(i, t, x) ∈ N
and t∗(i, t, x) ∈ T that solve the program

minj∈N,s∈T

∥∥∥λ̂i(x)− λ̂j(x)
∥∥∥2

+
∥∥∥f̂t(x)− f̂s(x)

∥∥∥2

s.t. Xis = Xjt = Xjs = x.

(ii) Estimate Γit(x) by

Γ̃it(x) = Yi,t∗(i,t,x) + Yi∗(i,t,x),t − Yi∗(i,t,x),t∗(i,t,x).

In other words, we find the match (j, s) with Xjs = x that not only is the closest to (i, t)

in terms of the estimated factor structure, but also corresponds to a unit j with Xjt = x

and a time period s with Xis = x. Then, we estimate the counterfactual Γit(x) as a linear

combination of Yjt, Yis and Yjs.

The additional difference-in-difference step in the two-way procedure is useful to reduce

bias. To see this, we can compare Γ̃it(x) with the simple matching estimator Γ̆it(x). Thus,

abstracting from the estimation error in the factors and loadings,

E[Γ̆it(x)− Γit(x) | AN ,BT ,XNT ] = m(x,Ai∗∗(i,t,x),Bt∗∗(i,t,x))−m(x,Ai,Bt)

= OP (‖Ai∗∗(i,t,x) −Ai‖+ ‖Bt∗∗(i,t,x) −Bt‖),

by a first-order Taylor expansion of (ai, bt) 7→ m(x,ai, bt) around (Ai,Bt); whereas

E[Γ̃it(x)− Γit(x) | AN ,BT ,XNT ] = m(x,Ai∗(i,t,x),Bt∗(i,t,x))−m(x,Ai,Bt)

= OP (‖Ai∗(i,t,x) −Ai‖2 + ‖Bt∗(i,t,x) −Bt‖2),

by a second-order Taylor expansion of (ai, bt) 7→ m(x,ai, bt) around (Ai,Bt). The two-

way matching removes the leading term of the Taylor expansion, reducing the bias of the
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matching by one order of magnitude because i∗∗(i, t, x) 6= i or t∗∗(i, t, x) 6= t. On the

other hand, ‖Ai∗(i,t,x) −Ai‖ ≥ ‖Ai∗∗(i,t,x) −Ai‖ and ‖Bt∗(i,t,x) −Bt‖ ≥ ‖Bt∗∗(i,t,x) −Bt‖
a.s. because the two-way procedure imposes the additional restrictions Xis = Xjt = x.

Whether the first or second order bias dominates would generally be determined by the

proportion of observations with Xjs = x and the distributions of Ai and Bt. We provide

a numerical comparison of the biases of the matching estimators in Section 5.2.

We develop the theory for a debised estimator that allows for multiple matches and

estimated factors and loadings. Multiple matches are expected reduce dispersion at the

cost of increasing bias. Let λi = λ(x,Ai) and ft = f(x,Bt) be the transformations of

Ai and Bt that are consistently estimated by λ̂i and f̂t.
4 We define

Ni =
{
j ∈ N \ {i} :

∥∥∥λ̂i − λ̂j∥∥∥ ≤ τNT

}
, Tt =

{
s ∈ T \ {t} :

∥∥∥f̂t − f̂s∥∥∥ ≤ υNT

}
,

for some bandwidth parameters τNT > 0 and υNT > 0. The debiased estimator of µ(x) is

then given by

µ̃(x) =
1

NT

N∑
i=1

T∑
t=1

Ỹit(x),

with

Ỹit(x) =



Yit if Xit = x,

1

nit

∑
j∈Ni

∑
s∈Tt

1{Xis = Xjt = Xjs = x} (Yis + Yjt − Yjs) if Xit 6= x and nit > 0,

1
n(x)

∑
(j,s)∈D(x) Yjs if nit = 0,

(16)

where nit :=
∑

j∈Ni

∑
s∈Tt

1{Xis = Xjt = Xjs = x}. Here, for Xit 6= x, we construct the

counterfactual Ỹit(x) by averaging over all units (j, s) ∈ Ni×Tt that satisfy the constraint

Xis = Xjt = Xjs = x. Notice that if Xit 6= x and nit = 0, then we cannot construct a

suitable counterfactual by that method. In that case we assign Ỹit(x) the average of

the observations with Xjs = x to make sure that µ̃(x) is always well-defined, but our

assumption below guarantees that this rarely happens.

This estimator has similar debiasing properties to the nearest neighbor described

above, but it is more tractable theoretically because it varies more smoothly with re-

4The matching method discussed here is also applicable to settings where the matching is based on

variables other than the estimated factor structure. These include for example cross section and time

series averages of the observable variables. See the appendix for a more general treatment.
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spect to the factors and loadings. Indeed, µ̃(x) can be written as

µ̃(x) =
1

NT

N∑
i=1

T∑
t=1

ωit Yit,

where the weights ωit are functions of λ̂j and f̂s for all j ∈ N and s ∈ T. To show that

µ̃(x) is a consistent estimator of µ(x), we use the following assumption:

Assumption 5 (Two-way Matching Estimator). There exists a sequence ξNT > 0 such

that ξNT → 0 as N, T →∞, and

(i) 1
NT

∑N
i=1

∑T
t=1 1 {Xit 6= x&nit = 0} = OP (ξNT ).

(ii) Yit is uniformly bounded over i, t, N, T .

(iii) Yit is independent across both i and t, conditional on XNT , AN , BT .

(iv) The function (a, b) 7→ m(x,a, b) is at least twice continuously differentiable with

uniformly bounded second derivatives.

(v) There exists c > 0 such that ‖a1 − a2‖ ≤ c ‖λ(a1)− λ(a2)‖ for all a1,a2 ∈ A, and

‖b1 − b2‖ ≤ c ‖f(b1)− f(b2)‖ for all b1, b2 ∈ B.

(vi) 1
N

∑N
i=1

(∥∥∥λ̂i − λi∥∥∥2

+ maxj∈Ni

∥∥∥λ̂j − λj∥∥∥2
)

= OP (ξNT ).

1
T

∑T
t=1

(∥∥∥f̂t − ft∥∥∥2

+ maxs∈Tt

∥∥∥f̂s − fs∥∥∥2
)

= OP (ξNT ).

(vii) τ 2
NT = OP (ξNT ) and υ2

NT = OP (ξNT ).

(viii) 1
NT

∑N
i=1

∑T
t=1 E

[
ω2
it

∣∣XNT , AN , BT
]

= OP (NT ξ2
NT ).

