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Abstract

Economists are often interested in estimating averages with respect to distributions
of unobservables. Examples are moments of individual fixed-effects, average partial
effects in discrete choice models, and counterfactual simulations in structural models.
For such quantities, we propose and study posterior average effects (PAE), where the
average is computed conditional on the sample, in the spirit of empirical Bayes and
shrinkage methods. While the usefulness of shrinkage for prediction is well-understood,
a justification of posterior conditioning to estimate population averages is currently
lacking. We show that PAE have minimum worst-case bias under local misspecification
of the parametric distribution of unobservables. This provides a rationale for reporting
these estimators in applications. We introduce a measure of informativeness of the
posterior conditioning, which quantifies the bias of PAE relative to parametric model-
based estimators, and we study other robustness properties of PAE for estimation and
prediction. As illustrations, we report PAE estimates of distributions of neighborhood
effects in the US, and of permanent and transitory components in a model of income
dynamics.
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1 Introduction

In many settings, applied researchers wish to estimate population averages with respect
to a distribution of unobservables. This includes average partial effects in discrete choice
models, moments of individual fixed-effects in panel data, and average welfare effects in
structural models, all of which are expectations with respect to some distribution of shocks
and heterogeneity. The standard approach in applied work is to assume a parametric form for
the distribution of unobservables and to compute the average effect under that assumption.
For example, in binary choice, researchers often assume normality of the error term, and
compute average partial effects under normality. This “model-based” estimation of average
effects is justified under the assumption that the parametric model is correctly specified.

In this paper, we consider a different approach, where the average effect is computed
conditional on the observation sample. We refer to such estimators as “posterior average
effects” (PAE). Posterior averaging is appealing for prediction purposes, and it plays a central
role in Bayesian and empirical Bayes approaches (e.g., Berger, 1980, Morris, 1983). Here we
focus instead on the estimation of population expectations. Our goal is twofold: to propose
a novel class of estimators, and to provide a frequentist framework to understand when and
why posterior conditioning may be useful in estimation. Our main result will show that PAE
have robustness properties when the parametric model is misspecified.

PAE are closely related to empirical Bayes (EB) estimators, which are increasingly pop-
ular in applied economics. Consider a fixed-effects model of teacher quality, which is our
main example. When the number of observations per teacher is small, the dispersion of
teacher fixed-effects is likely to overstate that of true teacher quality, since teacher effects
are estimated with noise. An alternative approach is to postulate a prior distribution for
teacher quality — typically, a normal — and report posterior estimates, holding fixed the
values of the mean and variance parameters. The hope is that such EB estimates, which are
shrunk toward the prior, are less affected by noise than the teacher fixed-effects (e.g., Kane
and Staiger, 2008, Chetty et al., 2014, Angrist et al., 2017). However, while EB estimates
are well-justified predictors of the quality of individual teachers, it is not obvious how to
aggregate them across teachers when the goal is to estimate a population average such as a
moment or a distribution function.

As an example, suppose we wish to estimate the distribution function of teacher quality

evaluated at a point. Since this quantity is an average of indicator functions, the PAE



is simply an average of posterior means — that is, of EB estimates — of the indicator
functions. This estimator is available in closed form. However, the PAE differs from the
empirical distribution of the EB estimates of teacher effects. In particular, while the variance
of EB estimates is too small relative to that of latent teacher quality, the PAE has the correct
variance. Related applications of PAE include settings involving neighborhood /place effects
(Chetty and Hendren, 2017, Finkelstein et al., 2017) or hospital quality (Hull, 2018).

Importantly, although posterior averages have desirable properties for predicting individ-
ual parameters, their usefulness for estimating population average quantities is not evident.
For example, suppose that teacher quality is normally distributed. In this case, a model-
based normal estimator of the distribution of teacher quality is consistent. Moreover, it is
asymptotically efficient when means and variances are estimated by maximum likelihood.
Hence, in the correctly specified case, there is no reason to deviate from the standard model-
based approach and compute posterior estimators. The main insight of this paper is that,
under misspecification — e.g., when teacher quality is not normally distributed — condi-
tioning on the data using PAE can be beneficial.

To study estimators under misspecification, we focus on worst-case asymptotic bias in a
nonparametric neighborhood of the reference parametric distribution (e.g., a normal). We
consider neighborhoods based on ¢-divergence, which is a family of distance measures often
used to study misspecification. Throughout the paper, we often simply use bias to denote
worst-case asymptotic bias in such a neighborhood. In our main theorem, we show that PAE
have minimum local bias — calculated in an asymptotic where the size of the neighborhood
tends to zero — within a large class of estimators. The theorem implies that PAE are
least sensitive to small departures from correct specification, and that other estimators will
generally have larger bias under local misspecification.

In our examples and illustrations, we find that the information contained in the posterior
conditioning is setting-specific. This is intuitive, since although PAE have minimum bias
locally, the bias is not zero in general and varies across applications. PAE tend to behave
better when the realizations of outcome variables (such as test scores) are more informative
about the values of the unobservables (such as the quality of a teacher). Consistently with
this intuition, our bias analysis suggests quantifying the “informativeness” of the posterior
conditioning using an easily computable R? coefficient.

While PAE have minimum local bias, they do not have minimum mean squared error in



general. Indeed, in small samples where variance dominates bias, model-based estimators
can have smaller mean squared error than PAE. Hence, PAE are best suited for large samples
— e.g., when the number of teachers is large. Although one can compute estimators that
minimize mean squared error locally, those depend on neighborhood size. An important
practical advantage of PAE is that they do not require taking a stand on the degree of
misspecification through the size of the neighborhood, and they are simple to implement.

To illustrate the scope of PAE for applications, we consider two empirical settings. In the
first one, we study the estimation of neighborhood/place effects in the US. Chetty and Hen-
dren (2017) report estimates of the variance of neighborhood effects, as well as EB estimates
of those effects. Our goal is to estimate the distribution of effects across neighborhoods. We
find that, when using a normal prior as in Chetty and Hendren (2017), our posterior estima-
tor of the density of neighborhood effects across commuting zones is not normal. However,
we also show through simulations and computation of our posterior informativeness measure
that the signal-to-noise ratio in the data is not high enough to be confident about the exact
shape of the distribution. Hence, in this setting, PAE inform our knowledge of the density of
neighborhood effects, and motivate future analyses using more flexible model specifications
and individual-level data.

In the second empirical illustration, our goal is to estimate the distributions of latent
components in a permanent-transitory model of income dynamics (e.g., Hall and Mishkin,
1982, Blundell et al., 2008), where log-income is the sum of a random-walk component
and a component that is independent over time. Researchers often estimate the covariance
structure of the latent components in a first step. Then, in order to document distributions
or to use the income process in a consumption-saving model, they often assume Gaussianity.
However, there is increasing evidence that income components are not Gaussian (e.g., Geweke
and Keane, 2000, Hirano, 2002, Bonhomme and Robin, 2010, Guvenen et al., 2016). We
estimate posterior distribution functions and quantiles of permanent and transitory income
components using recent waves from the Panel Study of Income Dynamics (PSID). PAE
reveal that both components are non-normal, especially the transitory one.

We analyze several extensions. First, we describe the form of PAE in several models, in-
cluding binary choice and censored regression, and we illustrate in simulations that PAE can
perform substantially better than model-based estimators under misspecification. Second,

we discuss how to construct confidence intervals and specification tests based on PAE. Third,



we study the bias properties of PAE under non-local misspecification. This complements
our main result, which is based on a local asymptotic approach. Specifically, in neighbor-
hoods of fixed size we show that the worst-case bias of PAE is at most twice the minimum
bias achievable. Lastly, we revisit the question of optimality of EB estimates for predicting
individual parameters. By extending our misspecification analysis from worst-case bias of
sample averages to worst-case mean squared prediction error, we show that EB estimators

remain optimal, up to small-order terms, under local deviations from normality.

Related literature and outline. PAE are closely related to parametric EB estimators
(Efron and Morris, 1973, Morris, 1983). For recent econometric applications of shrink-
age methods (James and Stein, 1961, Efron, 2012), see Hansen (2016), Fessler and Kasy
(2018), and Abadie and Kasy (2018). Recent contributions to nonparametric EB methods
are Koenker and Mizera (2014) and Ignatiadis and Wager (2019). Unlike nonparametric EB,
and in contrast with deconvolution and other nonparametric approaches, in our framework
we allow for forms of misspecification under which the quantity of interest is not consistently
estimable, and we search for estimators that have the smallest amount of bias.!

In panel data settings, Arellano and Bonhomme (2009) study the bias of random-effects
estimators of averages of functions of covariates and individual effects. They show that,
when the distribution of individual effects is misspecified whereas the other features of the
model are correctly specified, PAE are consistent as n and T tend to infinity. By contrast,
in our setup, only n tends to infinity, and misspecification may affect the entire joint distri-
bution of unobservables. Our analysis also connects to the literature on robustness to model
misspecification (e.g., Huber and Ronchetti, 2009, Andrews et al., 2017, 2018, Armstrong
and Koleséar, 2018, Bonhomme and Weidner, 2018, Christensen and Connault, 2019). Here
our aim is to propose and justify a class of simple, practical estimators.

The plan of the paper is as follows. In Section 2 we motivate the analysis by considering a
fixed-effects model of teacher quality. In Section 3 we present our framework and derive our
main theoretical result. In Section 4 we illustrate the use of PAE in two empirical settings.

In Section 5 we describe several extensions. Finally, we conclude in Section 6.

IBerger (1979) provides a gamma-minimax characterization of Bayes estimators in e-contaminated neigh-
borhoods.



2 Motivating example: a fixed-effects model
To motivate the analysis, we start by considering the following model
}/:Lj :Oél—i—éflj, Z:17,n, ]:1,,J (1)

To fix ideas, we will think of Y;; as an average test score of teacher ¢ in classroom j, o
as the quality of teacher ¢, and €;; as a classroom-specific shock. There are n teachers
and J observations per teacher. For simplicity, we abstract away from covariates (such as
students’ past test scores), but those will be present in the framework we will introduce in
the next section. Although here we focus on teacher effects, this model is of interest in other
settings, such as the study of neighborhood effects, school effectiveness, or hospital quality,
for example.

Suppose we wish to estimate a feature of the distribution of teacher quality . As an

example, here we consider the distribution function of « at a particular point a,
Fola) = E[{a < a}],

which is the percentage of teachers whose quality is below a. When estimated at all points
a, the distribution function can be inverted or differentiated to compute the quantiles of
teacher quality or its density.

A first estimator is the empirical distribution of the fixed-effects estimates @; = Y; =
%ZLI Y;;, for all teachers i = 1, ..., n; that is,

n

FFP(q) = %Z 1{Y; < a},

i=1
where FE stands for “fixed-effects”. An obvious issue with this estimator is that Y; = «; +&;
is a noisy estimate of «;, where g; = % Z}‘]=1 gij. Under mild conditions, as J tends to infinity
with n, Y; is consistent for a; and FFE(a) is consistent for F,(a). However, due to the
presence of noise, for small J the distribution F FE tends to be too dispersed relative to F,.2

A different strategy is to model the joint distribution of a, €1, ..., £;. A simple specification

2

is a multivariate normal distribution with means p, and p, = 0, and variances o2 and o2.
This specification can easily be made more flexible by allowing for different Jgj’s across

J, for correlation between the different ¢;’s, or for means and variances being functions of

2The large-J leading order bias of F FE(a) is worked out in in Jochmans and Weidner (2018), and for the
kernel-smoothed version in Okui and Yanagi (2018).
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covariates, for example. Under the assumption that all components are uncorrelated, u,,, o
and o2 can be consistently estimated using quasi-maximum likelihood or minimum distance

based on mean and covariance restrictions.?

. . ~ ~ ~2 .. . .
Given estimates 1, 0., 0., we can compute empirical Bayes (EB) estimates (Morris,

1983) of the «; as

(e %}

Ela]Y = Y] =iy + (Vi = i), i=1L.m, (2)

where the expectation is taken with respect to the posterior distribution of « given Y =Y;
2

for p,, 03, 0' fixed, and p = 25777 Az 777 is a shrinkage factor. Here, Y; are vectors containing
all Y;, j =1,...,J. The EB estimates in (2) are well-justified as predictors of the «;, since

(when treating fi,, 0, 0> as fixed) i, + p(Y; — fi,) is the minimum mean squared error

!
predictor of a;; under normality:.

Given their rationale for prediction purposes, it is appealing to try and aggregate the EB
estimates in order to estimate our target quantity F,(a). A possible estimator is

~ I~ . =
FM(a) = Ezl{uaJrP(Yi—ﬂa) <aj, (3)
i=1
where PM stands for “posterior means”. Like FFE(a), FPM(q) is consistent as J tends to

infinity under mild conditions, since the shrinkage factor p tends to one. However, for small

J the EB estimates tend to be less dispersed than the true o;, and ﬁPM(a) is biased. Indeed,

while in large samples the variance of the fixed-effects estimates is p~'02 > o2, the variance
. . 2
of the EB estimates is poy, < 07, where p = 578

Instead of computing the distribution of EB estimates as in (3), a related idea is to

compute the posterior distribution estimator

P a):%ZE[l{agaHY:Yi],

where P stands for “posterior”. Using the normality assumption, we obtain

o a—m?jﬁ@>, )
-3 (R 0

where ® denotes the distribution function of the standard normal. F P(a) is an example of a

posterior average effect (PAE). One can check that it is consistent for any fixed J when the

3 A set of restrictions is E[e;] = 0, E[e}] = 02, E[a] = p,, E[(a —p,)*] = 02, Elg;a] = 0, and E[gje;] = 0
for all j # j'.



distribution of a, ey, ..., is normal. Under non-normality, F P(a) is consistent as J tends
to infinity with n, although it is generally biased for small J.* Moreover, the mean and
variance of FY are (1= p)fi, +p S, Vi and (1-9)52 +7° [0, V) — (500, V2],
respectively, which are consistent for p, and o2 for any J.

The last estimator we consider here is directly based on the normal specification for «,

Pt = o (20, 5)

Oq

where M stands for “model”. This estimator enjoys attractive properties when the distribu-
tion of «, &1, ...,e7 is indeed normal. In this case, ﬁy(a) is consistent for any fixed J, and

.. . —~ ~2 . . . .
it is efficient when 7i, and o, are maximum likelihood estimates. Moreover, the mean and
2

)

variance of F, M are 7i,, and 77, which are consistent irrespective of normality. However, in
contrast to the other estimators above, when «, e1, ..., is not normally distributed F Mq)
is generally inconsistent for F,(a) as J tends to infinity. The inconsistency arises from the
fact that F M(g) only depends on the data through the mean i, and the variance 5-. In
particular, F M is always normal, even when the data show clear evidence of non-normality.

The question we ask in this paper is which one of these estimators one should use. The
answer is not obvious since they are all biased for small J in general. Our framework
allows for misspecification of the normal distribution of «,eq,...,e;. We show that the
PAE ﬁolj (a) has minimum worst-case bias under local misspecification — i.e., in a small
neighborhood around the normal reference distribution. To our knowledge, unlike the other
three estimators above, posterior estimators of distributions are novel to practitioners. They
are also straightforward to implement. Our characterization provides a justification for
reporting them in applications.

