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Abstract

Economists are often interested in estimating averages with respect to distributions
of unobservables. Examples are moments of individual fixed-effects, average partial
effects in discrete choice models, and counterfactual simulations in structural models.
For such quantities, we propose and study posterior average effects (PAE), where the
average is computed conditional on the sample, in the spirit of empirical Bayes and
shrinkage methods. While the usefulness of shrinkage for prediction is well-understood,
a justification of posterior conditioning to estimate population averages is currently
lacking. We show that PAE have minimum worst-case bias under local misspecification
of the parametric distribution of unobservables. This provides a rationale for reporting
these estimators in applications. We introduce a measure of informativeness of the
posterior conditioning, which quantifies the bias of PAE relative to parametric model-
based estimators, and we study other robustness properties of PAE for estimation and
prediction. As illustrations, we report PAE estimates of distributions of neighborhood
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1 Introduction

In many settings, applied researchers wish to estimate population averages with respect

to a distribution of unobservables. This includes average partial effects in discrete choice

models, moments of individual fixed-effects in panel data, and average welfare effects in

structural models, all of which are expectations with respect to some distribution of shocks

and heterogeneity. The standard approach in applied work is to assume a parametric form for

the distribution of unobservables and to compute the average effect under that assumption.

For example, in binary choice, researchers often assume normality of the error term, and

compute average partial effects under normality. This “model-based” estimation of average

effects is justified under the assumption that the parametric model is correctly specified.

In this paper, we consider a different approach, where the average effect is computed

conditional on the observation sample. We refer to such estimators as “posterior average

effects” (PAE). Posterior averaging is appealing for prediction purposes, and it plays a central

role in Bayesian and empirical Bayes approaches (e.g., Berger, 1980, Morris, 1983). Here we

focus instead on the estimation of population expectations. Our goal is twofold: to propose

a novel class of estimators, and to provide a frequentist framework to understand when and

why posterior conditioning may be useful in estimation. Our main result will show that PAE

have robustness properties when the parametric model is misspecified.

PAE are closely related to empirical Bayes (EB) estimators, which are increasingly pop-

ular in applied economics. Consider a fixed-effects model of teacher quality, which is our

main example. When the number of observations per teacher is small, the dispersion of

teacher fixed-effects is likely to overstate that of true teacher quality, since teacher effects

are estimated with noise. An alternative approach is to postulate a prior distribution for

teacher quality — typically, a normal — and report posterior estimates, holding fixed the

values of the mean and variance parameters. The hope is that such EB estimates, which are

shrunk toward the prior, are less affected by noise than the teacher fixed-effects (e.g., Kane

and Staiger, 2008, Chetty et al., 2014, Angrist et al., 2017). However, while EB estimates

are well-justified predictors of the quality of individual teachers, it is not obvious how to

aggregate them across teachers when the goal is to estimate a population average such as a

moment or a distribution function.

As an example, suppose we wish to estimate the distribution function of teacher quality

evaluated at a point. Since this quantity is an average of indicator functions, the PAE
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is simply an average of posterior means — that is, of EB estimates — of the indicator

functions. This estimator is available in closed form. However, the PAE differs from the

empirical distribution of the EB estimates of teacher effects. In particular, while the variance

of EB estimates is too small relative to that of latent teacher quality, the PAE has the correct

variance. Related applications of PAE include settings involving neighborhood/place effects

(Chetty and Hendren, 2017, Finkelstein et al., 2017) or hospital quality (Hull, 2018).

Importantly, although posterior averages have desirable properties for predicting individ-

ual parameters, their usefulness for estimating population average quantities is not evident.

For example, suppose that teacher quality is normally distributed. In this case, a model-

based normal estimator of the distribution of teacher quality is consistent. Moreover, it is

asymptotically efficient when means and variances are estimated by maximum likelihood.

Hence, in the correctly specified case, there is no reason to deviate from the standard model-

based approach and compute posterior estimators. The main insight of this paper is that,

under misspecification — e.g., when teacher quality is not normally distributed — condi-

tioning on the data using PAE can be beneficial.

To study estimators under misspecification, we focus on worst-case asymptotic bias in a

nonparametric neighborhood of the reference parametric distribution (e.g., a normal). We

consider neighborhoods based on φ-divergence, which is a family of distance measures often

used to study misspecification. Throughout the paper, we often simply use bias to denote

worst-case asymptotic bias in such a neighborhood. In our main theorem, we show that PAE

have minimum local bias — calculated in an asymptotic where the size of the neighborhood

tends to zero — within a large class of estimators. The theorem implies that PAE are

least sensitive to small departures from correct specification, and that other estimators will

generally have larger bias under local misspecification.

In our examples and illustrations, we find that the information contained in the posterior

conditioning is setting-specific. This is intuitive, since although PAE have minimum bias

locally, the bias is not zero in general and varies across applications. PAE tend to behave

better when the realizations of outcome variables (such as test scores) are more informative

about the values of the unobservables (such as the quality of a teacher). Consistently with

this intuition, our bias analysis suggests quantifying the “informativeness” of the posterior

conditioning using an easily computable R2 coefficient.

While PAE have minimum local bias, they do not have minimum mean squared error in
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general. Indeed, in small samples where variance dominates bias, model-based estimators

can have smaller mean squared error than PAE. Hence, PAE are best suited for large samples

— e.g., when the number of teachers is large. Although one can compute estimators that

minimize mean squared error locally, those depend on neighborhood size. An important

practical advantage of PAE is that they do not require taking a stand on the degree of

misspecification through the size of the neighborhood, and they are simple to implement.

To illustrate the scope of PAE for applications, we consider two empirical settings. In the

first one, we study the estimation of neighborhood/place effects in the US. Chetty and Hen-

dren (2017) report estimates of the variance of neighborhood effects, as well as EB estimates

of those effects. Our goal is to estimate the distribution of effects across neighborhoods. We

find that, when using a normal prior as in Chetty and Hendren (2017), our posterior estima-

tor of the density of neighborhood effects across commuting zones is not normal. However,

we also show through simulations and computation of our posterior informativeness measure

that the signal-to-noise ratio in the data is not high enough to be confident about the exact

shape of the distribution. Hence, in this setting, PAE inform our knowledge of the density of

neighborhood effects, and motivate future analyses using more flexible model specifications

and individual-level data.

In the second empirical illustration, our goal is to estimate the distributions of latent

components in a permanent-transitory model of income dynamics (e.g., Hall and Mishkin,

1982, Blundell et al., 2008), where log-income is the sum of a random-walk component

and a component that is independent over time. Researchers often estimate the covariance

structure of the latent components in a first step. Then, in order to document distributions

or to use the income process in a consumption-saving model, they often assume Gaussianity.

However, there is increasing evidence that income components are not Gaussian (e.g., Geweke

and Keane, 2000, Hirano, 2002, Bonhomme and Robin, 2010, Guvenen et al., 2016). We

estimate posterior distribution functions and quantiles of permanent and transitory income

components using recent waves from the Panel Study of Income Dynamics (PSID). PAE

reveal that both components are non-normal, especially the transitory one.

We analyze several extensions. First, we describe the form of PAE in several models, in-

cluding binary choice and censored regression, and we illustrate in simulations that PAE can

perform substantially better than model-based estimators under misspecification. Second,

we discuss how to construct confidence intervals and specification tests based on PAE. Third,
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we study the bias properties of PAE under non-local misspecification. This complements

our main result, which is based on a local asymptotic approach. Specifically, in neighbor-

hoods of fixed size we show that the worst-case bias of PAE is at most twice the minimum

bias achievable. Lastly, we revisit the question of optimality of EB estimates for predicting

individual parameters. By extending our misspecification analysis from worst-case bias of

sample averages to worst-case mean squared prediction error, we show that EB estimators

remain optimal, up to small-order terms, under local deviations from normality.

Related literature and outline. PAE are closely related to parametric EB estimators

(Efron and Morris, 1973, Morris, 1983). For recent econometric applications of shrink-

age methods (James and Stein, 1961, Efron, 2012), see Hansen (2016), Fessler and Kasy

(2018), and Abadie and Kasy (2018). Recent contributions to nonparametric EB methods

are Koenker and Mizera (2014) and Ignatiadis and Wager (2019). Unlike nonparametric EB,

and in contrast with deconvolution and other nonparametric approaches, in our framework

we allow for forms of misspecification under which the quantity of interest is not consistently

estimable, and we search for estimators that have the smallest amount of bias.1

In panel data settings, Arellano and Bonhomme (2009) study the bias of random-effects

estimators of averages of functions of covariates and individual effects. They show that,

when the distribution of individual effects is misspecified whereas the other features of the

model are correctly specified, PAE are consistent as n and T tend to infinity. By contrast,

in our setup, only n tends to infinity, and misspecification may affect the entire joint distri-

bution of unobservables. Our analysis also connects to the literature on robustness to model

misspecification (e.g., Huber and Ronchetti, 2009, Andrews et al., 2017, 2018, Armstrong

and Kolesár, 2018, Bonhomme and Weidner, 2018, Christensen and Connault, 2019). Here

our aim is to propose and justify a class of simple, practical estimators.

The plan of the paper is as follows. In Section 2 we motivate the analysis by considering a

fixed-effects model of teacher quality. In Section 3 we present our framework and derive our

main theoretical result. In Section 4 we illustrate the use of PAE in two empirical settings.

In Section 5 we describe several extensions. Finally, we conclude in Section 6.

1Berger (1979) provides a gamma-minimax characterization of Bayes estimators in ε-contaminated neigh-
borhoods.
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2 Motivating example: a fixed-effects model

To motivate the analysis, we start by considering the following model

Yij = αi + εij, i = 1, ..., n, j = 1, ..., J. (1)

To fix ideas, we will think of Yij as an average test score of teacher i in classroom j, αi

as the quality of teacher i, and εij as a classroom-specific shock. There are n teachers

and J observations per teacher. For simplicity, we abstract away from covariates (such as

students’ past test scores), but those will be present in the framework we will introduce in

the next section. Although here we focus on teacher effects, this model is of interest in other

settings, such as the study of neighborhood effects, school effectiveness, or hospital quality,

for example.

Suppose we wish to estimate a feature of the distribution of teacher quality α. As an

example, here we consider the distribution function of α at a particular point a,

Fα(a) = E [1{α ≤ a}] ,

which is the percentage of teachers whose quality is below a. When estimated at all points

a, the distribution function can be inverted or differentiated to compute the quantiles of

teacher quality or its density.

A first estimator is the empirical distribution of the fixed-effects estimates α̂i = Y i =

1
J

∑J
j=1 Yij, for all teachers i = 1, ..., n; that is,

F̂FE
α (a) =

1

n

n∑
i=1

1{Y i ≤ a},

where FE stands for “fixed-effects”. An obvious issue with this estimator is that Y i = αi+εi

is a noisy estimate of αi, where εi = 1
J

∑J
j=1 εij. Under mild conditions, as J tends to infinity

with n, Y i is consistent for αi and F̂FE
α (a) is consistent for Fα(a). However, due to the

presence of noise, for small J the distribution F̂FE
α tends to be too dispersed relative to Fα.2

A different strategy is to model the joint distribution of α, ε1, ..., εJ . A simple specification

is a multivariate normal distribution with means µα and µε = 0, and variances σ2
α and σ2

ε.

This specification can easily be made more flexible by allowing for different σ2
εj

’s across

j, for correlation between the different εj’s, or for means and variances being functions of

2The large-J leading order bias of F̂FE
α (a) is worked out in in Jochmans and Weidner (2018), and for the

kernel-smoothed version in Okui and Yanagi (2018).
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covariates, for example. Under the assumption that all components are uncorrelated, µα, σ2
α

and σ2
ε can be consistently estimated using quasi-maximum likelihood or minimum distance

based on mean and covariance restrictions.3

Given estimates µ̂α, σ̂2
α, σ̂2

ε, we can compute empirical Bayes (EB) estimates (Morris,

1983) of the αi as

E [α |Y = Yi] = µ̂α + ρ̂(Y i − µ̂α), i = 1, ..., n, (2)

where the expectation is taken with respect to the posterior distribution of α given Y = Yi

for µ̂α, σ̂2
α, σ̂2

ε fixed, and ρ̂ = σ̂2
α

σ̂2
α+σ̂2

ε/J
is a shrinkage factor. Here, Yi are vectors containing

all Yij, j = 1, ..., J . The EB estimates in (2) are well-justified as predictors of the αi, since

(when treating µ̂α, σ̂2
α, σ̂2

ε as fixed) µ̂α + ρ̂(Y i − µ̂α) is the minimum mean squared error

predictor of αi under normality.

Given their rationale for prediction purposes, it is appealing to try and aggregate the EB

estimates in order to estimate our target quantity Fα(a). A possible estimator is

F̂PM
α (a) =

1

n

n∑
i=1

1
{
µ̂α + ρ̂(Y i − µ̂α) ≤ a

}
, (3)

where PM stands for “posterior means”. Like F̂FE
α (a), F̂PM

α (a) is consistent as J tends to

infinity under mild conditions, since the shrinkage factor ρ̂ tends to one. However, for small

J the EB estimates tend to be less dispersed than the true αi, and F̂PM
α (a) is biased. Indeed,

while in large samples the variance of the fixed-effects estimates is ρ−1σ2
α > σ2

α, the variance

of the EB estimates is ρσ2
α < σ2

α, where ρ = σ2
α

σ2
α+σ2

ε/J
.

Instead of computing the distribution of EB estimates as in (3), a related idea is to

compute the posterior distribution estimator

F̂P
α (a) =

1

n

n∑
i=1

E [1{α ≤ a} |Y = Yi] ,

where P stands for “posterior”. Using the normality assumption, we obtain

F̂P
α (a) =

1

n

n∑
i=1

Φ

(
a− µ̂α − ρ̂(Y i − µ̂α)

σ̂α
√

1− ρ̂

)
, (4)

where Φ denotes the distribution function of the standard normal. F̂P
α (a) is an example of a

posterior average effect (PAE). One can check that it is consistent for any fixed J when the

3A set of restrictions is E[εj ] = 0, E[ε2j ] = σ2
ε, E[α] = µα, E[(α−µα)2] = σ2

α, E[εjα] = 0, and E[εjεj′ ] = 0
for all j 6= j′.
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distribution of α, ε1, ..., εJ is normal. Under non-normality, F̂P
α (a) is consistent as J tends

to infinity with n, although it is generally biased for small J .4 Moreover, the mean and

variance of F̂P
α are (1− ρ̂)µ̂α + ρ̂ 1

n

∑n
i=1 Y i and (1− ρ̂)σ̂2

α + ρ̂2
[

1
n

∑n
i=1 Y

2

i − ( 1
n

∑n
i=1 Y i)

2
]
,

respectively, which are consistent for µα and σ2
α for any J .

The last estimator we consider here is directly based on the normal specification for α,

F̂M
α (a) = Φ

(
a− µ̂α
σ̂α

)
, (5)

where M stands for “model”. This estimator enjoys attractive properties when the distribu-

tion of α, ε1, ..., εJ is indeed normal. In this case, F̂M
α (a) is consistent for any fixed J , and

it is efficient when µ̂α and σ̂2
α are maximum likelihood estimates. Moreover, the mean and

variance of F̂M
α are µ̂α and σ̂2

α, which are consistent irrespective of normality. However, in

contrast to the other estimators above, when α, ε1, ..., εJ is not normally distributed F̂M
α (a)

is generally inconsistent for Fα(a) as J tends to infinity. The inconsistency arises from the

fact that F̂M
α (a) only depends on the data through the mean µ̂α and the variance σ̂2

α. In

particular, F̂M
α is always normal, even when the data show clear evidence of non-normality.

The question we ask in this paper is which one of these estimators one should use. The

answer is not obvious since they are all biased for small J in general. Our framework

allows for misspecification of the normal distribution of α, ε1, ..., εJ . We show that the

PAE F̂P
α (a) has minimum worst-case bias under local misspecification — i.e., in a small

neighborhood around the normal reference distribution. To our knowledge, unlike the other

three estimators above, posterior estimators of distributions are novel to practitioners. They

are also straightforward to implement. Our characterization provides a justification for

reporting them in applications.