(ix) Let Y NT
−(i,t),−(j,s) be the outcome matrix Y NT , but with Yit and Yjs replace by zero (or

some other non-random number), and all other outcomes unchanged. We assume

1

(NT )2

N∑
i,j=1

T∑
t,s=1

1 {(i, t) 6= (j, s)}E

[∣∣∣ωit (Y NT
−(i,t),−(j,s)

)
ωjs
(
Y NT
−(i,t),−(j,s)

)
− ωit(Y NT )ωjs(Y

NT )
∣∣∣ ∣∣∣∣XNT , AN , BT

]
= OP

(
ξ2
NT

)
.
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Remark 1 (Assumption 5). Part (i) guarantees that Xit 6= x and nit = 0 only hap-

pens for a small fraction of observations (i, t). We are therefore able to construct proper

counterfactuals Ỹit(x) for most observations. Part (ii) is a boundedness condition that

is standard in the matrix completion literature. Part (iii) is an independence condition

that is convenient to simplify the derivations but can be generalized to weak correlation

across both i and t. We use part (iv) to bound the error terms of the Taylor expansions

for the bias. Part (v) imposes an injectivity condition. The functions a 7→ λ(a) and

b 7→ f(b) need to be such that Ai and Bt can be uniquely recovered from λi = λ(Ai)

and ft = f(Bt). A necessary condition is that the dimensions of λi and ft are greater

than or equal to the dimensions of Ai and Bt, respectively. This holds in our factor

structure approximation when let R grow with the sample size, provided that the dimen-

sions of Ai and Bt are fixed. Part (vi) holds if λ̂i − λi and f̂t − ft are of order N−1/2

and T−1/2. We expect this assumption to be satisfied for rates ξNT � max(N−1, T−1).

The bandwidth parameters τNT and υNT should not be chosen too large according to part

(vii). For example, if we want to achieve a rate ξNT � max(N−1/2, T−1/2), then we need

τNT � max(N−1/4, T−1/4) and υNT � max(N−1/4, T−1/4). Part (viii) requires that any

given outcome Yit is not chosen too often with too high weight in the construction of the

counterfactuals Ỹjs(x). Finally, part (ix) is a high-level assumption that could be justified

by appropriate distributional assumptions on Xit, Ai, Bt, and on the estimators λ̂i and

f̂t. We prefer to present it as a high-level assumption, because formally working out the

distributional assumptions is quite cumbersome. Intuitively, if nit is sufficiently large,

then changing Y NT to Y NT
−(i,t),−(j,s) should not change the constructions of the counterfac-

tual Ŷit(x) very much. If that is true for all (i, t), then the weights ωit(Y
NT ) should be

very close to the weights ωit

(
Y NT
−(i,t),−(j,s)

)
and the assumption is satisfied.

Theorem 2. Under Assumptions 1 and 5,

µ̃(x)− µ(x) = OP (ξNT ) .

As discussed in the above remark, one can achieve rates ξNT � max(N−1/2, T−1/2) for

sufficiently regular data generating processes, and if the bandwidth parameters τNT and

υNT are chosen sufficiently small. By contrast, the low-rank approximation bias in µ̂(x)

will usually prevent us from achieving such a convergence rate for µ̂(x). This finding is

consistent with our Monte Carlo results in Section 5.2, where µ̃(x) is found to typically

have much smaller bias than µ̂(x).
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5 Numerical Examples

5.1 Election day registration and voter turnout

We illustrate the methods of the paper with an empirical application to the effect of

allowing voter registration during the election day on voter turnout in the U.S. (Xu,

2017). Voting in the U.S. used to require registration prior to the election day in most

states. Registration increased the cost of voting and was considered as one possible reason

for low turnout rates. In response, some states implemented Election Day Registration

(EDR) laws that allowed eligible voters to register on election day when they arrive at

the polling stations. These laws were not passed by all the states, and there was variation

in the time of adoption across states. Thus, they were enacted by Maine, Minnesota and

Wisconsin in 1976; Wyoming, Indiana and New Hampshire in 1994, and Connecticut in

2012.

We use a dataset on the 24 presidential elections for 47 states between 1920 and

2012 collected by Xu (2017). It includes state-level information about the turnout rate,

Yit, measured as the total ballots counted divided by voting-age population in state i at

election t, and a treatment indicator for EDR, Xit, that equals one if the state i has an

EDR law enacted at election t. Following Xu (2017), we exclude North Dakota where

registration was never needed, and Alaska and Hawaii that were not states until 1959.

Since there are only 9 states that are ever treated and the treatment started in the 1976

election, we focus on effects on the treated at the elections between 1976 and 2012. We

estimate average treatment effects and quantile treatment effects at multiple quantile

indices.

Figure 1 compares the average turnout of states that are ever treated with states

that are never treated in elections prior to the first implementation of the EDR laws in

1976. It shows that ever treated states have higher turnout rates on average than never

treated states without the EDR treatment. We consider several methods to deal with

this likely nonrandom assignment of EDR to estimate the ATTs at each election after

1976. First, we do a naive comparison of means between treated and nontreated states

in each election (Dmeans). Second, we consider a difference-in-difference method that

uses the nontreated states as controls at each election (DiD). In particular, we estimate

the effects from a linear regression with state effects and election effects interacted with

a EDR indicator. This method yields the ATT for each election under a parallel trend
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Figure 1: Pretrends in turnout rate before EDR by future treatment status

assumption between treated and nontreated states.5 Third, we compute our estimator

based on matrix completion methods without debiasing (MC) with additive state and

election effects and the parameter ρ such that the number of factors is R = 6. Fourth, we

debias the MC estimates using the two-way matching method with 10 matches (TWM-

10). Fifth, we consider the simple matching method with 5 matches (SM-5). We choose

the number of matches roughly based on the numerical simulations of Section 5.2.

Figure 2 reports the estimates of the ATT of EDR at each election. The methods

that account for possible nonrandom assignment of the EDR produce lower estimates of

the effect than the naive comparison of means between treated and nontreated states.

5The DiD model is a special case our model with additive effects. In this case, it imposes that there

are only additive state and election effects that are the same for both treatment levels.

24



This finding agrees with the pre-EDR differences found in fig. 1. MC, TWM-10 and

SM-5 estimates are generally larger and more stable across elections than DiD estimates.

According to TWM-10, EDR laws increase voter turnout between 5 and 9% depending

on the election. This effect is an economically significant relative to 55%, the average

turnout rate for states without EDR. The estimates of the election-aggregated ATTs are

10.71%, 0.67%, 7.35%, 5.56%, and 4.87% for Dmeans, DiD, MC, TWM-10, and SM-3,

respectively.
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Figure 2: Average treatment effect on the treated of EDR on turnout rate at each election

Figure 3 plots the estimates of the election-aggregated quantile treatment effect on

the treated (QTT) of EDR as a function of the quantile index. We report estimates from

four methods: a naive comparison of quantiles between treated and non-treated states

(Dquantiles), our estimator based on matrix completion methods without debiasing (MC)
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with additive state and election effects and the parameter ρ such that the number of factors

is R = 3, two-way matching with 10 matches (TWM-10), and simple matching with 5

matches (SM-5). The QTT is the difference of the quantiles between the observed turnout

for the treated observations and the corresponding potential turnout have they not been

treated. The quantiles of the observed turnout are estimated using sample quantiles.

The estimates of the quantiles of the potential outcomes are obtained by inverting the

corresponding estimates of the distribution, which are obtained by our methods replacing

Yit by the indicator 1(Yit ≤ y) and repeating the procedure over a grid of values of y that

includes the sample quantiles of observed turnout with indices {.10, .11, . . . , .98}.6 Here,

we find that the effect of EDR is decreasing across the distribution of turnout and ranges

between 10 and 0% according to TWM-10. EDR is therefore more effective for states

with low voter turnouts. Comparing with the Dquantiles estimates, we find that the sign

of the selection bias switches from positive to negative around the middle of the turnout

distribution.