Note that one may wish to relax normality by making the specification of a;, and possibly
gj, more flexible. Deconvolution and nonparametric maximum likelihood estimators are
often used for this purpose (e.g., Delaigle et al., 2008, Bonhomme and Robin, 2010, Koenker
and Mizera, 2014). While these estimators may be consistent even when « is not normal,
consistency relies on additional restrictions on the model. For example, the assumptions in
Kotlarski (1967) require that «, €1, ..., £; be mutually independent. By contrast, we do not

impose any such additional conditions in our framework. In Section 3, we will show that

4Consistency of F P (a) as J tends to infinity comes from the fact that 7, + p(Y; — Ji,,) approaches a;,

=iy —p(Vi~fi,)

— ) becomes increasingly concentrated around 1{«; < a}.
Oa -P

and p approaches one, so ® (



asymptotically linear estimators have larger local asymptotic bias than PAE under the form
of misspecification that we consider.’

To illustrate that an independence assumption among «, €1, ..., €; can be restrictive,
consider a situation where the researcher is concerned that the variance of ¢; depends on
«. For instance, the variance of classroom-level shocks may depend on teacher quality. The
presence of such conditional heteroskedasticity would invalidate conventional nonparamet-
ric deconvolution estimators. By contrast, we will show that F P(a) has minimum bias in
local neighborhoods of distributions that allow for conditional heteroskedasticity, and more
generally for any joint distributions of («, &1, ..., ;) with given means and variances.

In model (1), the researcher may be interested in estimating other quantities. As an
example, consider the coefficient in the population regression of teacher quality o on a

vector of covariates W; that is,
5= EWW)) ' E[Wa. (6)

In applications, it is common to regress fixed-effects estimates on covariates to help interpret

them (as in Dobbie and Fryer, 2013, among many others), and to compute

n -1 n
5= (Z mm’) S Wiy (7)
=1 =1

Alternatively, one may regress the EB estimates of a;, as given by (2), on covariates (as in

Angrist et al., 2017, and Hull, 2018, for example), and compute

3 = (Z mw;) S Wi (fla + 2V~ i) (8)

i=1
which is a PAE based on a normal reference specification for . We will see that, in our
framework, the rationale for reporting ZS\P or gFE depends on the form of misspecification
that the researcher is concerned about.

The framework we describe next applies to the estimation of different quantities in a
variety of settings. In Section 4 we apply PAE to model (1) and estimate the distribution
of neighborhood/place effects in the US (Chetty and Hendren, 2017). In addition, we show
that the permanent-transitory model of income dynamics (e.g., Hall and Mishkin, 1982) has

5In our framework, we will focus on nonparametric neighborhoods around a parametric reference model
(e.g., a normal density). It would be interesting to consider nonparametric reference models, and analyze
the properties of posterior estimators in such settings, although this exceeds the scope of this paper.



a structure similar to model (1), and we report PAE estimates in this context. In Appendix
S5 we report simulation results for PAE estimators of the skewness and Gini coefficient of
teacher effects in model (1). Lastly, in other models — such as static or dynamic discrete
choice models and models with censored outcomes — our results motivate the use of PAE as
complements to other estimators that researchers commonly report, and we provide examples

in Section 5 and analyze them in Appendix S5.

3 Framework and main result

In this section we describe our framework to study PAE, and we present and discuss our

local bias characterization.

3.1 Model-based estimators and PAE

We consider the following class of models,
Y; = g5<Ui7 XZ)? (9)

where outcomes Y; and covariates X; are observed by the researcher, and U; are unobserved.
The function gg is known up to the finite-dimensional parameter 5. Our aim is to estimate

an average effect of the form

6= Ef, [05(U, X)], (10)

where d5 is known given 5. Here fy denotes the true density of U|X. The expectation
is taken with respect to the product fofx, where fx is the marginal density of X. For
conciseness we leave the dependence on fy implicit.b

While the researcher does not know the true fy, she has a reference parametric density
fs for U| X, which depends on a finite-dimensional parameter o. We will allow f, to be
misspecified, in the sense that f; may not belong to {f,}. However, we will always assume
that gg is correctly specified. In other words, misspecification will only affect the distribution
of U and its dependence on X, not the structural link between (U, X)) and outcomes.

To estimate § in (10), we assume that the researcher has an estimator B that remains

consistent for 8 under misspecification of f,. More precisely, we will only consider potential

SWe focus on a scalar dg, but our results continue to hold in the vector-valued case, as we show in
Appendix S4. This extension is useful to show that our results apply to distribution functions and, by
inversion, to quantile functions. Moreover, although our focus is on average effects that depend linearly on
fo, in Appendix S4 we also discuss how to estimate quantities that depend on f; nonlinearly.



true densities fy such that B tends in probability to the true value $ under fy. In many
economic models, the assumptions needed to consistently estimate  are not sufficient to
consistently estimate §. This is the case in the fixed-effects model (1), where consistent
estimates of means and variances can be obtained in the absence of normality. This is also
the case in discrete choice and censored regression models, as we discuss in Section 5 and
Appendix S5. In addition, we assume that the researcher has an estimator ¢ that tends in
probability to some o, under f,. Unlike [, the parameter o, is a model-specific “pseudo-true
value” that is not assumed to have generated the data.

Given B, o, asample {Y;, X;, i = 1,...,n} from (Y, X), and the parametric density f,, a

model-based estimator of § is
g = En E [5@,( X) ‘ X = X] (11)
o - fs U, il -

When not available in closed form, this estimator can be computed by numerical integration
or simulation under the parametric density f5. It is easy to see that, under standard condi-

-~M

tions, 0 is consistent for 6 under correct specification; that is, when f,. is the true density
of U| X.

To construct a posterior estimator, consider the posterior density pg, of U |Y, X. This
posterior density is computed using Bayes rule, based on the prior f, on U|X and the
likelihood of Y |U, X implied by gz. Formally, let U(y,z,8) = {u : v = gs(u,z)}. We
define, whenever the denominator is non-zero,
 folu]@)1{u c Uly.x, )

J ol 2) v eU(y,x, B)}dv

We will compute pg, analytically in all our examples. In Appendix S4 we describe a

Ps.o(uly, ) (12)

simulation-based computational approach when an analytical expression is not available.

We define the posterior average effect (PAE) as the posterior estimator

P 1<
5 == E,, [5B(U,X)‘Y:Y1~,X ~x,]. (13)
=1

~M ~P
Under standard regularity conditions, it is easy to see that, like § , the PAE ¢ is consistent
for 6 under correct specification.

~P

From a Bayesian perspective, 6 is a natural estimator to consider when g and o are

~P
known. Indeed, § is then the posterior mean of + 3" | d5(U;, X;), where the prior on Uj

10



is f,, independent across i.” However, a frequentist justification for SP, and in particular
a rationale for preferring gp over EM, appear to be lacking in the literature. Indeed, under
correct specification of f,, both estimators SP and /5\M are consistent, and, as we pointed
out in the previous section, gp may have a higher variance than SM The key difference
between model-based and posterior estimators is that SP is conditional on the observation
sample. An intuitive reason for the conditioning is the recognition that realizations Y; may
be informative about the values of the unknown U;’s. In the remainder of this section we

formalize this intuition in a framework that accounts for misspecification bias.

Model (1) in the notation of this section. To map the fixed-effects model (1) to

the general notation, note that in this case there are no covariates X, and the vector of

/
o — U, &1 EJ

U= L)
Oa O¢ O¢

The vector 8 is 8 = (u,,0%,02%)'. The reference distribution for U is a standard multi-

unobservables U is

variate normal, so there is no other unknown parameter. We assume that the researcher
has computed an estimator B, for example by quasi-maximum likelihood or minimum dis-
tance, which remains consistent for 5 when U is not normally distributed. When focusing
on the distribution function of « at a point a, the target parameter is given by (10) with
ds(U, X) = 1{ar < a}, which in this case does not depend on 3, X. Lastly, the model-based

M ~P
and posterior estimators § and 0 are given by (5) and (4), respectively.

3.2 Neighborhoods, estimators, and worst-case bias

Let P(B, fo) denote the true density of (Y, U, X), where as before we omit the reference to
the marginal density of X for conciseness. We assume that, under P(f5, fy), B is consis-
tent for the true 3, and & is consistent for a model-specific “pseudo-true” value o, where
Ep@,10)[¥s.0. (Y, X)] = 0 for some moment function 1. For example, B and o may be the

method-of-moments estimators that solve Y " | ¢35 5(V;, X;) = 0.° Given a distance measure

75P is also the average of the posterior means of dg(U;, X;) across individuals. An alternative Bayesian
interpretation is obtained by specifying a nonparametric prior on f, and computing the posterior mean of
6 under this prior. We discuss this interpretation formally in Appendix S4, in the case where U has finite
support.

8Throughout we take the estimators B and &, and the moment function 1, as given. In particular, we do
not address the question of optimal estimation of S under misspecification.

11



d and a scalar € > 0, we define the following neighborhood of the reference density f,,:

I'e= {fO : anfa*) > € Ep(ﬂ,fo)[¢6,0*<Y>X)] = O}

This neighborhood consists of densities of U |X that are at most ¢ away from f,, , and
under which E and o converge asymptotically to 5 and o, respectively. The case ¢ = 0
corresponds to correct specification of the reference density f,, whereas ¢ > 0 corresponds
to misspecification.

For ease of notation we omit the dependence of I'. on 3, o,, and v, all of which we
consider fixed and given in this section. Indeed, we assume that the researcher has chosen
the estimators /B and o — our theory is silent about where this choice comes from — and
that she has already observed their realized values in a large sample. The moment function
1 is determined by this choice of estimators. Moreover, in large samples, the true parameter
value [ and the pseudo-true value o, are arbitrarily close to the observed values B and 0.
In our setup, we only consider densities of unobservables f, that are consistent with those
values, in the sense that the moment restriction Epg s, V5, (Y, X)] = 0 holds. This large-
sample logic is consistent with our focus on asymptotic bias as a measure of performance.
In the fixed-effects model (1) of teacher quality, this logic is best suited to settings where
the number n of teachers is large.’

Let us denote the supports of X and U as X and U, respectively. We assume that d is a

¢-divergence of the form

d(fo, fo.) // (;:01;”36 )fg*(u|x)fx(x)dudx,

where ¢ is a convex function that satisfies ¢(1) = 0 and ¢”(1) > 0. This family contains as
special cases the Kullback-Leibler divergence (averaged over X), the Hellinger distance, the
x? divergence, and more generally the members of the Cressie-Read family of divergences
(Cressie and Read, 1984). It is commonly used to measure misspecification, see Andrews et
al. (2018) and Christensen and Connault (2019) for recent examples.

We focus on asymptotically linear estimators of § that satisfy, for a scalar non-stochastic

9Note that the same logic might suggest imposing that other features of the joint population distribution
of the data (Y, X), such as means, covariances, higher-order moments, or even the entire distribution, be
kept constant for all f, € I'.. Restricting neighborhoods in this way does not affect the results in the
next subsection because those are valid for all possible 1, and one could thus impose additional moment
restrictions on fj.
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function v and as n tends to infinity,

n

By = 13" 53500 X + om0 (1), (1)
i=1

Note that 37 depends on B, o, but for conciseness we leave the dependence implicit in the
notation. Many estimators can be written in this form (see, e.g., Bickel et al., 1993). Given
an estimator SV, we define its e-worst-case bias as

be(v) = sup Eps,10) V5.0, (Y X)) — Ep [05(U, X)]| . (15)
The worst-case bias b.(7y) is our measure of how well an estimator 37 performs under mis-
specification. The results below are specific to this particular objective. The bias here is
asymptotic, since Epg s,)[75,, (Y, X)] is the probability limit of 57 as n tends to infinity
under P(5, fo).

In our framework, we do not account for the variance of 25\7 and focus on worst-case bias.
Alternatively, one could minimize the worst-case mean squared error of 5\7 as in Bonhomme
and Weidner (2018), or a weighted bias with respect to some prior on I'.. In such cases
the optimal estimators would take different forms. In particular, unlike PAE they would
generally depend on €, as we will discuss in Remark 1 below. Relative to such estimators,
PAE have the practical advantage that they do not require the researcher to take a stand
on the degree of misspecification €. On the other hand, since PAE minimize bias they are

best suited for settings with a large number of cross-sectional units.

3.3 Local bias characterization

Before stating our main result, we first characterize the worst-case bias b.(7y) of estimators 25\7
for small €. The following lemma is instrumental in proving that PAE minimize local bias.
For conciseness, in this subsection we suppress the reference to (3, o, from the notation, and
we denote as [E, and Var, expectations and variance that are taken under the reference model

P(B, f».)- The proofs are in Appendix A.

Lemma 1. Let @A/;(y,m) =Y(y,x) — E, [@Z)(Y, X)|X = x] Suppose that one of the following

conditions holds:

(i) ¢(1) = 0, ¢(r) is four times continuously differentiable with ¢"(r) > 0 for all v >

0, Eu(Y. X)] = 0, E.[0(Y, X)d(Y, X)] > 0, and |y(y, )], [6(u, )], [¥(y, )| are
bounded over the domain of Y, U, X.
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(i1) Condition (ii) of Lemma Al in Appendiz A holds (this alternative condition allows for
unbounded 7, &, ¥, but at the cost of stronger assumptions on ¢(r)).

Then, as € tends to zero we have

be(7) = [E[y(Y, X) —o(U, X)]|

=

N

te {LVar* <7(Y, X) = 8(U, X) — E, [7(Y, X) — 6(U, X) | X] — No(Y, X)) } 10,

¢"(1)

where A = {E. [J(Y, X) §(Y, X }_1 E. [(4(v, X) — 6(U, X)) 3(v %)

To derive the formula for the worst-case bias in Lemma 1, we maximize the bias with
respect to fy subject to three contraints: fy belongs to an e-neighborhood of f,, it is such
that the moment condition is satisfied at (3, 0,), and it is a density. For ease of exposition,
in Lemma 1 we only explicitly present the conditions for the case where v, § and ¢ are
bounded. This is satisfied, for example, if those functions and g(u,z) are all continuous,
and the domain of U and X is bounded. To accommodate situations where supports are
unbounded such as the example of Section 2, in Appendix A we detail the case of unbounded
functions v, § and v, which only requires existence of third moments under the reference
distribution. To guarantee that b.(7y) is well-defined in the unbounded case, we require a
regularization of the function ¢(r) for large values of .

Lemma 1 implies that the small-e bias of the PAE is, up to smaller-order terms, propor-

tional to the within-(Y, X) standard deviation of 6(U, X) under the reference model:'"

2 3
{anr* (0(U, X) —E.0(U,X) | Y,X])} + O(e).

For example, in the fixed-effects model (1) of teacher quality the bias of the PAE F P(a) is

where T'(a,b) = ¢(a) Ob ff;) dz is Owen’s T function (Owen, 1956), and ¢ is the standard

be('VP) = E%

normal density. The bias decreases as the number J of observations per teacher increases,
and tends to zero as J tends to infinity and the shrinkage factor p tends to one.
The next theorem, which is the main result of this section, shows that the PAE has

minimum worst-case bias locally.

10Similar expressions appear in Bayesian statistics when computing derivatives of posterior quantities with
respect to prior densities; see, e.g., Gustafson (2000).

14



Theorem 1. Suppose that the conditions of Lemma 1 hold, and let
Wy, ) =EJ6(U, X)|Y =y, X =], (16)
Then, as € tends to zero we have

be(7") < be(7) 4 Oe).

Theorem 1 provides a rationale for using PAE in applications.!!