Note that one may wish to relax normality by making the specification of α, and possibly

εj, more flexible. Deconvolution and nonparametric maximum likelihood estimators are

often used for this purpose (e.g., Delaigle et al., 2008, Bonhomme and Robin, 2010, Koenker

and Mizera, 2014). While these estimators may be consistent even when α is not normal,

consistency relies on additional restrictions on the model. For example, the assumptions in

Kotlarski (1967) require that α, ε1, . . . , εJ be mutually independent. By contrast, we do not

impose any such additional conditions in our framework. In Section 3, we will show that

4Consistency of F̂P
α (a) as J tends to infinity comes from the fact that µ̂α + ρ̂(Y i − µ̂α) approaches αi,

and ρ̂ approaches one, so Φ

(
a−µ̂α−ρ̂(Y i−µ̂α)

σ̂α
√

1−ρ̂

)
becomes increasingly concentrated around 1{αi ≤ a}.
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asymptotically linear estimators have larger local asymptotic bias than PAE under the form

of misspecification that we consider.5

To illustrate that an independence assumption among α, ε1, . . . , εJ can be restrictive,

consider a situation where the researcher is concerned that the variance of εj depends on

α. For instance, the variance of classroom-level shocks may depend on teacher quality. The

presence of such conditional heteroskedasticity would invalidate conventional nonparamet-

ric deconvolution estimators. By contrast, we will show that F̂P
α (a) has minimum bias in

local neighborhoods of distributions that allow for conditional heteroskedasticity, and more

generally for any joint distributions of (α, ε1, ..., εJ) with given means and variances.

In model (1), the researcher may be interested in estimating other quantities. As an

example, consider the coefficient in the population regression of teacher quality α on a

vector of covariates W ; that is,

δ = (E[WW ′])
−1 E[Wα]. (6)

In applications, it is common to regress fixed-effects estimates on covariates to help interpret

them (as in Dobbie and Fryer, 2013, among many others), and to compute

δ̂
FE

=

(
n∑
i=1

WiW
′
i

)−1 n∑
i=1

WiY i. (7)

Alternatively, one may regress the EB estimates of αi, as given by (2), on covariates (as in

Angrist et al., 2017, and Hull, 2018, for example), and compute

δ̂
P

=

(
n∑
i=1

WiW
′
i

)−1 n∑
i=1

Wi

(
µ̂α + ρ̂(Y i − µ̂α)

)
, (8)

which is a PAE based on a normal reference specification for α. We will see that, in our

framework, the rationale for reporting δ̂
P

or δ̂
FE

depends on the form of misspecification

that the researcher is concerned about.

The framework we describe next applies to the estimation of different quantities in a

variety of settings. In Section 4 we apply PAE to model (1) and estimate the distribution

of neighborhood/place effects in the US (Chetty and Hendren, 2017). In addition, we show

that the permanent-transitory model of income dynamics (e.g., Hall and Mishkin, 1982) has

5In our framework, we will focus on nonparametric neighborhoods around a parametric reference model
(e.g., a normal density). It would be interesting to consider nonparametric reference models, and analyze
the properties of posterior estimators in such settings, although this exceeds the scope of this paper.
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a structure similar to model (1), and we report PAE estimates in this context. In Appendix

S5 we report simulation results for PAE estimators of the skewness and Gini coefficient of

teacher effects in model (1). Lastly, in other models — such as static or dynamic discrete

choice models and models with censored outcomes — our results motivate the use of PAE as

complements to other estimators that researchers commonly report, and we provide examples

in Section 5 and analyze them in Appendix S5.

3 Framework and main result

In this section we describe our framework to study PAE, and we present and discuss our

local bias characterization.

3.1 Model-based estimators and PAE

We consider the following class of models,

Yi = gβ(Ui, Xi), (9)

where outcomes Yi and covariates Xi are observed by the researcher, and Ui are unobserved.

The function gβ is known up to the finite-dimensional parameter β. Our aim is to estimate

an average effect of the form

δ = Ef0 [δβ(U,X)] , (10)

where δβ is known given β. Here f0 denotes the true density of U |X. The expectation

is taken with respect to the product f0fX , where fX is the marginal density of X. For

conciseness we leave the dependence on fX implicit.6

While the researcher does not know the true f0, she has a reference parametric density

fσ for U |X, which depends on a finite-dimensional parameter σ. We will allow fσ to be

misspecified, in the sense that f0 may not belong to {fσ}. However, we will always assume

that gβ is correctly specified. In other words, misspecification will only affect the distribution

of U and its dependence on X, not the structural link between (U,X) and outcomes.

To estimate δ in (10), we assume that the researcher has an estimator β̂ that remains

consistent for β under misspecification of fσ. More precisely, we will only consider potential

6We focus on a scalar δβ , but our results continue to hold in the vector-valued case, as we show in
Appendix S4. This extension is useful to show that our results apply to distribution functions and, by
inversion, to quantile functions. Moreover, although our focus is on average effects that depend linearly on
f0, in Appendix S4 we also discuss how to estimate quantities that depend on f0 nonlinearly.
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true densities f0 such that β̂ tends in probability to the true value β under f0. In many

economic models, the assumptions needed to consistently estimate β are not sufficient to

consistently estimate δ. This is the case in the fixed-effects model (1), where consistent

estimates of means and variances can be obtained in the absence of normality. This is also

the case in discrete choice and censored regression models, as we discuss in Section 5 and

Appendix S5. In addition, we assume that the researcher has an estimator σ̂ that tends in

probability to some σ∗ under f0. Unlike β, the parameter σ∗ is a model-specific “pseudo-true

value” that is not assumed to have generated the data.

Given β̂, σ̂, a sample {Yi, Xi, i = 1, ..., n} from (Y,X), and the parametric density fσ, a

model-based estimator of δ is

δ̂
M

=
1

n

n∑
i=1

Efσ̂
[
δβ̂(U,X)

∣∣X = Xi

]
. (11)

When not available in closed form, this estimator can be computed by numerical integration

or simulation under the parametric density fσ̂. It is easy to see that, under standard condi-

tions, δ̂
M

is consistent for δ under correct specification; that is, when fσ∗ is the true density

of U |X.

To construct a posterior estimator, consider the posterior density pβ,σ of U |Y,X. This

posterior density is computed using Bayes rule, based on the prior fσ on U |X and the

likelihood of Y |U,X implied by gβ. Formally, let U(y, x, β) = {u : y = gβ(u, x)}. We

define, whenever the denominator is non-zero,

pβ,σ(u | y, x) =
fσ(u |x)1{u ∈ U(y, x, β)}∫
fσ(v |x)1{v ∈ U(y, x, β)}dv

. (12)

We will compute pβ,σ analytically in all our examples. In Appendix S4 we describe a

simulation-based computational approach when an analytical expression is not available.

We define the posterior average effect (PAE) as the posterior estimator

δ̂
P

=
1

n

n∑
i=1

Ep
β̂,σ̂

[
δβ̂(U,X)

∣∣∣Y = Yi, X = Xi

]
. (13)

Under standard regularity conditions, it is easy to see that, like δ̂
M

, the PAE δ̂
P

is consistent

for δ under correct specification.

From a Bayesian perspective, δ̂
P

is a natural estimator to consider when β and σ are

known. Indeed, δ̂
P

is then the posterior mean of 1
n

∑n
i=1 δβ(Ui, Xi), where the prior on Ui

10



is fσ, independent across i.7 However, a frequentist justification for δ̂
P
, and in particular

a rationale for preferring δ̂
P

over δ̂
M

, appear to be lacking in the literature. Indeed, under

correct specification of fσ, both estimators δ̂
P

and δ̂
M

are consistent, and, as we pointed

out in the previous section, δ̂
P

may have a higher variance than δ̂
M

. The key difference

between model-based and posterior estimators is that δ̂
P

is conditional on the observation

sample. An intuitive reason for the conditioning is the recognition that realizations Yi may

be informative about the values of the unknown Ui’s. In the remainder of this section we

formalize this intuition in a framework that accounts for misspecification bias.

Model (1) in the notation of this section. To map the fixed-effects model (1) to

the general notation, note that in this case there are no covariates X, and the vector of

unobservables U is

U =

(
α− µα
σα

,
ε1

σε
, ...,

εJ
σε

)′
.

The vector β is β = (µα, σ
2
α, σ

2
ε)
′. The reference distribution for U is a standard multi-

variate normal, so there is no other unknown parameter. We assume that the researcher

has computed an estimator β̂, for example by quasi-maximum likelihood or minimum dis-

tance, which remains consistent for β when U is not normally distributed. When focusing

on the distribution function of α at a point a, the target parameter is given by (10) with

δβ(U,X) = 1{α ≤ a}, which in this case does not depend on β,X. Lastly, the model-based

and posterior estimators δ̂
M

and δ̂
P

are given by (5) and (4), respectively.

3.2 Neighborhoods, estimators, and worst-case bias

Let P (β, f0) denote the true density of (Y, U,X), where as before we omit the reference to

the marginal density of X for conciseness. We assume that, under P (β, f0), β̂ is consis-

tent for the true β, and σ̂ is consistent for a model-specific “pseudo-true” value σ∗, where

EP (β,f0)[ψβ,σ∗(Y,X)] = 0 for some moment function ψ. For example, β̂ and σ̂ may be the

method-of-moments estimators that solve
∑n

i=1 ψβ̂,σ̂(Yi, Xi) = 0.8 Given a distance measure

7δ̂
P

is also the average of the posterior means of δβ(Ui, Xi) across individuals. An alternative Bayesian
interpretation is obtained by specifying a nonparametric prior on f0, and computing the posterior mean of
δ under this prior. We discuss this interpretation formally in Appendix S4, in the case where U has finite
support.

8Throughout we take the estimators β̂ and σ̂, and the moment function ψ, as given. In particular, we do
not address the question of optimal estimation of β under misspecification.
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d and a scalar ε ≥ 0, we define the following neighborhood of the reference density fσ∗ :

Γε =
{
f0 : d(f0, fσ∗) ≤ ε, EP (β,f0)[ψβ,σ∗(Y,X)] = 0

}
.

This neighborhood consists of densities of U |X that are at most ε away from fσ∗ , and

under which β̂ and σ̂ converge asymptotically to β and σ∗, respectively. The case ε = 0

corresponds to correct specification of the reference density fσ, whereas ε > 0 corresponds

to misspecification.

For ease of notation we omit the dependence of Γε on β, σ∗, and ψ, all of which we

consider fixed and given in this section. Indeed, we assume that the researcher has chosen

the estimators β̂ and σ̂ — our theory is silent about where this choice comes from — and

that she has already observed their realized values in a large sample. The moment function

ψ is determined by this choice of estimators. Moreover, in large samples, the true parameter

value β and the pseudo-true value σ∗ are arbitrarily close to the observed values β̂ and σ̂.

In our setup, we only consider densities of unobservables f0 that are consistent with those

values, in the sense that the moment restriction EP (β,f0)[ψβ,σ∗(Y,X)] = 0 holds. This large-

sample logic is consistent with our focus on asymptotic bias as a measure of performance.

In the fixed-effects model (1) of teacher quality, this logic is best suited to settings where

the number n of teachers is large.9

Let us denote the supports of X and U as X and U , respectively. We assume that d is a

φ-divergence of the form

d(f0, fσ∗) =

∫
X

∫
U
φ

(
f0(u |x)

fσ∗(u |x)

)
fσ∗(u |x) fX(x) du dx,

where φ is a convex function that satisfies φ(1) = 0 and φ′′(1) > 0. This family contains as

special cases the Kullback-Leibler divergence (averaged over X), the Hellinger distance, the

χ2 divergence, and more generally the members of the Cressie-Read family of divergences

(Cressie and Read, 1984). It is commonly used to measure misspecification, see Andrews et

al. (2018) and Christensen and Connault (2019) for recent examples.

We focus on asymptotically linear estimators of δ that satisfy, for a scalar non-stochastic

9Note that the same logic might suggest imposing that other features of the joint population distribution
of the data (Y,X), such as means, covariances, higher-order moments, or even the entire distribution, be
kept constant for all f0 ∈ Γε. Restricting neighborhoods in this way does not affect the results in the
next subsection because those are valid for all possible ψ, and one could thus impose additional moment
restrictions on f0.
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function γ and as n tends to infinity,

δ̂γ =
1

n

n∑
i=1

γβ̂,σ̂(Yi, Xi) + oP (β,f0)(1). (14)

Note that δ̂γ depends on β̂, σ̂, but for conciseness we leave the dependence implicit in the

notation. Many estimators can be written in this form (see, e.g., Bickel et al., 1993). Given

an estimator δ̂γ, we define its ε-worst-case bias as

bε(γ) = sup
f0∈Γε

∣∣EP (β,f0)[γβ,σ∗(Y,X)]− Ef0 [δβ(U,X)]
∣∣ . (15)

The worst-case bias bε(γ) is our measure of how well an estimator δ̂γ performs under mis-

specification. The results below are specific to this particular objective. The bias here is

asymptotic, since EP (β,f0)[γβ,σ∗(Y,X)] is the probability limit of δ̂γ as n tends to infinity

under P (β, f0).

In our framework, we do not account for the variance of δ̂γ and focus on worst-case bias.

Alternatively, one could minimize the worst-case mean squared error of δ̂γ as in Bonhomme

and Weidner (2018), or a weighted bias with respect to some prior on Γε. In such cases

the optimal estimators would take different forms. In particular, unlike PAE they would

generally depend on ε, as we will discuss in Remark 1 below. Relative to such estimators,

PAE have the practical advantage that they do not require the researcher to take a stand

on the degree of misspecification ε. On the other hand, since PAE minimize bias they are

best suited for settings with a large number of cross-sectional units.

3.3 Local bias characterization

Before stating our main result, we first characterize the worst-case bias bε(γ) of estimators δ̂γ

for small ε. The following lemma is instrumental in proving that PAE minimize local bias.

For conciseness, in this subsection we suppress the reference to β, σ∗ from the notation, and

we denote as E∗ and Var∗ expectations and variance that are taken under the reference model

P (β, fσ∗). The proofs are in Appendix A.

Lemma 1. Let ψ̃(y, x) = ψ(y, x) − E∗
[
ψ(Y,X)

∣∣X = x
]
. Suppose that one of the following

conditions holds:

(i) φ(1) = 0, φ(r) is four times continuously differentiable with φ′′(r) > 0 for all r >

0, E∗[ψ(Y,X)] = 0, E∗
[
ψ̃(Y,X) ψ̃(Y,X)′

]
> 0, and |γ(y, x)|, |δ(u, x)|, |ψ(y, x)| are

bounded over the domain of Y , U , X.
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(ii) Condition (ii) of Lemma A1 in Appendix A holds (this alternative condition allows for

unbounded γ, δ, ψ, but at the cost of stronger assumptions on φ(r)).

Then, as ε tends to zero we have

bε(γ) = |E∗[γ(Y,X)− δ(U,X)]|

+ ε
1
2

{
2

φ′′(1)
Var∗

(
γ(Y,X)− δ(U,X)− E∗ [γ(Y,X)− δ(U,X) |X]− λ′ψ̃(Y,X)

)} 1
2

+O(ε),

where λ =
{
E∗
[
ψ̃(Y,X) ψ̃(Y,X)′

]}−1

E∗
[
(γ(Y,X)− δ(U,X)) ψ̃(Y,X)

]
.

To derive the formula for the worst-case bias in Lemma 1, we maximize the bias with

respect to f0 subject to three contraints: f0 belongs to an ε-neighborhood of f∗, it is such

that the moment condition is satisfied at (β, σ∗), and it is a density. For ease of exposition,

in Lemma 1 we only explicitly present the conditions for the case where γ, δ and ψ are

bounded. This is satisfied, for example, if those functions and g(u, x) are all continuous,

and the domain of U and X is bounded. To accommodate situations where supports are

unbounded such as the example of Section 2, in Appendix A we detail the case of unbounded

functions γ, δ and ψ, which only requires existence of third moments under the reference

distribution. To guarantee that bε(γ) is well-defined in the unbounded case, we require a

regularization of the function φ(r) for large values of r.

Lemma 1 implies that the small-ε bias of the PAE is, up to smaller-order terms, propor-

tional to the within-(Y,X) standard deviation of δ(U,X) under the reference model:10

bε(γ
P) = ε

1
2

{
2

φ′′(1)
Var∗ (δ(U,X)− E∗[δ(U,X) |Y,X])

} 1
2

+O(ε).

For example, in the fixed-effects model (1) of teacher quality the bias of the PAE F̂P
α (a) is

bε(γ
P) = ε

1
2

{
4

φ′′(1)
T

(
a− µα
σα

,

√
1− ρ
1 + ρ

)} 1
2

+O(ε),

where T (a, b) = ϕ(a)
∫ b

0
ϕ(az)
1+z2

dz is Owen’s T function (Owen, 1956), and ϕ is the standard

normal density. The bias decreases as the number J of observations per teacher increases,

and tends to zero as J tends to infinity and the shrinkage factor ρ tends to one.

The next theorem, which is the main result of this section, shows that the PAE has

minimum worst-case bias locally.