5.2 Monte Carlo simulations

To evaluate the performance of our methods in a controlled synthetic environment, we

generate potential outcomes from an additive linear model where

Yit(x) = x+ g(Ai, Bt) + Uit(x), x ∈ {0, 1}, i ∈ {1, . . . , 30}, t ∈ {1, . . . , 30},

Uit(x) ∼ N(0, 1/4) independently over i, t and x, Ai ∼ U(0, 1) independently over i,

Bt ∼ U(0, 1) independently over t, Uit(x), Aj and Bs are independent for all i, t, j and s,

and g is the Gaussian kernel, i.e.,

g(a, b) =
1√
2πθ

exp

(
−(a− b)2

θ2

)
. (17)

This design is similar to that used in Bordenave, Coste and Nadakuditi (2020), with kernel

function specification from the numerical simulations in Griebel and Harbrecht (2010).7

The parameter θ controls the decay of the singular values of g and can be calibrated to

make sure the singular values decay slowly. Smaller values for θ lead to greater dispersion

6We rearrange the estimates of the distribution to guarantee that they are increasing with respect to

y (Chernozhukov, Fernández-Val and Galichon, 2010).
7We find similar results in a multiplicative model where Yit(x) = (1 + x)g(Ai, Bt) + Uit(x). We omit

these results for the sake of brevity.
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Figure 3: Time-averaged QTT of EDR on turnout rate

in the kernel function (a, b) 7→ g(a, b) and a slower singular value decay, hence can be

interpreted as a measure of smoothness.8 The assignment of Xit that determines what

potential outcomes are observed is similar to the election application. In particular, only

observations for the first half of the units, i ∈ {1, . . . , 15}, and the second half of the

panel, t ∈ {15, . . . , 30}, may be treated. For these observations, Xit is related to the

unobserved effects (Ai, Bt) via Xit = 1{g(Ai, Bt) ≥ c}, where c is a constant calibrated

to Pr(g(Ai, Bt) ≥ c) = .5.

8Smoothness here is specifically related to numerical smoothness, i.e. variability in the function within

close neighbourhoods of its arguments.
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Table 1: Results for µ(0 | 1)

Bias St. Dev. RMSE

Additive design

Dmeans 0.59 0.02 0.59

DiD 0.70 0.03 0.70

MC 0.74 0.02 0.74

TWM-1 0.03 0.14 0.14

TWM-5 0.03 0.11 0.12

TWM-10 0.04 0.10 0.11

TWM-30 0.07 0.09 0.12

SM-1 0.12 0.10 0.16

SM-5 0.15 0.07 0.17

SM-10 0.19 0.06 0.20

SM-30 0.31 0.05 0.31

Notes: based on 1, 000 simulations

We apply similar methods to Section 5.1 to estimate the CASFs µt(0 | 1), t ∈
{15, . . . , 30}, and µ(0 | 1) using the observed variables Xit and Yit = Yit(Xit). Thus,

we consider Dmeans, DiD, MC without additive effects and with the parameter ρ such

that R = 5, and multiple versions of TWM and SM with the number of matches equal

to 1, 5, 10, and 30. For each method, we compute the bias, standard deviation and rmse

from 1, 000 simulations. Across the simulations, we redraw the values of Uit(x) and hold

Ai, Bt and Xit fixed. Table 1 reports the results for the time-aggregated CASF, µ(0 | 1),

and Figure 4 plots the results for the CASF, µt(0 | 1), as a function of t. The results show

that Dmeans, DiD and MC are severely biased relative to their standard deviations. All

the matching estimators reduce bias and rmse, despite of increasing dispersion. As one

would expect, increasing the number of matches reduces the variability of the matching

estimators but increases their biases. The number of matches that minimizes the rmse is

larger for the TWM than for the SM. Overall, these small-sample findings agree with the

asymptotic results of Sections 3.3 and 4.
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Figure 4: Results for t 7→ µt(0 | 1).
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Honoré, B. (1992). Trimmed LAD and least squares estimation of truncated and cen-

sored regression models with fixed effects. Econometrica: Journal of the Econometric

Society 60 (3), 533–565.

Hsiao, C., H. Steve Ching, and S. Ki Wan (2012). A panel data approach for program

evaluation: Measuring the benefits of political and economic integration of hong kong

with mainland china. Journal of Applied Econometrics 27 (5), 705–740.

31



Imai, K. and I. S. Kim (2019). On the use of two-way fixed effects regression models for

causal inference with panel data. Unpublished paper: Harvard University .

Kim, D. and T. Oka (2014). Divorce law reforms and divorce rates in the usa: An

interactive fixed-effects approach. Journal of Applied Econometrics .

Klopp, O. et al. (2014). Noisy low-rank matrix completion with general sampling distri-

bution. Bernoulli 20 (1), 282–303.

Lata la, R. (2005). Some estimates of norms of random matrices. Proceedings of the

American Mathematical Society 133 (5), 1273–1282.

Li, K. (2018). Inference for factor model based average treatment effects. Available at

SSRN 3112775 .

Li, K. T. and D. R. Bell (2017). Estimation of average treatment effects with panel data:

Asymptotic theory and implementation. Journal of Econometrics 197 (1), 65 – 75.

Li, Y., D. Shah, D. Song, and C. L. Yu (2017). Nearest neighbors for matrix estimation

interpreted as blind regression for latent variable model.

Ma, S., D. Goldfarb, and L. Chen (2011). Fixed point and bregman iterative methods for

matrix rank minimization. Mathematical Programming 128 (1-2), 321–353.

Manski, C. (1987). Semiparametric analysis of random effects linear models from binary

panel data. Econometrica: Journal of the Econometric Society 55 (2), 357–362.

Mazumder, R., T. Hastie, and R. Tibshirani (2010). Spectral regularization algorithms

for learning large incomplete matrices. Journal of Machine Learning Research 11 (80),

2287–2322.

Moon, H. R. and M. Weidner (2017). Dynamic linear panel regression models with inter-

active fixed effects. Econometric Theory 33 (1), 158–195.

Moon, H. R. and M. Weidner (2018). Nuclear norm regularized estimation of panel

regression models.

Negahban, S. and M. J. Wainwright (2012). Restricted strong convexity and weighted

matrix completion: Optimal bounds with noise. The Journal of Machine Learning

Research 13 (1), 1665–1697.

32



Orbanz, P. and D. M. Roy (2015). Bayesian models of graphs, arrays and other ex-

changeable random structures. IEEE Transactions on Pattern Analysis and Machine

Intelligence 37 (2), 437–461.

Rennie, J. D. M. and N. Srebro (2005). Fast maximum margin matrix factorization

for collaborative prediction. In Proceedings of the 22nd International Conference on
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A Proofs

A.1 Proof of Lemma 1

We start with a preliminary result that relates the nuclear norm of Γ∞(x) with the sum of

the singular values of the function (a, b) 7→ m(x,a, b). This link will be useful to bound

the approximation error of Γ̂(x). We define

‖m(x, ·, ·)‖∗ :=
∞∑
j=1

sj(x).