For example, in the
fixed-effects model (1), it motivates using the posterior distribution estimator F P (a) given
by (4). We report PAE estimators of distributions and illustrate their usefulness in two
empirical settings in Section 4. In addition, in Appendix S5 we show the results of Monte
Carlo simulations for two estimators in model (1). In the simulations, the normal reference

model is misspecified, and we find that PAE provide substantial bias reduction relative to

parametric model-based estimators (see Appendix Figure S1).

Remark 1. (mean squared error) While we have shown that PAE minimize worst-case
bias locally, they generally do not have minimum mean squared error (MSE). To see this, let
us assume that 8 and o, are known. In a local asymptotic framework where ne tends to a
constant and under suitable reqularity conditions, we show in Appendix S/ that the estimator

with minimum worst-case MSE is given by

" -1
SMMSE = [1 — wy] SM + wnegp, Whe 1= <1 + gb_(l)) , (17)

2ne

which is a linear combination between the model-based estimator and the PAE. The model-
based estimator SM, which has the smallest asymptotic variance, will be preferred when € is
small relative to 1/n, while the PAE, which has smallest asymptotic bias, will be preferred
when € is large relative to 1/n. However, in order to implement such estimators EMMSE that
minimize worst-case MSE, knowledge of € is required. See Bonhomme and Weidner (2018)

for an approach to minimum-MSE estimation.

Remark 2. (uniqueness) In the absence of covariates and for known parameters (3, o,

the proof of Theorem 1 shows that v¥ is the unique minimizer of the first order worst-case

1To provide an intuition for the theorem, note that, by Lemma 1, /¥ sets the first term in b.(7) to
zero. Moreover, v* minimizes the second term as well, since A = 0 when v = 4. It follows that the PAE

50215 AP (Y. X.) minimizes the first-ord tribution to th t bi
=30, 7?3,3( 7, X;) minimizes the first-order contribution to the worst-case bias.
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bias. More generally, if covariates are present and the parameters 3, o, are estimated, then
the leading order contribution of b.(y) is minimized if and only if v(Y,X) = +P(V, X) +
w(X) + N(Y, X) + op.(1), for some X and w such that B [w(X)] =0 — see part (ii) of
Theorem A1 in Appendix A for a formal statement. Hence, while the PAE is not the unique
minimizer of worst-case bias in this case, any bias-minimizing estimator differs from the
PAFE by a zero-mean function of X and a linear combination of the moment function . In
addition, since vF (Y, X) is orthogonal to w(X) + N(Y, X), gp has smallest variance within

the class of minimum bias estimators.'?

Remark 3. (form of misspecification) Theorem 1 is based on nonparametric neighbor-
hoods that consist of unrestricted distributions of U | X, except for the moment conditions
that pin down [ and o,.. However, if one is willing to make additional assumptions on fo
that further restrict the neighborhood, then one can construct estimators that are more robust
than SP within a particular class. As an example, consider the fized-effects model (1). Sup-
pose that, in addition to assuming that o, €1, ..., €5 are mutually uncorrelated, the researcher
15 willing to assume that they are fully independent. In that case, the distribution of o can be
consistently estimated under suitable reqularity conditions, provided J > 2 (Kotlarski, 1967,
Li and Vuong, 1998). However, the PAE in (4) is biased for small J. As a consequence,
the PAE does not minimize local bias in a semi-parametric neighborhood that consists of
distributions with independent marginals.

To elaborate further on this point, consider the coefficient § in the population regression
of a on a covariates vector W, see (6). A possible estimator is the coefficient SFE in the
regression of the fized-effects estimates Y; on W;, see (7). Under correct specification of the
reference model, ;S\FE is consistent for 6. However, gFE may be inconsistent under the type
of misspecification that we allow for, since €; and W may be correlated under fo. In other
words, in our framework, we allow for the possibility that W may have a direct effect on
the outcomes Y, in which case SFE 1s no longer consistent. Theorem 1 shows that, under
such misspecification, the PAE gp in (8) has minimum worst-case bias locally. Nevertheless,

if the researcher is confident that W should not enter the outcome equation, and that it is

12This is closely related to Remark 1 and the corresponding derivation of equation (17) in Appendix S4,

~P
which show that the PAE estimator 4 is obtained from a worst-case MSE problem in the limit where n — oo
and ne — 0.
131n fact, in the illustration in Section 2 we have abstracted from covariates, so if U is independent of W

~FE —
under f then §  tends to = 0. In the more general case where the normal reference distribution of «
depends on some covariates, § would not be zero in general.
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~FE
independent of €;, then it is natural to report the consistent estimator § .

Remark 4. (posterior informativeness) Our bias calculations can be used to compare
~P ~M
the bias of the PAE § to that of the model-based estimator 6 . To see this, let 7%0(:10) =

Ef [05(U, X)| X = z|. Using Lemma 1, the ratio of the two worst-case biases satisfies

N

i 207 _ {Var (U, X) — E.o(U, X) |V, X))}

=0 be(™) {Var, (o(U, X))} ’ s)

where v(U, X) is the population residual of (5(U, X) —yM(X)) on (Y, X), under the para-
metric reference model.'** Intuitively, the robustness of SP relative to SM depends on how
informative the outcome values Y; are for the latent individual parameters §(U;, X;).

In practice, we will report an empirical counterpart to the small-e limit of 1 — 522((;’;))

This quantity can be simply expressed as the R? in the population nonparametric regression

of v(U, X) on Y, X under the reference model; that is,

R Var, (E.[v(U, X)|Y, X])
Var, (v(U, X)) ’

(19)

where with some abuse of notation here v(U, X) denotes the sample residual of (65(U, X) —
’y%%(X)) on 171@73(}/, X), and expectations and variances are taken with respect to P(B, fz)-
In the spirit of Andrews et al. (2018), we refer to R* in (19) as a measure of the “infor-
mativeness” of the posterior conditioning, and we will report it in our illustrations. As an

example, for ﬁf(a) in model (1), the informativeness of the posterior conditioning is
a_ﬁa 1*/P\
2T (—aa 7 m)

v(5e) e ()]

In this case the R? increases with the number J of observations per teacher, and it tends to

R*=1-

(20)

one as J tends to infinity.

4 Empirical illustrations

In this section, we revisit two applications of models with latent variables. In our first
illustration, we focus on a model of neighborhood effects following Chetty and Hendren

(2017), using data for the US that these authors made public. In our second illustration, we

UThat is, v(u, 2) = 6(u, z) — YM(2) + N'¢b(g(u, z), z), where all functions are evaluated at 3,0, and X is
as defined in Lemma 1 for the case v = yM.
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study a permanent-transitory model of income dynamics (Hall and Mishkin, 1982, Blundell
et al., 2008) using the PSID. In both cases, we rely on a normal reference specification
and assess how and by how much the posterior conditioning informs the estimates of the

parameters of interest.

4.1 Neighborhood effects

In this subsection, we start with estimates of neighborhood (or “place”) effects reported
in Chetty and Hendren (2017, CH hereafter). Those were obtained using individuals who
moved between different commuting zones at different ages. The outcome variable that we
focus on is the causal estimate of the income rank at age 26 of a child whose parents are at
the 25 percentile of the income distribution. This is CH’s preferred measure of place effect.

CH report an estimate of the variance of neighborhood effects, corrected for noise. In
addition, they report individual predictors. Here we are interested in documenting the entire
distribution of place effects. To do so, we consider the model i, = u,.+&., for each commuting
zone ¢, where [i,, is a neighborhood-specific fixed-effects reported by CH, p. is the true effect
of neighborhood ¢, and £, is additive estimation noise. CH also report estimates 33 of the
variances of g, for every c. When weighted by population, the fixed-effects estimates ji, have
mean zero. We treat neighborhoods as independent observations.!?

We first estimate the variance of place effects p,, following CH. We trim the top 1%
percentile of 33, and weigh all results by population weights.'® We have information about
place effects in C' = 590 commuting zones c¢ in our sample, compared to 595 in the sample
without trimming. We estimate a sizable variance of neighborhood fixed-effects: Var(j,.) =

.077. In turn, the mean of 35 weighted by population is 8; = .047. Given those, we estimate
the variance of place effects as 32 = Var(fi,) — 62 = .030. In this setting, the shrinkage factor
Pe = 83 / (/a\i 4 02) exhibits substantial heterogeneity across commuting zones. Indeed, the
mean of p, is .62, and its 10% and 90% percentiles are .21 and .93, respectively.'”

. . ~2 . .
We use a normal with zero mean and variance 0, as a prior for 4. Then, we estimate

15The statistics we use for calculations are available on the Equality of Opportunity website; see
https://opportunityinsights.org/paper/neighborhoodsii/ Given the aggregate data at hand, we necessarily
need to assume that estimates fi, are independent across neighborhoods ¢, although this might be restrictive
in this setting.

16This differs slightly from CH’s approach, which is based on 1/ precision weights and no trimming. We
replicated the analysis using precision weights in the un-trimmed sample and found similar results.

17Tt is quantitatively important to account for this heterogeneity. In our initial work on the data we found
that imposing a constant shrinkage factor reduced the informativeness of the posterior conditioning.
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the density of neighborhood effects ., using the derivative of the posterior estimator of the

distribution function (4); that is,

P @ = Pelhe

P S e ()
where 7. are population weights. In this subsection, in order to ease the visualization of
the results, we will show estimates of densities, which are the derivatives of the PAE of
distribution functions. With some abuse of terminology we will refer to those as “posterior
densities”.!8

In Figure 1 we report several density estimates. In the left graph, we show a nonparamet-
ric kernel density estimate of the fixed-effects fi,, weighted by population (in solid), together
with its best-fitting normal (in dashed). The graph shows substantial non-normality of the
fixed-effects estimates. In particular, the large variance appears to be driven by some large
positive and negative estimates ji.. In the right graph we report the posterior density ]/C;P
of true place effects p, (in solid). In addition, we show the normal prior — with zero mean
and variance Gi — that we use to produce the posterior estimate (in dashed). The posterior
density of neighborhood effects differs from the normal prior, although the two estimators
have the same variance by construction.!® In addition, a specification test that compares
model-based estimator and PAE, which we describe in Appendix S4, suggests that these
differences are statistically significant. Indeed, assuming independence across commuting
zones, we obtain pvalues below .01 at all deciles except the bottom two.

To assess how likely it is that the posterior estimator approximates the shape of the
density of true neighborhood effects, we now perform two different exercises, based on a
simulation and on numerical calculations motivated by our theory. We start with a simula-
tion, where p,, for ¢ =1, ..., Cgym, are log-normally distributed with zero mean and variance

~2
o

.o and g are normally distributed independent of y, with zero mean. We consider three

scenarios for the noise variances 0 . the estimates from CH, one-third of those values, and

80ur theory extends to the multivariate case and it applies in particular to distribution functions (see
Appendix S4). In addition, note that the density of u at a can be approximated for arbitrarily small h > 0
by the expectation of 1{|u — a|/h}/2h. Taking the limit of the corresponding PAE as h tends to zero gives
Ja;(a). For this reason we expect derivatives — such as ]/“}j
the same minimum-bias property.

19Tn comparison, neighborhood-specific empirical Bayes estlmates have a substantlally lower dispersion.
In Appendix Figure S3 we report an estimate of their density f, fPM - While & u .030, the variance of the
empirical Bayes estimates is .010. By contrast, the variance assomated with the posterior density estimator

¥ is .030.

(a) — of PAE of distribution functions to enjoy
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Figure 1: Density of neighborhood effects
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Notes: In the left graph we show the density of fized-effects estimates pi, (solid) and its normal
fit (dashed). In the right graph we show the posterior density of u, (solid) and the prior density
(dashed). Calculations are based on statistics available on the Equality of Opportunity website.

one-tenth of those values. In this exercise we again weight by population. We show the re-
sults for Cy, = 100, 000 simulated neighborhoods. In the left graph of Figure 2 we see that,
when the noise variances are the ones from the data, the posterior density is more skewed
than the normal, yet the posterior shape is quite different from the true log-normal density of
tt.. When reducing the noise variances in the middle and right graphs, the posterior density
estimate gets closer to the log-normal. In the right graph, where the shrinkage factor is .90
on average (as opposed to .62 in the data), the posterior density approximates the highly
non-normal shape of the true distribution of neighborhood effects very well.

We next turn to our posterior informativeness measure, which is given by equation (20).
Note the R? coefficient varies along the distribution. We find that the weighted average R?
across values of a is 28%, where we weigh across cutoff values a by the reference distribution
for .2° This value is consistent with the message of the simulation exercise as it suggests
that, while the posterior conditioning informs the shape of the distribution of neighborhood
effects, the signal-to-noise ratio is not high enough to be confident about the exact shape
of the density. To provide additional insights, it would be interesting to refine the reference

model using a non-normal parametric or semi-parametric specification. However, to flexibly

20Tn addition, we compute the value of the R? when the noise variances are one-third or one-tenth of their
values in the data. We find that the R? is 36% on average in the former case, and 47% in the latter case.
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Figure 2: Density of neighborhood effects in simulated data with log-normal p,

100% noise variances from data 33% noise variances 10% noise variances

0 5 - -5 0 5 - -5 0
neighborhood effects neighborhood effects neighborhood effects

Notes: Simulation with p, log-normal and €. normal. The posterior density is shown in solid, the
prior density is shown in dashed. The left graph corresponds to the noise variances 85 of the data,
the middle one corresponds to the noise variances divided by 3, and the right graph corresponds to
the noise variances divided by 10.

model the neighborhood effects and the noise, individual-level data would be needed.
Lastly, we perform two additional exercises as robustness checks. Firstly, we incorporate
the mean income 7, of permanent residents in county ¢ at the 25% percentile as a covariate.
CH rely on information on permanent residents’ income to improve the accuracy of individual
predictions. Here we use it to refine the reference distribution and to improve the estimation
of the distribution of neighborhood effects. Specifically, our reference model for . is then
a correlated random-effects specification, where the mean depends on 7, linearly. Appendix
Figure S4 shows small differences with our baseline estimates. Secondly, we re-do our main
analysis at the county level, instead of the commuting zone level. In that case the signal-
to-noise ratio is lower, our posterior informativeness R? measure is 17% on average, and
Appendix Figure S5 shows that the normal prior and the posterior density are closer to each

other than in the case of commuting zones.

4.2 Income dynamics

In this subsection we consider the permanent-transitory model of household log-income
Ygt :nit+€it7 Nit :77¢,t71+vit> 1= 17"'?”7 = 17"'7T7

where ¢;; and Vj; are independent at all lags and leads, and independent of 7,,. This process

is commonly used as an input for life-cycle consumption/savings models. Researchers often
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Figure 3: Quantiles of income components
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Notes: The left graph shows quantile differences between posterior and model-based estimators.
The right graph shows the posterior informativeness R? measure, see equation (19). n; is shown
in solid, and 44 is shown in dashed. Sample from the PSID.

estimate covariances in a first step using minimum distance, and then impose a normality as-
sumption for further analysis. However, there is increasing evidence that income components
are not normally distributed. Instead of using a more flexible model — as has been done
by Carlton and Hall (1978) and a large subsequent literature — here we compute posterior
estimates. The advantages of this approach are that no additional assumptions are needed,
and that implementation is straightforward.

We focus on six recent waves of the PSID 1999-2009 (every other year), see Blundell et
al. (2016) for a description of the data. We use the same sample selection as in Arellano et
al. (2017), and work with a balanced panel of n = 792 households over T' = 6 periods. Y;
are residuals of log total pre-tax household labor earnings on a set of demographics, which
include cohort interacted with education categories for both household members, race, state,
and large-city dummies, a family size indicator, number of kids, a dummy for income recipient
other than husband and wife, and a dummy for kids out of the household.