10Similar expressions appear in Bayesian statistics when computing derivatives of posterior quantities with
respect to prior densities; see, e.g., Gustafson (2000).
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Theorem 1. Suppose that the conditions of Lemma 1 hold, and let

γP(y, x) = E∗[δ(U,X) |Y = y,X = x]. (16)

Then, as ε tends to zero we have

bε(γ
P) ≤ bε(γ) +O(ε).

Theorem 1 provides a rationale for using PAE in applications.11 For example, in the

fixed-effects model (1), it motivates using the posterior distribution estimator F̂P
α (a) given

by (4). We report PAE estimators of distributions and illustrate their usefulness in two

empirical settings in Section 4. In addition, in Appendix S5 we show the results of Monte

Carlo simulations for two estimators in model (1). In the simulations, the normal reference

model is misspecified, and we find that PAE provide substantial bias reduction relative to

parametric model-based estimators (see Appendix Figure S1).

Remark 1. (mean squared error) While we have shown that PAE minimize worst-case

bias locally, they generally do not have minimum mean squared error (MSE). To see this, let

us assume that β and σ∗ are known. In a local asymptotic framework where nε tends to a

constant and under suitable regularity conditions, we show in Appendix S4 that the estimator

with minimum worst-case MSE is given by

δ̂
MMSE

= [1− wnε] δ̂
M

+ wnε δ̂
P
, wnε :=

(
1 +

φ′′(1)

2nε

)−1

, (17)

which is a linear combination between the model-based estimator and the PAE. The model-

based estimator δ̂
M

, which has the smallest asymptotic variance, will be preferred when ε is

small relative to 1/n, while the PAE, which has smallest asymptotic bias, will be preferred

when ε is large relative to 1/n. However, in order to implement such estimators δ̂
MMSE

that

minimize worst-case MSE, knowledge of ε is required. See Bonhomme and Weidner (2018)

for an approach to minimum-MSE estimation.

Remark 2. (uniqueness) In the absence of covariates and for known parameters β, σ∗,

the proof of Theorem 1 shows that γP is the unique minimizer of the first order worst-case

11To provide an intuition for the theorem, note that, by Lemma 1, γP sets the first term in bε(γ) to
zero. Moreover, γP minimizes the second term as well, since λ = 0 when γ = γP. It follows that the PAE

δ̂
P

= 1
n

∑n
i=1 γ

P
β̂,σ̂

(Yi, Xi) minimizes the first-order contribution to the worst-case bias.
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bias. More generally, if covariates are present and the parameters β, σ∗ are estimated, then

the leading order contribution of bε(γ) is minimized if and only if γ(Y,X) = γP(Y,X) +

ω(X) + λ′ψ(Y,X) + oP∗(1), for some λ and ω such that EfX [ω(X)] = 0 — see part (ii) of

Theorem A1 in Appendix A for a formal statement. Hence, while the PAE is not the unique

minimizer of worst-case bias in this case, any bias-minimizing estimator differs from the

PAE by a zero-mean function of X and a linear combination of the moment function ψ. In

addition, since γP(Y,X) is orthogonal to ω(X) +λ′ψ(Y,X), δ̂
P

has smallest variance within

the class of minimum bias estimators.12

Remark 3. (form of misspecification) Theorem 1 is based on nonparametric neighbor-

hoods that consist of unrestricted distributions of U |X, except for the moment conditions

that pin down β and σ∗. However, if one is willing to make additional assumptions on f0

that further restrict the neighborhood, then one can construct estimators that are more robust

than δ̂
P

within a particular class. As an example, consider the fixed-effects model (1). Sup-

pose that, in addition to assuming that α, ε1, ..., εJ are mutually uncorrelated, the researcher

is willing to assume that they are fully independent. In that case, the distribution of α can be

consistently estimated under suitable regularity conditions, provided J ≥ 2 (Kotlarski, 1967,

Li and Vuong, 1998). However, the PAE in (4) is biased for small J . As a consequence,

the PAE does not minimize local bias in a semi-parametric neighborhood that consists of

distributions with independent marginals.

To elaborate further on this point, consider the coefficient δ in the population regression

of α on a covariates vector W , see (6). A possible estimator is the coefficient δ̂
FE

in the

regression of the fixed-effects estimates Y i on Wi, see (7). Under correct specification of the

reference model, δ̂
FE

is consistent for δ.13 However, δ̂
FE

may be inconsistent under the type

of misspecification that we allow for, since εj and W may be correlated under f0. In other

words, in our framework, we allow for the possibility that W may have a direct effect on

the outcomes Yj, in which case δ̂
FE

is no longer consistent. Theorem 1 shows that, under

such misspecification, the PAE δ̂
P

in (8) has minimum worst-case bias locally. Nevertheless,

if the researcher is confident that W should not enter the outcome equation, and that it is

12This is closely related to Remark 1 and the corresponding derivation of equation (17) in Appendix S4,

which show that the PAE estimator δ̂
P

is obtained from a worst-case MSE problem in the limit where n→∞
and nε→ 0.

13In fact, in the illustration in Section 2 we have abstracted from covariates, so if U is independent of W

under f then δ̂
FE

tends to δ = 0. In the more general case where the normal reference distribution of α
depends on some covariates, δ would not be zero in general.
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independent of εj, then it is natural to report the consistent estimator δ̂
FE

.

Remark 4. (posterior informativeness) Our bias calculations can be used to compare

the bias of the PAE δ̂
P

to that of the model-based estimator δ̂
M

. To see this, let γM
β,σ(x) =

Efσ [δβ(U,X) |X = x]. Using Lemma 1, the ratio of the two worst-case biases satisfies

lim
ε→0

bε(γ
P)

bε(γM)
=
{Var∗ (v(U,X)− E∗[v(U,X) |Y,X])}

1
2

{Var∗ (v(U,X))}
1
2

, (18)

where v(U,X) is the population residual of (δ(U,X)− γM(X)) on ψ̃(Y,X), under the para-

metric reference model.14 Intuitively, the robustness of δ̂
P

relative to δ̂
M

depends on how

informative the outcome values Yi are for the latent individual parameters δ(Ui, Xi).

In practice, we will report an empirical counterpart to the small-ε limit of 1 − b2ε (γ
P)

b2ε (γ
M)

.

This quantity can be simply expressed as the R2 in the population nonparametric regression

of v(U,X) on Y,X under the reference model; that is,

R2 =
Var∗ (E∗[v(U,X) |Y,X])

Var∗ (v(U,X))
, (19)

where with some abuse of notation here v(U,X) denotes the sample residual of (δβ̂(U,X)−

γM
β̂,σ̂

(X)) on ψ̃β̂,σ̂(Y,X), and expectations and variances are taken with respect to P (β̂, fσ̂).

In the spirit of Andrews et al. (2018), we refer to R2 in (19) as a measure of the “infor-

mativeness” of the posterior conditioning, and we will report it in our illustrations. As an

example, for F̂P
α (a) in model (1), the informativeness of the posterior conditioning is

R2 = 1−
2T
(
a−µ̂α
σ̂α

,
√

1−ρ̂
1+ρ̂

)
Φ
(
a−µ̂α
σ̂α

) [
1− Φ

(
a−µ̂α
σ̂α

)] . (20)

In this case the R2 increases with the number J of observations per teacher, and it tends to

one as J tends to infinity.

4 Empirical illustrations

In this section, we revisit two applications of models with latent variables. In our first

illustration, we focus on a model of neighborhood effects following Chetty and Hendren

(2017), using data for the US that these authors made public. In our second illustration, we

14That is, v(u, x) = δ(u, x)− γM(x) + λ′ψ̃(g(u, x), x), where all functions are evaluated at β, σ∗, and λ is
as defined in Lemma 1 for the case γ = γM.
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study a permanent-transitory model of income dynamics (Hall and Mishkin, 1982, Blundell

et al., 2008) using the PSID. In both cases, we rely on a normal reference specification

and assess how and by how much the posterior conditioning informs the estimates of the

parameters of interest.

4.1 Neighborhood effects

In this subsection, we start with estimates of neighborhood (or “place”) effects reported

in Chetty and Hendren (2017, CH hereafter). Those were obtained using individuals who

moved between different commuting zones at different ages. The outcome variable that we

focus on is the causal estimate of the income rank at age 26 of a child whose parents are at

the 25 percentile of the income distribution. This is CH’s preferred measure of place effect.

CH report an estimate of the variance of neighborhood effects, corrected for noise. In

addition, they report individual predictors. Here we are interested in documenting the entire

distribution of place effects. To do so, we consider the model µ̂c = µc+εc, for each commuting

zone c, where µ̂c is a neighborhood-specific fixed-effects reported by CH, µc is the true effect

of neighborhood c, and εc is additive estimation noise. CH also report estimates σ̂2
c of the

variances of εc for every c. When weighted by population, the fixed-effects estimates µ̂c have

mean zero. We treat neighborhoods as independent observations.15

We first estimate the variance of place effects µc, following CH. We trim the top 1%

percentile of σ̂2
c , and weigh all results by population weights.16 We have information about

place effects in C = 590 commuting zones c in our sample, compared to 595 in the sample

without trimming. We estimate a sizable variance of neighborhood fixed-effects: Var(µ̂c) =

.077. In turn, the mean of σ̂2
c weighted by population is σ̂2

ε = .047. Given those, we estimate

the variance of place effects as σ̂2
µ = Var(µ̂c)− σ̂

2
ε = .030. In this setting, the shrinkage factor

ρ̂c = σ̂2
µ/(σ̂

2
µ + σ̂2

c) exhibits substantial heterogeneity across commuting zones. Indeed, the

mean of ρ̂c is .62, and its 10% and 90% percentiles are .21 and .93, respectively.17

We use a normal with zero mean and variance σ̂2
µ as a prior for µc. Then, we estimate

15The statistics we use for calculations are available on the Equality of Opportunity website; see
https://opportunityinsights.org/paper/neighborhoodsii/ Given the aggregate data at hand, we necessarily
need to assume that estimates µ̂c are independent across neighborhoods c, although this might be restrictive
in this setting.

16This differs slightly from CH’s approach, which is based on 1/σ̂2
c precision weights and no trimming. We

replicated the analysis using precision weights in the un-trimmed sample and found similar results.
17It is quantitatively important to account for this heterogeneity. In our initial work on the data we found

that imposing a constant shrinkage factor reduced the informativeness of the posterior conditioning.
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the density of neighborhood effects µc, using the derivative of the posterior estimator of the

distribution function (4); that is,

f̂P
µ (a) =

1∑C
c=1 πc

C∑
c=1

πc
1

σ̂µ
√

1− ρ̂c
ϕ

(
a− ρ̂cµ̂c
σ̂µ
√

1− ρ̂c

)
,

where πc are population weights. In this subsection, in order to ease the visualization of

the results, we will show estimates of densities, which are the derivatives of the PAE of

distribution functions. With some abuse of terminology we will refer to those as “posterior

densities”.18

In Figure 1 we report several density estimates. In the left graph, we show a nonparamet-

ric kernel density estimate of the fixed-effects µ̂c, weighted by population (in solid), together

with its best-fitting normal (in dashed). The graph shows substantial non-normality of the

fixed-effects estimates. In particular, the large variance appears to be driven by some large

positive and negative estimates µ̂c. In the right graph we report the posterior density f̂P
µ

of true place effects µc (in solid). In addition, we show the normal prior — with zero mean

and variance σ̂2
µ — that we use to produce the posterior estimate (in dashed). The posterior

density of neighborhood effects differs from the normal prior, although the two estimators

have the same variance by construction.19 In addition, a specification test that compares

model-based estimator and PAE, which we describe in Appendix S4, suggests that these

differences are statistically significant. Indeed, assuming independence across commuting

zones, we obtain pvalues below .01 at all deciles except the bottom two.

To assess how likely it is that the posterior estimator approximates the shape of the

density of true neighborhood effects, we now perform two different exercises, based on a

simulation and on numerical calculations motivated by our theory. We start with a simula-

tion, where µc, for c = 1, ..., Csim, are log-normally distributed with zero mean and variance

σ̂2
µ, and εc are normally distributed independent of µc with zero mean. We consider three

scenarios for the noise variances σ̂2
c : the estimates from CH, one-third of those values, and

18Our theory extends to the multivariate case and it applies in particular to distribution functions (see
Appendix S4). In addition, note that the density of µ at a can be approximated for arbitrarily small h > 0
by the expectation of 1{|µ− a|/h}/2h. Taking the limit of the corresponding PAE as h tends to zero gives

f̂Pµ (a). For this reason we expect derivatives — such as f̂Pµ (a) — of PAE of distribution functions to enjoy
the same minimum-bias property.

19In comparison, neighborhood-specific empirical Bayes estimates have a substantially lower dispersion.
In Appendix Figure S3 we report an estimate of their density f̂PM

µ . While σ̂2
µ = .030, the variance of the

empirical Bayes estimates is .010. By contrast, the variance associated with the posterior density estimator
f̂Pµ is .030.
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Figure 1: Density of neighborhood effects
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Notes: In the left graph we show the density of fixed-effects estimates µ̂c (solid) and its normal

fit (dashed). In the right graph we show the posterior density of µc (solid) and the prior density

(dashed). Calculations are based on statistics available on the Equality of Opportunity website.

one-tenth of those values. In this exercise we again weight by population. We show the re-

sults for Csim = 100, 000 simulated neighborhoods. In the left graph of Figure 2 we see that,

when the noise variances are the ones from the data, the posterior density is more skewed

than the normal, yet the posterior shape is quite different from the true log-normal density of

µc. When reducing the noise variances in the middle and right graphs, the posterior density

estimate gets closer to the log-normal. In the right graph, where the shrinkage factor is .90

on average (as opposed to .62 in the data), the posterior density approximates the highly

non-normal shape of the true distribution of neighborhood effects very well.

We next turn to our posterior informativeness measure, which is given by equation (20).

Note the R2 coefficient varies along the distribution. We find that the weighted average R2

across values of a is 28%, where we weigh across cutoff values a by the reference distribution

for α.20 This value is consistent with the message of the simulation exercise as it suggests

that, while the posterior conditioning informs the shape of the distribution of neighborhood

effects, the signal-to-noise ratio is not high enough to be confident about the exact shape

of the density. To provide additional insights, it would be interesting to refine the reference

model using a non-normal parametric or semi-parametric specification. However, to flexibly

20In addition, we compute the value of the R2 when the noise variances are one-third or one-tenth of their
values in the data. We find that the R2 is 36% on average in the former case, and 47% in the latter case.

20



Figure 2: Density of neighborhood effects in simulated data with log-normal µc
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Notes: Simulation with µc log-normal and εc normal. The posterior density is shown in solid, the

prior density is shown in dashed. The left graph corresponds to the noise variances σ̂2
c of the data,

the middle one corresponds to the noise variances divided by 3, and the right graph corresponds to

the noise variances divided by 10.

model the neighborhood effects and the noise, individual-level data would be needed.

Lastly, we perform two additional exercises as robustness checks. Firstly, we incorporate

the mean income yc of permanent residents in county c at the 25% percentile as a covariate.

CH rely on information on permanent residents’ income to improve the accuracy of individual

predictions. Here we use it to refine the reference distribution and to improve the estimation

of the distribution of neighborhood effects. Specifically, our reference model for µc is then

a correlated random-effects specification, where the mean depends on yc linearly. Appendix

Figure S4 shows small differences with our baseline estimates. Secondly, we re-do our main

analysis at the county level, instead of the commuting zone level. In that case the signal-

to-noise ratio is lower, our posterior informativeness R2 measure is 17% on average, and

Appendix Figure S5 shows that the normal prior and the posterior density are closer to each

other than in the case of commuting zones.

4.2 Income dynamics

In this subsection we consider the permanent-transitory model of household log-income

Yit = ηit + εit, ηit = ηi,t−1 + Vit, i = 1, ..., n, t = 1, ..., T,

where εit and Vit are independent at all lags and leads, and independent of ηi0. This process

is commonly used as an input for life-cycle consumption/savings models. Researchers often
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Figure 3: Quantiles of income components
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Notes: The left graph shows quantile differences between posterior and model-based estimators.

The right graph shows the posterior informativeness R2 measure, see equation (19). ηit is shown

in solid, and εit is shown in dashed. Sample from the PSID.

estimate covariances in a first step using minimum distance, and then impose a normality as-

sumption for further analysis. However, there is increasing evidence that income components

are not normally distributed. Instead of using a more flexible model — as has been done

by Carlton and Hall (1978) and a large subsequent literature — here we compute posterior

estimates. The advantages of this approach are that no additional assumptions are needed,

and that implementation is straightforward.

We focus on six recent waves of the PSID 1999-2009 (every other year), see Blundell et

al. (2016) for a description of the data. We use the same sample selection as in Arellano et

al. (2017), and work with a balanced panel of n = 792 households over T = 6 periods. Yit

are residuals of log total pre-tax household labor earnings on a set of demographics, which

include cohort interacted with education categories for both household members, race, state,

and large-city dummies, a family size indicator, number of kids, a dummy for income recipient

other than husband and wife, and a dummy for kids out of the household.