Lemma 2. Let Assumptions 2 and 3 hold. Then, as N, T →∞,

‖Γ∞(x)‖1 ≤
√
NT ‖m(x, ·, ·)‖∗ + oP (

√
NT ) = OP (

√
NT ).

Lemma 2 implies that ‖Γ∞(x)‖1 grows with N and T at the same rate as any low-rank

matrix M with elements that are of order one with bounded second moments such that

‖M‖1 ≤
√

rank(M) ‖M‖2 =
√

rank( M)
∑N

i=1

∑T
t=1M

2
it = OP (

√
NT ). This result will

be useful for the proofs of Lemma 1 and of Theorem 1. The proof of Lemma 2 is provided

in Appendix A.4.

The following technical lemma provides the key step in the proof of Lemma 1 in the

main text.

Lemma 3. Under Assumptions 2 and 3,

1

n(x)

∑
(i,t)∈D(x)

(
Γ̂it(x)− Γ∞it (x)

)2

≤ 2 ρ ‖Γ∞(x)‖1

n(x)
− 2

n(x)

∑
(i,t)∈D(x)

Γ∞it (x)Eit,

for all ρ ≥ ‖E(x)‖∞.

Notice that Lemma 3 is a non-stochastic finite sample result, which only requires that

Eit(x) and Γ̂(x) are as defined in (12) and (13). The proof of Lemma 3 is provided in

Appendix A.4.

We are now ready to provide the proof of the lemma in the main text.

Proof of Lemma 1. The definition of Eit(x) in (12) guarantees that E
[
Eit(x) | AN ,BT ,XNT

]
=

0, and Assumption 4 furthermore guarantees that Eit(x) is independent across i and
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t and has a finite fourth moment, conditional on XNT , AN and BT . Furthermore,

Γ∞it (x) = m(x,Ai,Bt) only depends on AN and BT . We therefore find

E

 1

n(x)

∑
(i,t)∈D(x)

Γ∞it (x)Eit

2 ∣∣∣∣∣∣ AN ,BT ,XNT


=

1

n2(x)

∑
(i,t)∈D(x)

[Γ∞it (x)]2 E
[
E2
it

∣∣ AN ,BT ,XNT
]

≤ b1/2

n2(x)

∑
(i,t)∈D(x)

[Γ∞it (x)]2 = OP (1/n(x)),

where b is the constant from Assumption 4. From this we conclude that

1

n(x)

∑
(i,t)∈D(x)

Γ∞it (x)Eit = OP

(
1

n1/2(x)

)
= oP (1). (18)

Next, applying Assumption 4 and Theorem 2 in Lata la (2005) we find

E
[
‖E(x)‖∞ | AN ,BT ,XNT

]
≤ C

{
max
t

√∑
i

E [Eit(x)2 | AN ,BT ,XNT ]

+ max
i

√∑
t

E [Eit(x)2 | AN ,BT ,XNT ]

+

(∑
i,t

E
[
Eit(x)4 | AN ,BT ,XNT

])1/4}
≤ C b1/4

{√
N +

√
T + n(x)1/4

}
= OP

(√
N + T

)
,

where C is a universal constant. We therefore have ‖E(x)‖∞ = OP

(√
N + T

)
, and since

we assume that ρ = ρNT satisfies ρNT/
√
N + T →∞ we conclude that

ρNT ≥ ‖E(x)‖∞

with probability approaching one. We can therefore apply Lemma 3 to find that, with

probability approaching one, we have

1

n(x)

∑
(i,t)∈D(x)

(
Γ̂it(x)− Γ∞it (x)

)2

≤ 2 ρNT ‖Γ∞(x)‖1

n(x)
− 2

n(x)

∑
(i,t)∈D(x)

Γ∞it (x)Eit

=
2 ρNT OP (

√
NT )

n(x)
+ oP (1)

= oP (1),

where we applied (18) and Lemma 2, as well as the condition ρNT
√
NT/n(x)→ 0. �
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A.2 Proof of Theorem 1

In the following consider a generic reduced form parameter

ν(x) =
1

NT

N∑
i=1

T∑
t=1

Wit(x) Γ∞it (x), (19)

with corresponding estimator

ν̂(x) =
1

NT

N∑
i=1

T∑
t=1

Wit(x) Γ̂it(x), (20)

where Wit(x) are given weights. The following proposition provides a finite-sample non-

stochastic bound for the error of this reduced form estimator.

Proposition 1. Let the Assumptions 2, 3 and 4 hold. Let Pit(x) be non-zero real numbers

for all (i, t) ∈ N× T. Define

Vit(x) :=
Wit(x)P−1

it (x)(Dit(x)− Pit(x))
1
NT

∑N
i=1

∑T
t=1Wit(x)2P−1

it (x)
,

c1 :=
1− 1

NT

∑N
i=1

∑T
t=1Wit(x)P−1

it (x)Vit(x)
1
NT

∑N
i=1

∑T
t=1Wit(x)2P−1

it (x)
,

c2 :=
1

NT

N∑
i=1

T∑
t=1

Vit(x) Γ∞it (x),

c3 :=
2 ρ

c1NT
‖Γ∞(x)‖1 −

2

c1NT

∑
(i,t)∈D(x)

Eit(x) Γ∞it (x) +

(
c2

c1

)2

,

c4 :=
√
c3 +

|c2|
c1

,

and let V (x) be the N × T matrix with elements Vit(x). If c1 > 0 and ρ > ‖E(x)‖∞ +

c4‖V (x)‖∞, then

|ν̂(x)− ν(x)| ≤ c4.

The proof of Proposition 1 is provided in Appendix A.4. Proposition 1 is the key step

required for the proof of Theorem 1. However, before proving this main text result we

want to provide an informal remark on the usefulness of Proposition 1 more generally.

Remark 2 (Consistency of ν̂(x)). Proposition 1 holds for all Pit(x) ∈ R \ {0}, but for

the proposition to be useful in showing consistency of ν̂(x) we need to choose Pit(x) such
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that c2 and ‖V (x)‖∞ are not too large. The easiest way to guarantee this is to consider

Xit to be random and weakly correlated across both i and t, and to define Pit(x) as the

propensity score, that is

Pit(x) = Pr
(
Xit = x | AN ,BT

)
,

which is assumed to be positive and not too small — e.g. we need that

q :=

[
1

NT

N∑
i=1

T∑
t=1

Wit(x)2P−1
it (x)

]−1

converges to some positive constant. Then Vit(x) has mean zero, analogous to Eit(x), and

c1 = q +OP (1/
√
NT ),

c2 = OP (1/
√
NT )

c3 =
2 ρ

q NT
‖Γ∞(x)‖1 +OP (1/

√
NT ),

c4 =

√
2 ρ

q NT
‖Γ∞(x)‖1 + smaller order terms.

Thus, if, like in Lemma 1, ρ = ρNT such that ρNT/
√
N + T →∞ and ρNT/

√
NT → 0 as

N, T →∞, then

ν̂(x) = ν(x) + oP (1).