Our aim is to estimate the quantiles of ,, and €;;. To do so, we compare normal model-
based estimates with posterior estimates, by plotting differences of quantile functions aver-
aged over time periods. We compute the quantiles by inverting the posterior estimates of

the distribution functions. The model’s structure is similar to that of the fixed-effects model
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(1), and analytical expressions for posterior estimators are easy to derive. Note that the fact
that we report quantile functions as opposed to distribution functions is not essential, but
this helps visualizing the results.

In the left graph of Figure 3, we show the quantile differences for 7,, in solid, and the
ones for €;; in dashed. In both cases, quantiles in the lower (respectively, upper) part of the
distribution are higher (resp., lower) under posterior estimates than under normal estimates.
This suggests that the distributions of both latent components show excess kurtosis (i.e.,
“peakedness”) relative to the normal. Moreover, our posterior estimates suggest stronger
violation of normality for ¢, than for n,,. In the right graph we report our posterior infor-
mativeness measure at different quantiles. The estimates suggest that there is information
in the posterior conditioning, especially for the permanent income component 7,,. At the
same time, the R? never exceeds 25%, which suggests that posterior estimates may still be
biased when the reference distribution is misspecified.

Several papers have already documented the presence of excess kurtosis in income com-
ponents using parametric or semi-parametric methods. In Appendix Figure S6 we compare
our posterior estimates with estimates based on a flexible non-normal and non-linear model
from Arellano et al. (2017). Although both sets of estimates show qualitatively similar
evidence of excess kurtosis, the non-normality of the posterior estimates is less pronounced
than the non-normality of the estimates from Arellano et al. (2017), especially in the case
of the transitory component ;.

Overall, these illustrations give two examples where, starting from a normal prior, the
posterior conditioning is informative about the true unknown distributions. In both settings,
PAE are not normal. Yet, as indicated by the R? values we report, the signal-to-noise
ratios are not high enough to be certain about the exact shapes of the densities of interest,
thus motivating further analyses using non-normal specifications. PAE should be useful
in other environments where model (1) and its extensions are widely used, for example in
teacher value-added applications, where the signal-to-noise ratio is driven by the number
of observations per teacher. PAE are also applicable to other — nonlinear — econometric

models, as we describe in the next section.
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5 Complements and extensions

In this section we outline several complements and extensions that we analyze in detail in

the appendix.

5.1 PAE in various settings

PAE are applicable to a wide variety of settings. In many econometric models, semi-
parametric estimators — i.e., robust to distributional assumptions on unobservables — of 3
parameters are available; see Powell (1994) for example. In such models, PAE provide esti-
mators of average effects that enjoy robustness properties when parametric assumptions are
violated. As examples, in Appendix S5 we study static binary and ordered choice models,
censored regression models, and panel data binary choice models. We also show how the
White (1980) formula for robust standard errors in linear regression can be interpreted as a
PAE. Lastly, we report illustrative simulations for static binary and ordered choice models,

along with simulations for the fixed-effects model (1).

5.2 Confidence intervals and specification test

Under correct specification of the reference model, it is easy to derive the asymptotic dis-
tributions of SM and SP using standard arguments. Moreover, under local misspecification,
confidence intervals that account for both model uncertainty and sampling uncertainty can
be constructed following Armstrong and Kolesar (2018) and Bonhomme and Weidner (2018).
However, such confidence intervals require the researcher to set a value for the degree of mis-
specification e. In Appendix S4 we provide details on confidence intervals calculations. In

addition, we explain how to construct a specification test of the reference model based on

~P  ~M
the difference 6 — 4§ .

5.3 Fixed-¢ bias bound

As a complement to the local analysis of Section 3, we show the following non-local bias

bound in Appendix S1.

Theorem 2. Let v* be as in (16), and assume that ¢(r) is convexr with ¢(1) = 0. Then, for
all € > 0,
be(7") < 2 inf be(7).
v
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In Theorem 2 we establish a fixed-e¢ bound on the bias of PAE.?! Although SP does not
necessarily minimize bias for finite €, Theorem 2 shows that its bias is never larger than twice
the minimum worst-case bias in the neighborhood within the class of asymptotically linear
estimators. This minimum bias is generally non-zero, whenever the quantity of interest § is
not point-identified.??> In addition, the factor two in Theorem 2 cannot be improved upon

in general, as we show in Appendix S4 in the context of a simple binary choice model.

5.4 Robustness in prediction

In applications such as the fixed-effects model (1) of teacher quality, researchers are often
interested in predicting the quality «; of teacher i. Although our focus in this paper is
on the estimation of population averages, it is interesting to see how different predictors
perform under misspecification of the reference distribution. It is well-known that EB esti-
mators minimize mean squared prediction error when the normal reference model is correctly
specified. However, when normality fails, the best predictor is a different posterior mean,
which does not generally coincide with the EB estimate based on a normal prior. Intuitively,
conditioning on nonlinear functions of the data may improve prediction accuracy.

In Appendix S3, we use our framework — applied to worst-case mean squared prediction
error instead of worst-case bias of a sample average — to provide results on the robustness
of EB estimators in the presence of misspecification.?> We show that EB estimators have
minimum worst-case mean squared prediction error, up to smaller-order terms, under local
deviations from normality. In addition, we derive a fixed-¢, non-local risk bound in the spirit

of Theorem 2.

6 Conclusion

Posterior averages are commonly used to predict individual parameters such as teacher qual-
ity or neighborhood effects, and they play a central role in Bayesian and empirical Bayes
approaches. In this paper, we have provided a frequentist justification for posterior condi-

tioning when the goal of the researcher is to estimate a population average quantity. We

21The infimum in the theorem is taken over all possible functions v(y, z), subject to measurability condi-
tions, which we implicitly assume throughout the paper. Besides this, we only rely on asymptotic linearity
of the estimators.

22Imposing that fy € I'. for some € > 0 implies that ¢ has finite lower and upper bounds.

23Note that this differs from the analysis of the MSE properties of average estimators in Remark 1.
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have shown that posterior average effects (PAE) have minimum worst-case bias under local
misspecification of parametric assumptions. PAE are simple to implement, and our analysis
provides a rationale for reporting them in applications. As an example, Arnold et al. (2020)
recently reported PAE to document judge heterogeneity in the context of bail decisions.
While we have used a linear fixed-effects model as a running example due to its popularity,
there are many other possible applications, some of which we discuss in the appendix.
Lastly, our examples highlight that the information contained in the conditioning is
setting-specific. Hence, PAE are complements to — but not substitutes for — other ap-
proaches that rely on additional assumptions, such as semi-parametric approaches under
point or partial identification (e.g., Powell, 1994, Tamer, 2010), or recent approaches that
aim for robustness within a specific class of models (e.g., Bonhomme and Weidner, 2018,

Armstrong and Koleséar, 2018, Christensen and Connault, 2019).

26



References

1]

[10]

[11]

[12]

Abadie, A., and M. Kasy (2018): “The Risk of Machine Learning,” to appear in the

Review of Economics and Statistics.

Andrews, 1., M. Gentzkow, and J. M. Shapiro (2017): “Measuring the Sensitivity of
Parameter Estimates to Estimation Moments,” Quarterly Journal of Economics, 132(4),

1553-1592.

Andrews, 1., M. Gentzkow, and J. M. Shapiro (2018): “On the Informativeness of

Y

Descriptive Statistics for Structural Estimates,” unpublished manuscript.

Angrist, J. D., P. D. Hull, P. A. Pathak, and C. R. Walters (2017): “Leveraging Lotteries
for School Value-Added: Testing and Estimation,” Quarterly Journal of Economics,
132(2), 871-919.

Arellano, M., Blundell, R., and S. Bonhomme (2017): “Earnings and Consumption
Dynamics: A Nonlinear Panel Data Framework,” Econometrica, 85(3), 693-734.

Arellano, M., and S. Bonhomme, S. (2009): “Robust Priors in Nonlinear Panel Data
Models,” Econometrica, 77(2), 489-536.

Armstrong, T. B., and M. Kolesar (2018): “Sensitivity Analysis Using Approximate
Moment Condition Models,” arXiv preprint arXiv:1808.07387.

Arnold, D.; W. S. Dobbie, and P. Hull (2020): “Measuring Racial Discrimination in

Bail Decisions,” (No. w26999). National Bureau of Economic Research.

Berger, J. (1980): Statistical Decision Theory: Foundations, Concepts, and Methods.
Springer.

Berger, R. L. (1979): “Gamma Minimax Robustness of Bayes Rules: Gamma Minimax

Robustness,” Communications in Statistics — Theory and Methods, 8(6), 543-560.

Bickel, P. J., C. A. J. Klaassen, Y. Ritov, and J. A. Wellner (1993): Efficient and

Adaptive Inference in Semiparametric Models. Johns Hopkins University Press.

Blundell, R., L. Pistaferri, and I. Preston (2008): “Consumption Inequality and Partial

Insurance,” American Economic Review, 98(5): 1887-1921.

27



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

Blundell, R., L. Pistaferri, and I. Saporta-Eksten (2016): “Consumption Smoothing and
Family Labor Supply,” American Economic Review, 106(2), 387-435.

Bonhomme, S., and J. M. Robin (2010): “Generalized Nonparametric Deconvolution
with an Application to Earnings Dynamics,” Review of Economic Studies, 77(2), 491
533.

Bonhomme, S.; and Weidner, M. (2018): “Minimizing sensitivity to model misspecifi-

cation,” arXiv preprint arXiv:1807.02161.

Carlton, D. W.; and R. E. Hall (1978): “The Distribution of Permanent Income,” in

Income Distribution and Economic Inequality. New York: Halsted.

Chetty, R., Friedman, J. N., and Rockoff, J. E. (2014): “Measuring the impacts of teach-
ers [: Evaluating bias in teacher value-added estimates,” American Economic Review,

104(9), 2593-2632.

Chetty, R., and N. Hendren (2018): “The Impacts of Neighborhoods on Intergener-
ational Mobility: County-Level Estimates,” Quarterly Journal of Economics, 133(2),
1163-1228.

Christensen, T., and B. Connault (2019): “Counterfactual Sensitivity and Robustness,”

unpublished manuscript.

Cressie, N., and T. R. C. Read (1984): “Multinomial Goodness-of-Fit Tests,” Journal
of the Royal Statistical Society Series B, 46(3), 440-464.

Delaigle, A., P. Hall, and A. Meister (2008): “On Deconvolution with Repeated Mea-
surements,” Annals of Statistics, 36(2), 665—685.

Dobbie, W., and R. G. Fryer Jr (2013): “Getting Beneath the Veil of Effective Schools:
Evidence from New York City,” American Economic Journal: Applied Economics, 5(4),

28-60.

Efron, B. (2012): Large-Scale Inference: Empirical Bayes Methods for Estimation, Test-
ing, and Prediction. Vol. 1. Cambridge University Press.

28



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

Efron, B., and C. Morris (1973): “Stein’s Estimation Rule and its Competitors — An
Empirical Bayes Approach,” Journal of the American Statistical Association, 68(341),
117-130.

Fessler, P., and M. Kasy (2018): “How to Use Economic Theory to Improve Estimators,”

to appear in the Review of Economics and Statistics.

Finkelstein, A., M. Gentzkow, P. Hull, and H. Williams (2017): “Adjusting Risk Ad-
justment — Accounting for Variation in Diagnostic Intensity,” New England Journal of

Medicine, 376, 608—610.

Geweke, J., and M. Keane (2000): “An Empirical Analysis of Earnings Dynamics
Among Men in the PSID: 1968-1989,” Journal of Econometrics, 96(2), 293-356.

Gustafson, P. (2000): “Local Robustness in Bayesian Analysis,” in Robust Bayesian
Analysis (pp. 71-88). Springer, New York, NY.

Guvenen, F., F. Karahan, S. Ozcan, and J. Song (2016): “What Do Data on Millions
of U.S. Workers Reveal about Life-Cycle Earnings Risk?” unpublished manuscript.

Hall, R., and F. Mishkin (1982): “The sensitivity of Consumption to Transitory Income:
Estimates from Panel Data of Households,” Econometrica, 50(2): 261-81.

Hansen, B. E. (2016): “Efficient Shrinkage in Parametric Models,” Journal of Econo-
metrics, 190(1), 115-132.

Hirano, K. (2002): “Semiparametric Bayesian Inference in Autoregressive Panel Data

Models,” Econometrica, 70(2), 781-799.
Huber, P. J., and E. M. Ronchetti (2009): Robust Statistics. Second Edition. Wiley.

Hull, P. (2018): “Estimating Hospital Quality with Quasi-Experimental Data,” unpub-

lished manuscript.

Ignatiadis, N., and S. Wager (2019): “Bias-Aware Confidence Intervals for Empirical
Bayes Analysis,” arXiv preprint arXiv:1902.02774.

James, W., and C. Stein (1961): “Estimation with Quadratic Loss,” in Proc. Fourth
Berkeley Symp. Math. Statist. Prob., 1, 361-379. Univ. of California Press.

29



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Jochmans, K., and Weidner, M. (2018): “Inference on a distribution from noisy draws,”

arXiv preprint arXiv:1803.04991.

Kane, T. J., and Staiger, D. O. (2008): “Estimating Teacher Impacts on Student
Achievement: An Experimental Evaluation”, National Bureau of Economic Research

(No. w14607).

Koenker, R., and 1. Mizera (2014): “Convex Optimization, Shape Constraints, Com-
pound Decisions, and Empirical Bayes Rules,” Journal of the American Statistical As-

sociation, 109(506), 674-685.

Kotlarski, I. (1967): “On Characterizing the Gamma and the Normal Distribution,”
Pacific Journal of Mathematics, 20(1), 69-76.

Li, T., and Q. Vuong (1998): “Nonparametric Estimation of the Measurement Error
Model Using Multiple Indicators,” Journal of Multivariate Analysis, 65(2), 139-165.

Morris, C. N. (1983): “Parametric Empirical Bayes Inference: Theory and Applica-
tions,” Journal of the American Statistical Association, 78(381), 47-55.

Okui, R., and Yanagi, T. (2018): “Kernel Estimation for Panel Data with Heterogeneous
Dynamics,” arXiv preprint arXiv:1802.08825.

Owen, D. B. (1956): “Tables for Computing Bivariate Normal Probabilities,” The An-
nals of Mathematical Statistics, 27(4), 1075-1090.

Powell, J. L. (1994): “Estimation of Semiparametric Models,” Handbook of Economet-
rics, 4, 2443-2521.

Tamer, E. (2010): “Partial Identification in Econometrics,” Annu. Rev. Econ., 2(1),
167-195.

30



APPENDIX

A  Proofs of Lemma 1 and Theorem 1

The following is an extended version of Lemma 1 and Theorem 1 in the main text, which
also covers the case of unbounded functions v4, (y,z), d3(u, ) and 4, (y, ). In addition,

we make explicit again the dependence on § and o, which we suppressed in the main text.