Our aim is to estimate the quantiles of ηit and εit. To do so, we compare normal model-

based estimates with posterior estimates, by plotting differences of quantile functions aver-

aged over time periods. We compute the quantiles by inverting the posterior estimates of

the distribution functions. The model’s structure is similar to that of the fixed-effects model
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(1), and analytical expressions for posterior estimators are easy to derive. Note that the fact

that we report quantile functions as opposed to distribution functions is not essential, but

this helps visualizing the results.

In the left graph of Figure 3, we show the quantile differences for ηit in solid, and the

ones for εit in dashed. In both cases, quantiles in the lower (respectively, upper) part of the

distribution are higher (resp., lower) under posterior estimates than under normal estimates.

This suggests that the distributions of both latent components show excess kurtosis (i.e.,

“peakedness”) relative to the normal. Moreover, our posterior estimates suggest stronger

violation of normality for εit than for ηit. In the right graph we report our posterior infor-

mativeness measure at different quantiles. The estimates suggest that there is information

in the posterior conditioning, especially for the permanent income component ηit. At the

same time, the R2 never exceeds 25%, which suggests that posterior estimates may still be

biased when the reference distribution is misspecified.

Several papers have already documented the presence of excess kurtosis in income com-

ponents using parametric or semi-parametric methods. In Appendix Figure S6 we compare

our posterior estimates with estimates based on a flexible non-normal and non-linear model

from Arellano et al. (2017). Although both sets of estimates show qualitatively similar

evidence of excess kurtosis, the non-normality of the posterior estimates is less pronounced

than the non-normality of the estimates from Arellano et al. (2017), especially in the case

of the transitory component εit.

Overall, these illustrations give two examples where, starting from a normal prior, the

posterior conditioning is informative about the true unknown distributions. In both settings,

PAE are not normal. Yet, as indicated by the R2 values we report, the signal-to-noise

ratios are not high enough to be certain about the exact shapes of the densities of interest,

thus motivating further analyses using non-normal specifications. PAE should be useful

in other environments where model (1) and its extensions are widely used, for example in

teacher value-added applications, where the signal-to-noise ratio is driven by the number

of observations per teacher. PAE are also applicable to other — nonlinear — econometric

models, as we describe in the next section.
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5 Complements and extensions

In this section we outline several complements and extensions that we analyze in detail in

the appendix.

5.1 PAE in various settings

PAE are applicable to a wide variety of settings. In many econometric models, semi-

parametric estimators — i.e., robust to distributional assumptions on unobservables — of β

parameters are available; see Powell (1994) for example. In such models, PAE provide esti-

mators of average effects that enjoy robustness properties when parametric assumptions are

violated. As examples, in Appendix S5 we study static binary and ordered choice models,

censored regression models, and panel data binary choice models. We also show how the

White (1980) formula for robust standard errors in linear regression can be interpreted as a

PAE. Lastly, we report illustrative simulations for static binary and ordered choice models,

along with simulations for the fixed-effects model (1).

5.2 Confidence intervals and specification test

Under correct specification of the reference model, it is easy to derive the asymptotic dis-

tributions of δ̂
M

and δ̂
P

using standard arguments. Moreover, under local misspecification,

confidence intervals that account for both model uncertainty and sampling uncertainty can

be constructed following Armstrong and Kolesár (2018) and Bonhomme and Weidner (2018).

However, such confidence intervals require the researcher to set a value for the degree of mis-

specification ε. In Appendix S4 we provide details on confidence intervals calculations. In

addition, we explain how to construct a specification test of the reference model based on

the difference δ̂
P
− δ̂

M
.

5.3 Fixed-ε bias bound

As a complement to the local analysis of Section 3, we show the following non-local bias

bound in Appendix S1.

Theorem 2. Let γP be as in (16), and assume that φ(r) is convex with φ(1) = 0. Then, for

all ε > 0,

bε(γ
P) ≤ 2 inf

γ
bε(γ).
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In Theorem 2 we establish a fixed-ε bound on the bias of PAE.21 Although δ̂
P

does not

necessarily minimize bias for finite ε, Theorem 2 shows that its bias is never larger than twice

the minimum worst-case bias in the neighborhood within the class of asymptotically linear

estimators. This minimum bias is generally non-zero, whenever the quantity of interest δ is

not point-identified.22 In addition, the factor two in Theorem 2 cannot be improved upon

in general, as we show in Appendix S4 in the context of a simple binary choice model.

5.4 Robustness in prediction

In applications such as the fixed-effects model (1) of teacher quality, researchers are often

interested in predicting the quality αi of teacher i. Although our focus in this paper is

on the estimation of population averages, it is interesting to see how different predictors

perform under misspecification of the reference distribution. It is well-known that EB esti-

mators minimize mean squared prediction error when the normal reference model is correctly

specified. However, when normality fails, the best predictor is a different posterior mean,

which does not generally coincide with the EB estimate based on a normal prior. Intuitively,

conditioning on nonlinear functions of the data may improve prediction accuracy.

In Appendix S3, we use our framework — applied to worst-case mean squared prediction

error instead of worst-case bias of a sample average — to provide results on the robustness

of EB estimators in the presence of misspecification.23 We show that EB estimators have

minimum worst-case mean squared prediction error, up to smaller-order terms, under local

deviations from normality. In addition, we derive a fixed-ε, non-local risk bound in the spirit

of Theorem 2.

6 Conclusion

Posterior averages are commonly used to predict individual parameters such as teacher qual-

ity or neighborhood effects, and they play a central role in Bayesian and empirical Bayes

approaches. In this paper, we have provided a frequentist justification for posterior condi-

tioning when the goal of the researcher is to estimate a population average quantity. We

21The infimum in the theorem is taken over all possible functions γ(y, x), subject to measurability condi-
tions, which we implicitly assume throughout the paper. Besides this, we only rely on asymptotic linearity
of the estimators.

22Imposing that f0 ∈ Γε for some ε > 0 implies that δ has finite lower and upper bounds.
23Note that this differs from the analysis of the MSE properties of average estimators in Remark 1.
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have shown that posterior average effects (PAE) have minimum worst-case bias under local

misspecification of parametric assumptions. PAE are simple to implement, and our analysis

provides a rationale for reporting them in applications. As an example, Arnold et al. (2020)

recently reported PAE to document judge heterogeneity in the context of bail decisions.

While we have used a linear fixed-effects model as a running example due to its popularity,

there are many other possible applications, some of which we discuss in the appendix.

Lastly, our examples highlight that the information contained in the conditioning is

setting-specific. Hence, PAE are complements to — but not substitutes for — other ap-

proaches that rely on additional assumptions, such as semi-parametric approaches under

point or partial identification (e.g., Powell, 1994, Tamer, 2010), or recent approaches that

aim for robustness within a specific class of models (e.g., Bonhomme and Weidner, 2018,

Armstrong and Kolesár, 2018, Christensen and Connault, 2019).
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APPENDIX

A Proofs of Lemma 1 and Theorem 1

The following is an extended version of Lemma 1 and Theorem 1 in the main text, which

also covers the case of unbounded functions γβ,σ∗(y, x), δβ(u, x) and ψβ,σ∗(y, x). In addition,

we make explicit again the dependence on β and σ∗, which we suppressed in the main text.

Lemma A1. In addition to defining ψ̃(y, x) = ψ(y, x) − EP (β,fσ∗ )

[
ψ(Y,X)

∣∣X = x
]
, let

γ̃(y, x) = γ(y, x)−EP (β,fσ∗ )

[
γ(Y,X)

∣∣X = x
]

and δ̃(u, x) = δ(u, x)−EP (β,fσ∗ )

[
δ(U,X)

∣∣X = x
]
.

Suppose that φ(r) = φ(r) + ν (r − 1)2, with ν ≥ 0, and a function φ(r) that is four times

continuously differentiable with φ(1) = 0 and φ
′′
(r) > 0, for all r ∈ (0,∞). Assume

EP (β,fσ∗ )ψβ,σ∗(Y,X) = 0 and EP (β,fσ∗ )

[
ψ̃β,σ∗(Y,X) ψ̃β,σ∗(Y,X)′

]
> 0. Furthermore, assume

that one of the following holds:

(i) ν = 0, and the functions
∣∣γβ,σ∗(y, x)

∣∣, |δβ(u, x)| and
∣∣ψβ,σ∗(y, x)

∣∣ are bounded over the

domain of Y , U , X.

(ii) ν > 0, and EP (β,fσ∗ )

∣∣γβ,σ∗(Y,X)− δβ(U,X)
∣∣3 <∞, and EP (β,fσ∗ )

∣∣ψβ,σ∗(Y,X)
∣∣3 <∞.

Then, as ε→ 0 we have

bε(γ) =
∣∣EP (β,fσ∗ )[γβ,σ∗(Y,X)]− Efσ∗ [δβ(U,X)]

∣∣
+ ε

1
2

{
2

φ′′(1)
VarP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]} 1
2

+O(ε),

where

λ =
{
EP (β,fσ∗ )

[
ψ̃β,σ∗(Y,X) ψ̃β,σ∗(Y,X)′

]}−1

EP (β,fσ∗ )

[(
γβ,σ∗(Y,X)− δβ(U,X)

)
ψ̃β,σ∗(Y,X)

]
.

Theorem A1. Suppose that the conditions of Lemma A1 hold, and let

γP
β,σ∗(y, x) = Epβ,σ∗ [δβ(U,X) |Y = y,X = x]. (A1)

Then the following results hold as ε tends to zero.

(i) We have

bε(γ
P
β,σ∗) ≤ bε(γ) +O(ε).
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(ii) If we have bε(γ) = bε(γ
P
β,σ∗

) + o(ε1/2), then there exist λ ∈ Rdimψ and a function

ω : X → R with EfX [ω(X)] = 0 such that

γβ,σ∗(Y,X) = γP
β,σ∗(Y,X) + ω(X) + λ′ ψβ,σ∗(Y,X) + oP (β,fσ∗ )(1).

Notice that Theorem A1 in the main text is a special case of part (i) of Theorem A1. Part

(ii) of Theorem A1 is discussed in Remark 2 of the main text. The proof of Theorem A1 pro-

vides explicit expressions for λ and ω(X) that appear in part (ii), namely λ is the same as in

the last line of Lemma A1, and ω(x) = EP (β,fσ∗ )

[
γβ,σ∗(Y,X)−δβ(U,X)−λ′ ψβ,σ∗(Y,X)

∣∣X =

x
]
− EP (β,fσ∗ )

[
γβ,σ∗(Y,X)− δβ(U,X)− λ′ ψβ,σ∗(Y,X)

]
.

A.1 Proof of Lemma A1 (containing Lemma 1 as a special case)

We first introduce some additional notation and establish some helpful intermediate results.

We write B and S for the set of possible values of the parameters β and σ, respectively.

Lemma A1 is for given values β ∈ B and σ∗ ∈ S, and given functions γβ,σ∗(y, x), δβ(u, x),

ψβ,σ∗(y, x), and those values and functions are also taken as given in following two inter-

mediate lemmas. Remember also that Γε depends on the function φ : [0,∞) → R ∪ {∞},

which is assumed to be strictly convex in Lemma A1. We define the corresponding function

ρ : R→ R ∪ {∞} by

ρ(t) :=

{
argmaxr≥0 [r t− φ(r)] if this “argmax” exists,

∞ otherwise.
(A2)

For t = φ′(r) we have ρ(t) = r, that is, for those values of t the function ρ(t) is simply

the inverse function of the first derivative φ′. For t < infr>0 φ
′(r) we have ρ(t) = 0, and

for t > supr>0 φ
′(r) the value of ρ(t) is defined to be ∞. The following lemma provides a

characterization of the ε-worst-case bias bε(γ) that was defined in (15).

Lemma A2. Let ε > 0. Assume that φ(r) is strictly convex with φ(1) = 0. Suppose that for

s ∈ {−1, 1} and x ∈ X there exists λ
(1)
β,σ∗

(s, x) ∈ R, λ
(2)
β,σ∗

(s) > 0, λ
(3)
β,σ∗

(s) ∈ Rdimψ such that

tβ,σ∗(u, x|s) := λ
(1)
β,σ∗

(s, x)+s λ
(2)
β,σ∗

(s)
[
γβ,σ∗(gβ(u, x), x)− δβ(u, x)

]
+λ

(3) ′
β,σ∗

(s)ψβ,σ∗(gβ(u, x), x))

satisfies

∀x ∈ X : EP (β,fσ∗ )

{
ρ [tβ,σ∗(U,X|s)]

∣∣∣X = x
}

= 1,

EP (β,fσ∗ ) φ {ρ [tβ,σ∗(U,X|s)]} = ε,

EP (β,fσ∗ )

{
ψβ,σ∗(Y,X) ρ [tβ,σ∗(U,X|s)]

}
= 0. (A3)
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Then the maximizer (s = +1) and minimizer (s = −1) of EP (β,f0)

[
γβ,σ∗(Y,X)− δβ(U,X)

]
over f0 ∈ Γε are given by

f
(s)
0 (u|x) = fσ∗(u|x) ρ [tβ,σ∗(u, x|s)] ,

and for the worst-case absolute bias we therefore have

bε(γ) = max
s∈{−1,1}

{
s EP (β,fσ∗ )

[[
γβ,σ∗(Y,X)− δβ(U,X)

]
ρ [tβ,σ∗(U,X|s)]

]}
.

The proof of Lemma A2 is given in Section S2. Notice that for φ(r) = r[log(r) − 1], when

d(f0, fσ∗) is the Kullback-Leibler divergence, we have ρ(t) = exp(t), and the worst case

densities f
(s)
0 (u|x) in Lemma A2 are exponentially tilted versions of the reference density

fσ∗(u|x). Lemma A2 shows that, more generally, the required “tilting function” is given by

ρ(t).

We impose φ(1) = 0 throughout the paper to guarantee that d(f0, fσ∗) ≥ 0 (by an

application of Jensen’s inequality). In addition, we now impose the normalization φ′(1) = 0.

This is without loss of generality, because we can always redefine φ(r) 7→ φ(r)− (r−1)φ′(1),

which has no effect on d(f0, fσ∗) and guarantees φ′(1) = 0 for the redefined function.

The goal of the following lemma is to establish Taylor expansions of ρ(t) and φ(ρ(t))

around t = 0 of the form

ρ(t) = 1 +
t

φ′′(1)
+ t2R1(t), φ(ρ(t)) =

t2

2φ′′(1)
+ t3R2(t), (A4)

where the remainder terms are defined by

R1(t) :=

{
t−2 [ρ(t)− 1− t/φ′′(1)] if t 6= 0,

−φ′′′(1)/{2 [φ′′(1)]3} if t = 0,

R2(t) :=

{
t−3 [φ(ρ(t))− t2/{2φ′′(1)}] if t 6= 0,

−φ′′′(1)/{3 [φ′′(1)]3} if t = 0.

Notice that the expansions (A4) are trivially true by definition of R1(t) and R2(t), but

the following lemma provides bounds on R1(t) and R2(t), which are useful for the proof of

Lemma A1 afterwards.

Lemma A3. For all r ≥ 0 let φ(r) = φ(r) + ν (r − 1)2, for ν ≥ 0, and a function φ :

[0,∞) → R ∪ {∞} that is four times continuously differentiable with φ(1) = φ
′
(1) = 0 and

φ
′′
(r) > 0, for all r ∈ (0,∞). The lemma has two parts:
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(i) Assume in addition that ν = 0. Then, there exist constants c1 > 0, c2 > 0 and η > 0

such that for all t ∈ [−η, η] we have

|R1(t)| ≤ c1, and |R2(t)| ≤ c2, (A5)

and the functions R1(t) and R2(t) are continuous within [−η, η].

(ii) Assume in addition that ν > 0. Then, there exist constants c1 > 0 and c2 > 0 such

that the two inequalities in (A5) hold for all t ∈ R, and the functions R1(t) and R2(t)

are everywhere continuous.

The proof of Lemma A3 is given in Section S2.

Comment: Part (i) and part (ii) of Lemma A3 give the same approximations of ρ(t) and

φ(ρ(t)), but the difference is that in part (i) the result only holds locally in a neighborhood

of t = 0, while in part (ii) the inequalities are established globally for all t ∈ R. Notice that

the result of part (ii) cannot hold under the assumptions of part (i) only, because ρ(t) is

equal to infinity for all t > tsup, where tsup = supr∈(0,∞) φ
′(r) can be finite. The regularization

φ(r) = φ(r) + ν (r − 1)2, with ν > 0, guarantees that ρ(t) is finite and well-defined for all

t ∈ R. This property of the regularized φ(r) is key whenever the moment functions γ, δ, ψ

are unbounded (i.e., for case (ii) of the assumptions of Lemma A1).