The following proof formalizes this heuristic argument for the case that Wit(x) = 1.

Proof of Theorem 1. Let Wit(x) = 1, and let ν(x) and ν̂(x) be as defined in (19) and

(20) above. We then have

µ(x) = ν(x),

µ̂(x) = ν̂(x) +
1

NT

∑
(i,t)∈D(x)

Eit(x)− 1

NT

∑
(i,t)∈D(x)

[
Γ̂it(x)− Γ∞it (x)

]
. (21)

We drop all the arguments x in the rest of this proof. We want to apply Proposition 1 with

Pit = Pr
(
Xit = x | AN ,BT

)
> 0. Let Git = P−1

it (Dit − Pit) be as defined in Theorem 1,

and also define q :=
[

1
NT

∑N
i=1

∑T
t=1 P

−1
it

]−1

. Since Pit ∈ [0, 1] we also have q ∈ [0, 1],

and the theorem assumes that q−1 = OP (1). Using Lemma 2 we know that ‖Γ∞‖1 =
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OP (
√
NT ), and we have already found that

∑
(i,t)∈D Γ∞it Eit = OP

(
n1/2

)
in (18) above.

Using this together the other assumptions in the theorem we find that

Vit = q Git

c1 = q

(
1− q

NT

N∑
i=1

T∑
t=1

P−1
it Git

)
= q [1− oP (1)],

c2 =
q

NT

N∑
i=1

T∑
t=1

Git Γ∞it = oP (1),

c3 =
2 ρOP (

√
NT )

c1NT
−
OP

(
n1/2

)
c1NT

+

(
c2

c1

)2

= oP (1),

c4 =
√
c3 +

|c2|
c1

= oP (1).

We furthermore have

‖V ‖∞ = q ‖G‖∞ = OP (1)OP (
√
N + T ) = OP (

√
N + T ).

In the proof of Lemma 1 we already argued that ‖E‖∞ = OP

(√
N + T

)
. Since we assume

that ρ = ρNT satisfies ρNT/
√
N + T →∞ we conclude that

ρ > ‖E‖∞ + c4‖V ‖∞

with probability approach one. We can therefore apply Proposition 1 to find that with

probability approach one we have

|ν̂ − ν| ≤ c4 = oP (1).

We have thus shown that ν̂ = ν + oP (1).

Furthermore, analogous to the result in (18) we can show that
∑

(i,t)∈DEit = OP

(
n1/2

)
,

and we therefore have 1
NT

∑
(i,t)∈DEit = oP (1). Finally, applying Lemma 1 we have Next,

from we know that 1

n

∑
(i,t)∈D

(
Γ̂it − Γ∞it

)2

≤ 1

n

∑
(i,t)∈D

(
Γ̂it − Γ∞it

)2

= oP (1),

and therefore 1
NT

∑
(i,t)∈D(x)

[
Γ̂it(x)− Γ∞it (x)

]
= oP (1). Plugging those result into (21) we

find µ̂(x) = µ(x) + oP (1). �
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A.3 Proof of Theorem 2

In this section we present and prove a more general version of Theorem 2. Let φi =

φ(x,Ai) and ψt = ψ(x,Bt) be transformations of Ai and Bt. Let φ̂i and ψ̂t be cor-

responding estimators. In the main text we presented the special case where φ̂i and ψ̂t

were equal to the factor loadings and factors obtained from Γ̂(x), but many other choices

of φ̂i and ψ̂t are conceivable. We again define

Ni =
{
j ∈ N \ {i} :

∥∥∥φ̂i − φ̂j∥∥∥ ≤ τNT

}
, Tt =

{
s ∈ T \ {t} :

∥∥∥ψ̂t − ψ̂s∥∥∥ ≤ υNT

}
,

for some bandwidth parameters τNT > 0 and υNT > 0. A debiased estimator of the

reduced form parameter in (19) is given by

ν̃(x) =
1

NT

N∑
i=1

T∑
t=1

Wit(x) Ỹit(x),

where Ỹit(x) is defined as in (16). In the main text we only discussed the special case

Wit(x) = 1. We can write ν̃(x) as

ν̃(x) =
1

NT

N∑
i=1

T∑
t=1

ωit Yit,

where the weights ωit are functions of φ̂j and ψ̂s for all j ∈ N and s ∈ T. Assumption 5

in the main text is generalized as follows.

Assumption 6. There exists a sequence ξNT > 0 such that ξNT → 0 as N, T →∞, and

(i) 1
NT

∑N
i=1

∑T
t=1Wit(x)1 {Xit 6= x&nit = 0} = OP (ξNT ).

(ii) Yit and Wit(x) are uniformly bounded over i, t, N, T .

(iii) Yit is independent across both i and t, conditional on XNT , AN , BT .

(iv) The function (a, b) 7→ m(x,a, b) is twice continuously differentiable with uniformly

bounded second derivatives.

(v) There exists c > 0 such that ‖a1 − a2‖ ≤ c ‖φ(a1)− φ(a2)‖ for all a1,a2 ∈ A, and

‖b1 − b2‖ ≤ c ‖ψ(b1)−ψ(b2)‖ for all b1, b2 ∈ B.

(vi) 1
N

∑N
i=1

(∥∥∥φ̂i − φi∥∥∥2

+ maxj∈Ni

∥∥∥φ̂j − φj∥∥∥2
)

= OP (ξNT ).

1
T

∑T
t=1

(∥∥∥ψ̂t −ψt∥∥∥2

+ maxs∈Tt

∥∥∥ψ̂s −ψs∥∥∥2
)

= OP (ξNT ).
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(vii) τ 2
NT = OP (ξNT ) and υ2

NT = OP (ξNT ).

(viii) 1
NT

∑N
i=1

∑T
t=1 E

[
ω2
it

∣∣XNT , AN , BT
]

= OP (NT ξ2
NT ).

(ix) Let Y NT
−(i,t),−(j,s) be the outcome matrix Y NT , but with Yit and Yjs replace by zero (or

some other non-random number), and all other outcomes unchanged. We assume

1

(NT )2

N∑
i,j=1

T∑
t,s=1

1 {(i, t) 6= (j, s)}E

[∣∣∣ωit (Y NT
−(i,t),−(j,s)

)
ωjs
(
Y NT
−(i,t),−(j,s)

)
− ωit(Y NT )ωjs(Y

NT )
∣∣∣ ∣∣∣∣XNT , AN , BT

]
= OP

(
ξ2
NT

)
.

The generalized version of Theorem 2 is given in the following.

Theorem 3. Under Assumptions 1 and 6,

ν̃(x)− ν(x) = OP (ξNT ) .