Lemma A1l. In addition to defining J(y,x) = Y(y,x) — Epg,f,.) [w(Y, X)’X :x], let
F(y,7) = 1y, 2)~Ep.g,.) [1(Y, X)|X = 2] and 6(u, x) = 6(u, 2)~Ep(s .. [6(U, X)|X = x].
Suppose that ¢(r) = ¢(r) + v (r — 1), with v > 0, and a function ¢(r) that is four times
continuously differentiable with (1) = 0 and ¢ (r) > 0, for all r € (0,00). Assume
Ep@. 1,0 0s0.(Y; X) =0 and Epgy,, ) [@Zﬂya*(Y, X) JJBJ* (Y,X)’] > 0. Furthermore, assume
that one of the following holds:

(i) v =0, and the functions |vs, (y,2)|, |65(u, z)| and |4, (y,x)| are bounded over the

domain of Y, U, X.
(ii) v >0, and Epgy, ) |7570*(Y, X) — 55(U,X)‘3 <00, and Epsy,,) }1/1570* (Y,X)}3 < 00.

Then, as € — 0 we have

be(7) = [Ep(s.s0n) V5,0, (Y, X)] = By, [05(U, X))

[NIES

1 2 ~ < 1T
+ €2 {anrp(ﬁ,fG*) [75,0* (Y, X) - 5/3(U, X) —A w,ﬁla* <Y7 X)] } + O(e)’

where
A= {Braso) [P (V) D0 VXV ]} By [0 (V2 X) = 5500, X)) 5,04, )]
Theorem A1l. Suppose that the conditions of Lemma A1 hold, and let

Voo, (4,7) =By, [05(U, X) |V =y, X = a]. (A1)
Then the following results hold as € tends to zero.

(i) We have
be(V5.0.) < be(7) + Ofe).
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(ii) If we have b.(y) = be(v5,.) + o(e'/?), then there exist A € RY™Y and a function
w:X = R with Ef, [w(X)] =0 such that

V0. (Y. X) = 75,5, (V. X) + w(X) + X 5, (V. X) + 0p(3.£,.)(1)-

Notice that Theorem Al in the main text is a special case of part (i) of Theorem Al. Part
(ii) of Theorem Al is discussed in Remark 2 of the main text. The proof of Theorem A1l pro-
vides explicit expressions for A and w(X) that appear in part (ii), namely X is the same as in
the last line of Lemma A1, and w(z) = Ep(ss,.) [ 150, (Y: X) = 05(U, X) = XN 5, (Y, X)| X =
2] =Ep 1) V8,0, (V. X) = 05U, X) = XN 5, (Y, X)].

A.1 Proof of Lemma A1l (containing Lemma 1 as a special case)

We first introduce some additional notation and establish some helpful intermediate results.
We write B and S for the set of possible values of the parameters § and o, respectively.
Lemma Al is for given values € B and o, € S, and given functions v4,_ (y, ), ds(u, ),
V5,.(y,7), and those values and functions are also taken as given in following two inter-
mediate lemmas. Remember also that I'. depends on the function ¢ : [0,00) — R U {o0},
which is assumed to be strictly convex in Lemma Al. We define the corresponding function
p:R—RU{oco} by

o(t) = { argmax,, [rt— ¢(r)] if this i‘argmax” exists, (A2)

00 otherwise.

For t = ¢'(r) we have p(t) = r, that is, for those values of ¢ the function p(t) is simply
the inverse function of the first derivative ¢'. For t < inf,~o¢'(r) we have p(t) = 0, and

for ¢ > sup,.,¢'(r) the value of p(t) is defined to be co. The following lemma provides a

characterization of the e-worst-case bias b.(y) that was defined in (15).
Lemma A2. Let e > 0. Assume that ¢(r) is strictly convex with ¢(1) = 0. Suppose that for
se€{—1,1} and x € X there exists )‘(61,37*(3’ z) € R, A(B%)U*(s) > 0, /\g?,*(s) € RY™Y sych that
tg.o.(u,x|s) = )\(ﬁl’i*(s, x)+s )\/(827)0*(8) hﬂ,a* (9s(u, ), ) — da(u, a:)}+/\g3()71(3) Vg, (95(u, ), 7))
satisfies
Ve X: Epgy,,) {p[t@(,*(U,XLS)] ‘X = m} =1,
Epg 1.0 {0 ts0. (U, X|s)l} = €,
Ep(s.fo) { G (Y, X) plls. (U, X]s)] } = 0. (A3)

32



Then the mazimizer (s = +1) and minimizer (s = —1) of Epg t,) [15.0. (Y, X) — 65(U, X)]

over fo € I'c are given by

fo(ulz) = fo. () p [t (u,2]5)],

and for the worst-case absolute bias we therefore have

(1) = max {5 Epis s [0, (V:X) = 850 X)] plts,. (U X]s)]] }-

The proof of Lemma A2 is given in Section S2. Notice that for ¢(r) = r[log(r) — 1], when
d(fo, f».) is the Kullback-Leibler divergence, we have p(t) = exp(t), and the worst case
densities fés) (u|z) in Lemma A2 are exponentially tilted versions of the reference density
fo.(u]z). Lemma A2 shows that, more generally, the required “tilting function” is given by
p(t).

We impose ¢(1) = 0 throughout the paper to guarantee that d(fo, f,.) > 0 (by an
application of Jensen’s inequality). In addition, we now impose the normalization ¢'(1) = 0.
This is without loss of generality, because we can always redefine ¢(r) — ¢(r) — (r—1) ¢'(1),
which has no effect on d( fy, f,,) and guarantees ¢'(1) = 0 for the redefined function.

The goal of the following lemma is to establish Taylor expansions of p(t) and ¢(p(t))
around ¢ = 0 of the form
12

p(t) =1+ —— + " Ru(t), ¢(p(t)) =

t
¢"(1)
where the remainder terms are defined by

Ry(t) -:{ t2[p(t) —1—t/¢"(1)]  ift#0,
Y ¢"(1)/{2[¢" (D]} if ¢ =0,

Ryt = 1 1000) =226 )] e L0,
2(1) = ‘
—¢"(1)/{3[¢"(1)]°} if t = 0.
Notice that the expansions (A4) are trivially true by definition of R;(t) and Rs(t), but
the following lemma provides bounds on R;(t) and Ry(t), which are useful for the proof of

Lemma Al afterwards.

Lemma A3. For all v > 0 let ¢(r) = ¢(r) +v(r —1)?, for v > 0, and a function ¢
[0,00) — R U {oc} that is four times continuously differentiable with ¢(1) = 5/(1) =0 and

—I

¢ (r) >0, for all r € (0,00). The lemma has two parts:
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(i) Assume in addition that v = 0. Then, there exist constants ¢, > 0, ca > 0 and n > 0

such that for all t € [—n,n] we have
|R1(t)| S C1, and |R2(t)| S Co, (A5)
and the functions Ry(t) and Ry(t) are continuous within [—n,n).

(11) Assume in addition that v > 0. Then, there exist constants ¢, > 0 and co > 0 such
that the two inequalities in (A5) hold for all t € R, and the functions Ry(t) and Ry(t)

are everywhere continuous.

The proof of Lemma A3 is given in Section S2.

Comment: Part (i) and part (ii) of Lemma A3 give the same approximations of p(t) and
o(p(t)), but the difference is that in part (i) the result only holds locally in a neighborhood
of t = 0, while in part (ii) the inequalities are established globally for all ¢ € R. Notice that
the result of part (ii) cannot hold under the assumptions of part (i) only, because p(t) is
equal to infinity for all t > t..,, Where to, = SUD,(g.0) ¢ (1) can be finite. The regularization
o(r) = ¢(r) + v (r — 1)%, with v > 0, guarantees that p(t) is finite and well-defined for all
t € R. This property of the regularized ¢(r) is key whenever the moment functions ~, 4, ¥

are unbounded (i.e., for case (ii) of the assumptions of Lemma A1).

Using the intermediate Lemmas A2 and A3 we can now show Lemma A1, which contains

Lemma 1 as a special case.

Proof of Lemma A1l. # Additional notation and definitions: In this proof we again drop

the arguments  and o, everywhere for ease notation, and we write E, and Var, for ex-
pectations and variances under the reference density P(5, f,,). We also continue to use
the normalization ¢'(1) = 0, which is without loss of generality, as explained above. Let
A\ € RY¥m¥ he as defined in the statement of the lemma, and furthermore define

~ ~ 1/2

Var, |3(Y, X) = 3(U, X) — X (Y, X)
2¢"(1)

For s € {—1,+1} and € > 0, let
tu, x|s) = A (s,2) + s X2 (s) [y(g(u, 2), 2) = 6(u, 2)] + AP () Y(g(u, ), ),
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with

AV (s,2) = —€"2 sk Epy,) [v(Y, X) = 0(U, X) = N (Y, X) | X = ]

e L0 (5,2) = 5 A () Bpia gy [1(Y, X) = 8(U, X) = X (¥, X) | X = 2] },

AP (s) = 2671+ AP (s),
AV (s) = =25k N+ e [)\(3) (s) — s A2 (s) )\} .

rem rem

rem

Here, we are explicit about the leading order terms (of order €/ %), but the higher order terms
(of order €) contain the coefficients A} (s) € R, A?) (s) € R, and A?) (s) € R¥™%  which

rem rem rem

will only be specified in (A8) below. We can rewrite
t(u, z|s) = 2ty (u, 2|8) + € trem(u, 7|5), (A6)
with

toy(usls) = sn7" [Fg(u, ). ) = 3u,w) = N Glglu,2),x)]
brem(1,2]5) = Al (5,2) + AZ0(8) 510 (1, 2]3) + AT () (g u, ), ).

Here, t(u, z|s), A\ (s, z), \?(s), etc, also depend on €, but we do not make this dependence
explicit in our notation. Our goal is to apply Lemma A2 with ¢5,, (u,x|s) in the lemma
equal to t(u, z|s) as defined here. However, in order to apply that lemma we need to satisfy

the conditions (A3), which in current notation read

Eop [H(UX|9)|X =2] =1, E.o{p[tU, X|s)]} =, B. {u:(v,X) p[(U, X]s)]} = 0.
(A7)

The definition of t(u, x|s) above is already designed to satisfy (A7) to leading order in €, but
we still need to find A1) (s, z), A?) (s), A®), (s) such that (A7) holds exactly. Plugging the ex-

rem rem rem

pansions (A4) into (A7), using the definition of ¢(u, z|s), as well as E, [t()(U, X|s)| X = z| =
0, E, {[t©)(U, X|s)]*} =2¢"(1), and E,¢(Y, X) t(0)(U, X|s) = 0, we obtain

€ trem (U, X|s) 9 .

E. {gb"—(l) + [t(U, X1s)]” By [t(U, X|s)] | X = } 0,
2 63/2 trem(U7 X|S> t(O)(U7 X|S> + € [trem(Uu X|S>]2 3 .

E. { S (0 X19) Ba 1U, X[5)] | =0
€¢(Ya X) trem(UuX’3> 2 o

g, { LR X 4ty x) o X R 10 X9 | =
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Those conditions can be rewritten as follows

MY (s,2) = —¢" (1) E, { [ty (U, X|5) + €/ *trem(U, X|s)}2 Ry [t(U, X|s)] ‘X = g;} ,

1
A (6) = =g B { [ U X18) + 20U, X15))° R tUX]5)] 4

AD) (s) = —¢"(1) {E. (Y, X) (Y, X)]}
xE*{wOCX)[QmﬂﬁXb)+eV%mm@LXbﬂ2RlH&LXBH}.
(A8)

el/? [trem(U,X|s)]2}
2¢//<1) 9

Thus, as € — 0 we have

1 Var, [ﬁ(Y, X) = 3(U, X) — N 9(Y, X) ’ X = :1:]
Aah(s,2) = =2[¢" (1)) Ry(0)

rem

+ (’)(61/2),

Var, [a(y, X) —8(U, X) — N O(Y, X)}
NL(5) = —5 - B [1i0 (U, XI5)]° Raf0) + O(?),

A (s) = =" (1) {E. [0, X) (¥, X)) B {0, X) [ty (U, X[5)]*} Ra(0) + O(2)
(49)

Notice that A1) (s,2), A2 (s5), A2 (s) also appear implicitly on the right-hand sides of the
equations (A8), because tem(u, z|s) depends on those parameters, and (A8) is therefore a
system of equations for A1) (s,z), A2 (5), A®) (5). Our assumptions guarantee that the

system (A8) has a solution for sufficiently small €, as will be explained below for the two

different cases distinguished in the lemma.

# Proof for case (i): The assumptions for this case guarantee that t(u,z|s) is uniformly

bounded over v and x. Part (i) of Lemma A3 guarantees existence of ¢; >0, ¢c; > 0,17 >0
such that for all ¢ € [—n,n] we have |R;(t)| < ¢; and |Ra(t)| < ¢o. For sufficiently small e
we have t(u,x|s) € [-n,n| for all u and x, implying that as ¢ — 0 there exists a solution of
(A8) that satisfies (A9), which in particular implies
sup AV (s, 2)| = O(1) A2 (s) = O(1), A9 (5) = O(1), (A10)
TEX
and by construction the conditions (A7) are satisfied for that solution. Thus, for sufficiently
small € the t(u,z|s) defined above satisfies the conditions of Lemma A2. Applying that
lemma we thus obtain that, for sufficiently small €, we have

be(7) = max {sE. |[1(Y,X) - 8, X)] plt(U, X]5)]| } .

se{-1,1}
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Again applying the expansion for p(t) in (A4), and part (i) of Lemma A3 we thus obtain
that

be(y) = max {sE.[y(Y,X) - (U, X)]}

se{—1,1}

42 { ¢”2(1) Var, ["?(Y, X) = 3(U, X) — N oY, X)] }1/2 +O(e)

_ 1/2
= B, [y(Y, X) — 6(U, X)]| + ¢'/2 { Var, [ (Y, X) = 0(U, X) = N (Y, X)] } +0O(e).

(A11)

2
¢"(1)
This is what we wanted to show.

# Proof for case (ii): In this case, according to part (ii) of Lemma A3 the functions R;(t)

and Rsy(t) are continuous and bounded over all ¢ € R. In addition, we have assumed that
E, 7Y, X) = 0(U,X)> < oo, and E, (Y, X)” < oo, which guarantees that all of the
expectations in (A8) are finite. We therefore again conclude that for small € the equations
(A8) have a solution such that (A10) holds. The remainder of the proof is equivalent to the
proof of part (i), that is, we again apply Lemma A2 and Lemma A3 to obtain (A11). &

A.2 Proof of Theorem A1l

# Part (i): We first want to show that be(v5,.) < be(y) + O(e). By applying Lemma Al to
both v, (y,z) and vg . (y, ) = E,,  [03(U, X)|Y =y, X = ] we obtain, as ¢ — 0,

be(7) = [Eps, 500 150, (Vs X)] = By, [5(U, X))
1 2 ~ ~ ,~ 21 2
+ €2 {¢/l(1)EP Bifos) |:<7570*<Y7 X) - 55(U7 X) — A 1/}5,0*(Y7X)> :| } + 0(6)7
2

Brnn (0500 X) = 050 2))] |+ 000 (A12)

N|=

¢"(1)

where

A= ABr o) [T (V) D0 (VXY ] Y By [0, (V:X) = 85(U. X)) 5, (v X))

Here, to simplify b.(y") we used that by the law of iterated expectations we have that
Ep@.f V50, (Vs X)] — Ey, [03(U, X)] = 0 (that is, the first term in bc(7) is not present in
be(7")) and also Ep(s 4, ) [(vgﬂ*(Y, X) —63(U, X)) 1;5,0* (Y, X)} = 0 (that is, the vector \ is
equal to zero for 7). We also use that under the reference model 75, (Y, X) — gg(U ,X) —

by @ B’J*(Y, X) has zero mean, implying that its variance equals its second moment.
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For any 7. (y, @) with Eps, ) [ys 0. (Y, X)] =Ey, [55(U, X)] # 0 we have b.(17) < b,(7)
for sufficiently small €, and the statement of the theorem thus holds in that case. In the
following we therefore consider the case that Epg y, )[4, (Y, X)| = Ey, [05(U, X)] = 0. The

expression for b.(y) then simplifies to

[

{d),,imﬂap(ﬁ,fm [(%,0* (Y, X) = 05(U, X) — Nty (Y, X)ﬂ } + 0.