Using the intermediate Lemmas A2 and A3 we can now show Lemma A1, which contains

Lemma 1 as a special case.

Proof of Lemma A1. # Additional notation and definitions: In this proof we again drop

the arguments β and σ∗ everywhere for ease notation, and we write E∗ and Var∗ for ex-

pectations and variances under the reference density P (β, fσ∗). We also continue to use

the normalization φ′(1) = 0, which is without loss of generality, as explained above. Let

λ ∈ Rdimψ be as defined in the statement of the lemma, and furthermore define

κ =

Var∗

[
γ̃(Y,X)− δ̃(U,X)− λ′ ψ̃(Y,X)

]
2φ′′(1)


1/2

.

For s ∈ {−1,+1} and ε > 0, let

t(u, x|s) = λ(1)(s, x) + s λ(2)(s) [γ(g(u, x), x)− δ(u, x)] + λ(3) ′(s)ψ(g(u, x), x),
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with

λ(1)(s, x) = −ε1/2 s κ−1 EP (β,fσ∗ )

[
γ(Y,X)− δ(U,X)− λ′ ψ(Y,X)

∣∣X = x
]

+ ε
{
λ(1)

rem(s, x)− s λ(2)
rem(s)EP (β,fσ∗ )

[
γ(Y,X)− δ(U,X)− λ′ ψ(Y,X)

∣∣X = x
]}
,

λ(2)(s) = ε1/2κ−1 + ε λ(2)
rem(s),

λ(3)(s) = −ε1/2 s κ−1 λ+ ε
[
λ(3)

rem(s)− s λ(2)
rem(s)λ

]
.

Here, we are explicit about the leading order terms (of order ε1/2), but the higher order terms

(of order ε) contain the coefficients λ(1)
rem(s) ∈ R, λ(2)

rem(s) ∈ R, and λ(3)
rem(s) ∈ Rdimψ, which

will only be specified in (A8) below. We can rewrite

t(u, x|s) = ε1/2t(0)(u, x|s) + ε trem(u, x|s), (A6)

with

t(0)(u, x|s) = s κ−1
[
γ̃(g(u, x), x)− δ̃(u, x)− λ′ ψ̃(g(u, x), x)

]
,

trem(u, x|s) = λ(1)
rem(s, x) + λ(2)

rem(s)κ t(0)(u, x|s) + λ(3) ′
rem(s)ψ(g(u, x), x).

Here, t(u, x|s), λ(1)(s, x), λ(2)(s), etc, also depend on ε, but we do not make this dependence

explicit in our notation. Our goal is to apply Lemma A2 with tβ,σ∗(u, x|s) in the lemma

equal to t(u, x|s) as defined here. However, in order to apply that lemma we need to satisfy

the conditions (A3), which in current notation read

E∗ ρ
[
t(U,X|s)

∣∣X = x
]

= 1, E∗ φ {ρ [t(U,X|s)]} = ε, E∗
{
ψ(Y,X) ρ [t(U,X|s)]

}
= 0.

(A7)

The definition of t(u, x|s) above is already designed to satisfy (A7) to leading order in ε, but

we still need to find λ(1)
rem(s, x), λ(2)

rem(s), λ(3)
rem(s) such that (A7) holds exactly. Plugging the ex-

pansions (A4) into (A7), using the definition of t(u, x|s), as well as E∗
[
t(0)(U,X|s)

∣∣X = x
]

=

0, E∗
{

[t(0)(U,X|s)]2
}

= 2φ′′(1), and E∗ψ(Y,X) t(0)(U,X|s) = 0, we obtain

E∗

{
ε trem(U,X|s)

φ′′(1)
+ [t(U,X|s)]2R1 [t(U,X|s)]

∣∣∣∣∣X = x

}
= 0,

E∗
{

2 ε3/2 trem(U,X|s) t(0)(U,X|s) + ε2 [trem(U,X|s)]2

2φ′′(1)
+ [t(U,X|s)]3R2 [t(U,X|s)]

}
= 0,

E∗
{
ε ψ(Y,X) trem(U,X|s)

φ′′(1)
+ ψ(Y,X) [t(U,X|s)]2R1 [t(U,X|s)]

}
= 0.
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Those conditions can be rewritten as follows

λ(1)
rem(s, x) = −φ′′(1)E∗

{[
t(0)(U,X|s) + ε1/2trem(U,X|s)

]2
R1 [t(U,X|s)]

∣∣∣∣∣X = x

}
,

λ(2)
rem(s) = − 1

2κ
E∗
{[
t(0)(U,X|s) + ε1/2trem(U,X|s)

]3
R2 [t(U,X|s)] +

ε1/2 [trem(U,X|s)]2

2φ′′(1)

}
,

λ(3)
rem(s) = −φ′′(1) {E∗ [ψ(Y,X)ψ(Y,X)′]}−1

× E∗
{
ψ(Y,X)

[
t(0)(U,X|s) + ε1/2trem(U,X|s)

]2
R1 [t(U,X|s)]

}
.

(A8)

Thus, as ε→ 0 we have

λ(1)
rem(s, x) = −2[φ′′(1)]2R1(0)

Var∗

[
γ̃(Y,X)− δ̃(U,X)− λ′ ψ̃(Y,X)

∣∣∣X = x
]

Var∗

[
γ̃(Y,X)− δ̃(U,X)− λ′ ψ̃(Y,X)

] +O(ε1/2),

λ(2)
rem(s) = − 1

2κ
E∗
[
t(0)(U,X|s)

]3
R2(0) +O(ε1/2),

λ(3)
rem(s) = −φ′′(1) {E∗ [ψ(Y,X)ψ(Y,X)′]}−1 E∗

{
ψ(Y,X)

[
t(0)(U,X|s)

]2}
R1(0) +O(ε1/2).

(A9)

Notice that λ(1)
rem(s, x), λ(2)

rem(s), λ(3)
rem(s) also appear implicitly on the right-hand sides of the

equations (A8), because trem(u, x|s) depends on those parameters, and (A8) is therefore a

system of equations for λ(1)
rem(s, x), λ(2)

rem(s), λ(3)
rem(s). Our assumptions guarantee that the

system (A8) has a solution for sufficiently small ε, as will be explained below for the two

different cases distinguished in the lemma.

# Proof for case (i): The assumptions for this case guarantee that t(u, x|s) is uniformly

bounded over u and x. Part (i) of Lemma A3 guarantees existence of c1 > 0, c2 > 0, η > 0

such that for all t ∈ [−η, η] we have |R1(t)| ≤ c1 and |R2(t)| ≤ c2. For sufficiently small ε

we have t(u, x|s) ∈ [−η, η] for all u and x, implying that as ε→ 0 there exists a solution of

(A8) that satisfies (A9), which in particular implies

sup
x∈X

∣∣∣λ(1)(s, x)
∣∣∣ = O(1), λ(2)(s) = O(1), λ(3)(s) = O(1), (A10)

and by construction the conditions (A7) are satisfied for that solution. Thus, for sufficiently

small ε the t(u, x|s) defined above satisfies the conditions of Lemma A2. Applying that

lemma we thus obtain that, for sufficiently small ε, we have

bε(γ) = max
s∈{−1,1}

{
s E∗

[
[γ(Y,X)− δ(U,X)] ρ [t(U,X|s)]

]}
.
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Again applying the expansion for ρ(t) in (A4), and part (i) of Lemma A3 we thus obtain

that

bε(γ) = max
s∈{−1,1}

{sE∗ [γ(Y,X)− δ(U,X)]}

+ ε1/2
{

2

φ′′(1)
Var∗

[
γ̃(Y,X)− δ̃(U,X)− λ′ ψ̃(Y,X)

]}1/2

+O(ε)

= |E∗ [γ(Y,X)− δ(U,X)]|+ ε1/2
{

2

φ′′(1)
Var∗

[
γ̃(Y,X)− δ̃(U,X)− λ′ ψ̃(Y,X)

]}1/2

+O(ε).

(A11)

This is what we wanted to show.

# Proof for case (ii): In this case, according to part (ii) of Lemma A3 the functions R1(t)

and R2(t) are continuous and bounded over all t ∈ R. In addition, we have assumed that

E∗ |γ(Y,X)− δ(U,X)|3 < ∞, and E∗ |ψ(Y,X)|3 < ∞, which guarantees that all of the

expectations in (A8) are finite. We therefore again conclude that for small ε the equations

(A8) have a solution such that (A10) holds. The remainder of the proof is equivalent to the

proof of part (i), that is, we again apply Lemma A2 and Lemma A3 to obtain (A11).

A.2 Proof of Theorem A1

# Part (i): We first want to show that bε(γ
P
β,σ∗

) ≤ bε(γ) +O(ε). By applying Lemma A1 to

both γβ,σ∗(y, x) and γP
β,σ∗

(y, x) = Epβ,σ∗ [δβ(U,X) |Y = y,X = x] we obtain, as ε→ 0,

bε(γ) =
∣∣EP (β,fσ∗ )[γβ,σ∗(Y,X)]− Efσ∗ [δβ(U,X)]

∣∣
+ ε

1
2

{
2

φ′′(1)
EP (β,fσ∗ )

[(
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

)2
]} 1

2

+O(ε),

bε(γ
P) = ε

1
2

{
2

φ′′(1)
EP (β,fσ∗ )

[(
γP
β,σ∗(Y,X)− δβ(U,X)

)2
]} 1

2

+O(ε), (A12)

where

λ =
{
EP (β,fσ∗ )

[
ψ̃β,σ∗(Y,X) ψ̃β,σ∗(Y,X)′

]}−1

EP (β,fσ∗ )

[(
γβ,σ∗(Y,X)− δβ(U,X)

)
ψ̃β,σ∗(Y,X)

]
,

Here, to simplify bε(γ
P) we used that by the law of iterated expectations we have that

EP (β,fσ∗ )[γ
P
β,σ∗

(Y,X)] − Efσ∗ [δβ(U,X)] = 0 (that is, the first term in bε(γ) is not present in

bε(γ
P)) and also EP (β,fσ∗ )

[(
γP
β,σ∗

(Y,X)− δβ(U,X)
)
ψ̃β,σ∗(Y,X)

]
= 0 (that is, the vector λ is

equal to zero for γP). We also use that under the reference model γ̃β,σ∗(Y,X)− δ̃β(U,X)−

λ′ ψ̃β,σ∗(Y,X) has zero mean, implying that its variance equals its second moment.
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For any γβ,σ∗(y, x) with EP (β,fσ∗ )[γβ,σ∗(Y,X)]−Efσ∗ [δβ(U,X)] 6= 0 we have bε(γ
P) ≤ bε(γ)

for sufficiently small ε, and the statement of the theorem thus holds in that case. In the

following we therefore consider the case that EP (β,fσ∗ )[γβ,σ∗(Y,X)]−Efσ∗ [δβ(U,X)] = 0. The

expression for bε(γ) then simplifies to

bε(γ) = ε
1
2

{
2

φ′′(1)
EP (β,fσ∗ )

[(
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

)2
]} 1

2

+O(ε).

Again applying the law of iterated expectations we find that

EP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

] [
γP
β,σ∗(Y,X)− δβ(U,X)

]
= EP (β,fσ∗ ) [−δβ(U,X)]

[
γP
β,σ∗(Y,X)− δβ(U,X)

]
= EP (β,fσ∗ )

[
γP
β,σ∗(Y,X)− δβ(U,X)

] [
γP
β,σ∗(Y,X)− δβ(U,X)

]
= EP (β,fσ∗ )

[
γP
β,σ∗(Y,X)− δβ(U,X)

]2
.

Using this we obtain

EP (β,fσ∗ )

{[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]
−
[
γP
β,σ∗(Y,X)− δβ(U,X)

]}2

= EP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]2

+ EP (β,fσ∗ )

[
γP
β,σ∗(Y,X)− δβ(U,X)

]2
− 2EP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

] [
γP
β,σ∗(Y,X)− δβ(U,X)

]
= EP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]2

− EP (β,fσ∗ )

[
γP
β,σ∗(Y,X)− δβ(U,X)

]2
.

(A13)

Since EP (β,fσ∗ )

{[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]
−
[
γP
β,σ∗

(Y,X)− δβ(U,X)
]}2

≥ 0

we thus conclude that

EP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]2

≥ EP (β,fσ∗ )

[
γP
β,σ∗(Y,X)− δβ(U,X)

]2
,

and therefore we obtain that

bε(γ
P
β,σ∗) ≤ bε(γ) +O(ε).

This is the first statement of the theorem. This concludes the proof of part (i) of Theorem A1,

of which Theorem 1 in the main text is a special case.

# Part (ii): Next, let γβ,σ∗(y, x) be such that

bε(γ) = bε(γ
P
β,σ∗) + o(ε1/2). (A14)
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Then, the bias expansions in (A12) are still valid, and using those we conclude that we must

have

EP (β,fσ∗ )[γβ,σ∗(Y,X)− δβ(U,X)] = o(1), (A15)

because otherwise that term dominates all other terms in (A14). We also conclude that we

must have

EP (β,fσ∗ )

[(
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

)2
]

≤ EP (β,fσ∗ )

[(
γP
β,σ∗(Y,X)− δβ(U,X)

)2
]

+ o(1)

for (A14) to hold. Furthermore, the calculation in (A13) is still valid here, and the inequality

in the last display can therefore equivalently be rewritten as

EP (β,fσ∗ )

{[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]
−
[
γP
β,σ∗(Y,X)− δβ(U,X)

]}2

= o(1),

where we write = instead of ≤, because the left hand side expression is non-negative. Ap-

plying Markov’s inequality we thus find that

γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X) = γP
β,σ∗(Y,X)− δβ(U,X) + oP (β,fσ∗ )(1).

Defining

ω(x) := EP (β,fσ∗ )

[
γβ,σ∗(Y,X)− δβ(U,X)− λ′ ψβ,σ∗(Y,X)

∣∣X = x
]

− EP (β,fσ∗ )

[
γβ,σ∗(Y,X)− δβ(U,X)− λ′ ψβ,σ∗(Y,X)

]
,

we therefore obtain

γβ,σ∗(Y,X) = γP
β,σ∗(Y,X) + ω(X) + λ′ ψβ,σ∗(Y,X)

+ EP (β,fσ∗ )

[
γβ,σ∗(Y,X)− δβ(U,X)− λ′ ψβ,σ∗(Y,X)

]
+ oP (β,fσ∗ )(1)

= γP
β,σ∗(Y,X) + ω(X) + λ′ ψβ,σ∗(Y,X) + oP (β,fσ∗ )(1),

where in the last step we have used (A15) and EP (β,fσ∗ )[ψβ,σ∗(Y,X)] = 0. Finally, notice

that by construction we have

EfX [ω(X)] = 0.
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ONLINE APPENDIX — NOT FOR PUBLICATION

S1 Proof of Theorem 2

We are going to show Theorem 2, which we restate here.

Theorem. Let γP
β,σ∗

as in (A1). Then, for all ε > 0,

bε(γ
P
β,σ∗) ≤ 2 inf

γ
bε(γβ,σ∗).

The following lemma is useful for the proof of this theorem (Theorem 2 in the main text).

Lemma S1. Let ε ≥ 0, β ∈ B, σ∗ ∈ S, and let ζ : U × X → R. Then we have

sup
f0∈Γε

∣∣EP (β,f0)

{
Epβ,σ∗ [ζ(U,X) |Y,X]

}∣∣ ≤ sup
f0∈Γε

∣∣EP (β,f0) [ζ(U,X)]
∣∣ .

The proof of this lemma is given in Section S2. Notice that both Theorem 2 and Lemma S1

require that φ(r) is convex with φ(1) = 0, but they do not require φ′′(1) > 0. For example,

φ(r) = |r − 1|/2 is allowed here, which gives the total variation distance for d(f0, fσ∗).