Proof of Theorem 3 (containing Theorem 2 as a special case). Define mit(x) :=

m(x,Ai,Bt). We decompose

ν̃(x)− ν(x) = e0(x) + e1(x) + e2(x), (22)

where

e0(x) =
1

NT

N∑
i=1

T∑
t=1

Wit(x)1 {Xit 6= x&nit = 0} [mit(Xit)−mit(x)] ,

and

e1(x) :=
1

NT

N∑
i=1

T∑
t=1

1 {Xit 6= x&nit > 0} Wit(x) e1,it(x),

e1,it(x) :=

∑
j∈Ni

∑
s∈Tt

1{Xis = Xjt = Xjs = x} [mis(x) +mjt(x)−mjs(x)−mit(x)]∑
j∈Ni

∑
s∈Tt

1{Xis = Xjt = Xjs = x}
,

and

e2(x) :=
1

NT

N∑
i=1

T∑
t=1

ωitEit,

In the following we consider e0(x), e1(x), e2(x) separately.
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# Bound on e0(x): Assumption 6(i) and (ii) guarantee that

|e0(x)| ≤
(

max
it
|mit(Xit)−mit(x)|

) 1

NT

N∑
i=1

T∑
t=1

Wit(x)1 {Xit 6= x&nit = 0}

= OP (ξNT ) . (23)

# Bound on e1(x): Assumption 6(iv) guarantees that there exists a constant b > 0 such

that∣∣∣∣m(x,a, b)−m(x,Ai,Bt)− (a−Ai)
′ ∂m(x,Ai,Bt)

∂Ai

− (b−Bt)
′ ∂m(x,Ai,Bt)

∂Bt

∣∣∣∣
≤ b

(
‖a−Ai‖2 + ‖b−Bt‖2) .

Using this we find that

mis(x) +mjt(x)−mjs(x)−mit(x) ≤ 2 b
(
‖Ai −Aj‖2 + ‖Bt −Bs‖2) ,

and therefore

|e1,it(x)| ≤
2 b
∑

j∈Ni

∑
s∈Tt

1{Xis = Xjt = Xjs = x}
(
‖Ai −Aj‖2 + ‖Bt −Bs‖2)∑

j∈Ni

∑
s∈Tt

1{Xis = Xjt = Xjs = x}

≤ 2 b

(
max
j∈Ni

‖Ai −Aj‖2 + max
s∈Tt

‖Bt −Bs‖2

)
.

We thus find

|e1(x)| ≤ 2 b

(
max
ij
|Wit(x)|

)(
1

N

N∑
i=1

max
j∈Ni

‖Ai −Aj‖2 +
1

T

T∑
t=1

max
s∈Tt

‖Bt −Bs‖2

)

≤ 2 b c

(
max
ij
|Wit(x)|

)(
1

N

N∑
i=1

max
j∈Ni

‖φ(Ai)− φ(Aj)‖2 +
1

T

T∑
t=1

max
s∈Tt

‖ψ(Bt)−ψ(Bs)‖2

)

= 2 b c

(
max
ij
|Wit(x)|

)(
1

N

N∑
i=1

max
j∈Ni

‖φi − φj‖2 +
1

T

T∑
t=1

max
s∈Tt

‖ψt −ψs‖2

)
.

Using the triangle inequality, the definition of Ni, and the general inequality (x1 + x2 +

x3)2 ≤ 3(x2
1 + x2

2 + x2
3), for x1, x2, x3 ∈ R, we have

max
j∈Ni

‖φi − φj‖2 ≤ max
j∈Ni

(∥∥∥φ̂i − φ̂j∥∥∥+
∥∥∥φ̂i − φi∥∥∥+

∥∥∥φ̂j − φj∥∥∥)2

≤ max
j∈Ni

(
τNT +

∥∥∥φ̂i − φi∥∥∥+
∥∥∥φ̂j − φj∥∥∥)2

≤ 3τ 2
NT + 3

∥∥∥φ̂i − φi∥∥∥2

+ 3 max
j∈Ni

∥∥∥φ̂j − φj∥∥∥2

.
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Analogously we find

max
s∈Tt

‖ψt −ψs‖2 ≤ 3υ2
NT + 3

∥∥∥ψ̂t −ψt∥∥∥2

+ 3 max
s∈Tt

∥∥∥ψ̂s −ψs∥∥∥2

.

We thus obtain

|e1(x)| ≤ 6 b c

(
max
ij
|Wit(x)|

){
τ 2
NT + υ2

NT

1

N

N∑
i=1

(∥∥∥φ̂i − φi∥∥∥2

+ max
j∈Ni

∥∥∥φ̂j − φj∥∥∥2
)

1

T

T∑
t=1

(∥∥∥ψ̂t −ψt∥∥∥2

+ max
s∈Tt

∥∥∥ψ̂s −ψs∥∥∥2
)}

= OP (ξNT ) . (24)

# Bound on e2(x): We have

[e2(x)]2 =
1

(NT )2

N∑
i,j=1

T∑
t,s=1

ωit(Y
NT )ωjs(Y

NT )EitEjs = T0 + T1 + T2,

where

T0 :=
1

NT

N∑
i=1

T∑
t=1

ω2
it(Y

NT )E2
it,

T1 :=
1

(NT )2

N∑
i,j=1

T∑
t,s=1

1 {(i, t) 6= (j, s)}

×
[
ωit(Y

NT )ωjs(Y
NT )− ωit

(
Y NT
−(i,t),−(j,s)

)
ωjs
(
Y NT
−(i,t),−(j,s)

)]
EitEjs,

T2 :=
1

(NT )2

N∑
i,j=1

T∑
t,s=1

1 {(i, t) 6= (j, s)}ωit
(
Y NT
−(i,t),−(j,s)

)
ωjs
(
Y NT
−(i,t),−(j,s)

)
EitEjs.

We have

E
[
T0

∣∣∣XNT , AN , BT
]
≤
(

max
i,t
|Eit|

)2
1

(NT )2

N∑
i=1

T∑
t=1

E
[
ω2
it

(
Y NT

) ∣∣∣XNT , AN , BT
]

= OP (ξ2
NT ),
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and∣∣∣E [T1

∣∣∣XNT , AN , BT
]∣∣∣

≤
(

max
i,t
|Eit|

)2
1

(NT )2

N∑
i,j=1

T∑
t,s=1

1 {(i, t) 6= (j, s)}

× E
[∣∣ωit(Y NT )ωjs(Y

NT )− ωit
(
Y NT
−(i,t),−(j,s)

)
ωjs
(
Y NT
−(i,t),−(j,s)

)∣∣ ∣∣∣XNT , AN , BT
]

= OP (ξ2
NT ).

where we used that Yit (and thus Eit) is uniformly bounded, together with Assump-

tion 6(viii) and (ix). Next, for (i, t) 6= (j, s) we

E
[
ωit
(
Y NT
−(i,t),−(j,s)

)
ωjs
(
Y NT
−(i,t),−(j,s)

)
EitEjs

∣∣∣Y NT
−(i,t),−(j,s), X

NT , AN , BT
]

= ωit
(
Y NT
−(i,t),−(j,s)

)
ωjs
(
Y NT
−(i,t),−(j,s)

)
E
[
EitEjs

∣∣∣Y NT
−(i,t),−(j,s), X

NT , AN , BT
]

= ωit
(
Y NT
−(i,t),−(j,s)

)
ωjs
(
Y NT
−(i,t),−(j,s)

)
E
[
Eit

∣∣∣Y NT
−(i,t),−(j,s), X

NT , AN , BT
]

E
[
Ejs

∣∣∣Y NT
−(i,t),−(j,s), X

NT , AN , BT
]

= 0,

where we used E
[
Eit | XNT ,AN , BT

]
= 0 together with the assumption that Yit (and

thus Eit) is independent across both i and t, conditional on XNT , AN , BT . By the law

of iterated expectations the last display result also implies that for (i, t) 6= (j, s) we have

E
[
ωit
(
Y NT
−(i,t),−(j,s)

)
ωjs
(
Y NT
−(i,t),−(j,s)

)
EitEjs

∣∣∣XNT , AN , BT
]

= 0.