Again applying the law of iterated expectations we find that

be(y) = €2

Ep(ago.) [Tper. (Y X) = 35U, X) = X 0, (V. 20| [15,.(Y, X) = 65U, )]
= Ep(s.g,.) [=03(U, X)) [15,0. (Y. X) = 05(U, X)]
=Ep(s.fo.) V0. (V2 X) = 05U, X)] [v5,. (V. X) = 65(U, X)]
= Eps so) [Vho. (V: X) = 35(U, X))

Using this we obtain

~ ~ 2
Er(s) { [T (V. X) = 35U, X) = N g0, (Y, X)| = 15, (V. X) = 0,(U. )] |
. B . - )
=Eppso) |T.0. (Y, X) = 05(U, X) = N0 (Vs X) |+ Epa . (Voo (Y, X) = 65(U, X)]
—2 EP(vio*) |:;y5,0* (K X) - gﬂ(U’ X) -\ {Lﬁya* (Y7 X)] [75,0* (Y7 X) - 5ﬁ<U7 X)}

2 2
—Ep.to) 150, (V. X) = 05U, X)]"
(A13)

=Er(ps,.) [T, (V:X) = 05(U.X) = Xty (V. X))

~ ~ 2
Since Ep(s ..y { [T (Y X) = 5o(U, X) = N 03,V X)] = [15,.(¥:X) = 85U, )]} 20

we thus conclude that

- ~ ~ 2 2
Eps.f,.) [%,a*(x X) = 03U, X) = Ny, (Y, X)} > Ep@,s,.) Voo (Y- X) — 05U, X)]7,

and therefore we obtain that
be(Vo.) < be(7) + OCe).

This is the first statement of the theorem. This concludes the proof of part (i) of Theorem A1,

of which Theorem 1 in the main text is a special case.

# Part (ii): Next, let 74, (y,7) be such that

be(7) = be(V5.4.) + 0(€"?). (A14)



Then, the bias expansions in (A12) are still valid, and using those we conclude that we must

have
Eps. o750, (Y, X) = 65(U, X)] = o(1), (A15)

because otherwise that term dominates all other terms in (A14). We also conclude that we

must have
~ ~ it 2
Brng) | (oo (V) = Ba0.0) = X Ty, (110
2
<Ep@.f..) [(w?,o* (Y, X) — 65(U, X)) ] +o(1)

for (A14) to hold. Furthermore, the calculation in (A13) is still valid here, and the inequality

in the last display can therefore equivalently be rewritten as

B g0 { [T (0 X) = Ba(U, X) = XG0 (¥, X)] = [,V X) = 050, X)] } = 0(0),

where we write = instead of <, because the left hand side expression is non-negative. Ap-

plying Markov’s inequality we thus find that
Vo (Vo X) = 05(U, X) = N pg 5 (Y. X) = 75, (Y, X) = 05(U, X) + 0p(s,1,.)(1)-
Defining

w(x) ==Eppr,.) V50, (Y- X) = 05U, X) = XNpg, (Y, X)|X = 2]

—Ep@to.) V5,0, (Vo X) = 05(U, X) = X g, (Y, X)],
we therefore obtain

Vo0, (Yo X) =750 (V, X) + w(X) + N vy, (Y, X)
+Epi.s..) [16.0. (Y, X) = 05U, X) — N by, (Y, X)] + ops,s,.)(1)
= Y50 (Y, X) + w(X) + X ¢, (V, X) + 0ps.s,(1),

where in the last step we have used (A15) and Epgsy,,)[¢5,, (Y, X)] = 0. Finally, notice

that by construction we have

Efx [W(X)] =0.
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ONLINE APPENDIX — NOT FOR PUBLICATION

S1 Proof of Theorem 2

We are going to show Theorem 2, which we restate here.

Theorem. Let v, asin (Al). Then, for all e >0,

be(¥5.) < 2 inf be(3,.).

The following lemma is useful for the proof of this theorem (Theorem 2 in the main text).

Lemma S1. Lete >0, 5 € B, 0, €85, and let ( : U x X — R. Then we have

sup ‘Ep(ﬁvfo) {Epﬁ,a* [C(U, X)]Y, X]H < sup ‘EP(@fO) [<(U, X)H .
fOEFe fOEFe

The proof of this lemma is given in Section S2. Notice that both Theorem 2 and Lemma S1
require that ¢(r) is convex with ¢(1) = 0, but they do not require ¢"”(1) > 0. For example,

o(r) = |r — 1|/2 is allowed here, which gives the total variation distance for d( fo, fs.)-

Proof of Theorem 2. By definition we have

be(,)/) = SU%) ‘EP(/@,fO)[’Yﬁ,U* (K X) - 55(U7X)]| 5

fo€

be(7P> = sup ‘EP(B,fo)['Yg,a* (Y7 X) - 55(U7 X)H :

fOEFE

By Writing ’)/ﬂp,a* (Y> X) - 55((]7 X) = 78,04 (K X) o 5/3(Ua X) - [7,6’,0* (Y7 X) - ’yﬁp,o* (K X):| we

obtain

be (P)/P) = Sug }EP(B,fo) [75,0* (Y7 X) - 55<U7 X)} - Ep(ﬁyfo) [76,0* <Y> X) - W/g,a* (Y> X)} ‘

foe
< be(y) + sup [Eps.0) [V, (Vs X) = 7f 0. (V; X)]|
o€l
= be(’)/) + fSlgz ‘Ep(ﬂfo) {EPB,U* [75,0* (gﬁ(U7 X)? X) - 5,3(U7 X) | Yv X} }‘
o€l

< be(7) + sup Eps.10) V5.0, (V2 X) = 05(U, X)]| = 2be(v),
0 €

where in the second-to-last step we have used Lemma S1 with ((u,z) = v4,, (95(u, z), z) —
05(u, z). We have thus shown that b.(y") < 2b(7) holds for any function 74, (y,z), which
implies that

be(7") < 2 inf be().



S2 Proofs of Technical Lemmas

Proof of Lemma A2. In the following we assume that f, (u|x)fx(xz) > 0 for all (u,x) in
the joint domain of (U, X'). This is without loss of generality, because we can define the joint
domain of (U, X') such that this is the case. With a slight abuse of notation we continue to
write U x X for the joint domain, even though this need not be a product set.
To account for the absolute value in the definition of b.(y) in (15) we let
be(,5) = sp {5 Bpapy [15.0. (Y, X) = 05(U, X)]

for s € {—1,1}. We then have b.(y) = max,c(_11}bc(7,5). In the following we drop
the arguments  and o, everywhere, that is, we simply write g(u,z), v(y,z), d(u,x),
fuolulz), ¥(y, z), AV (s,2), AP (s), A®(s) instead of gs(u, z), Yp.0. (U, ), 05(u, ), fo.(ulm),
V50, (Y,7) AL (s), A2 (s), )\,(83()7(3) The optimal fo(u|z) in the definition of b.(, s) solves,

’ ﬁ,U* 570'*
for u,x € U x X almost surely under the reference distribution,

folulz; s) = argmax {S N (g(u, x), ) = 0(u, )] fx () fo — (s, 2) fx (@) fo
fo
filulz)

where j1;(s,7) € R, py(s) > 0, ps(s) € RIM¥ are Lagrange multipliers, which we choose to

—uz<s>¢( ) Fu(ule) fx(2) — () (g, ). ) fx (@) fo}, (s1)

reparameterize as follows

AW (s, z) 1 B _)\(3)(5)
/\(2)(8) ’ /}“2(8) - )\(2)(8) ’ MS(S) - )\(2) (8) :

Those (reparameterized) Lagrange multipliers need to be chosen such that the constraints

/ Toula: s) f (@) duda — 1,
UXX

/LIXX¢< fo(ul|x) ) fe(ulz) fx () dud :

V(g(u,x),z) folulw; s) fx(x) dudz =0 (52)

i s,7) = -

UxX
are satisfied. We need A\ (s) > 0 because the second constraint here is actually an inequality
constraint (< €). Our assumptions guarantee that f.(ulx) > 0 and fx(z) > 0. We can
therefore rewrite (S1) as follows,

% = ar%ir(l)ax {rt(u,z|s) — ¢(r)},



where r = fy fi(u|x), the objective function was multiplied with f,, (u|z)fx(x) (which does
not change the value of the argmax), and t(u, z|s) = tg,, (u, z|s) is defined in the statement
of the lemma. Comparing the last display with the definition of p(t) in (A2) we find that if
p[t(u, x|s)] < oo, then

folule; s) = fu(ulz) plt(u, z|s)].

The condition p [t(u, x|s)] < oo is implicitly imposed in the statement of the lemma, because
otherwise we could not have Epa s, .)p[tse, (U, X|s)] = 1. Using the result in the last
display we find that the constraints (S2) are exactly the conditions (A3) imposed in the
lemma. Under the conditions of the lemma we therefore have

bé(% S) = Ssup {SEP(ﬂsz) [V(Ya X) - (5(U> X)]}

fOEFG

[ btotu).0) — 60.0) Fulsss) fx (o) dude
UxX
= 5 Epag,.) { 1Y, X) = 3(U.X)] p[HU, X]5)]}
and from b(v) = maxseq_1,1y be(7, s) we thus obtain the statement of the lemma. 1

Proof of Lemma A3. # Part (i): For v = 0 we have ¢ = ¢. Our assumptions imply that
there exists 7 > 0 such that ¢'(r), ¢"(r), ¢"'(r) and ¢""(r) are all uniformly bounded over
r € [1—7,1+7]. We can choose > 0 such that [p(—n), p(n)] C [1 —7,147]. The conjugate
of the convex function ¢ : R — R is given by

¢.(t) = max [rt — ¢(r)] = p(t) t — $(p(t)). (S3)

r>0

We have p(t) = ¢.(t), which is the inverse function of ¢'(r); that is, ¢'(p(t)) = t. We can

*

express all derivatives of ¢, in terms of derivatives of ¢, for example, ¢/ (t) = 1/¢"(p(t)) and

¢, (t) = —¢"(p(1))/["(p(1))]°. A Taylor expansion of p(t) = ¢,(t) around ¢t = 0 = (1)

reads

t
p(t) =1+ —— +t* Ri(t),

(b//(l)
where by the mean-value formula for the remainder term we have
1 1 ¢///<7ﬂ)
Rt < sup [0V <= sup |
2 velna 2 refi—r,147] (6" (r)]?
—ie1<00



Similarly, a Taylor expansion of ¢(p(t)) =t p(t) — ¢,(t) around ¢t = 0 reads

tQ

_ 3
¢(,O<t>) - 2¢//<1) +1 RZ(t)?
where again by the mean-value formula for the remainder we have
1 2¢"(r) | 3¢'(M)[¢"(r)]>  ¢'(r)e™(r)
R — — — .
R e I N

-
—=:c2 <00

Continuity of R;(t) and Ry(t) in a neighborhood of ¢ = 0 is also guaranteed by ¢'(r) being

four times continuously differentiable in neighborhood around r = 1. This concludes the

proof of part (i).

# Part (ii): For v > 0 the function ¢(r) = ¢(r) + v (r — 1)? still satisfies all the assumptions
of part (i) of the lemma, that is, we can apply part (i) to find that there exists ¢; > 0, ¢, > 0
and 7 > 0 such that for all ¢ € [—n, ] we have

|Ri(t)] < &t?, and |Ry(t)| < &t (S4)

What is left to show here is that there exists constant ¢; > 0 and ¢ > 0 such that (A5) also
holds for ¢t < —n and for ¢t > .

We have ¢/ (r) = ¢ (r)+v(r —1). Plugging in r = p(t) we have ¢(p(t)) = ¢, and therefore
t =& (p(t)) +v[p(t) — 1]. Our assumptions imply that @ (p(t)) > 0 for t > 0 and & (p(t)) < 0
for t < 0. We therefore find that

=3 0m)

14

Iplt) 1] = <

Using (S4) and (S5), and choosing ¢; = max {cy, [1/v + 1/¢"(1)]/n}, we obtain

’p(t) -

‘ S Clt27

t
¢"(1)
for all £ € R. This is the first inequality that we wanted to show.

Using again the convex conjugate defined in (S3) we have

¢(p(t)) = tp(t) = ¢.() =t p(t) — max [rt — (r)] < t[p(t) = 1] = |t] [p(t) — 1] ,

r>0

where in the second to last step we used that » = 1 is one possible choice for r > 0, and we

have ¢(1) = 0, and in the last step we used that sign[p(t) — 1] = sign(¢). Our assumptions



imply that ¢(r) > 0, that is, |¢(r)| = ¢(r). The result in the last display together with (S5)
therefore give

2

(o) < 2,

14

for all ¢+ € R. Using this and (S4), and choosing ¢; = max {¢cy, [1/v +1/{2¢"(1)}]/n}, we
thus obtain
t? 5
t) — ——| < ot
¢(p( )) 2¢//<1) > Gty
for all ¢ € R, which is the second inequality that we wanted to show. Continuity of R;(t)

and Ry(t) in R is also guaranteed by ¢'(r) being four times continuously differentiable in

€ (0,00). This concludes the proof of part (ii). m

Proof of Lemma S1. Let f; € I'.. Remember the definition of the posterior density
Ppo.(uy,x) in (12). Define

Toul) := Ep(s s [ps. (1] Y, 2)] = /M P (| 955, 2), 7) foldlz) di.

Then, for any z € X we have fo(ulz) > 0, for all v € U, and fuﬁ)(um)du = 1; that is,

ﬁ)(u\x) is a probability density over /. Furthermore, by construction we have
EP(B,fo) {EPB,U* [C(U> X) ‘ Y, X]} = Ep(g,ﬁ)) [C(Ua X)] . (SG)
We also find that

Eps, V50 (V. X)) = Eps o) {Eps, [V50,(V: X) Y, X]} =Eps ) [¥5,. (Y, X)] = 0.
(S7)

Furthermore, we have

folulx)
d(fo, f».) // (fa (u[2) )fg*(u|x)fx(x)dudx

:/ /qb (fu PB.o. ngcﬂcfé;i);;ﬁ) fo(a|) da) £ () (e) duda

[ [o( ] 0 Ko a0yt g (u] ) (o)

fo. (@) ) pso.(u] gs(a, ), )
fo.(ulx) ’

where we defined

Kz, (0lu,z) =



Using the definition of ps,. (u |y, x) one can verify that Kz, (t|u,z) > 0, for all & € U, and

Ju Ks o (@, v)dit = EP(B’“}ZE%TSMYJ)] = 1, almost surely (under P(f, f,,)) for u € U and

x € X. Thus, Kz, (t|u,x) is a probability density over @ € U, for all u,z. Also using that

¢(r) is convex, we can therefore apply Jensen’s inequality to obtain

wser< [ [ [0 (fO ifz) )Kﬁ,a*(ﬂ\u,@")d&fa*(UIw)fx(fﬂ)dudﬂf

// (f{o l’f|rx ) [/ Jo.(u]z) Ky o, (ulu, a:)dule( ) dii dz

— o (@ 2)
=d(fo, fo.) <€ (S8)

Because f, satisfies (S7) and (S8) we thus have fy € I'.. We have thus shown that for every
fo € T'. there exists ]70 € I'c such that (S6) holds. Let I, be the set of all such fo obtained
for an fy € I'.. Since fe C I'. we find that

sup |]EP (B,fo) {Epﬁ,g* [C(Uv X) | Y7 X]}‘ = §11]3 ‘Ep(ﬁ,fo) [C(Ua X)]’ < sup |EP B.fo) [C(Ua X)H :
fo€le foeT. fo€le

S3 Robustness in prediction

Under squared loss, we wish to find a predictor 73,3(}/;7 X;), for some function =y, such that
the worst-case mean squared prediction error is minimum. That is, our goal is to minimize
ee(7) = sup Epgp) [(05(U, X) = 75,4, (Y. X))?]

fo€Te
with respect to . Similarly to our measure of worst-case bias, here the mean squared
prediction error is asymptotic, hence well-suited for settings with a large cross-section (e.g.,
settings with many teachers).