Proof of Theorem 2. By definition we have

bε(γ) = sup
f0∈Γε

∣∣EP (β,f0)[γβ,σ∗(Y,X)− δβ(U,X)]
∣∣ ,

bε(γ
P) = sup

f0∈Γε

∣∣EP (β,f0)[γ
P
β,σ∗(Y,X)− δβ(U,X)]

∣∣ .
By writing γP

β,σ∗
(Y,X)− δβ(U,X) = γβ,σ∗(Y,X)− δβ(U,X)−

[
γβ,σ∗(Y,X)− γP

β,σ∗
(Y,X)

]
we

obtain

bε(γ
P) = sup

f0∈Γε

∣∣EP (β,f0)

[
γβ,σ∗(Y,X)− δβ(U,X)

]
− EP (β,f0)

[
γβ,σ∗(Y,X)− γP

β,σ∗(Y,X)
]∣∣

≤ bε(γ) + sup
f0∈Γε

∣∣EP (β,f0)

[
γβ,σ∗(Y,X)− γP

β,σ∗(Y,X)
]∣∣

= bε(γ) + sup
f0∈Γε

∣∣EP (β,f0)

{
Epβ,σ∗

[
γβ,σ∗(gβ(U,X), X)− δβ(U,X) |Y,X

]}∣∣
≤ bε(γ) + sup

f0∈Γε

∣∣EP (β,f0)[γβ,σ∗(Y,X)− δβ(U,X)]
∣∣ = 2 bε(γ),

where in the second-to-last step we have used Lemma S1 with ζ(u, x) = γβ,σ∗(gβ(u, x), x)−

δβ(u, x). We have thus shown that bε(γ
P) ≤ 2 bε(γ) holds for any function γβ,σ∗(y, x), which

implies that

bε(γ
P) ≤ 2 inf

γ
bε(γ).
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S2 Proofs of Technical Lemmas

Proof of Lemma A2. In the following we assume that fσ∗(u|x)fX(x) > 0 for all (u, x) in

the joint domain of (U,X). This is without loss of generality, because we can define the joint

domain of (U,X) such that this is the case. With a slight abuse of notation we continue to

write U × X for the joint domain, even though this need not be a product set.

To account for the absolute value in the definition of bε(γ) in (15) we let

bε(γ, s) = sup
f0∈Γε

{
sEP (β,f0)

[
γβ,σ∗(Y,X)− δβ(U,X)

]}
,

for s ∈ {−1, 1}. We then have bε(γ) = maxs∈{−1,1} bε(γ, s). In the following we drop

the arguments β and σ∗ everywhere, that is, we simply write g(u, x), γ(y, x), δ(u, x),

f∗(u|x), ψ(y, x), λ(1)(s, x), λ(2)(s), λ(3)(s) instead of gβ(u, x), γβ,σ∗(y, x), δβ(u, x), fσ∗(u|x),

ψβ,σ∗(y, x), λ
(1)
β,σ∗

(s), λ
(2)
β,σ∗

(s), λ
(3)
β,σ∗

(s). The optimal f0(u|x) in the definition of bε(γ, s) solves,

for u, x ∈ U × X almost surely under the reference distribution,

f̃0(u|x; s) = argmax
f0∈[0,∞)

{
s [γ(g(u, x), x)− δ(u, x)] fX(x) f0 − µ1(s, x) fX(x) f0

− µ2(s)φ

(
f0

f∗(u|x)

)
f∗(u|x) fX(x)− µ′3(s)ψ(g(u, x), x) fX(x) f0

}
, (S1)

where µ1(s, x) ∈ R, µ2(s) > 0, µ3(s) ∈ Rdimψ are Lagrange multipliers, which we choose to

reparameterize as follows

µ1(s, x) = −λ
(1)(s, x)

λ(2)(s)
, µ2(s) =

1

λ(2)(s)
, µ3(s) = −λ

(3)(s)

λ(2)(s)
.

Those (reparameterized) Lagrange multipliers need to be chosen such that the constraints∫
U×X

f̃0(u|x; s) fX(x) du dx = 1,∫
U×X

φ

(
f̃0(u|x; s)

f∗(u|x)

)
f∗(u|x) fX(x) du dx = ε,∫

U×X
ψ(g(u, x), x) f̃0(u|x; s) fX(x) du dx = 0 (S2)

are satisfied. We need λ(2)(s) > 0 because the second constraint here is actually an inequality

constraint (≤ ε). Our assumptions guarantee that f∗(u|x) > 0 and fX(x) > 0. We can

therefore rewrite (S1) as follows,

f̃0(u|x; s)

f∗(u|x)
= argmax

r≥0
{r t(u, x|s)− φ(r)} ,
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where r = f0 f∗(u|x), the objective function was multiplied with fσ∗(u|x)fX(x) (which does

not change the value of the argmax), and t(u, x|s) = tβ,σ∗(u, x|s) is defined in the statement

of the lemma. Comparing the last display with the definition of ρ(t) in (A2) we find that if

ρ [t(u, x|s)] <∞, then

f̃0(u|x; s) = f∗(u|x) ρ [t(u, x|s)] .

The condition ρ [t(u, x|s)] <∞ is implicitly imposed in the statement of the lemma, because

otherwise we could not have EP (β,fσ∗ ) ρ [tβ,σ∗(U,X|s)] = 1. Using the result in the last

display we find that the constraints (S2) are exactly the conditions (A3) imposed in the

lemma. Under the conditions of the lemma we therefore have

bε(γ, s) = sup
f0∈Γε

{
sEP (β,f0) [γ(Y,X)− δ(U,X)]

}
=

∫
U×X

[γ(g(u, x), x)− δ(u, x)] f̃0(u|x; s) fX(x) du dx

= s EP (β,fσ∗ )

{
[γ(Y,X)− δ(U,X)] ρ [t(U,X|s)]

}
,

and from bε(γ) = maxs∈{−1,1} bε(γ, s) we thus obtain the statement of the lemma.

Proof of Lemma A3. # Part (i): For ν = 0 we have φ = φ. Our assumptions imply that

there exists τ > 0 such that φ′(r), φ′′(r), φ′′′(r) and φ′′′′(r) are all uniformly bounded over

r ∈ [1−τ , 1+τ ]. We can choose η > 0 such that [ρ(−η), ρ(η)] ⊂ [1−τ , 1+τ ]. The conjugate

of the convex function φ : R→ R is given by

φ∗(t) = max
r≥0

[r t− φ(r)] = ρ(t) t− φ(ρ(t)). (S3)

We have ρ(t) = φ′∗(t), which is the inverse function of φ′(r); that is, φ′(ρ(t)) = t. We can

express all derivatives of φ∗ in terms of derivatives of φ, for example, φ′′∗(t) = 1/φ′′(ρ(t)) and

φ′′′∗ (t) = −φ′′′(ρ(t))/[φ′′(ρ(t))]3. A Taylor expansion of ρ(t) = φ′∗(t) around t = 0 = φ′(1)

reads

ρ(t) = 1 +
t

φ′′(1)
+ t2R1(t),

where by the mean-value formula for the remainder term we have

|R1(t)| ≤ 1

2
sup

t′∈[−η,η]

|φ′′′∗ (t′)| ≤ 1

2
sup

r∈[1−τ ,1+τ ]

∣∣∣∣ φ′′′(r)[φ′′(r)]3

∣∣∣∣︸ ︷︷ ︸
=:c1<∞

.
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Similarly, a Taylor expansion of φ(ρ(t)) = t ρ(t)− φ∗(t) around t = 0 reads

φ(ρ(t)) =
t2

2φ′′(1)
+ t3R2(t),

where again by the mean-value formula for the remainder we have

|R2(t)| ≤ 1

6
sup

r∈[1−τ ,1+τ ]

∣∣∣∣− 2φ′′′(r)

[φ′′(r)]3
+

3φ′(r)[φ′′′(r)]2

[φ′′(r)]5
− φ′(r)φ′′′′(r)

[φ′′(r)]4

∣∣∣∣︸ ︷︷ ︸
=:c2<∞

.

Continuity of R1(t) and R2(t) in a neighborhood of t = 0 is also guaranteed by φ′(r) being

four times continuously differentiable in neighborhood around r = 1. This concludes the

proof of part (i).

# Part (ii): For ν > 0 the function φ(r) = φ(r) + ν (r− 1)2 still satisfies all the assumptions

of part (i) of the lemma, that is, we can apply part (i) to find that there exists c̃1 > 0, c̃2 > 0

and η > 0 such that for all t ∈ [−η, η] we have

|R1(t)| ≤ c̃1 t
2, and |R2(t)| ≤ c̃2 t

3. (S4)

What is left to show here is that there exists constant c1 > 0 and c2 > 0 such that (A5) also

holds for t < −η and for t > η.

We have φ′(r) = φ
′
(r)+ν(r−1). Plugging in r = ρ(t) we have φ′(ρ(t)) = t, and therefore

t = φ
′
(ρ(t))+ν[ρ(t)−1]. Our assumptions imply that φ

′
(ρ(t)) > 0 for t > 0 and φ

′
(ρ(t)) < 0

for t < 0. We therefore find that

|ρ(t)− 1| =

∣∣∣t− φ′(ρ(t))
∣∣∣

ν
≤ |t|

ν
. (S5)

Using (S4) and (S5), and choosing c1 = max {c̃1, [1/ν + 1/φ′′(1)]/η}, we obtain∣∣∣∣ρ(t)− 1− t

φ′′(1)

∣∣∣∣ ≤ c1 t
2,

for all t ∈ R. This is the first inequality that we wanted to show.

Using again the convex conjugate defined in (S3) we have

φ(ρ(t)) = t ρ(t)− φ∗(t) = t ρ(t)−max
r≥0

[r t− φ(r)] ≤ t[ρ(t)− 1] = |t| |ρ(t)− 1| ,

where in the second to last step we used that r = 1 is one possible choice for r ≥ 0, and we

have φ(1) = 0, and in the last step we used that sign[ρ(t) − 1] = sign(t). Our assumptions
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imply that φ(r) ≥ 0, that is, |φ(r)| = φ(r). The result in the last display together with (S5)

therefore give

|φ(ρ(t))| ≤ t2

ν
,

for all t ∈ R. Using this and (S4), and choosing c2 = max {c̃2, [1/ν + 1/{2φ′′(1)}]/η}, we

thus obtain ∣∣∣∣φ(ρ(t))− t2

2φ′′(1)

∣∣∣∣ ≤ c2 t
3,

for all t ∈ R, which is the second inequality that we wanted to show. Continuity of R1(t)

and R2(t) in R is also guaranteed by φ′(r) being four times continuously differentiable in

r ∈ (0,∞). This concludes the proof of part (ii).

Proof of Lemma S1. Let f0 ∈ Γε. Remember the definition of the posterior density

pβ,σ∗(u | y, x) in (12). Define

f̃0(u|x) := EP (β,f0) [pβ,σ∗(u |Y, x)] =

∫
U
pβ,σ∗(u | gβ(ũ, x), x) f0(ũ|x) dũ.

Then, for any x ∈ X we have f̃0(u|x) ≥ 0, for all u ∈ U , and
∫
U f̃0(u|x)du = 1; that is,

f̃0(u|x) is a probability density over U . Furthermore, by construction we have

EP (β,f0)

{
Epβ,σ∗ [ζ(U,X) |Y,X]

}
= EP (β,f̃0) [ζ(U,X)] . (S6)

We also find that

EP (β,f̃0)[ψβ,σ∗(Y,X)] = EP (β,f0)

{
Epβ,σ∗

[
ψβ,σ∗(Y,X) |Y,X

]}
= EP (β,f0)[ψβ,σ∗(Y,X)] = 0.

(S7)

Furthermore, we have

d(f̃0, fσ∗) =

∫
X

∫
U
φ

(
f̃0(u |x)

fσ∗(u |x)

)
fσ∗(u |x)fX(x) du dx

=

∫
X

∫
U
φ

(∫
U pβ,σ∗(u | gβ(ũ, x), x) f0(ũ|x) dũ

fσ∗(u |x)

)
fσ∗(u |x)fX(x) du dx

=

∫
X

∫
U
φ

(∫
U

f0(ũ|x)

fσ∗(ũ |x)
Kβ,σ∗(ũ|u, x) dũ

)
fσ∗(u |x)fX(x) du dx,

where we defined

Kβ,σ∗(ũ|u, x) =
fσ∗(ũ |x) pβ,σ∗(u | gβ(ũ, x), x)

fσ∗(u |x)
.
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Using the definition of pβ,σ∗(u | y, x) one can verify that Kβ,σ∗(ũ|u, x) ≥ 0, for all ũ ∈ U , and∫
U Kβ,σ∗(ũ|u, x)dũ =

EP (β,fσ∗ )[pβ,σ∗ (u |Y,x)]
fσ∗ (u |x)

= 1, almost surely (under P (β, fσ∗)) for u ∈ U and

x ∈ X . Thus, Kβ,σ∗(ũ|u, x) is a probability density over ũ ∈ U , for all u, x. Also using that

φ(r) is convex, we can therefore apply Jensen’s inequality to obtain

d(f̃0, fσ∗) ≤
∫
X

∫
U

∫
U
φ

(
f0(ũ|x)

fσ∗(ũ |x)

)
Kβ,σ∗(ũ|u, x) dũ fσ∗(u |x)fX(x) du dx

=

∫
X

∫
U
φ

(
f0(ũ|x)

fσ∗(ũ |x)

)[∫
U
fσ∗(u |x)Kβ,σ∗(ũ|u, x) du

]
︸ ︷︷ ︸

=fσ∗ (ũ |x)

fX(x) dũ dx

= d(f0, fσ∗) ≤ ε. (S8)

Because f̃0 satisfies (S7) and (S8) we thus have f̃0 ∈ Γε. We have thus shown that for every

f0 ∈ Γε there exists f̃0 ∈ Γε such that (S6) holds. Let Γ̃ε be the set of all such f̃0 obtained

for an f0 ∈ Γε. Since Γ̃ε ⊂ Γε we find that

sup
f0∈Γε

∣∣EP (β,f0)

{
Epβ,σ∗ [ζ(U,X) |Y,X]

}∣∣ = sup
f̃0∈Γ̃ε

∣∣∣EP (β,f̃0) [ζ(U,X)]
∣∣∣ ≤ sup

f0∈Γε

∣∣EP (β,f0) [ζ(U,X)]
∣∣ .

S3 Robustness in prediction

Under squared loss, we wish to find a predictor γβ̂,σ̂(Yi, Xi), for some function γ, such that

the worst-case mean squared prediction error is minimum. That is, our goal is to minimize

eε(γ) = sup
f0∈Γε

EP (β,f0) [(δβ(U,X)− γβ,σ∗(Y,X))2]

with respect to γ. Similarly to our measure of worst-case bias, here the mean squared

prediction error is asymptotic, hence well-suited for settings with a large cross-section (e.g.,

settings with many teachers).

We first state the following local result, which is a direct generalization of Lemma 1.

Lemma S2. In addition to defining ψ̃(y, x) = ψ(y, x) − E∗
[
ψ(Y,X)

∣∣X = x
]
, let γ̃(y, x) =

γ(y, x) − E∗
[
γ(Y,X)

∣∣X = x
]

and δ̃(u, x) = δ(u, x) − E∗
[
δ(U,X)

∣∣X = x
]
. Suppose that

φ(r) = φ(r) + ν (r − 1)2, with ν ≥ 0, and a function φ(r) that is four times continuously

differentiable with φ(1) = 0 and φ
′′
(r) > 0, for all r ∈ (0,∞). Assume EP (β,fσ∗ )ψβ,σ∗(Y,X) =

0 and EP (β,fσ∗ )

[
ψ̃β,σ∗(Y,X)ψ̃β,σ∗(Y,X)′

]
> 0. Furthermore, assume that one of the following

holds:
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(i) ν = 0, and the functions
∣∣γβ,σ∗(y, x)

∣∣, |δβ(u, x)| and
∣∣ψβ,σ∗(y, x)

∣∣ are bounded over the

domain of Y , U , X.

(ii) ν > 0, and EP (β,fσ∗ )

∣∣γβ,σ∗(Y,X)− δβ(U,X)
∣∣6 <∞, and EP (β,fσ∗ )

∣∣ψβ,σ∗(Y,X)
∣∣3 <∞.

Then, as ε→ 0 we have

eε(γ) = EP (β,fσ∗ )

[(
γβ,σ∗(Y,X)− δβ(U,X)

)2
]

+ ε
1
2

(
2

φ′′(1)
VarP (β,fσ∗ )

{(
γβ,σ∗(Y,X)− δβ(U,X)

)2

− EP (β,fσ∗ )

[(
γβ,σ∗(Y,X)− δβ(U,X)

)2

∣∣∣∣X]− λ′ψ̃β,σ∗(Y,X)

}) 1
2

+O(ε),

where

λ=
{
EP (β,fσ∗ )

[
ψ̃β,σ∗(Y,X)ψ̃β,σ∗(Y,X)′

]}−1

EP (β,fσ∗ )

[(
γβ,σ∗(Y,X)−δβ(U,X)

)2
ψ̃β,σ∗(Y,X)

]
.