Using this we obtain that

E
[
T2

∣∣∣XNT , AN , BT
]

= 0.

Combining those results on T0, T1, T2 we obtain

E
{

[e2(x)]2
∣∣∣XNT , AN , BT

}
= OP (ξ2

NT ),

which implies e2 = OP (ξNT ). Together with (22), (23), and (24) this gives the statement

of the theorem. �

A.4 Proof of Intermediate Results

Proof of Lemma 2. Let uj(x) be the N -vector with elements uj(x,Ai), and let vj(x)

be the T -vector with elements vj(x,Bt). Then we have Γ∞(x) =
∑∞

j=1 sj(x)uj(x)vT
j (x),
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and therefore

‖Γ∞(x)‖1 ≤
∞∑
j=1

sj(x) ‖uj(x)‖ ‖vj(x)‖

=
√
NT

∞∑
j=1

sj(x)

√√√√ 1

N

N∑
i=1

[uj(x,Ai)]2

√√√√ 1

T

T∑
t=1

[vj(x,Bt)]2

≤
√
NT

∞∑
j=1

sj(x)

(
1 +

1
N

∑N
i=1[uj(x,Ai)]

2 − 1

2

)(
1 +

1
T

∑T
t=1[vj(x,Bt)]

2 − 1

2

)

=
√
NT

∞∑
j=1

sj(x) +
√
NT RNT

=
√
NT ‖m(x, ·, ·)‖∗ +

√
NT RNT ,

where for the second inequality we used that
√
z ≤ 1 + z−1

2
, for all z ≥ 0, and we defined

RNT = 1
NT

∑N
i=1

∑T
t=1 rit, with

rit =
∞∑
j=1

sj(x)

{
[uj(x,Ai)]

2 + [vj(x,Bt)]
2

4
+

[uj(x,Ai)]
2[vj(x,Bt)]

2

4
− 3

4

}
.

Assumption 3 guarantees that [uj(x,Ai)]
2 and [vj(x,Bt)]

2 have mean equal to one, which

implies that rit has mean zero. Assumption 2 and the WLLN therefore guarantees that

RNT = oP (1). We have thus shown that ‖Γ∞(x)‖1 ≤
√
NT ‖m(x, ·, ·)‖∗ + oP (

√
NT ),

and since ‖m(x, ·, ·)‖∗ is finite and non-random we also have ‖Γ∞(x)‖1 = OP (
√
NT ). �

Proof of Lemma 3. The nuclear norm (or trace norm) can be defined by

‖Γ‖1 = max
{M∈RN×T : ‖M‖∞≤1}

Tr (M ′Γ)︸ ︷︷ ︸
=

N∑
i=1

T∑
t=1

MitΓit

. (25)

Our assumption ρ ≥ ‖E(x)‖∞ guarantees that a possible choice in this maximization is

M = ρ−1E(x), and we therefore have

ρ ‖Γ‖1 ≥
N∑
i=1

T∑
t=1

Dit(x)Eit(x) Γit.
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Using this and the model Yit = Γ∞it (x) + Eit(x) we find that

QNT (Γ, ρ, x)

=
1

2

N∑
i=1

T∑
t=1

Dit(x) (Yit − Γit)
2 + ρ‖Γ‖1

≥ 1

2

N∑
i=1

T∑
t=1

Dit(x) (Γ∞it (x) + Eit(x)− Γit)
2 +

N∑
i=1

T∑
t=1

Dit(x)Eit(x) Γit

=
1

2

N∑
i=1

T∑
t=1

Dit(x) (Γ∞it (x)− Γit)
2 +

N∑
i=1

T∑
t=1

Dit(x) Γ∞it (x)Eit(x) +
1

2

N∑
i=1

T∑
t=1

Dit(x)E2
it(x).

By definition we have

QNT (Γ̂(x), ρ, x) ≤ QNT (Γ∞(x), ρ, x) =
1

2

N∑
i=1

T∑
t=1

Dit(x)E2
it(x) + ρ‖Γ∞(x)‖1

Combining the results in the last two displays gives the statement of the lemma. �

Proof of Proposition 1. In this proof we drop the argument x everywhere, and we

define θ = NTν and θ0 = NTν. Define the NT -vectors γ = vec(Γ), Γ∞ = vec(Γ∞),

w = vec(Wit : i ∈ N, t ∈ T), d = vec(Dit : i ∈ N, t ∈ T), and p = vec(Pit : i ∈ N, t ∈ T).

Then, diag(p) is an NT ×NT diagonal matrix. For ρ > 0 and θ ∈ R we define

LNT (θ, ρ) = min
{Γ∈RN×T : θ=w′γ}

QNT (Γ, ρ),

which is the profile objective function that minimizesQNT (Γ, ρ) over almost all parameters

Γ, only keeping our parameter of interest fixed at θ = w′γ =
∑N

i=1

∑T
t=1WitΓit. Our goal

is to show that the minimizing value

θ̂ := argmin
θ∈R

LNT (θ, ρ) =
N∑
i=1

T∑
t=1

WitΓ̂it

is close to θ := w′Γ∞ =
∑N

i=1

∑T
t=1WitΓ

∞
it . Using the definition of QNT (Γ, ρ) and Yit =

Γ∞it + Eit we find that

LNT (θ, ρ) ≤ QNT (Γ∞, ρ) =
1

2

N∑
i=1

T∑
t=1

DitE
2
it + ρ‖Γ∞‖1. (26)

If for a given value of θ = w′γ we have that the matrix M (θ) with elements Mit(θ) :=

DitEit − w′(γ−Γ∞)
w′diag(p)−1w

(Dit−Pit)Wit

Pit
satisfies ‖M (θ)‖∞ ≤ ρ, then by the definition of ‖ · ‖1 in
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(25) we have ρ‖Γ‖1 ≤ Tr(Γ′M (θ)) =
∑N

i=1

∑T
t=1 Mit(θ)Γit. Using this and Yit = Γ∞it +Eit

we find that

QNT (Γ, ρ) =
1

2

N∑
i=1

T∑
t=1

Dit (Yit − Γit)
2 + ρ‖Γ‖1

≥ 1

2

N∑
i=1

T∑
t=1

Dit [(Γ∞it − Γit) + Eit]
2 +

N∑
i=1

T∑
t=1

{
DitEit −

[(γ − Γ∞)′w]

w′diag(p)−1w

(Dit − Pit)Wit

Pit

}
Γit

=
1

2

N∑
i=1

T∑
t=1

Dit (Γit − Γ∞it )2 − [(γ − Γ∞)′w]

w′diag(p)−1w

N∑
i=1

T∑
t=1

(Dit − Pit)Wit

Pit
(Γit − Γ∞it )︸ ︷︷ ︸

=:Q
(low,1)
NT (Γ)

+
N∑
i=1

T∑
t=1

Mit(θ) Γ∞it +
1

2

N∑
i=1

T∑
t=1

DitE
2
it︸ ︷︷ ︸

=:Q
(low,2)
NT

,

where in the last step we added and subtracted
∑N

i=1

∑T
t=1Mit(θ) Γ∞it , and we multiplied

out [(Γ∞it − Γit) + Eit]
2, which leads to some simplifications. Notice that DitEit = Eit by

construction of Eit, so that some occurrences of Dit above could be dropped, but we find

it clearer to keep track of Dit explicitly here.