We first state the following local result, which is a direct generalization of Lemma 1.

Lemma S2. In addition to defining ¥(y, z) = 1(y, z) — E, [W(Y, X)|X = 2], let F(y,2) =
v(y,z) — E. [y(Y, X)|X = 2] and o(u,x) = 6(u,z) — B, [6(U,X)|X =x]|. Suppose that
o(r) = é(r) + v (r —1)%, with v > 0, and a function ¢(r) that is four times continuously
differentiable with ¢(1) = 0 and q_b”(r) >0, forallr € (0,00). Assume Epg f, 15, (Y,X) =
0 andEpegy, ) [@6’0*(}/, X)iﬁ,o*(Y,X)’] > 0. Furthermore, assume that one of the following
holds:



(i) v =0, and the functions |75’g* (y,x)‘, |0p(u, z)| and Wﬁp*(y,xﬂ are bounded over the
domain of Y, U, X.
(ii) v >0, and Epes. g,y [15.0. (Y, X) = 35U, X)|" < 00, and Eps. s,y [g,. (Y, X)|* < oo.
Then, as € — 0 we have

e(7) =Epg 1..) [(VB,U*(Yy X) = d5(U, X))Q}

2

‘|‘ E% <¢,,—(1)Varp(/37fa*){ (’7/370*(5/, X) — 55(U, X))2

NI

2
Epgas) {(mm X) = 85U, X))

]l o0
where

A= {3 10 [T, X0 D50. VXV |} B gy [ (i, OV, X) =050, X)) 5,7, X)]

Let 4 as in (16), so ygﬁ(Yi, X;) is the empirical Bayes estimate of d5(U;, X;). Under cor-
rect specification of the reference density f,, the posterior mean VE,U* (Y;, X;) is the minimum
mean squared error predictor of d5(U;, X;) under squared loss. Under misspecification of f,,,
Lemma S2 implies that the leading term of the worst-case mean squared error is minimized
at v = ~". Moreover, the lemma also implies the stronger result that the first-order term in
the expansion of the worst-case mean squared prediction error (which is a multiple of e%) is

also minimized at 7%, provided the following condition holds almost surely:
By, [05(U.X) =75, (Y. X))’ |V, X] = 0. (89)

While (S9) is restrictive in general, it is satisfied in the fixed-effects model (1), when the
researcher wishes to predict the quality «; of teacher i. Indeed, in that case (S9) is equivalent
to the posterior skewness of «; being zero, when using the normal reference model as the
prior. Since the normal distribution is symmetric, (S9) is satisfied, and the empirical Bayes
estimator fyg’a(Y}, X;) =7, +p(Y; — fi,) has minimum worst-case mean squared prediction
error, up to second-order terms in €3,

We also have a fixed-¢ bound in the spirit of Theorem 2.

Theorem S1. Let vy, as in (Al). Then, for all e >0,

€e (W/g,a*) S 4 H;f Ce (75,0’*)'



Theorem S1 shows that EB estimators are optimal, up to a factor of at most four, in
terms of worst-case mean squared prediction error. In model (1), when €1, ..., &5 are normally
distributed and ay, ..., oy are parameters belonging to an L? ball, empirical Bayes James-
Stein estimators are known to be optimal in terms of asymptotic minimax mean squared
error since they achieve the Pinsker bound (see Wasserman, 2006, Chapter 7). Here, by
contrast, we consider a worst case computed in a set of unrestricted, possibly non-normal

joint distributions of a, ey, ..., €.

Proof of Lemma S2. This statement of the lemma is obtained from Lemma Al by re-
placing (75, (Y, X) = 65(U, X)) by (v4.. (Y. X) — d5(U, X))Q. The proof is obtained by the

same replacement from the proof of Lemma Al. g

Proof of Theorem S1. By definition we have

ee(v) = sup Epg ) [(05(U, X) = 75, (Y, X))],

fOeFe

ec(7") = sup Ep(s f) [(05(U, X) — 75, (Y, X))?].

fOE €
Using that (a — b)2 < 2(a? + b?) with a = 05(U, X) — Vg0 (V,X) and b = 'YBP,U*(KX) B
V5.0, (Y, X) we obtain

) <2 sup [Bro s [ (03(0:X) = 43,0 X))] + By [ (15 V:X) = 75, (0. X)) ]
< 2e.(y) + 2 sup ‘Epﬁfﬂ [(760 (Y, X) — yﬂg (Y, X)) }

OEE

We furthermore have

sup ‘Epﬁfo [(’Yﬂo (Y, X) — 'nga*(Y’X))Z”

OGFE

= sup |Epg g { [Epﬁ,o* (76,0* (Y, X) - 55([]7 X)| Y’XHQH
fOEFe
2
< sup Eps,10) {Epg,a* [(75,0*(3@){) —05(U, X)) |Y,X] }‘
< sup |Epeg,g) [(76,0* (Y, X) - 55(U’X))2} ‘ = e(7),
fOEFe

where in the first step we used the definition of vg’g* (y,x), in the second step we applied
the Cauchy-Schwarz inequality, and in the last line we used Lemma S1 and the definition of

ec(y). Combining the results of the last two displays we obtain that

65(’)/570*) <4 iglf Ce ('76,0*)'



S4 Extensions

In this section of the appendix we consider eight issues in turn: how to compute PAE
when they are not available in closed form, how to estimate quantities of interest that
are nonlinear in fy, whether the constant two appearing in Theorem 2 can be improved
upon, how our framework can account for multi-dimensional parameters of interest, how to
construct confidence intervals, how to perform specification tests, how to derive the form
of minimum-MSE estimators, and how to interpret PAE as Bayesian estimators in models

where U has finite support.

S4.1 Computation

~P
0 can be computed in closed form in simple models, such as all the examples in this paper.

However, in complex models such as structural models, the likelihood function or posterior
density may not be available in closed form. A simple approach in such cases is to proceed
by simulation.

Specifically, for all i = 1, ...,n we first draw UZ-(S), s =1,...,.S according to f5(-|X;), and
compute Y;(S) = gB(UZ-(S),XZ-). Then, we regress 5B(Ui(s),Xi) on Y;(s), for s = 1,...,5S. Any
nonparametric/machine learning regression estimator can be used for this purpose. This

procedure requires virtually no additional coding given simulation codes for outcomes and

counterfactuals.

S4.2 Nonlinear effects

The researcher may be interested in a nonlinear function of fy. Specifically, here we abstract
from covariates X and focus on § = ¢5(fo), for some functional 4. As an example, in the
fixed-effects model (1), § may be the Gini coefficient of . The analysis in the linear case

applies verbatim to this case, since under regularity conditions

05(fo) = 05(fr.) + Vps(fo ) fo = for] + 0l€?), (S10)

which is linear in fo, up to smaller-order terms. Here Vi, denotes the gradient of ¢4(f)
with respect to f. In Appendix S5 we report model-based and posterior estimates of Gini

coefficients based on simulated data.



S4.3 The constant in Theorem 2

The binary choice model that we describe in Section S5 is helpful to see that the global bound
in Theorem 2, which depends on the constant two, cannot be improved upon in general. To
see this, consider the binary choice model (S13) of Section S5 with three simplifications: X
consists of a single value, 8 is known, and o, = 1 is fixed. We assume that 2/8 > X'f.

~M ~P
In this example, for € large enough the worst-case biases of 6 and o are
Biasy = max(®(2'3),1 — ®(2'5)),
and

max(®(z'f) — ¢(X'5),1 — &(2'B))
1 —®(X'3) 7

Biasp =

respectively.
From this, we first see that the bias of the posterior estimator is smaller than twice that

of the model-based estimator. In addition, taking X’ = 0 and 2/ = 7, we have, for small

m,
Biase _ 21— (1) 10,
Biasy d(n)

This shows that two is indeed the smallest possible constant in Theorem 2.

S4.4 Multi-dimensional average effects

In the main text, we considered the case where the target parameter ¢ in (10) is scalar.
However, our results can be extended to multi-dimensional parameters. The definition of
worst-case bias in (15) is then modified to

be(7) = sup ||Epgs. s (Y, X) = 6(U, X))

fOEFe

I

where | - || is some norm over the vector space in which v(Y, X') and (U, X) take values.

If [|-[|. denotes the corresponding dual norm, then we can rewrite b () = sup, .1 bc(v, v),

where b.(y,v) = supser. [Epes.g0)[0"7(Y, X) — v'6(U, X)]|. Our minimum-bias results for
PAE for scalar § then apply to b.(7,v) for every given vector v, and the minimum-bias
property is maintained after taking the supremum over the set of vectors v with [|v|[, = 1.
Thus, for the multi-dimensional case, we expect PAE to minimize local bias in the sense of
Theorem 1, and to satisfy a bias bound with a factor of two as in Theorem 2, although a

formal proof of local bias minimization requires making our e-expansion uniform in v.

10



In the motivating example in Section 2, suppose we are interested in the entire distribu-
tion function F, of a, which is an infinite-dimensional parameter. In this case the average
effect is a function indexed by a € A C R. Let us take the supremum norm || - ||, over

functions v(a) of a. This amounts to taking an ¢! norm on distribution functions. Letting

6 (U, X) = 1{a < a}, the local bias of the PAE is then

N|=

{gbui(l)supnunwl Var, (/Av(a)((S(“)(U,X) —E.[5(U,X)|Y, X])da) }§+O(e).

The ¢'-bias properties of distribution functions will translate into similar properties for

b6(7P> =€

quantile functions, subject to suitable (i.e., Lipschitz) conditions.

S4.5 Confidence intervals

Consider first the correctly specified case. Suppose that B and ¢ are asymptotically linear

in the sense that, for some mean-zero function h, we have

(g) — ( 7 ) —i—%iilh(Yi,Xi)—l—c)p(n_é).

Then, under standard conditions (e.g., Newey and McFadden, 1994), we have

M —
1[0 —0) 4 0 Y1 2o
() ((0) (B 3). st

Here, ¥y = Var, (G1A(Y, X) + E,[6(U, X) | X]), £12 = Cov, (GIA(Y, X) + E.[0(U, X) | X],
GL(Y, X)+E.[6(U, X)|Y, X]), 821 = 12, and By = Var, (G4R(Y, X) + E.[6(U, X) | Y, X]),
for G1 = 93,Ep,. [05(U, X)] and Gy = Eg,. {05,E,,, [05(U,X)|Y,X]}, where dpg(61)
denotes the gradient of ¢g(#) at § = 6;. Note that in (S11) we allow ds to be non-smooth in

B,0x

g (e.g., an indicator function).
Consider next the locally misspecified case. A simple possibility to ensure uniform cover-
age within an e-neighborhood is to add b.(v) on both sides of a standard confidence interval

of §. For example, one may construct the 95% interval

Y

5+ <e% {qb,,i(l)\/ar* (0(U, X) —E,[6(U, X) |, X])}2 + 1.96n—%§:§2>

for $95 = Var, (GLh(Y, X) + E.[6(U, X) | Y, X]), where expectations and variances are taken
with respect to P (B, f5), and 6, Go, and h are evaluated at B and . Note that this confidence
interval requires setting a value for e. Building on Hansen and Sargent (2008), Bonhomme
and Weidner (2018) propose to interpret € by relating it to the local power of a specification
test.

11



S4.6 Specification test

M ~P
Using the asymptotic distribution of (§ ,4 ) under correct specification of f,, we obtain

nt (57 -5") 4 (0.5).

where ¥ = Var, (E.[0(U, X)|Y, X] — E,[6(U, X)| X] + (G2 — G1)'h(Y, X)). Hence, under
correct specification,
e AN / ~ Ey AN
n (5P _ 5M> 51 (5P _ 5M) 42
Plugging-in a consistent empirical counterpart for S in this expression, we obtain a simple

test of correct specification of the parametric density f,.

S4.7 Minimum local worst-case MSE estimator

Here we explain why EMMSE in (17) gives the estimator with minimum worst-case MSE in a
local neighborhood around the reference model (i.e., for small €). We only consider the case
where [ and o, are known and not estimated; that is, we have ¥ (y,z) = 0. Then, finding
AMMSE (4 1) such that 5 inimizes worst-case MSE over fo € T'c can, to leading order

in € and n~!, be shown to be equivalent to minimizing
9 1

See Bonhomme and Weidner (2018) for details.
Next, applying Lemma 1 and noting that E,[v(Y, X) — §(U, X)| = 0 is required for MSE

minimization,! we find that to leading order in € and n~! the worst-case MSE reads

2¢ 1
<Z5"—(1)E* {Var, [y(Y,X) = 0(U, X) | X] } + —E. {1(Y, X) = E.[5(U, X)]}*.
This expression for the approximate worst-case MSE depends on the distribution of X, which
is unknown. For the minimum local worst-case bias result in Theorem 1 it does not matter
that the distribution of X is unknown, because that distribution is identified from the sample
as n — o0o. However, for the MSE result here we have to take a stand on how to deal with

the randomness in the observed covariates. In the following we condition on the observed

sample of covariates, and replace all population expectations over X by sample averages over

! Adding a constant to y(y, x) such that E.[y(Y, X) — (U, X)] = 0 has no effect on the higher order bias
terms in Lemma 1, nor on Var,[y(Y, X)]. It is therefore always optimal to eliminate the leading bias term
E.[v(Y,X) — §(U, X)] in this way.

12



Xyt =1,...,n. We write IEX for those sample averages. The worst-case MSE objective
function in the last display then reads

2€
¢"(1)

By the law of total variance we have

Ex Var, [y(Y, X) - 0(U, X) | X] + %]EX E. ({'y(Y, X) — ExE.[5(U, X)|X]}2 ‘ X) :

Var, [y(Y, X) — (U, X) | X]
=E, {Var, [y(Y,X) = 6(U, X)|Y,X] | X} + Var, {E, [(V,X) = 6(U,X) | Y, X] | X}
=E. {Var, [0(U,X)|Y,X] | X} + Var, {E. [7(Y,X) - 6(U, X) | Y, X] | X} .

In the following we can ignore the term E, {Var* [5(U,X ) ! Y, X ] ‘X }, because it does

not depend on 7(y, z). Then, the leading approximation to the worst-case MSE is given by
the sample average over X of
2€

7O ).