Let γP as in (16), so γP
β̂,σ̂

(Yi, Xi) is the empirical Bayes estimate of δβ(Ui, Xi). Under cor-

rect specification of the reference density fσ, the posterior mean γP
β,σ∗

(Yi, Xi) is the minimum

mean squared error predictor of δβ(Ui, Xi) under squared loss. Under misspecification of fσ,

Lemma S2 implies that the leading term of the worst-case mean squared error is minimized

at γ = γP. Moreover, the lemma also implies the stronger result that the first-order term in

the expansion of the worst-case mean squared prediction error (which is a multiple of ε
1
2 ) is

also minimized at γP, provided the following condition holds almost surely:

Epβ,σ∗
[
(δβ(U,X)− γP

β,σ∗(Y,X))3 |Y,X
]

= 0. (S9)

While (S9) is restrictive in general, it is satisfied in the fixed-effects model (1), when the

researcher wishes to predict the quality αi of teacher i. Indeed, in that case (S9) is equivalent

to the posterior skewness of αi being zero, when using the normal reference model as the

prior. Since the normal distribution is symmetric, (S9) is satisfied, and the empirical Bayes

estimator γP
β̂,σ̂

(Yi, Xi) = µ̂α + ρ̂(Y i − µ̂α) has minimum worst-case mean squared prediction

error, up to second-order terms in ε
1
2 .

We also have a fixed-ε bound in the spirit of Theorem 2.

Theorem S1. Let γP
β,σ∗

as in (A1). Then, for all ε > 0,

eε(γ
P
β,σ∗) ≤ 4 inf

γ
eε(γβ,σ∗).
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Theorem S1 shows that EB estimators are optimal, up to a factor of at most four, in

terms of worst-case mean squared prediction error. In model (1), when ε1, ..., εJ are normally

distributed and α1, ..., αN are parameters belonging to an L2 ball, empirical Bayes James-

Stein estimators are known to be optimal in terms of asymptotic minimax mean squared

error since they achieve the Pinsker bound (see Wasserman, 2006, Chapter 7). Here, by

contrast, we consider a worst case computed in a set of unrestricted, possibly non-normal

joint distributions of α, ε1, ..., εJ .

Proof of Lemma S2. This statement of the lemma is obtained from Lemma A1 by re-

placing (γβ,σ∗(Y,X)− δβ(U,X)) by
(
γβ,σ∗(Y,X)− δβ(U,X)

)2
. The proof is obtained by the

same replacement from the proof of Lemma A1.

Proof of Theorem S1. By definition we have

eε(γ) = sup
f0∈Γε

EP (β,f0) [(δβ(U,X)− γβ,σ∗(Y,X))2],

eε(γ
P) = sup

f0∈Γε

EP (β,f0) [(δβ(U,X)− γP
β,σ∗(Y,X))2].

Using that (a − b)2 ≤ 2(a2 + b2) with a = δβ(U,X) − γβ,σ∗(Y,X) and b = γP
β,σ∗

(Y,X) −

γβ,σ∗(Y,X) we obtain

eε(γ
P) ≤ 2 sup

f0∈Γε

∣∣∣EP (β,f0)

[(
δβ(U,X)− γβ,σ∗(Y,X)

)2
]

+ EP (β,f0)

[(
γP
β,σ∗(Y,X)− γβ,σ∗(Y,X)

)2
]∣∣∣

≤ 2eε(γ) + 2 sup
f0∈Γε

∣∣∣EP (β,f0)

[(
γβ,σ∗(Y,X)− γP

β,σ∗(Y,X)
)2
]∣∣∣ .

We furthermore have

sup
f0∈Γε

∣∣∣EP (β,f0)

[(
γβ,σ∗(Y,X)− γP

β,σ∗(Y,X)
)2
]∣∣∣

= sup
f0∈Γε

∣∣∣EP (β,f0)

{[
Epβ,σ∗

(
γβ,σ∗(Y,X)− δβ(U,X) |Y,X

)]2}∣∣∣
≤ sup

f0∈Γε

∣∣∣EP (β,f0)

{
Epβ,σ∗

[(
γβ,σ∗(Y,X)− δβ(U,X)

)2 |Y,X
]}∣∣∣

≤ sup
f0∈Γε

∣∣∣EP (β,f0)

[(
γβ,σ∗(Y,X)− δβ(U,X)

)2
]∣∣∣ = eε(γ),

where in the first step we used the definition of γP
β,σ∗

(y, x), in the second step we applied

the Cauchy-Schwarz inequality, and in the last line we used Lemma S1 and the definition of

eε(γ). Combining the results of the last two displays we obtain that

eε(γ
P
β,σ∗) ≤ 4 inf

γ
eε(γβ,σ∗).
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S4 Extensions

In this section of the appendix we consider eight issues in turn: how to compute PAE

when they are not available in closed form, how to estimate quantities of interest that

are nonlinear in f0, whether the constant two appearing in Theorem 2 can be improved

upon, how our framework can account for multi-dimensional parameters of interest, how to

construct confidence intervals, how to perform specification tests, how to derive the form

of minimum-MSE estimators, and how to interpret PAE as Bayesian estimators in models

where U has finite support.

S4.1 Computation

δ̂
P

can be computed in closed form in simple models, such as all the examples in this paper.

However, in complex models such as structural models, the likelihood function or posterior

density may not be available in closed form. A simple approach in such cases is to proceed

by simulation.

Specifically, for all i = 1, ..., n we first draw U
(s)
i , s = 1, ..., S according to fσ̂(· |Xi), and

compute Y
(s)
i = gβ̂(U

(s)
i , Xi). Then, we regress δβ̂(U

(s)
i , Xi) on Y

(s)
i , for s = 1, ..., S. Any

nonparametric/machine learning regression estimator can be used for this purpose. This

procedure requires virtually no additional coding given simulation codes for outcomes and

counterfactuals.

S4.2 Nonlinear effects

The researcher may be interested in a nonlinear function of f0. Specifically, here we abstract

from covariates X and focus on δ = ϕβ(f0), for some functional ϕβ. As an example, in the

fixed-effects model (1), δ may be the Gini coefficient of α. The analysis in the linear case

applies verbatim to this case, since under regularity conditions

ϕβ(f0) = ϕβ(fσ∗) +∇ϕβ(fσ∗)[f0 − fσ∗ ] + o(ε
1
2 ), (S10)

which is linear in f0, up to smaller-order terms. Here ∇ϕβ denotes the gradient of ϕβ(f)

with respect to f . In Appendix S5 we report model-based and posterior estimates of Gini

coefficients based on simulated data.
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S4.3 The constant in Theorem 2

The binary choice model that we describe in Section S5 is helpful to see that the global bound

in Theorem 2, which depends on the constant two, cannot be improved upon in general. To

see this, consider the binary choice model (S13) of Section S5 with three simplifications: X

consists of a single value, β is known, and σ∗ = 1 is fixed. We assume that x′β > X ′β.

In this example, for ε large enough the worst-case biases of δ̂
M

and δ̂
P

are

BiasM = max(Φ(x′β), 1− Φ(x′β)),

and

BiasP =
max(Φ(x′β)− Φ(X ′β), 1− Φ(x′β))

1− Φ(X ′β)
,

respectively.

From this, we first see that the bias of the posterior estimator is smaller than twice that

of the model-based estimator. In addition, taking X ′β = 0 and x′β = η, we have, for small

η,
BiasP

BiasM

=
2(1− Φ(η))

Φ(η)

η→0→ 2.

This shows that two is indeed the smallest possible constant in Theorem 2.

S4.4 Multi-dimensional average effects

In the main text, we considered the case where the target parameter δ in (10) is scalar.

However, our results can be extended to multi-dimensional parameters. The definition of

worst-case bias in (15) is then modified to

bε(γ) = sup
f0∈Γε

∥∥EP (β,f0)[γ(Y,X)− δ(U,X)]
∥∥ ,

where ‖ · ‖ is some norm over the vector space in which γ(Y,X) and δ(U,X) take values.

If ‖·‖∗ denotes the corresponding dual norm, then we can rewrite bε(γ) = sup‖v‖∗=1 bε(γ, v),

where bε(γ, v) = supf0∈Γε

∣∣EP (β,f0)[v
′γ(Y,X) − v′δ(U,X)]

∣∣. Our minimum-bias results for

PAE for scalar δ then apply to bε(γ, v) for every given vector v, and the minimum-bias

property is maintained after taking the supremum over the set of vectors v with ‖v‖∗ = 1.

Thus, for the multi-dimensional case, we expect PAE to minimize local bias in the sense of

Theorem 1, and to satisfy a bias bound with a factor of two as in Theorem 2, although a

formal proof of local bias minimization requires making our ε-expansion uniform in v.
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In the motivating example in Section 2, suppose we are interested in the entire distribu-

tion function Fα of α, which is an infinite-dimensional parameter. In this case the average

effect is a function indexed by a ∈ A ⊂ R. Let us take the supremum norm ‖ · ‖∞ over

functions v(a) of a. This amounts to taking an `1 norm on distribution functions. Letting

δ(a)(U,X) = 1{α ≤ a}, the local bias of the PAE is then

bε(γ
P) = ε

1
2

{
2

φ′′(1)
sup‖v‖∞=1 Var∗

(∫
A
v(a)(δ(a)(U,X)− E∗[δ(a)(U,X) |Y,X])da

)} 1
2

+O(ε).

The `1-bias properties of distribution functions will translate into similar properties for

quantile functions, subject to suitable (i.e., Lipschitz) conditions.

S4.5 Confidence intervals

Consider first the correctly specified case. Suppose that β̂ and σ̂ are asymptotically linear

in the sense that, for some mean-zero function h, we have(
β̂
σ̂

)
=

(
β
σ∗

)
+

1

n

n∑
i=1

h(Yi, Xi) + oP (n−
1
2 ).

Then, under standard conditions (e.g., Newey and McFadden, 1994), we have

n
1
2

(
δ̂

M
− δ

δ̂
P
− δ

)
d→ N

((
0
0

)
,

(
Σ11 Σ12

Σ21 Σ22

))
. (S11)

Here, Σ11 = Var∗ (G′1h(Y,X) + E∗[δ(U,X) |X]), Σ12 = Cov∗
(
G′1h(Y,X) + E∗[δ(U,X) |X],

G′2h(Y,X)+E∗[δ(U,X) |Y,X]
)
, Σ21 = Σ12, and Σ22 = Var∗ (G′2h(Y,X) + E∗[δ(U,X) |Y,X]),

for G1 = ∂β,σEβ,σ∗ [δβ(U,X)] and G2 = Eβ,σ∗
{
∂β,σEpβ,σ∗ [δβ(U,X) |Y,X]

}
, where ∂θg(θ1)

denotes the gradient of g(θ) at θ = θ1. Note that in (S11) we allow δβ to be non-smooth in

β (e.g., an indicator function).

Consider next the locally misspecified case. A simple possibility to ensure uniform cover-

age within an ε-neighborhood is to add bε(γ) on both sides of a standard confidence interval

of δ. For example, one may construct the 95% interval[
δ̂

P
±

(
ε
1
2

{
2

φ′′(1)
Var∗ (δ(U,X)− E∗[δ(U,X) |Y,X])

} 1
2

+ 1.96n−
1
2 Σ̂

1
2
22

)]
,

for Σ̂22 = Var∗ (G′2h(Y,X) + E∗[δ(U,X) |Y,X]), where expectations and variances are taken

with respect to P (β̂, fσ̂), and δ, G2, and h are evaluated at β̂ and σ̂. Note that this confidence

interval requires setting a value for ε. Building on Hansen and Sargent (2008), Bonhomme

and Weidner (2018) propose to interpret ε by relating it to the local power of a specification

test.
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S4.6 Specification test

Using the asymptotic distribution of (δ̂
M
, δ̂

P
) under correct specification of fσ, we obtain

n
1
2

(
δ̂

P
− δ̂

M
)

d→ N
(

0, Σ̃
)
,

where Σ̃ = Var∗ (E∗[δ(U,X) |Y,X]− E∗[δ(U,X) |X] + (G2 −G1)′h(Y,X)). Hence, under

correct specification,

n
(
δ̂

P
− δ̂

M
)′

Σ̃−1
(
δ̂

P
− δ̂

M
)

d→ χ2
1.

Plugging-in a consistent empirical counterpart for Σ̃ in this expression, we obtain a simple

test of correct specification of the parametric density fσ.

S4.7 Minimum local worst-case MSE estimator

Here we explain why δ̂
MMSE

in (17) gives the estimator with minimum worst-case MSE in a

local neighborhood around the reference model (i.e., for small ε). We only consider the case

where β and σ∗ are known and not estimated; that is, we have ψ(y, x) = 0. Then, finding

γMMSE(y, x) such that δ̂
MMSE

minimizes worst-case MSE over f0 ∈ Γε can, to leading order

in ε and n−1, be shown to be equivalent to minimizing

[bε(γ)]2 +
1

n
Var∗[γ(Y,X)].

See Bonhomme and Weidner (2018) for details.

Next, applying Lemma 1 and noting that E∗[γ(Y,X)− δ(U,X)] = 0 is required for MSE

minimization,1 we find that to leading order in ε and n−1 the worst-case MSE reads

2 ε

φ′′(1)
E∗
{

Var∗
[
γ(Y,X)− δ(U,X)

∣∣X]}+
1

n
E∗ {γ(Y,X)− E∗[δ(U,X)]}2 .

This expression for the approximate worst-case MSE depends on the distribution of X, which

is unknown. For the minimum local worst-case bias result in Theorem 1 it does not matter

that the distribution of X is unknown, because that distribution is identified from the sample

as n → ∞. However, for the MSE result here we have to take a stand on how to deal with

the randomness in the observed covariates. In the following we condition on the observed

sample of covariates, and replace all population expectations over X by sample averages over

1Adding a constant to γ(y, x) such that E∗[γ(Y,X)− δ(U,X)] = 0 has no effect on the higher order bias
terms in Lemma 1, nor on Var∗[γ(Y,X)]. It is therefore always optimal to eliminate the leading bias term
E∗[γ(Y,X)− δ(U,X)] in this way.

12



Xi, i = 1, . . . , n. We write ÊX for those sample averages. The worst-case MSE objective

function in the last display then reads

2 ε

φ′′(1)
ÊXVar∗

[
γ(Y,X)− δ(U,X)

∣∣X]+
1

n
ÊX E∗

({
γ(Y,X)− ÊXE∗[δ(U,X)|X]

}2 ∣∣∣X) .
By the law of total variance we have

Var∗
[
γ(Y,X)− δ(U,X)

∣∣X]
= E∗

{
Var∗

[
γ(Y,X)− δ(U,X)

∣∣Y,X] ∣∣X}+ Var∗
{
E∗
[
γ(Y,X)− δ(U,X)

∣∣Y,X] ∣∣X}
= E∗

{
Var∗

[
δ(U,X)

∣∣Y,X] ∣∣X}+ Var∗
{
E∗
[
γ(Y,X)− δ(U,X)

∣∣Y,X] ∣∣X} .
In the following we can ignore the term E∗

{
Var∗

[
δ(U,X)

∣∣Y,X] ∣∣X}, because it does

not depend on γ(y, x). Then, the leading approximation to the worst-case MSE is given by

the sample average over X of

2 ε

φ′′(1)
Var∗

{
γ(Y,X)− E∗

[
δ(U,X)

∣∣Y,X] ∣∣X}+
1

n
E∗
({
γ(Y,X)− ÊXE∗[δ(U,X)|X]

}2
∣∣∣X) .

Clearly, if for any given X = x we find γ(y, x) that minimizes this objective function, then

its expected value over the sample distribution of X is also minimized. The corresponding

first-order condition for γMMSE(Y,X) reads

1

n

{
γMMSE(y, x)− ÊXE∗[δ(U,X)|X]

}
+

2 ε

φ′′(1)

{
γMMSE(y, x)− E∗

[
δ(U,X)

∣∣Y = y, X = x
]

− E∗
[
γMMSE(Y, x)

∣∣X = x
]

+ E∗
[
δ(U,X)

∣∣X = x
]}

= 0.

The solution to this first-order condition is

γMMSE(y, x) =
1

n

n∑
i=1

E∗[δ(U,X)|X = Xi]

+

(
1 +

φ′′(1)

2nε

)−1 {
E∗[δ(U,X) |Y = y,X = x]− E∗[δ(U,X) |X = x]

}
,

where we have now written ÊX as 1
n

∑n
i=1.