Next, we define the NT×NT idempotent matrices P = diag(p)−1ww′

w′diag(p)−1w
and R = INT−P.

We then have

Q
(low,1)
NT (Γ)

=
1

2
(γ − Γ∞)′ diag(d) (γ − Γ∞)− [(γ − Γ∞)′w]

w′diag(p)−1w

[
w′ diag(p)−1 diag(d− p) (γ − Γ∞)

]
=

1

2
(γ − Γ∞)′

(
P′ + R′

)
diag(d) (P + R) (γ − Γ∞)− (γ − Γ∞)′P′diag(d− p) (P + R) (γ − Γ∞)

=
1

2
(γ − Γ∞)′R′diag(d)R(γ − Γ∞) +

1

2
(γ − Γ∞)′P′diag (2p− d) P(γ − Γ∞),

=
1

2
(γ − Γ∞)′R′diag(d)R(γ − Γ∞) +

1

2
(γ − Γ∞)′P′diag (p− d) P(γ − Γ∞) +

1

2

[(γ − Γ∞)′w]2

w′diag(p)−1w

where all the “mixed terms” (that involve both P and R) cancel because we have

P′ diag(p) R = 0, and in the last step we used that P′ diag (p) P = ww′

w′diag(p)−1w
. We

have

min
{Γ∈RN×T : θ=w′γ}

(γ − Γ∞)′R′ diag(d) R (γ − Γ∞) = 0,

because γ∗ = RΓ∞+θ diag(p)−1w
w′diag(p)−1w

is a possible choice in the minimization problem, which
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satisfies w′γ∗ = θ and R (γ∗ − Γ∞) = 0. We therefore have

min
{Γ∈RN×T : θ=w′γ}

Q
(low,1)
NT (Γ)

=
1

2
(θ − θ0)2

(
1

w′diag(p)−1w
+
w′diag(p)−1diag (p− d) diag(p)−1w

(w′diag(p)−1w)2

)
=

1

2
(θ − θ0)2

(
1∑N

i=1

∑T
t=1W

2
itP
−1
it

+

∑N
i=1

∑T
t=1W

2
itP
−2
it (Pit −Dit)

(
∑N

i=1

∑T
t=1W

2
itP
−1
it )2

)
=
NT

2
c1 (ν − ν0)2,

with c1 as defined in the statement of the proposition, and ν − ν0 = (NT )−1 (θ − θ0).

Thus, if Mit(θ) = DitEit − (ν − ν0)Vit satisfies ‖M (θ)‖∞ ≤ ρ, then we have

LNT (θ, ρ) ≥ min
{Γ∈RN×T : θ=w′γ}

Q
(low,1)
NT (Γ) +Q

(low,2)
NT

=
NT

2
c1 (ν − ν0)2 +

N∑
i=1

T∑
t=1

Mit(θ) Γ∞it +
1

2

N∑
i=1

T∑
t=1

DitE
2
it,

and combing this with (26) gives

LNT (θ, ρ)− LNT (θ0, ρ)

NT
≥ c1

2
(ν − ν0)2 +

1

NT

N∑
i=1

T∑
t=1

Mit(θ) Γ∞it −
ρ

NT
‖Γ∞‖1

=
c1

2
(ν − ν0)2 +

1

NT

N∑
i=1

T∑
t=1

DitEit Γ∞it − (ν − ν0)
1

NT

N∑
i=1

T∑
t=1

Vit Γ∞it −
ρ

NT
‖Γ∞‖1.

Using the assumption c1 > 0 and definitions of c2 and c3 in the proposition this inequality

can equivalently be written as

2 [LNT (NTν, ρ)− LNT (NTν0, ρ)]

c1NT
≥ (ν − ν0)2 − 2 c2

c1

(ν − ν0) +

(
c2

c1

)2

− c3

=

(
ν − ν0 −

c2

c1

)2

− c3. (27)

Notice that c3 > 0 because our assumptions guarantee that ‖E‖∞ < ρ and therefore

ρ‖Γ∞‖1 ≥
∑N

i=1

∑T
t=1Eit Γ∞it , according to (25).

The inequality in (27) was derived under the assumption that ‖M(NTν)‖∞ ≤ ρ.

Define ν∗+(ε) ∈ R and ν∗−(ε) ∈ R by

ν∗±(ε) := ν0 ± (c4 + ε) , for 0 < ε ≤ ρ− ‖E‖∞ − c4‖V ‖∞
‖V ‖∞

.
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Our assumption ‖E‖∞ + c4‖V ‖∞ < ρ guarantees that such an ε > 0 exists. Using the

triangle inequality we find that

‖M (NTν∗±(ε))‖∞ = ‖E − (ν∗±(ε)− ν0)V ‖∞ ≤ ‖E‖∞ + |ν∗±(ε)− ν0|‖V ‖∞ ≤ ρ,

where the final inequality follows from the definition of ν∗±(ε). The conditions for (27) is

therefore satisfies by ν = ν∗±(ε), that is, we have

2
[
LNT (NTν∗±(ε), ρ)− LNT (NTν0, ρ)

]
c1NT

≥
(
ν∗±(ε)− ν0 −

c2

c1

)2

− c3

=

(
c4 + ε∓ c2

c1

)2

− c3

=

(
√
c3 + ε+

|c2| ∓ c2

c1

)2

− c3

≥ (
√
c3 + ε)

2 − c3

> 0.

where we used the definition c4 =
√
c3 + |c2|

c1
.

LNT (NTν, ρ) is a convex function of ν = θ/NT , because it was obtained via profiling

of the convex function QNT (Γ, ρ). The value ν0 lies in the interval [ν∗+(ε), ν∗−(ε)], and we

have shown that LNT (NTν0, ρ) < LNT (NTν∗±(ε), ρ). It must therefore be the case that

the optimal ν̂ = NT θ̂ that minimizes LNT (NTν, ρ) also lies in the interval [ν∗+(ε), ν∗−(ε)]

— otherwise we obtain a contradiction to the convexity of LNT (NTν, ρ). Thus, we have

shown that

|ν̂ − ν0| ≤ c4 + ε,

and because we can choose ε > 0 arbitrarily small it must be the case that

|ν̂ − ν0| ≤ c4,

which is what we wanted to show. �
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