Clearly, if for any given X = z we find v(y, ) that minimizes this objective function, then

—— Var, {7(Y,X) - E, [6(U, X) | Y, X] \X}Jr%E* ({V(Y,X)—IAEXE*[(S(U,XMX] 2

its expected value over the sample distribution of X is also minimized. The corresponding

first-order condition for YMMSE(Y, X)) reads

Lm0y — B[S0, X)X} +

n

2¢€
¢"(1)

{VMMSE@J’ZE) —E. [6(U, X) | Y =y, X =2z

—E, [f"55(Y,2) | X = 2] + E, [§(U, X)| X = «] } —0.
The solution to this first-order condition is

AMMSE (- ZE (U, X)|X = X]]

. (1 N d);/i))_l (B[00, X)|Y =y, X = 2] - E.[5(U, X)| X =},

where we have now written Ex as % Yo

The corresponding minimum local MSE estimator for § = E, [§5(U, X)] is then given by

SMMSE _ ZVMMSEYwX) [1_<1+¢2ﬂ7§€) ] ZE (U, X)|Xi]

+(1+¢ > ZE (U, X)|Y =Y, X = X]],

2ne

which is the result stated in equation (17) of the main text.
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S4.8 Finite support

Here we consider the case where U has finite support and takes the values uq, us, ..., ug with

probability w?, ...,w%. Here we abstract away from 3, o, and covariates X.

Injective and non-injective models. Let §, = §(ux), and denote g, = g(uy) where
Y =g(U). Let gy, ...,g; denote the L < K equivalence classes of gy, ..., gx. We will denote
as {(k) € {1,...,L} the index corresponding to the equivalence class of g, for all k. In
addition, let n, =Y "  1{YV; = g,} for all ¢, and denote wf = f(uy) for all k.

It is useful to distinguish two cases. When g is injective, K = L and E,y[0(U) | g(U) =
gk] = k. So we have gp = % Zszl ni0r. This estimator does not depend on the assumed f.

x Ny tends to infinity we have
o K
%) wior = .
k=1

~P —
Hence ¢ is consistent for ¢, irrespective of the choice of the reference density f, provided

Moreover, as ming—;

-----

wg > 0 for all .

When g is not injective, K # L and we have

s 2%221{16:@}%)[( ) 19(U) ZWEpm 19(U) =17,].

i=1 /(=1

Moreover,

Epn[B(U) [9(U) =Gy] = Z4y Proon(U = Uk [ 9(U) = Ge)0x

_ wi 1{£(k) _
Zkz 1 Zk’ | k/l{f(k’) Z}(S 5(

Hence,
U
E ng .

Y in general, even as ming—; 1 ne tends to infinity.

U ~P
Through 52], 0 depends on the prior w

0

Bayesian interpretation. From a Bayesian perspective, one may view w” as a parameter,

and put a prior on it. A simple conjugate prior specification is a Dirichlet distribution

w ~ Dir(K, «), where ay, > 0 for k = 1,..., K. We will focus on the posterior mean

K K
k=1 k=1

14
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for a Dirichlet prior with ay = MwY for all k, where M > 0 is a constant.

For all £, let @, = S_0  1{(k) = (}ay, and @, = Sp 1{l(k) = Owy. (@1, ...,wL)
follows the Dirichlet distribution Dir(L,@). Moreover, for all k, wy /W) is a component of
a Dirichlet distribution with mean oy /ai).

Unlike the @,’s, the wy/Wyx)’s are not updated in light of the data since they do not
enter the likelihood. Notice the link with the Bayesian analysis of partially identified models
in Moon and Schorfheide (2012): here the @,’s are identified but the wy’s are not, since for
identical g;’s the data provides no information to discriminate across wy’s.

As a result, we have

w w
Elos|Y] = E [_—’f% | Y} _E [_—’“] E [ | Y]
We(k) Wek)
o Ny + 0y M—0 wY Ny(k)

=_—* =
gy n+ M e Wl (k) = ((k)}

It thus follows that

5 MRS Gk new _ 3¢
T D wp{U(K) =Lk} n

Hence, under a diffuse Dirichlet prior centered around wY, the Bayesian posterior mean

coincides with the PAE we focus on in this paper.

S5 Posterior average effects in various settings

In this section, we provide additional examples of models where PAE may be of interest,

and we show illustrative simulations for two models.

S5.1 Models
Linear regression. Consider the linear regression
Y, = X+ U,

Suppose that E[XU] = 0, and that the OLS estimator B is consistent for J. Suppose also
that the researcher is interested in the average effect § = E; [U2X X’].2 In this context,

a model-based approach consists in modeling U | X, say, as a normal with zero mean and

2In this example ¢ is multi-dimensional; see Appendix S4.
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variance o2, and computing
n

~M 1
0 =5"=> XX,
=1

n &
where 7 = L5 (V; — X!B)? is the maximum likelihood estimator of o under normality.
By contrast, a PAE is

~P
o

ISR, [Pxx|y = v, x = X]
n =1 .

I ~
=~ (Vi - X{B)X.X].
i
~P —
This is the central piece in the White (1980) variance formula. § remains consistent for ¢
~P
absent normality or homoskedasticity of U. In this very special case, 0 is thus fully robust

to misspecification of f,, since U; is a deterministic function of Y;, X; and (.

Censored regression. Consider next the censored regression model
Y; = max(Y;",0), where Y;* = X/ + U,. (S12)

In this model, 8 can be consistently estimated under weak conditions. For example, Pow-
ell’s (1986) symmetrically trimmed least-squares estimator is consistent for § when U | X is
symmetric around zero, under suitable regularity conditions. In this setting, suppose that
we are interested in a moment of the potential outcomes Y;*, such as § = E, [h(Y™*)] for some
function h. As an example, the researcher may wish to estimate a feature of the distribution
of wages using a sample affected by top- or bottom-coding.

Following a model-based approach, let us assume that U | X ~ N(0,0?), and estimate o>
using maximum likelihood. A model-based estimator is then 5= Ly Ey, [h(X{E +U)].
By contrast, a PAE is

n n
~P 1

1 /A o
0 =22 WY >0h¥)+ o) 1{Yi=0)E,, (W(XB+U) | X[B+U <0],

=1

censored

uncensored
This estimator relies on actual Y’s for uncensored observations, and on imputed Y’s for
censored ones.

The censored regression model illustrates an aspect related to the class of neighborhoods
that our theoretical characterizations rely on. In model (S12), the researcher might want to

impose that U | X be symmetric around zero, which is the main assumption for consistency of
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the Powell (1986) estimator. It is possible to construct estimators that minimize local worst-
case bias in an e-neighborhood that only consists of symmetric densities f,. However, PAE
may no longer have minimum bias in this class. More generally, the assumptions that justify
the use of a particular estimator B may suggest further restrictions on the neighborhood.
Our bias results are based on a class where such restrictions are not imposed. Indeed, the
only additional restriction on fj, beyond belonging to an e-neighborhood around f,_, is that
the population moment condition Epg, s[5, (Y, X)] = 0 is assumed to hold, and we do
not impose further restrictions that might be natural in order to justify the validity of this

moment condition.

Binary choice. Consider now the binary choice model
Y; = 1{X/8+ U; > 0}. (S13)

In this model, Manski (1975, 1985) shows that 3 is identified up to scale as soon as the median
of U| X is zero, under sufficiently large support of X. In addition, he provides conditions
for consistency of the maximum score estimator B, again up to scale. Manski’s conditions,
however, are not sufficient to consistently estimate the average structural function (ASF,
Blundell and Powell, 2004)

d(x) =Ep[1{z'S+ U > 0}].

Let us take as reference parametric distribution for U | X a normal with zero mean and

variance o2, and let 6% denote the maximum likelihood estimator of ¢2 given B, based
~M )

on normality.> A model-based estimator of the ASF is § (z) = @ (%), and a posterior

estimator is

P n min | ® % , P Xéﬁ max | ® ’”;B -0 XéB ,0
-t [ el ) ()

g

Unlike EM(Q:), the posterior ASF estimator Sp(aj) depends directly on the observations of
the binary Y;’s, in addition to the indirect data dependence through E and 2. In the next
subsection we present simulations from an ordered choice model, which suggest that the
informativeness of the posterior conditioning — and the robustness properties of posterior
estimators compared to model-based estimators — depend crucially on the support of the

dependent variable.

3Specifically, & maximizes the probit log-likelihood >, V; log ® (Xm) +(1-Y;)log® (— Xf

o

).
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Panel data discrete choice. Our last example is the panel data model
ifitzl{X,L{tﬂ+Oéi+€it>0}, izl,...,n, tzl,,T

When ¢;; are i.i.d. standard logistic, 8 can be consistently estimated using the conditional
logit estimator (Andersen, 1970, Chamberlain, 1984). However, additional assumptions are
needed to consistently estimate average partial effects such as the effect of a discrete shift of

A along the k-th component of X,
0= Epf{(Xi+A-e)B+a+e >0} —Epf[l{X/B+a+e > 0}])/A,

where ey, is a vector of zeros with a one in the k-th position.

The standard approach is to postulate a parametric random-effects specification for the
conditional distribution of a given Xy, ..., X7, and to compute an average effect SM with
respect to that distribution. By contrast, a posterior estimator is computed conditional on
the observations Yji, ..., Y;r, for every individual i. As T tends to infinity, such estimators are
robust to misspecification of «, provided ¢, is correctly specified (Arellano and Bonhomme,
2009). Our analysis shows that they also have robustness properties when 7' is fixed and n
tends to infinity.

Aguirregabiria et al. (2018) show that conditional logit-like estimators can also be used
to consistently estimate parameters in structural dynamic discrete choice settings. As an
example, they study the Rust (1987) model of bus engine replacement in the presence of
unobserved heterogeneity in maintenance and replacement costs. In such structural models,
estimating average welfare effects of policies requires averaging with respect to the distribu-
tion of unobservables. PAE provide an alternative to the standard parametric model-based

approach in this context.

S5.2 Simulations

Here we report the results of two simulation exercises, based on the fixed-effects model (1),

and on an ordered choice model.

S5.2.1 Fixed-effects model

Skewness. Let us consider the fixed-effects model (1). Suppose the parameter of interest

3
o &_(@)].
Oq Oa
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For example, it is of interest to estimate the skewnesses of income components and how they
evolve over time (Guvenen et al., 2014). Since the normal distribution is symmetric, the
model-based normal estimator of skewness is simply SM = 0, irrespective of the observations
Y;;. Hence, SM is not informed by the data, even when the empirical distribution of the
fixed-effects Y; = % Z;.Izl Y;; indicates strong asymmetry.
By contrast, a PAE based on a normal reference distribution is
n -~ ~ \3
7= B [0ty =] o2 (22)

It can be verified that

n

~P 11 — —\ 3
) :ﬁ__E :(y._y)
=3 i )
Ta i3
~ G . .. . .M . .
where p = =72 —. Under mild conditions, and in contrast with § , the posterior estimator
P oo+oz/J
~P

0 is consistent for the true skewness of a as J tends to infinity. However, ZS\P is biased for
small J in general.

To provide intuition about the magnitude of the bias, we simulate data where all latent
components are independent, €; are standard normal, and o follows a skew-normal distribu-
tion (e.g., Azzalini, 2013) with zero mean, variance 1, and skewness ~ .47 corresponding to
the skew-normal parameter § = .99. We take n = 1000, and run 100 simulations varying J
from 1 to 30. We estimate means and variances using minimum-distance based on first and
second moment restrictions.

In the left panel of Figure S1 we show the results. We see that the model-based estimator
is equal to zero irrespective of the number J of individual measurements. By contrast, the
posterior estimator converges to the true skewness of o as J increases, although it is biased

for small J.

Gini coefficient. We next focus on the Gini coefficient of «:

1 / / /
_ B — dada’.
G QEfO[eXp (O[)] // | exp(a) exp(a)|f0(a)f0(a) act
In this case, a model-based estimator is
GM = 20(5./V?2) — 1,
while a PAE is, following (S10),

G = &M+ 53 (BIVG(@) Y] - EVGLa)])
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Figure S1: Skewness and Gini estimates in the fixed-effects model
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Notes: true (solid), posterior (dashed), model-based (dotted). n = 1000, 100 simulations.
where

VG(a) = — exp <a—ﬁa—%3i> (@M+1—2q> (O‘;“a>)+(1—2q> (O‘;“a—aa».

In the right panel of Figure S1 we show the simulation results. We see that in this case

also the model-based estimator is insensitive to J. The posterior estimator has a lower bias,

especially for larger J.

S5.2.2 Ordered choice model

We next consider the ordered choice model

J
Y, = Zj]-{,ujfl <Y< ﬂj}a where Y;" = X8 + U,

j=1
for a sequence of known thresholds —oco = py < p; < ... < py_y < py = +00. This model
may be of interest to analyze data on wealth or income, say, where only a bracket containing
the true observation is recorded. We focus on the average structural function

J
5(x) = Ey, Zjl{ﬂj—l <2/p+U< pit| -

j=1
We take as reference distribution U | X ~ A(0,0%). In the simulated data generating
process, U is independent of X, distributed as a re-centered y? with mean zero and variance

one. We simulate a scalar standard normal X. We set n = 1000, 8, = .5, B, =0, 0 = 1, and

i as uniformly distributed between —2 and 2. We estimate 8 up to scale using maximum
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Figure S2: Average structural function in the ordered choice model
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Notes: true (solid), posterior (dashed), model-based (dotted). n = 1000, 100 simulations.

score (Manski, 1985).% For computation of maximum score, we use the mixed integer linear

programming algorithm of Florios and Skouras (2008).
In Figure S2 we report the results for J = 3 (left) and J = 10 (right). We see that,
when J = 3, model-based and posterior estimators are similarly biased. By contrast, when

J = 10, the posterior estimator aligns well with the true average structural function, even

though the model-based estimator is substantially biased.

4Specifically, using maximum score we regress 1{Y; < j} on X; and a constant, for all j, imposing that
the coefficient of X; is one. We then regress the .J estimates on a common constant and the y;, and obtain

the implied estimate for 8 by rescaling.
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S6 Additional empirical results

Figure S3: Density of posterior means of neighborhood effects

density

0
neighborhood effects

Notes: Density of posterior means of u. (solid) and prior density (dashed). Calculations are based

on statistics available on the Equality of Opportunity website.

Figure S4: Posterior density of neighborhood effects, correlated random-effects specification

0
neighborhood effects

Notes: Posterior density of u, (solid) and prior density (dashed), based on a correlated random-
effects specification allowing for correlation between the place effects u. and the mean income of
permanent residentsy,.. Calculations are based on statistics available on the Equality of Opportunity

website.
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Figure S5: Density of neighborhood effects at the county level

Density of fixed-effects estimates Posterior density
0
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Notes: In the left graph we show the density of fized-effects estimates i (solid) and normal
fit (dashed). In the right graph we show the posterior density of ™™™ (solid) and prior density
(dashed). Calculations are based on statistics available on the Equality of Opportunity website.

Figure S6: Quantiles of income components, comparison to Arellano et al. (2017)

0.1

guantile difference

0.2

s 0,‘1 0.‘2 0.‘3 0.‘4 0,‘5 0.‘6 0.‘7 0.‘8 019

percentile
Notes: The graph shows quantile differences between posterior and model-based estimators in thick
font, and estimates from Arellano et al. (2017) in thinner font. n; is shown in solid and i is
shown in dashed. Sample from the PSID.
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