The corresponding minimum local MSE estimator for δ = E∗ [δβ(U,X)] is then given by

δ̂
MMSE

=
1

n

n∑
i=1

γMMSE(Yi, Xi) =

[
1−

(
1 +

φ′′(1)

2nε

)−1
]

1

n

n∑
i=1

E∗[δ(U,X)|Xi]

+

(
1 +

φ′′(1)

2nε

)−1
1

n

n∑
i=1

E∗[δ(U,X) |Y = Yi, X = Xi],

which is the result stated in equation (17) of the main text.
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S4.8 Finite support

Here we consider the case where U has finite support and takes the values u1, u2, ..., uK with

probability ω0
1, ..., ω

0
K . Here we abstract away from β, σ, and covariates X.

Injective and non-injective models. Let δk = δ(uk), and denote gk = g(uk) where

Y = g(U). Let g1, ..., gL denote the L ≤ K equivalence classes of g1, ..., gK . We will denote

as `(k) ∈ {1, ..., L} the index corresponding to the equivalence class of gk, for all k. In

addition, let n` =
∑n

i=1 1{Yi = g`} for all `, and denote ωUk = f(uk) for all k.

It is useful to distinguish two cases. When g is injective, K = L and Ep(f)[δ(U) | g(U) =

gk] = δk. So we have δ̂
P

= 1
n

∑K
k=1 nkδk. This estimator does not depend on the assumed f .

Moreover, as mink=1,...,K nk tends to infinity we have

δ̂
P p→

K∑
k=1

ω0
kδk = δ.

Hence δ̂
P

is consistent for δ, irrespective of the choice of the reference density f , provided

ωUk > 0 for all k.

When g is not injective, K 6= L and we have

δ̂
P

=
1

n

n∑
i=1

L∑
`=1

1{Yi = g`}Ep(f)[δ(U) | g(U) = g`] =
1

n

L∑
`=1

n`Ep(f)[δ(U) | g(U) = g`].

Moreover,

Ep(f)[δ(U) | g(U) = g`] =
∑K

k=1 Prp(f)(U = Uk | g(U) = g`)δk

=
∑K

k=1

ωUk 1{`(k)=`}∑K
k′=1 ω

U
k′1{`(k

′)=`}δk =: δ
U

` .

Hence,

δ̂
P

=
1

n

L∑
`=1

n`δ
U

` .

Through δ
U

` , δ̂
P

depends on the prior ωU in general, even as min`=1,...,L n` tends to infinity.

Bayesian interpretation. From a Bayesian perspective, one may view ω0 as a parameter,

and put a prior on it. A simple conjugate prior specification is a Dirichlet distribution

ω ∼ Dir(K,α), where αk > 0 for k = 1, ..., K. We will focus on the posterior mean

δ̂
D

= E

[
K∑
k=1

δkωk |Y

]
=

K∑
k=1

δkE [ωk |Y ] ,
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for a Dirichlet prior with αk = MωUk for all k, where M > 0 is a constant.

For all `, let α` =
∑K

k=1 1{`(k) = `}αk, and ω` =
∑K

k=1 1{`(k) = `}ωk. (ω1, ..., ωL)

follows the Dirichlet distribution Dir(L, α). Moreover, for all k, ωk/ω`(k) is a component of

a Dirichlet distribution with mean αk/α`(k).

Unlike the ω`’s, the ωk/ω`(k)’s are not updated in light of the data since they do not

enter the likelihood. Notice the link with the Bayesian analysis of partially identified models

in Moon and Schorfheide (2012): here the ω`’s are identified but the ωk’s are not, since for

identical gk’s the data provides no information to discriminate across ωk’s.

As a result, we have

E[ωk |Y ] = E
[
ωk
ω`(k)

ω`(k) |Y
]

= E
[
ωk
ω`(k)

]
E
[
ω`(k) |Y

]
=

αk
α`(k)

n` + α`
n+M

M→0→ ωUk∑K
k′=1 ω

U
k′1{`(k′) = `(k)}

n`(k)

n
.

It thus follows that

δ̂
D M→0→

K∑
k=1

δk
ωUk∑K

k′=1 ω
U
k′1{`(k′) = `(k)}

n`(k)

n
= δ̂

P
.

Hence, under a diffuse Dirichlet prior centered around ωU , the Bayesian posterior mean

coincides with the PAE we focus on in this paper.

S5 Posterior average effects in various settings

In this section, we provide additional examples of models where PAE may be of interest,

and we show illustrative simulations for two models.

S5.1 Models

Linear regression. Consider the linear regression

Yi = X ′iβ + Ui.

Suppose that E[XU ] = 0, and that the OLS estimator β̂ is consistent for β. Suppose also

that the researcher is interested in the average effect δ = Ef0 [U2XX ′].2 In this context,

a model-based approach consists in modeling U |X, say, as a normal with zero mean and

2In this example δ is multi-dimensional; see Appendix S4.
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variance σ2, and computing

δ̂
M

= σ̂2 1

n

n∑
i=1

XiX
′
i,

where σ̂2 = 1
n

∑n
i=1(Yi −X ′iβ̂)2 is the maximum likelihood estimator of σ2 under normality.

By contrast, a PAE is

δ̂
P

=
1

n

n∑
i=1

Ep
β̂,σ̂

[
U2XX ′

∣∣Y = Yi, X = Xi

]
=

1

n

n∑
i=1

(Yi −X ′iβ̂)2XiX
′
i.

This is the central piece in the White (1980) variance formula. δ̂
P

remains consistent for δ

absent normality or homoskedasticity of U . In this very special case, δ̂
P

is thus fully robust

to misspecification of fσ, since Ui is a deterministic function of Yi, Xi and β.

Censored regression. Consider next the censored regression model

Yi = max(Y ∗i , 0), where Y ∗i = X ′iβ + Ui. (S12)

In this model, β can be consistently estimated under weak conditions. For example, Pow-

ell’s (1986) symmetrically trimmed least-squares estimator is consistent for β when U |X is

symmetric around zero, under suitable regularity conditions. In this setting, suppose that

we are interested in a moment of the potential outcomes Y ∗i , such as δ = Ef0 [h(Y ∗)] for some

function h. As an example, the researcher may wish to estimate a feature of the distribution

of wages using a sample affected by top- or bottom-coding.

Following a model-based approach, let us assume that U |X ∼ N (0, σ2), and estimate σ2

using maximum likelihood. A model-based estimator is then δ̂
M

= 1
n

∑n
i=1 Efσ̂ [h(X ′iβ̂ + U)].

By contrast, a PAE is

δ̂
P

=
1

n

n∑
i=1

1{Yi > 0}h(Yi)︸ ︷︷ ︸
uncensored

+
1

n

n∑
i=1

1{Yi = 0}Ep
β̂,σ̂

[
h(X ′iβ̂ + U)

∣∣X ′iβ̂ + U ≤ 0
]

︸ ︷︷ ︸
censored

.

This estimator relies on actual Y ’s for uncensored observations, and on imputed Y ’s for

censored ones.

The censored regression model illustrates an aspect related to the class of neighborhoods

that our theoretical characterizations rely on. In model (S12), the researcher might want to

impose that U |X be symmetric around zero, which is the main assumption for consistency of
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the Powell (1986) estimator. It is possible to construct estimators that minimize local worst-

case bias in an ε-neighborhood that only consists of symmetric densities f0. However, PAE

may no longer have minimum bias in this class. More generally, the assumptions that justify

the use of a particular estimator β̂ may suggest further restrictions on the neighborhood.

Our bias results are based on a class where such restrictions are not imposed. Indeed, the

only additional restriction on f0, beyond belonging to an ε-neighborhood around fσ∗ , is that

the population moment condition EP (β,f0)[ψβ,σ∗(Y,X)] = 0 is assumed to hold, and we do

not impose further restrictions that might be natural in order to justify the validity of this

moment condition.

Binary choice. Consider now the binary choice model

Yi = 1{X ′iβ + Ui > 0}. (S13)

In this model, Manski (1975, 1985) shows that β is identified up to scale as soon as the median

of U |X is zero, under sufficiently large support of X. In addition, he provides conditions

for consistency of the maximum score estimator β̂, again up to scale. Manski’s conditions,

however, are not sufficient to consistently estimate the average structural function (ASF,

Blundell and Powell, 2004)

δ(x) = Ef0 [1{x′β + U > 0}].

Let us take as reference parametric distribution for U |X a normal with zero mean and

variance σ2, and let σ̂2 denote the maximum likelihood estimator of σ2 given β̂, based

on normality.3 A model-based estimator of the ASF is δ̂
M

(x) = Φ
(
x′β̂
σ̂

)
, and a posterior

estimator is

δ̂
P
(x) =

1

n

n∑
i=1

Yi min
(

Φ
(
x′ β̂
σ̂

)
,Φ
(
X′i β̂

σ̂

))
Φ
(
X′i β̂

σ̂

) + (1− Yi)
max

(
Φ
(
x′ β̂
σ̂

)
− Φ

(
X′i β̂

σ̂

)
, 0
)

1− Φ
(
X′i β̂

σ̂

)
 .

Unlike δ̂
M

(x), the posterior ASF estimator δ̂
P
(x) depends directly on the observations of

the binary Yi’s, in addition to the indirect data dependence through β̂ and σ̂2. In the next

subsection we present simulations from an ordered choice model, which suggest that the

informativeness of the posterior conditioning — and the robustness properties of posterior

estimators compared to model-based estimators — depend crucially on the support of the

dependent variable.

3Specifically, σ̂ maximizes the probit log-likelihood
∑n
i=1 Yi log Φ

(
X′
iβ̂
σ

)
+ (1− Yi) log Φ

(
−X

′
iβ̂
σ

)
.
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Panel data discrete choice. Our last example is the panel data model

Yit = 1{X ′itβ + αi + εit > 0}, i = 1, ..., n, t = 1, ..., T.

When εit are i.i.d. standard logistic, β can be consistently estimated using the conditional

logit estimator (Andersen, 1970, Chamberlain, 1984). However, additional assumptions are

needed to consistently estimate average partial effects such as the effect of a discrete shift of

∆ along the k-th component of X,

δ = (Ef0 [1{(Xt + ∆ · ek)′β + α + εt > 0}]− Ef0 [1{X ′tβ + α + εt > 0}])/∆,

where ek is a vector of zeros with a one in the k-th position.

The standard approach is to postulate a parametric random-effects specification for the

conditional distribution of α given X1, ..., XT , and to compute an average effect δ̂
M

with

respect to that distribution. By contrast, a posterior estimator is computed conditional on

the observations Yi1, ..., YiT , for every individual i. As T tends to infinity, such estimators are

robust to misspecification of α, provided εt is correctly specified (Arellano and Bonhomme,

2009). Our analysis shows that they also have robustness properties when T is fixed and n

tends to infinity.

Aguirregabiria et al. (2018) show that conditional logit-like estimators can also be used

to consistently estimate parameters in structural dynamic discrete choice settings. As an

example, they study the Rust (1987) model of bus engine replacement in the presence of

unobserved heterogeneity in maintenance and replacement costs. In such structural models,

estimating average welfare effects of policies requires averaging with respect to the distribu-

tion of unobservables. PAE provide an alternative to the standard parametric model-based

approach in this context.

S5.2 Simulations

Here we report the results of two simulation exercises, based on the fixed-effects model (1),

and on an ordered choice model.

S5.2.1 Fixed-effects model

Skewness. Let us consider the fixed-effects model (1). Suppose the parameter of interest

is the skewness of α

δ = Ef0

[
α3 − 3

µα
σα
−
(
µα
σα

)3
]
.
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For example, it is of interest to estimate the skewnesses of income components and how they

evolve over time (Guvenen et al., 2014). Since the normal distribution is symmetric, the

model-based normal estimator of skewness is simply δ̂
M

= 0, irrespective of the observations

Yij. Hence, δ̂
M

is not informed by the data, even when the empirical distribution of the

fixed-effects Y i = 1
J

∑J
j=1 Yij indicates strong asymmetry.

By contrast, a PAE based on a normal reference distribution is

δ̂
P

=
1

σ̂3
α

1

n

n∑
i=1

Ep(fσ̂)

[
α3
∣∣Y = Yi

]
− 3

µ̂α
σ̂α
−
(
µ̂α
σ̂α

)3

.

It can be verified that

δ̂
P

= ρ̂3 1

σ̂3
α

1

n

n∑
i=1

(
Y i − Y

)3
,

where ρ̂ = σ̂2
α

σ̂2
α+σ̂2

ε/J
. Under mild conditions, and in contrast with δ̂

M
, the posterior estimator

δ̂
P

is consistent for the true skewness of α as J tends to infinity. However, δ̂
P

is biased for

small J in general.

To provide intuition about the magnitude of the bias, we simulate data where all latent

components are independent, εj are standard normal, and α follows a skew-normal distribu-

tion (e.g., Azzalini, 2013) with zero mean, variance 1, and skewness ≈ .47 corresponding to

the skew-normal parameter δ = .99. We take n = 1000, and run 100 simulations varying J

from 1 to 30. We estimate means and variances using minimum-distance based on first and

second moment restrictions.

In the left panel of Figure S1 we show the results. We see that the model-based estimator

is equal to zero irrespective of the number J of individual measurements. By contrast, the

posterior estimator converges to the true skewness of α as J increases, although it is biased

for small J .

Gini coefficient. We next focus on the Gini coefficient of α:

G =
1

2Ef0 [exp (α)]

∫∫
| exp(α′)− exp(α)|f0(α)f0(α′)dαdα′.

In this case, a model-based estimator is

ĜM = 2Φ(σ̂α/
√

2)− 1,

while a PAE is, following (S10),

ĜP = ĜM +
1

n

n∑
i=1

(
E[∇Ĝ(α) |Yi]− E[∇Ĝ(α)]

)
,
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Figure S1: Skewness and Gini estimates in the fixed-effects model
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Notes: true (solid), posterior (dashed), model-based (dotted). n = 1000, 100 simulations.

where

∇Ĝ(α) = − exp

(
α− µ̂α −

1

2
σ̂2
α

)(
ĜM + 1− 2Φ

(
α− µ̂α
σ̂α

))
+

(
1− 2Φ

(
α− µ̂α
σ̂α

− σ̂α
))

.

In the right panel of Figure S1 we show the simulation results. We see that in this case

also the model-based estimator is insensitive to J . The posterior estimator has a lower bias,

especially for larger J .

S5.2.2 Ordered choice model

We next consider the ordered choice model

Yi =
J∑
j=1

j1{µj−1 ≤ Y ∗i ≤ µj}, where Y ∗i = X ′iβ + Ui,

for a sequence of known thresholds −∞ = µ0 < µ1 < ... < µJ−1 < µJ = +∞. This model

may be of interest to analyze data on wealth or income, say, where only a bracket containing

the true observation is recorded. We focus on the average structural function

δ(x) = Ef0

[
J∑
j=1

j1{µj−1 ≤ x′β + U ≤ µj}

]
.

We take as reference distribution U |X ∼ N (0, σ2). In the simulated data generating

process, U is independent of X, distributed as a re-centered χ2 with mean zero and variance

one. We simulate a scalar standard normal X. We set n = 1000, β1 = .5, β0 = 0, σ = 1, and

µ as uniformly distributed between −2 and 2. We estimate β up to scale using maximum
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Figure S2: Average structural function in the ordered choice model
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Notes: true (solid), posterior (dashed), model-based (dotted). n = 1000, 100 simulations.

score (Manski, 1985).4 For computation of maximum score, we use the mixed integer linear

programming algorithm of Florios and Skouras (2008).

In Figure S2 we report the results for J = 3 (left) and J = 10 (right). We see that,

when J = 3, model-based and posterior estimators are similarly biased. By contrast, when

J = 10, the posterior estimator aligns well with the true average structural function, even

though the model-based estimator is substantially biased.

4Specifically, using maximum score we regress 1{Yi ≤ j} on Xi and a constant, for all j, imposing that
the coefficient of Xi is one. We then regress the J estimates on a common constant and the µj , and obtain
the implied estimate for β by rescaling.
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S6 Additional empirical results

Figure S3: Density of posterior means of neighborhood effects
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Notes: Density of posterior means of µc (solid) and prior density (dashed). Calculations are based

on statistics available on the Equality of Opportunity website.

Figure S4: Posterior density of neighborhood effects, correlated random-effects specification

0
.5

1
1.

5
2

2.
5

de
ns

ity

−1 −.5 0 .5 1
neighborhood effects

Notes: Posterior density of µc (solid) and prior density (dashed), based on a correlated random-

effects specification allowing for correlation between the place effects µc and the mean income of

permanent residents yc. Calculations are based on statistics available on the Equality of Opportunity

website.
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Figure S5: Density of neighborhood effects at the county level
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Notes: In the left graph we show the density of fixed-effects estimates µ̂county
c (solid) and normal

fit (dashed). In the right graph we show the posterior density of µcounty
c (solid) and prior density

(dashed). Calculations are based on statistics available on the Equality of Opportunity website.

Figure S6: Quantiles of income components, comparison to Arellano et al. (2017)
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Notes: The graph shows quantile differences between posterior and model-based estimators in thick

font, and estimates from Arellano et al. (2017) in thinner font. ηit is shown in solid and εit is

shown in dashed. Sample from the PSID.
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